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SUMMARY

Determining the induced L2 norm of a linear, parameter-varying (LPV) system is an integral part of many
analysis and robust control design procedures. Most prior work has focused on efficiently computing upper
bounds for the induced L2 norm. The conditions for upper bounds are typically based on scaled small-
gain theorems with dynamic multipliers or dissipation inequalities with parameter dependent Lyapunov
functions. This paper presents a complementary algorithm to compute lower bounds for the induced L2
norm. The proposed approach computes a lower bound on the gain by restricting the parameter trajectory to
be a periodic signal. This restriction enables the use of recent results for exact calculation of the L2 norm
for a periodic linear time varying system. The proposed lower bound algorithm returns also a worst-case
parameter trajectory for the LPV system that can be further analyzed to provide insight into the system
performance.
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1. INTRODUCTION

The induced L2 norm of an LPV system is an important performance metric for control design.
In general, this norm cannot be determined exactly. Most prior work focuses on computing an
upper bound on the induced L2 norm. The method used to compute the induced gain upper bound
depends primarily on the structure of the LPV system. For LFT-type LPV systems, where the system
matrices are rational functions of the parameter, the upper bound can be computed using scaled
small gain theorems with multipliers and the full block S-procedure [1, 2]. For LPV systems where
the parameter dependence is arbitrary, the upper bound is computed using a dissipation inequality
evaluated over a finite set of parameter grid points [3, 4, 5].

This paper addresses the complementary problem: calculation of a lower bound on the induced
L2 norm. Frozen point analysis is one simple way to compute a lower bound. Specifically, a lower
bound is computed as the maximum gain of LTI systems obtained by evaluating the LPV system
on a grid of frozen parameter values. To our knowledge this is the only method currently available
to compute a lower bound on the induced L2 norm of an LPV system. Unfortunately, this approach
produces conservative results in many cases as it neglects the variation of the scheduling parameter.
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A better estimate requires the L2 norm to be evaluated over time varying parameter trajectories. This
introduces a complex optimization problem involving a maximization over the allowable parameter
trajectories and the L2 inputs to the LPV system.

The proposed lower bound algorithm restricts the scheduling trajectories to periodic signals. This
restriction is useful because the LPV system evaluated on a fixed periodic trajectory is simply a
periodic linear time-varying (PLTV) system. Moreover, the induced L2 norm of a PLTV system can
be exactly determined by using recently developed numerical methods, see e.g. [6]. The proposed
algorithm entails maximizing a cost function related to the induced L2 norm (described in detail
in Sec. 3) over a finite dimensional subspace of periodic scheduling trajectories. This produces a
lower bound estimate and a worst-case parameter trajectory for the LPV system. In addition, we
construct a worst-case input signal that approximately achieves the computed induced gain lower
bound. The construction of the worst-case input is based on the PLTV results collected in [7] and
[8]. In [7] the worst case input is derived by using a special, frequency domain representation for
the PLTV system. In this paper the worst-case input construction and proofs are provided using
time-domain operators only. This difference is analogous to the LTI case where the worst-case
(steady-state) input is a sinusoid constructed based on frequency-domain considerations. In contrast,
a time-domain argument addresses initial condition transients and yields a truncated sinusoid that
approximately achieves the system gain. Similarly, the alternative time-domain approach for PLTV
systems, detailed in section 2.3, yields signals (wo, zo) such that: (i) wo ∈ L2, (ii) (wo, zo) is an
input/output pair of the PLTV system G assuming zero initial conditions (including the transient
response), and (iii) the gain of this input/output pair is within ε > 0 of the induced L2 gain of G.
These input/output signals (along with the parameter trajectory of the corresponding LPV system)
can then be returned to user for further investigation, e.g. in a high fidelity simulation.

It is notable that our algorithm assumes no specific structure on the LPV system. Thus, it is
developed for the systems with arbitrary parameter dependence. It trivially applies for ”LFT” models
as well, although the additional rational structure in LFT models may lead to faster lower bound
algorithms than those developed here. This paper builds on initial work in [9]. This paper provides
a full description for the lower bound algorithm including the worst-case input construction.

The notations used in the paper are fairly standard. D and ∂D are the unit disc and unit circle
in the complex plane C. If T : E → F is a bounded, linear operator between Hilbert spaces E
and F , then the adjoint of T is denoted by T∗ and is defined as follows: 〈Tu, y〉F = 〈u,T∗y〉E ,
∀u ∈ E and ∀y ∈ F . The space of square-integrable signals f : [0,∞)→ Rn is denoted by L2(Rn).
The inner product and norm in L2(Rn) are defined as 〈f, g〉L2(Rn) =

∫∞
0
f(t)T g(t)dt and ‖f‖ =√

〈f, f〉L2(Rn), respectively. If G is a bounded linear operator, such that G : w ∈ L2(Rp) 7→ z ∈
L2(Rq) then its induced L2 norm is defined as ‖G‖ := sup06=w∈L2(Rp)

‖z‖
‖w‖ . L2,[0,h)(Rn) denotes

the space of square-integrable functions on the interval [0, h) with inner product 〈f, g〉L2,[0,h)(Rn) =∫ h
0
f(t)T g(t)dt. `2(E) denotes the square-summable sequences w = {wk}∞k=0 in the Hilbert space

E with inner product 〈w, v〉`2(E) :=
∑∞

k=0〈wk, vk〉E . If f is a signal f : R→ Rn, then f(·) refers
to the entire signal while f(t) denotes its value at t.

