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A method to construct reduced-order parameter varying models
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SUMMARY

This paper describes a method to construct reduced-order models for high-dimensional nonlinear systems.
It is assumed that the nonlinear system has a collection of equilibrium operating points parameterized by a
scheduling variable. First, a reduced-order linear system is constructed at each equilibrium point using state,
input, and output data. This step combines techniques from proper orthogonal decomposition, dynamic mode
decomposition, and direct subspace identification. This yields discrete-time models that are linear from input
to output but whose state matrices are functions of the scheduling parameter. Second, a parameter varying
linearization is used to connect these linear models across the various operating points. The key technical
issue in this second step is to ensure the reduced-order linear parameter varying system approximates the
nonlinear system even when the operating point changes in time. Copyright c© 2016 John Wiley & Sons,
Ltd.
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1. INTRODUCTION

This paper describes a method to construct a reduced-order model for high-dimensional nonlinear
systems. The work is motivated by the control of systems that involve fluid and/or structural
dynamics. One specific example is wind farm control. The overall performance of a wind farm
can be improved through proper coordination of the turbines [1]. High-fidelity computational
fluid dynamic models have been developed for wind farms [2, 3]. These high-fidelity models are
accurate but are not suitable for controller design due to their computational complexity. A second
example involves the control of flexible aircraft. More fuel efficient aircraft can be designed by
reducing structural weight thus leading to increased flexibility [4]. The vibrational modes can
significantly degrade the performance and can even lead to aeroelastic instabilities (flutter) [4, 5].
High-fidelity, computational fluid/structural models also exist for this application [6,7] but these are
also too complex for control design. Simplified, control-oriented models are needed in both of these
examples.

A variety of reduced-order modeling techniques have been developed by the fluid dynamics
and controls communities. These methods range from analytical reduced-order modeling, such as
balanced truncation [8], to data-driven reduced-order modeling such as system identification [9]
where a low-dimensional system is identified to describe the dynamics of a high-dimensional
system. Subspace techniques have been applied to balanced truncation to perform model reduction
on nonlinear systems [10]. One main drawback to system identification is that the states of the
identified model do not have physical meaning. When addressing parameter varying systems, there
is a state consistency issue that stems from the lack of physical meaning in the states. For example,
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eigensystem realization algorithm (ERA) is a popular method in the system identification literature
that uses impulse response data to construct a linear model of the system [11]. This method has
been extended to generic input signals and time varying systems [12–15]. In the fluid dynamics
literature, proper orthogonal decomposition (POD) is a standard method where the state is projected
onto a low-dimensional subspace of POD modes constructed using data from the high-order system
[16–18]. POD modes have been used to construct reduced-order models that can be used for control
such as balanced POD [19, 20]. However, balanced POD requires the simulation of the adjoint
of the system and this is not available for experiments. ERA has connections to BPOD [11, 21]
where the adjoint does not need to be simulated under certain circumstances. Lastly, dynamic mode
decomposition (DMD) is a more recent approach that fits time-domain data with linear dynamics
on a reduced-order subspace [22–24]. DMD computes the spatial modes of a system at a single
frequency and has ties to the Koopman operator [25–27]. DMD was developed for autonomous
systems and was extended to include control inputs, i.e. DMD with control (DMDc) in [28].

This paper describes an extension of DMDc to construct reduced-order linear parameter varying
(LPV) models that approximate high-order nonlinear models. The nonlinear system is assumed to
have a parameterized collection of equilibrium operating points. For example, the free-stream wind
speed and wind direction parameterizes the equilibrium condition in a wind farm. Related work
on this particular topic has been done looking at flexible aircraft [29–31]. Many studies use linear
methods such as Krylov methods [32, 33]. The proposed approach in this paper involves two steps.
First, POD and direct subspace identification are combined to construct an input-output reduced-
order model (IOROM). This terminology has been used in [29]. This step is similar to DMDc [28],
which can be used to construct a reduced-order linear model at one operating condition. Specifically,
this step uses direct N4SID subspace identification [9] on a low dimensional subspace spanned
by POD modes. Second, the reduced-order models constructed at fixed operating conditions are
“stitched” together using a parameter varying linearization (Section 2.3). The key technical issue
is that the states of the reduced-order model must have a consistent meaning across all operating
conditions (as described in Section 2.3.2). This state consistency issue has been addressed in other
studies [34]. The difference in this paper is that the parameter is allowed to vary in time for a given
simulation. The approach used in the paper handles this issue by constructing a single reduced-order
subspace that is used at all operating conditions. This approach and the LPV linearization method is
demonstrated on a nonlinear actuator disk example often used in wind farm control literature with
more than 20,000 states (Section 3). Lastly, Section 4 will address conclusions and future work.