2. PERIODIC SYSTEMS

2.1. Background

This section reviews known results on PLTV systems. Most results can be found in [8]. In particular,
we consider a linear time-varying system G of the form:

G :
ẋ(t) = A(t)x(t) +B(t)w(t)
z(t) = C(t)x(t) +D(t)w(t)

(1)

that has the following properties:

(i) the system matrices A(t) : R→ Rn×n, B(t) : R→ Rn×p, C(t) : R→ Rq×n, D(t) : R→
Rq×p are bounded continuous functions of time,
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COMPUTATION OF LOWER BOUNDSFOR THE INDUCED L2 NORM OF LPV SYSTEMS 3

(ii) are h-periodic, i.e.A(t+ h) = A(t),B(t+ h) = B(t),C(t+ h) = C(t),D(t+ h) = D(t), ∀t
and

(iii) the dynamics (1) are internally stable.

The state transition matrix Φ(t, τ) associated with the autonomous dynamics ẋ(t) = A(t)x(t) is
defined for all (t, τ) as the linear mapping from x(τ) to x(t), i.e. x(t) = Φ(t, τ)x(τ). It is easy
to check that Φ(t, τ) is periodic with h, i.e. Φ(t+ h, τ + h) = Φ(t, τ), and satisfies the matrix
differential equation d

dtΦ(t, τ) = A(t)Φ(t, τ), Φ(τ, τ) = I . The state transition matrix over one
period is called the monodromy matrix: Ψ(t) := Φ(t+ h, t). Clearly, the monodromy matrix is
periodic with h, i.e. Ψ(t+ h) = Ψ(t).

The system (1) is stable and hence it defines a bounded operator G := w ∈ L2(Rp) 7→ z ∈
L2(Rq), such that

z(t) =

∫ t

0

C(t)Φ(t, τ)B(τ)w(τ) dτ +D(t)w(t) (2)

where z(t) is the response of (1) to the input w(t) if x(0) = 0. It is shown in [10] that ‖G‖ is
equal to the norm of the ”lifted” operator Ĝ : `2(L2,[0,h)(Rp))→ `2(L2,[0,h)(Rq)), which has a
finite dimensional state-space realization as follows [11]:

ξk+1 = Âξk + B̂ŵk

ẑk = Ĉξk + D̂ŵk
(3)

where ξk ∈ Rn and Â : Rn → Rn, B̂ : L2,[0,h)(Rp)→ Rn, Ĉ : Rn → Rq, D̂ : L2,[0,h)(Rp)→
L2,[0,h)(Rq) are linear operators defined as follows:

Âξk := Ψ(0)ξk, B̂ŵk :=

∫ h

0

Φ(h, τ)B(τ)ŵk(τ)dτ

Ĉξk := C(t)Φ(t, 0)ξk, D̂ŵk :=

∫ t

0

C(t)Φ(t, τ)ŵk(τ)dτ +D(t)ŵk(t).

(4)

Although (3) is a finite dimensional system, it is still not suitable for numerical computations
because its system matrices are operators. Therefore, based on Lemma 21.11 and Theorem 21.12
on pg. 539 of [12] the feedthrough term D̂ is eliminated and a discrete-time, linear, time-invariant
system Gγ is constructed from (3) ([13, 6]). The state-space matrices of Gγ are computed as
follows:

Aγ := Â+ B̂(γ2I − D̂∗D̂)−1D̂∗Ĉ

BγB
∗
γ := γB̂(γ2I − D̂∗D̂)−1B̂∗ (5)

C∗γCγ := γĈ∗(γ2I − D̂D̂∗)−1Ĉ.

More specifically, the matrices Bγ and Cγ are defined to be full rank matrices that satisfy the
equalities that appear in (5). Note that Aγ , Bγ , Cγ are now real matrices: Aγ ∈ Rn×n, Bγ ∈
Rn×p, Cγ ∈ Rq×n. The following theorem, taken from [6], proves that there is a strong relation
between the induced `2-norm of the LTI system Gγ and the norm of Ĝ.

Theorem 1
The following statements are equivalent:

a) eig(Â) ∈ D\∂D and ‖Ĝ‖ < γ

b) eig(Aγ) ∈ D\∂D and ‖Gγ‖∞ < 1

where ‖Gγ‖∞ is the standard H∞ norm of Gγ .
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2.2. Induced norm computation

Theorem 1 gives the base of the bisection algorithm proposed in [6] to compute the L2-norm of the
periodic system (1). This requires a numerically reliable method to determine the system matrices
Aγ , Bγ , Cγ . For this, consider the following Hamiltonian system associated with (1):

ė(t) = H(t)e(t) (6)

where H has 2× 2 blocks defined as (suppressing the notation of time dependence)

H11 := −AT − CTD(γ2I −DTD)−1BT

H12 := −γCT (γ2I −DDT )−1C

H21 := γB(γ2I −DTD)−1BT

H22 := A+B(γ2I −DTD)−1DTC.

(7)

Denote the monodromy matrix of (6) by ΨH(t) and let Q = ΨH(0). Partitioning Q =
[
Q11 Q12

Q21 Q22

]
yields [6]

BγB
T
γ = Q21Q

−1
11

CTγCγ = −Q−111 Q12

Aγ = Q22 −Q21Q
−1
11 Q12.

(8)

Q is symplectic [14], i.e. QTJQ = J , and thus Q is uniquely determined by (8) in the following
form:

Q =

[
A−Tγ −A−Tγ CTγCγ

BγB
T
γA
−T
γ Aγ −BγBTγA−Tγ CTγCγ

]
. (9)

A possible method to compute Aγ , Bγ , Cγ can be given as follows. First integrate the Hamiltonian
system (6) on [0, h) from the matrix initial condition e(0) = I . Then Q = e(h). Determine the
system matrices from Q using (8). Since H(t) is unstable this approach is numerically unreliable.
An alternative method proposed in [6] is based on the following relations:

Aγ = X(h), CTγCγ = Z(0), BγB
T
γ = Y (h) (10)

where X(h), Z(0), and Y (h) are point solutions of the differential Riccati equations

Ż = −HT
22Z − ZH22 − γZB(γ2I −DTD)−1BTZ + γCT (γ2I −DDT )−1C (11)

Ẋ = (H22 + γB(γ2I −DTD)−1BTZ)X (12)

Ẏ = H22Y + Y HT
22 + γY CT (γ2I −DDT )−1CY + γB(γ2I −DTD)−1BT (13)

with boundary conditions Z(h) = 0, X(0) = I and Y (0) = 0. Integrating these Riccati equations
is a numerically better conditioned problem than the direct integration of (6) [6]. The bisection
algorithm proposed in [6] is based on iteratively solving (11)-(13) and computing ‖Gγ‖∞ at
different γ values that are tuned in a bisection loop. The output is a lower- and upper bound pair
(γ, γ) satisfying γ ≤ ‖G‖ ≤ γ such that γ − γ ≤ ε, where ε is a given tolerance.

Remark 1
If we introduce T =

[
0 I
γI 0

]
and apply the state transformation ẽ(t) = T−1e(t) in (6), we get the

following transformed Hamiltonian system:

˙̃e(t) = H̃ẽ(t), with H̃(t) = T−1H(t)T. (14)

This system is the same as that used in [7]. Denote ΨH̃(t) as the monodromy matrix associated with
(14) and let Q̃ := ΨH̃(0). Then, it can be shown that Q̃ = T−1QT . We use (14) instead of (6) in the
next section, because (14) is more convenient for the forthcoming derivations.
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2.3. Construction of the worst-case input

We are also interested in constructing the worst-case input w◦ ∈ L2 that achieves the induced norm
‖G‖. It is shown that the input signal producing the induced norm is periodic, thus it is not in L2.
Hence, the method we provide can only approximately achieve this gain. Specifically, for any ε > 0
we construct an input w◦ ∈ L2 such that z◦ := Gw◦ satisfies ‖z◦‖ ≥ ‖G‖‖w◦‖ − ε. This is similar
to the LTI case where the worst-case input is a sinusoid and a truncated sinusoid approximately
achieves the system gain. The method used to construct the worst-case input for the PLTV system
is based on the proof of Lemma 2.6 in [7]. In [7] the worst-case input is constructed using a
special frequency-domain representation of G defined over exponentially periodic signals. In this
section, an alternative construction and proof is provided using only time-domain formulations. This
alternative proof streamlines the numerical construction of the worst-case input. To this end, let the
linear operator TG : Rn × L2,[0,h)(Rp)→ Rn × L2,[0,h)(Rq) be defined as follows:

TG(x0, w)→ (xh, z) := (Âx0 + B̂w, Ĉx0 + D̂w).

TG is equivalent to the (state-input)→ (state-output) map realized by (1) over the period [0, h) with
x(0) = x0, xh = x(h). Introduce an inner product on Rn × L2,[0,h)(R·) as

〈(x,w), (y, v)〉 = x∗y +

∫ h

0

w∗(t)v(t)dt.

Then the adjoint operator T∗G is defined to satisfy the equation

〈(x̂h, ẑ),TG(x0, w)〉 = 〈T∗G(x̂h, ẑ), (x0, w)〉.

The next lemma provides a state-space realization for the adjoint operator.

Lemma 1
If (x̂0, ŵ) = T∗G(x̂h, ẑ) then

˙̂x(t) = −A∗(t)x̂(t)− C∗(t)ẑ(t), x̂(h) = x̂h

ŵ(t) = B∗(t)x̂(t) +D∗(t)ẑ(t), x̂0 = x̂(0).
(15)

Proof
The proof is provided in the Appendix.

The following lemma provides a useful interpretation for the Hamiltonian dynamics (14) in terms
of the operator TG and its adjoint.

Lemma 2
Interconnect the dynamics of (1) and (15) with ẑ(t) := z(t) and w(t) := γ−2ŵ(t). The resulting
autonomous dynamics has state ẽT := [xT x̂T ] with dynamics given by (suppressing dependence on
t):

˙̃e = H̃ẽ (16)

w = (γ2I −D∗D)−1
[
D∗C B∗

]
ẽ (17)

z = (γ2I −DD∗)−1
[
γ2C DB∗

]
ẽ. (18)

Moreover let (λ, v) denote an eigenvalue/eigenvector of the monodromy matrix Q̃ for (16).
Partition v∗ := [v∗1 v

∗
2 ] conformably with the state ẽT := [xT x̂T ]. Then TG(v1, w) = (λv1, z) and

T∗G(λv2, z) = (v2, γ
2w).

Proof
The expression for the Hamiltonian dynamics as the feedback connection of (1) and (15) is from
[7]. The remaining relations follow from the definitions of TG and T∗G.
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Next, we show that the worst-case input can be constructed from (17) if the Hamiltonian system
(16) is initialized as ẽ(0) = v. This requires the following result which is a direct consequence of
Lemma 21.10 in [12]:

Theorem 2
The following statements are equivalent:

(a) ‖Gγ‖∞ < 1.

(b) Q̃ has no eigenvalues on ∂D and there exists θ ∈ [0, π] such that σmax(Gγ(ejθ)) < 1.

Theorems 1 and 2 imply that if γ < ‖G‖, i.e. ‖Gγ‖∞ ≥ 1 then Q̃ has a unit modulus eigenvalue or
σmax(Gγ(ejθ)) ≥ 1 for all θ ∈ [0, π]. If the latter occurs with strict inequality then Q̃ does not have
an eigenvalue on ∂D. If this is the case, γ can be slightly increased to find γ1 > γ such that γ1 ≤ ‖G‖
and σmax(Gγ1(ejθ1)) ≤ 1 for some θ1 ∈ [0, π]. The existence of such a γ1 follows from the fact that
σmax(Gγ(ejθ)) is continuous in γ and from Theorem 2 saying that if γ is increased until it exceeds
the norm of G then there is a frequency, where the maximal singular value is smaller than 1. By using
the argument in the proof of Lemma 21.10 in [12], ‖Gγ1‖∞ ≥ 1 together with σmax(Gγ1(ejθ1)) ≤ 1

implies that Q̃ has a unit modulus eigenvalue. Note that, if the reasoning above is applied with the
norm bound γ computed by the bisection algorithm introduced in the previous subsection then it
is easy to see that γ1 ∈ [γ, ‖G‖], i.e. the increment γ1 − γ is indeed small, less than the tolerance
ε. It is also important to note that the case of Q̃ having no unit modulus eigenvalue is unlikely to
be encountered in practice, since the stopping tolerance is always reasonably tight. (We tested the
bisection algorithm on many examples, and we did not face this problem so far.)

Let γ be such that γ < ‖G‖ and Q̃ has a unit modulus eigenvalue. Let v denote the
corresponding eigenvector. Let ẽ denote the solution of the Hamiltonian dynamics (16) and (w, z)
the corresponding outputs with initial condition ẽ(0) = v. Then Lemma 2 implies that TG maps the
input w and initial state v1 to the output z and final state ejωhv1. It also follows from Lemma 2 that:

v∗2v1 +

∫ h

0

z∗(t)z(t) = 〈(ejωhv2, z),TG(v1, w)〉

= 〈T∗G(ejωhv2, z), (v1, w)〉

= v∗2v1 + γ2
∫ h

0

w∗(t)w(t)

(19)

Thus ||z||[0,h) = γ||w||[0,h), i.e. the L2 gain of G is equal to γ on the interval [0, h) provided the
initial condition of the system G is given by x(0) = v1.

Note that the input/output pair (w, z) for t ∈ [0, h) is obtained by integrating the Hamiltonian
dynamics (16) starting from ẽ(0) = v. The state after one period is given by ẽ(h) = Q̃ẽ(0) = ejωhv.
Thus integrating the periodic Hamiltonian dynamics forward over the next interval yields w(t) =
ejwhw(t− h) and z(t) = ejwhz(t− h) for t ∈ [h, 2h). Continuing to evolve the Hamiltonian
dynamics forward in time over subsequent periodic intervals yields an input/output pair of G such
that for any interval k ∈ {0, 1, 2, . . .}:

w(t) = ejωkhw(t− kh), t ∈ [kh, (k + 1)h) (20)

z(t) = ejωkhz(t− kh). (21)

This input/output pair satisfies ‖z‖[kh,(k+1)h) = γ‖w‖[kh,(k+1)h) over each interval [kh, (k + 1)h).
Thus w is, loosely speaking, an input that achieves the gain γ. There are three issues to be resolved
to make this more precise. First, the input (20) is persistent and hence is not in L2,[0,∞). Second,
the signals (w, z) in (20-21) are an input/output pair of G only if the periodic system starts with
the initial condition x(0) = v1. However, the induced gain is defined assuming x(0) = 0. Third, the
input can be complex if the eigenvector v is complex.

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2010)
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The first two issues are resolved by noting that (w, z) defined by (20-21) can be expressed using
the state transition matrix as:

z(t) = C(t)Φ(t, 0)v1 +

∫ t

0

C(t)Φ(t, τ)B(τ)w(τ) dτ +D(t)w(t). (22)

Define w• as the truncation of w after K periodic intervals, i.e. w•(t) := w(t) for t ∈ [0,Kh) and
w•(t) := 0 otherwise. Define z• as the output of G driven by input w• but with initial condition
x(0) = 0. Then z•(t) = z(t)− s(t) for t < Kh where s(t) := C(t)Φ(t, 0)v1 is the initial condition
response. The norm of z• can be bounded as:

‖z•‖ ≥ ‖z‖[0,Kh) − ‖s‖[0,Kh) = γ‖w•‖[0,Kh) − ‖s‖[0,Kh). (23)

The first inequality follows from the triangle inequality. The second equality follows from two
facts. First, ‖z‖[kh,(k+1)h) = γ‖w‖[kh,(k+1)h) over each interval as noted above. Second, w• = w
by construction for t ∈ [0,Kh). Next note that ‖s‖[0,Kh) ≤ ‖s‖ <∞ due to the stability of G.
In addition, ‖w•‖[0,Kh) = K‖w•‖[0,h) and hence ‖w•‖[0,Kh) →∞ as K →∞. Thus it is clear that
∀ε > 0 there exists an integerK such that the input-output pair (w•, z•) of G satisfies ‖z

•‖
‖w•‖ ≥ γ − ε.

The input w• is a valid “worst-case” signal because it is in L2 and the output has been generated
with zero initial conditions.

The remaining issue is the fact that (w•, z•) may be complex. The periodic system G is linear and
the system matrices are real. Thus neglecting the imaginary part of the complex valued input does
not change the gain. Therefore the real valued worst-case input can be obtained by w◦ = Re(w•).
Now we can summarize the complete algorithm.

Algorithm 1 (Worst-case input)

1: Let γ be given such that γ ≤ ‖G‖. Set γ := γ.
2: Compute Q from Aγ , Bγ , Cγ using the equation (9). Determine Q̃ by applying the similarity

transformation T .
3: Compute the unit modulus eigenvalue ejωh of Q̃ and the corresponding eigenvector v. (If Q̃ does

not have a unit modulus eigenvalue, then increase γ according to the discussion after Theorem
2 and restart the algorithm with the new value obtained.)

4: Integrate the Hamiltonian dynamics (14) from t = 0 to t = h starting from the initial condition
ẽ(0) = v.

5: Use (17) to compute w(t) on [0, h) from ẽ(t).
6: Choose an integer K � 1 and define the (possibly complex valued) signal w•(t) by: w•(t) =
ejωkhw(t− kh) if t ∈ [kh, (k + 1)h), k = 0, 1, . . . ,K − 1 and w•(t) = 0 if t ≥ Kh.

7: Let w◦ := Re(w•) and z◦ := Gw◦.

Remark 2
If h is ”too large”, the integration of the Hamiltonian system in step 4 of Algorithm 1 may cause
numerical problems, because the Hamiltonian system is unstable. If this is the case, then aligned
with the ideas in [6], an alternative, numerically more reliable method can be applied to determine
the ẽ(t) trajectory for all t ∈ [0, h). This method is based on constructing the state transition matrix
Φ̃(τ, 0) of (14) for all τ ∈ [0, h) by using the Riccati equations (11)-(13). For this, let τ ∈ [0, h)
and denote X(τ), Z(0) and Y (τ) the point solutions obtained by solving equations (11)-(13)
with boundary conditions Z(τ) = 0, X(0) = I and Y (0) = 0. Then, analogously to equations (10),
we can define Aγ,τ , Bγ,τ , Cγ,τ to satisfy Aγ,τ = X(τ), CTγ,τCγ,τ = Z(0), Bγ,τB

T
γ,τ = Y (τ). By

substituting these matrices into equation (9) the state transition matrix Φ(τ, 0) can be obtained.
Finally, let Φ̃(τ, 0) = T−1Φ(τ, 0)T and ẽ(τ) = Φ̃(τ, 0)ẽ(0) = Φ̃(τ, 0)ṽ for all τ ∈ [0, h).

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control (2010)
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3. COMPUTATION OF LOWER BOUNDS FOR THE INDUCED L2 NORM OF LPV
SYSTEMS

3.1. Problem formulation

The linear parameter-varying system is assumed to be given in state-space form as follows:

G :
ẋ(t) = A(ρ(t))x(t) +B(ρ(t))w(t)
z(t) = C(ρ(t))x(t) +D(ρ(t))w(t)

(24)

where the system matrices are continuous functions of the parameter ρ. In addition, ρ(·) is a
piecewise continuously differentiable function of time, ρ : R+ → Rm, that is assumed to satisfy
the known bounds

ρi ≤ ρi(t) ≤ ρi, µi ≤ ρ̇i(t) ≤ µi, ∀t, 1 ≤ i ≤ m (25)

The set of admissible trajectories containing all piecewise continuously differentiable trajectories
that satisfy (25) is denoted by A. The performance of an LPV system G can be specified in terms of
its induced L2 gain from input w to output z assuming x(0) = 0: ‖G‖ = sup06=w∈L2(Rp),ρ(·)∈A

‖z‖
‖w‖ .

3.2. Lower bound for the induced L2 norm

The computation of the lower bound is based on restricting the scheduling parameter trajectories to
a finite-dimensional set of periodic signals. Let ρ : R+ ×RN → Rm denote a function that specifies
a periodic scheduling trajectory for each value of c ∈ RN . ρ(·, c) denotes the entire trajectory (as a
function of time) at the particular value c and ρ(t, c) denotes the m-dimensional scheduling vector
obtained by evaluating ρ(·, c) at time instant t. The trajectory is assumed to be periodic, i.e. for
each c there is a period h(c) such that ρ(t+ h(c), c) = ρ(t, c) ∀t. In addition, we must ensure the
trajectory is admissible in the sense that it satisfies the range and rate bounds in (25). Let Cp ⊆ RN
denote the set of values that lead to such admissible trajectories, i.e. ρ(·, c) ∈ A for all c ∈ Cp. The
corresponding set of periodic trajectories is defined as Ap := {ρ(·, c) | c ∈ Cp}.

Define the lower bound γlb on the induced L2 gain as

γlb := sup
ρ(·,c)∈Ap

‖Gρ(·,c)‖ = sup
c∈Cp
‖Gρ(·,c)‖ (26)

where Gρ(·,c) denotes the periodic system (operator) obtained by evaluating the LPV system G
along the periodic trajectory ρ(·, c). The algorithm described in [6] can be used to evaluate the
gain ‖Gρ(·,c)‖. It follows immediately from Ap ⊂ A that γlb ≤ ‖G‖. Equation (26) defines a finite
dimensional optimization problem which is non-convex in general. One further issue is that a single,
accurate evaluation of ‖Gρ(·,c)‖ requires many bisection steps and, as a consequence, the matrix
differential equations (Equations (12), (13) and (11)) must be integrated many times for a single
evaluation of the objective function. Thus the evaluation of ‖Gρ(·,c)‖ is costly and a significant
reduction in computation can be achieved by using Algorithm 2 described below. In this algorithm,
Gγ,ρ(·,c) denotes the discrete-time system (5) corresponding to the PLTV operator Gρ(·,c). Moreover,
define ν(c, γ) := ‖Gγ,ρ(·,c)‖. With this notation, ‖Gρ(·,c)‖ < γ if and only if ν(c, γ) < 1. The lower
bound algorithm can now be stated.

Algorithm 2 (Lower bound on L2 norm)

1: Compute an upper bound γub on the gain of the LPV system, i.e. γub ≥ ‖G‖. Such an
upper bound can be determined using standard methods based on dissipation inequalities (e.g.
Bounded Real type LMI conditions) [15], [4]. Pick an initial vector c0.

2: Solve the optimization problem c∗ = argmaxc∈Cp ν(c, γub). This is a nonlinear optimization
problem, where the evaluation of the cost function requires the integration of the Riccati
differential equations (11)-(13). Therefore to obtain c∗, a nonlinear optimization method (e.g.
pattern search [16]) has to be applied. (It is important to note we cannot prove in general
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that maximizing ν(c, γub) gives the same result as directly maximizing the norm of the
periodic operator Gρ(·,c). In numerical examples we always found that the relation between
the two quantities is monotonic, i.e. the larger the ν(c, γub), the larger the ‖Gρ(·,c)‖ is. The
maximization of ν(c, γub) is thus a reasonable heuristics that works well in practice.)

3: Compute the norm of Gρ(·,c∗) and take γ from the outputs of the bisection. Let γlb := γ and
stop.

This algorithm only requires the L2 norm of the periodic system to be evaluated at the last step.
This significantly reduces the number of integrations for the matrix differential equations associated
with X , Y , and Z. The output of the algorithm above is an induced gain lower bound γlb and a
worst-case scheduling trajectory ρ(·, c∗) where the associated PLTV system takes this norm. By
using Algorithm 1 we can also construct a worst-case input signal wo for Gρ(·,c∗). This, together
with ρ(·, c∗) gives a worst-case (input, scheduling trajectory) pair achieving an induced gain of γlb.

3.3. Scheduling trajectories

Algorithm 2 optimizes the L2 bound over the elements of Ap. The structure of ρ(·, c) must be
carefully chosen as it influences the convergence properties of the lower bound algorithm. There
are many ways to construct periodic signals and this section focuses on piecewise linear scheduling
trajectories. An alternative construction based on sinusoidal basis functions is described in the initial
work [9].

Focusing on the one dimensional case (nρ = 1), the simplest way to define a periodic piecewise
linear trajectory is dividing the period [0, h) into N intervals of lengths ∆1,∆2, . . .∆N and then
defining the N scheduling parameter values ρi = ρ(ti) i = 1 . . . N over the break points t1 = 0,
t2 = ∆1, . . . ti =

∑i−1
j=1 ∆j , i = 1 . . . N . By definition,

∑N
j=1 ∆j = h. If c is chosen to be

c = [∆1,∆2, . . . ,∆N , ρ1, ρ2, . . . , ρN ]T

then the magnitude and rate limits (25) can be transformed into linear constraints:

ρ ≤ ρi ≤ ρ
∆iµ ≤ ρi+1 − ρi ≤ ∆iµ, ∀i < N

∆Nµ ≤ ρ0 − ρN ≤ ∆Nµ

Thus Cp is a polytope. Since h is a sum of the ∆i interval-lengths, thus it is a free parameter, that
can be tuned by the optimization algorithm. Note that by increasing N any piecewise continuously
differentiable trajectory can be approximated up to any tolerance. In this sense, the parameterization
is complete.

Remark 3
For numerical reasons, it makes sense to introduce an inequality constraint of the form h ≤ h̄ to
bound the period length when performing the optimization in the second step of Algorithm 2. This
is simply another linear constraint on the vector c.

3.4. Computational issues

The computational complexity of Algorithm 2 is determined by two main factors. First, the cost
function ν(c, γub) is nonlinear, so a nonlinear optimization method is needed, the convergence
rate and computation demand of which is hard to predict; second, the evaluation of ν(c, γub) is
computationally demanding as it requires the integration of the three Riccati equations (11)-(13). If
Tr denotes the integration time and Ne is the number of times that the cost function is evaluated by
the nonlinear optimization solver, the total computation time is roughly given by Ne · Tr.

Assuming that an adaptive Runge-Kutta algorithm (e.g. ode45 in MATLAB) is used for numerical
integration, Tr is determined by three factors: (i) the number of states (n) determining the number of
differential equations in (11)-(13), (ii) the actual trajectory ρ(·, c), which, if varies rapidly, requires a
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small integration step size, and thus slows down the computation, (iii) the horizon h, which defines
the time interval of integration.

The number of cost function evaluations (Ne) depends on the nonlinear optimization algorithm
applied. By trying some gradient-based algorithms we found that they are very sensitive to the initial
value of the decision variables and the gradient of the cost function is difficult to calculate. These
algorithms easily run into a local minimum. Therefore, we have chosen the gradient-free, pattern
search optimization method. This iterative algorithm is based on constructing M points (the mesh)
around the actual parameter vector and finding (polling) one point, where the cost function is higher
than the actual cost. The iteration is then repeated starting from this new point. If the selection fails,
because there is no point in the mesh that improves the actual cost, then a new mesh is generated
and the procedure repeats. If the algorithm is configured to run with maximal basis i.e. M = 2Nc
where Nc is the number of decision variables, and complete poll is applied (i.e. the cost function
is always evaluated at all of the 2Nc points of the mesh, so the evaluation does not stop at the first
good point) then Ne = Ns · 2Nc, where Ns is the number of optimization steps. With minimal basis
(M = Nc + 1) and non-complete poll, the total number of evaluations satisfiesNe < Ns · (Nc + 1).
It can be seen that pattern search requires less evaluations at each step than the gradient-based
algorithms, but it is also important to note that these methods need more optimization steps, i.e. Ns
is higher, in general.

In the numerical simulations we applied the pattern search tools of MATLAB [16]. We found that
these algorithms are less sensitive to the initial value and provide reliable solution to the optimization
problem in Algorithm 2.

4. NUMERICAL EXAMPLES

In this section three numerical examples are presented to demonstrate the applicability of the
proposed method. To initialize our algorithms we need to determine an upper bound γub for the
induced L2 gain. In all examples γub is computed by solving the following optimization problem:

min
V (x,ρ)

γ

V (x, ρ) > 0, V̇ (x, ρ, ρ̇) ≤ γ2wTw − zT z (27)

where the Lyapunov (storage) function V (x, ρ) was chosen to be quadratic: V (x, ρ) = xTP (ρ)x,
P (ρ) = P (ρ, P0, P1, . . . , PM ) and Pi-s denote the free (matrix) variables to be found. The infinite
LMI constraints obtained were transformed to a finite set by choosing a suitable dense grid Γ over
the parameter domain P and only the inequalities evaluated at the grid points are considered [3].

4.1. LPV system with gain-scheduled PI controller

The first example, taken from [17] is a feedback interconnection of a first-order LPV system with a
gain-scheduled proportional-integral controller (see Fig. 1). The dynamics of the closed-loop system
can be written as follows[

ẋ
ẋc

]
=

[ − 1
τ(ρ) (1 +Kp(ρ)K(ρ)) 1

τ(ρ)

−Ki(ρ)K(ρ) 0

] [
x
xc

]
+

[
1

τ(ρ)Kp(ρ)

Ki(ρ)

]
r

e = [−K(ρ) 0]

[
x
xc

]
+ r

(28)

where τ(ρ) :=
√

13.6− 16.8ρ, K(ρ) :=
√

4.8ρ− 8.6 and

Kp(ρ) =
2ξclωclτ(ρ)− 1

K(ρ)
, Ki(ρ) =

ω2
clτ(ρ)

K(ρ)
.

The PI gains Kp and Ki are chosen to provide closed-loop damping ξcl = 0.7 and natural frequency
ωcl = 0.25 at each frozen value of ρ. The scheduling parameter is assumed to vary in the interval
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[2, 7] and ρ̇ ∈ [−1, 1]. We are interested in the induced L2 norm between r(t) and e(t). By
performing the optimization (27) with

V (x, ρ) = xT

(
P0 +

6∑
k=1

ρkPk +
1

ρ
P7 +

1

ρ2
P8 +

1

ρ3
P9

)
x

Γ = {ρ1 = 2, . . . , ρ100 = 7}, ρk+1 − ρk = 5/99

(29)

we got γub = 2.964 for the upper bound. Using the parameter values in Γ the frozen lower bound
was also computed as γlb,fr = maxk ‖Gρk‖, ρk ∈ Γ, where Gρk denotes the LTI system obtained
by substituting ρ(t) = ρk for all t. The lower bound we obtained is γlb,fr = 1.1066.

To compute the lower bound by Algorithm 2, we tuned N = 4 points of the piecewise linear
scheduling trajectory. The algorithm was run with the additional constraint h ∈ [hmin hmax] =
[12 20]. The nonlinear optimization was performed under MATLAB, by using the pattern search
algorithm implemented in the Global Optimization Toolbox [16]. The computation time was approx.
310s. The algorithm terminated with γlb = 2.8362 and h = 15.885. The resulting worst-case
scheduling trajectory is shown in Fig. 2. Note that this lower bound is significantly larger than
γlb,sin = 2.5862 that we obtained in [9] by optimizing over sinusoidal scheduling trajectories. This
lower bound coupled with the the dissipation inequality result yields tight bounds on the norm
of G: 2.8362 = γlb ≤ ‖G‖ ≤ γub = 2.9640. Finally, Algorithm 1 was used to construct the worst
case input for the worst-case scheduling trajectory. The monodromy matrix Q̃ has a unit modulus
eigenvalue at [−0.9998 + 0.0190i]. The parameterK in Algorithm 1 was chosen to beK = 60. The
resulting input is shown in Fig. 2.

+
Controller Plant

PI(⇢) Go(⇢)

-
r(t)

e(t)

y(t)

Figure 1. The closed loop interconnection of the parameter-varying plant and the gain-scheduled PI
controller in the example presented in Sec. 4.1.

4.2. Input and output scaled LTI system

The next example was constructed by taking two copies of the simple LTI system 1/(s+ 1), scaling
the input of the first and he output of the second by the same time varying parameter and computing
the difference of the two outputs (see Fig. 3). The dynamics of the LPV system obtained are as
follows: [

ẋ1
ẋ2

]
=

[
−1 0
0 −1

] [
x1
x2

]
+

[
1
ρ

]
w

z =
[
ρ −1

] [ x1
x2

]
.

(30)

We assume that ρ ∈ [−1 1] and ρ̇ ∈ [−µ µ]. We are going to compute the lower bound for different
values of µ. It follows from the structure of the system that if ρ is constant then the difference
between the input and the output scaled systems is 0. This implies that γlb,fr = 0. Next, the upper
bound on the L2 gain was computed for different rate bounds. In all cases the storage function
V (x, ρ) and the parameter grid Γ was chosen as follows:

V (x, ρ) = xT

(
P0 +

10∑
k=1

ρkPk

)
x

Γ = {ρ1 = −1, . . . , ρ100 = 1}, ρk+1 − ρk = 2/99.

(31)
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Figure 2. Rows 1 and 2 show the worst case scheduling trajectory and rate for the example in Sec. 4.1. Rows
3 and 4 show the worst-case input over [0, 1400] and zoomed to [0, 10h].

The upper bounds obtained are collected in Table I. The lower bounds, the period of the worst-case
scheduling trajectories obtained for the different µ values and the number N of the break points
used in the trajectory construction are also given in Table I. The lower bounds γlb,sin we obtained
in [9] by using sinusoidal scheduling trajectories are also presented in Table I. It can be seen that
by using piecewise linear scheduling signals the lower bounds are significantly larger than those
we obtained earlier. Now the upper and lower bounds almost coincide, which means that by using
the upper and lower bound algorithms we could precisely compute the norm of this LPV system.
The computation time in each case was between 200 and 300 sec. For two particular cases, µ = 1
and µ = 2, we plotted also the worst case scheduling trajectory and the worst-case input in Fig.
4 and Fig. 5, respectively. (The worst case inputs were computed starting from the unit modulus
eigenvalues [−0.1011 + 0.9949i] (in case µ = 1) and [0.9504 + 0.3111i] (in case µ = 2). K was
60 in both cases.)

ẋ1 = �x1 + u1

y1 = x1

⇢(t)

⇢(t)

+

-
w(t) z(t)

ẋ2 = �x2 + u2

y2 = x2

Figure 3. The structure of the LPV system defined in Section 4.2

4.3. A 2-parameter system

The next, more complex example was constructed from the examples in sections 4.1 and 4.2. We
took two copies of the closed loop system (28) with scheduling parameter ρ(t) := ρ1(t), then we
scaled the input of the first and the output of the second system by the same time-varying parameter
ρ2(t) and defined the output as the difference between the outputs the two subsystems (like in
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µ γlb,sin γlb γub γub − γlb h N
0.1000 0.0825 0.0932 0.1087 0.0155 20 8
0.4000 0.3174 0.3310 0.3342 0.0032 20 8
0.7000 0.4567 0.4764 0.4805 0.0041 9 6
1.0000 0.5448 0.5737 0.5766 0.0029 9 6
1.3000 0.6143 0.6335 0.6435 0.0100 6 6
1.6000 0.6386 0.6861 0.6924 0.0063 6 6
2.0000 0.6893 0.7359 0.7403 0.0044 6 6

Table I. Upper and lower bounds on the L2 norm of the LPV system defined in Section 4.2
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w
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w
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Figure 4. Rows 1 and 2 show the worst case scheduling trajectory and rate for the example in Sec. 4.2 if
µ = 1. Rows 3 and 4 show the worst-case input over [0, 800] and zoomed to [0, 10h].

Section 4.2). The state-space equations of the system obtained can be written as[
ẋ1
ẋ2

]
=

[
A(ρ1) 0

0 A(ρ1)

] [
x1
x2

]
+

[
B(ρ1)
ρ2B(ρ1)

]
w

z =
[
ρ2C(ρ1) −C(ρ1)

] [ x1
x2

]
.

(32)

The range and rate bounds were as follows: 2 ≤ ρ1 ≤ 7, −1 ≤ ρ2 ≤ 1 and −1 ≤ ρ̇1, ρ̇2 ≤ 1. The
construction of the system implies that γlb,fr = 0. The upper bound on the induced L2 norm was
computed by using the following storage function and parameter grid:

V (x, ρ) = xT

(
P0 +

3∑
k=1

ρk1Pk +

5∑
`=1

ρ`2P` +
1

ρ1
P9 +

1

ρ2
P10

)
x

Γ = {ρ1,1 = 2, . . . , ρ1,30 = 7}×
{ρ2,1 = −1, . . . , ρ2,10 = 1},

ρk+1,1 − ρk,1 = 2/29, ρ`+1,2 − ρ`,2 = 2/9,

k ∈ {1 . . . 30}, ` = {1 . . . 10}.

(33)
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Figure 5. Rows 1 and 2 show the worst case scheduling trajectory and rate for the example in Sec. 4.2 if
µ = 2. Rows 3 and 4 show the worst-case input over [0, 500] and zoomed to [0, 10h].
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Figure 6. Upper and lower bounds on the induced L2 norm computed for the example in Section 4.2.

We obtained γub = 5.38. To compute the lower bound we chose N = 5 break points for both
trajectories. The lower bound we got is γlb = 5.01, (h = 16.18), which is again very close
to the upper bound. The worst-case scheduling trajectories and the worst-case input are plotted
in Fig. 7. (The worst-case input was constructed by starting from the unit modulus eigenvalue
[−0.9997 + 0.0245i]. The parameter K was set to 60.)
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Figure 7. Rows 1 and 2 show the worst case scheduling trajectory and rate for the example in Sec. 4.3. Rows
3 and 4 show the worst-case input over [0, 1400] and zoomed to [0, 10h].

5. CONCLUSION

This paper proposed a numerical method to compute a lower bound on the induced L2-gain
of a continuous-time LPV system. The algorithm finds this bound – together with the worst-
case parameter trajectory – by using nonlinear optimization over periodic scheduling parameter
trajectories. The restriction to periodic parameter trajectories enables the use of recent results
for exact calculation of the L2 norm for a periodic time varying system. It was shown that the
proposed algorithm can be reliably implemented by standard numerical tools and provides precise
approximation for the L2 bound.

A. PROOF OF LEMMA 1

To prove the theorem we need the following properties of the state transition matrix: for all
t, τ, τ ′ ∈ R

(a) Φ(t, τ)Φ(τ, t) = I , which implies Φ(t, τ) = Φ(τ, t)−1

(b) d
dtΦ(τ, t) = −Φ(τ, t)A(t)

(c) d
dt [Φ(τ, t)∗] = −A(t)∗Φ(τ, t)∗.

Item (a) follows from the definition and regularity of Φ(t, τ) [8]. Item (b) is a consequence of (a)
and can be proved by applying the chain rule to 0 = d

dtΦ(t, τ)Φ(τ, t). Finally, item (c) is the direct
consequence of item (b).

The proof of Lemma 1 starts from the definition of the adjoint (Equation (15)):

〈(x̂h, ẑ),TG(x0, w)〉 = x̂∗hx(h) +

∫ h

0

ẑ(t)∗z(t) dt (34)

where (x(h), z(t)) are the final state and output of the PLTV system in (1). The solution of (1) can
be expressed in terms of the state transition matrix as z(t) = C(t)x(t), where

x(t) = Φ(t, 0)x0 +

∫ h

0

Φ(t, τ)B(τ)w(τ) dτ. (35)
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Use this relation to substitute for x(h) and z(t) in Equation (34). Re-arrange terms to obtain the
following form:

〈(x̂h, ẑ),TG(x0, w)〉 = x̂(0)∗x(h) +

∫ h

0

[B∗(τ)x̂(τ) +D∗(τ)ẑ(τ)]
∗
w(τ) dτ (36)

where we have defined the signal

x̂(τ) := Φ(h, τ)∗x̂h +

∫ h

τ

Φ(t, τ)∗C(t)∗ẑ(t) dt. (37)

Using property (c) above, we obtain

dx̂(τ)

dτ
= −A∗(τ)x̂(τ)− C∗(τ)ẑ(τ), x̂(h) = x̂h. (38)

If we also define ŵ(τ) = B∗(τ)x̂(τ) +D∗(τ)ẑ(τ), and x̂0 = x̂(0) then we can express the inner
product 〈(x̂h, ẑ),TG(x0, w)〉 as

x̂∗0x0 +

∫ h

0

ŵ(τ)∗w(τ)dτ = 〈T∗G(x̂h, ẑ), (x0, w)〉. (39)

Thus the proof is complete.
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