2. REDUCED-ORDER MODELING APPROACH FOR PARAMETER VARYING SYSTEMS

This section describes, in detail, the proposed method that accomplishes the criteria specified above.
The proposed method combines approaches in the fluid dynamics and controls communities.

2.1. Criteria

There are a variety of methods in the controls and fluid dynamics literature that attempt to construct
low-order models to describe the dominant dynamics of a high-dimensional system. The goal of this
paper is to develop a method that can achieve the following:

• Handles > 105 states: The approach can be used develop low-order representations of fluid
dynamic problems. Typical fluid dynamic problems can have more than a million states.

• Handle inputs and outputs: The objective is to develop low-order models for control design on
systems with controllable inputs and measurable outputs, e.g. wind farms and flexible aircraft.

• Adjoint-free: Some existing methods require the use of a model adjoint. Our goal is to avoid
the use of such adjoints so that the proposed method can be applied to either experimental
data or to simulation models.

• Reduced-order states have physical meaning: The state of the reduced-order system can be
used to approximately reconstruct the full-order state and can assist in the state consistency
issue faced by parameter varying systems.



• Can be used for parameter varying systems: This is important for nonlinear systems where
the dynamics change significantly over the entire operating range, e.g. wind farms and flexible
aircraft.

2.2. Input-Output Reduced-Order Modeling

The approach will be summarized in this subsection for time-invariant (LTI) systems at a single
operating point, but will be extended to include LPV models in Section 2.3. This paper addresses
the use of this technique to develop an input-output reduced-order model (IOROM) that does not
require adjoints and where the states have some physical meaning. In this section, an extension of
DMDc [28] is presented as a combination of POD and system identification. It should be noted
that DMD modes can be constructed from the reduced-order model. This paper will focus on the
construction of the reduced-order model rather than the evaluation of the DMD modes.

Consider a discrete-time nonlinear system:

xk+1 = f(xk, uk) (1)
yk = h(xk, uk) (2)

where x ∈ Rnx , u ∈ Rnu , and y ∈ Rny are the state, input, and output vectors.
A collection of snapshot measurements are obtained via simulation or experiments by exciting

the system. Snapshots are taken from the nonlinear system and the states, inputs, and outputs are
recorded as:

X0 =
[
x0 x1 ... xm−1

]
∈ Rnx×ns (3)

X1 =
[
x1 x2 ... xm

]
∈ Rnx×ns (4)

U0 =
[
u0 u1 ... um−1

]
∈ Rnu×ns (5)

Y0 =
[
y0 y1 ... ym−1

]
∈ Rny×ns (6)

where ns is the number of snapshots.
The proposed variation of DMDc attempts to fit the snapshot measurements to a linear discrete-

time system:

xk+1 = Axk +Buk (7)
yk = Cxk +Duk (8)

The state matrices (A,B,C,D) have the dimensions compatible to those of (x, u, y). The matrices
(A,B,C,D) can be constructed to fit the snapshot data with minimal least-squares cost as in direct
N4SID [9]. However, this becomes intractable for large systems. Typical fluid dynamic systems
have on the order of millions of states. The proposed solution is to project the state onto a low-
dimensional subspace to make the least squares computation tractable. Let Q ∈ Rnx×r with r < n
have columns that form an orthonormal basis for a projection subspace. The IOROM is expressed
in terms of the projected state z := QTx ∈ Rr is given by:

zk+1 = (QTAQ)zk + (QTB)uk := Fzk +Guk (9)
yk = (CQ)zk +Duk := Hzk +Duk (10)

The matrices in the reduced-order system have dimensions F ∈ Rr×r,G ∈ Rr×nu , andH ∈ Rny×r.
The form of (9) is equivalent to the following low rank approximations for the full-order state
matrices:



[
A B
C D

]
≈
[
QFQT QG
HQT D

]
=

[
Q 0
0 Iny

] [
F G
H D

] [
QT 0
0 Inu

]
(11)

The optimal choice for the reduced-order state matrices (F,G,H,D) can be computed given the
subspace spanned by Q. This is a similar setup for standard DMD as in in [22–24].

The optimal (reduced-order) state matrices for a given projection space Q are obtained by
minimizing the error of the Frobenius norm:

min[
F G
H D

]
∥∥∥∥[X1

Y1

]
−
[
Q 0
0 I

] [
F G
H D

] [
QT 0
0 I

] [
X0

U0

]∥∥∥∥2

F

(12)

As mentioned previously, this is the direct N4SID subspace method for estimating state matrices
given measurements of the (reduced-order) state, input, and output. A sub-optimal, but useful,
choice for the projection space is given by the POD modes ofX0. The POD modes can be computed
by taking the singular value decomposition of X0 = UΣV T . The POD modes are contained in the
columns of U and the relative energy of each mode is contained in the singular values of Σ. These
modes provide the spatial component of the flow with the first POD mode being the spatial mode
that contains the most energy. The state of the linear system can be approximated on a subspace
defined by the first r POD modes of X0, i.e. Q := Ur. The optimal reduced-order state matrices for
this choice are given by:

[
F G
H D

]
opt

=

[
UTr X1

Y0

] [
ΣrV

T
r

U0

]†
(13)

As noted earlier, the primary focus of this paper is developing an algorithm that can achieve the
criteria in the beginning of Section 2.1. However, it is important to note that, as with standard
DMD, an eigenvalue decomposition of Fopt can be used to construct DMD modes. In other words,
the eigenvalue decomposition of Fopt can be used to construct spatio-temporal modes at a specific
temporal frequency for the system. This can be important for control design as was shown in [35].
It should also be noted that this method does not produce a low-dimensional model in balanced
coordinates as is done in other model reduction techniques such as balanced truncation, balanced
POD, eigensystem realization algorithm, etc. However, this model reduction technique is able to
produce a model where the coordinates have some physical meaning and achieve the criteria listed
above.

This new methodology also yields input-output information for the model. This proposed method
is a tractable implementation of the existing direct N4SID (subspace) method that can be applied to
very large systems. This is not simply a black-box (input-output) approach because the state of the
reduced-order system zk can be used to approximately reconstruct the full-order state by:

xk ≈ Urzk (14)

Moreover, the approach requires input/output/state data from the system. Construction and
simulation of an adjoint system is not required. The following section will show how to extend
this approach to parameter varying systems.

One way to choose the order of the IOROM computed using this approach is to analyze how
much energy is captured by the number of modes chosen. It is common to choose the number of
modes to capture 99% of the energy (or some similar threshold) in the snapshots. However, for a
sufficient model that is suitable for control, the primary metric is the amount of model error incurred
from the selection of the number of modes. The model error can be computed using the Frobenius
norm: ∥∥∥∥[X1

Y1

]
−
[
A B
C D

] [
X0

U0

]∥∥∥∥2

F

(15)



Again, computation of this model error is intractable for systems with extremely large state
dimension. However, the properties of the Frobenius norm can be used to equivalently rewrite this
error in a more useful form:

∥∥∥∥[X1

Y1

]
−
[
A B
C D

] [
X0

U0

]∥∥∥∥2

F

=

∥∥∥∥[QTX1

Y1

]
−
[
F G
H D

] [
QTX0

U0

]∥∥∥∥2

F

+ ‖X1‖2F −
∥∥QTX1

∥∥2

F
(16)

The first term represents the model error on the projected subspace. The second and third terms
represent the energy lost in the snapshot data X1 by using the projection. Increasing the number
of modes will generally decrease the total error. However, there is a point when adding additional
modes will not significantly improve the model error. In fact, adding the modes beyond this point
could result in a model that is trying to overfit to the nonlinearities in the system resulting in a
degradation of the performance.

2.3. Parameter Varying Approach

This subsection extends the proposed approach in Section 2.2 using a parameter varying
linearization similar to the one in [36].

2.3.1. Linearization The parameter varying formulation starts from a nonlinear system that
includes an exogenous input, ρ:

xk+1 = f(xk, uk, ρk) (17)
yk = h(xk, uk, ρk) (18)

The parameter ρ is an exogenous signal that specifies the operating condition. For example, ρ
could be a vector of the mean wind speed and direction in the wind farm application or altitude and
Mach number for the flexible aircraft example.

Next, assume there is a collection of equilibrium points (x̄(ρ), ū(ρ), ȳ(ρ)) such that

x̄(ρ) = f(x̄(ρ), ū(ρ), ρ)

ȳ(ρ) = h(x̄(ρ), ū(ρ), ρ)
(19)

If the state is initialized at x0 = x̄(ρ), the input is held fixed at uk = ū(ρ), and the operating
condition is frozen at ρk = ρ then the state and output will remain in equilibrium at xk = x̄(ρ)
and yk = ȳ(ρ) for k = 0, 1, . . .. Thus (x̄(ρ), ū(ρ), ȳ(ρ)) defines an equilibrium condition for each
fixed value of ρ.

The nonlinear dynamics can be linearized around the equilibrium points defined for each fixed
value of ρ. Define perturbations from the equilibrium condition as:

δxk := xk − x̄(ρ), δuk := uk − ū(ρ), δyk := yk − ȳ(ρ) (20)

For a fixed operating condition (ρk = ρ for k = 0, 1, . . .), a standard linearization yields:

δxk+1 = A(ρ)δxk +B(ρ)δuk

δyk = C(ρ)δxk +D(ρ)δuk
(21)

where the linearized state matrices are defined by

A(ρ) :=
∂f

∂x

∣∣∣∣
(x̄(ρ),ū(ρ),ρ)

, B(ρ) :=
∂f

∂u

∣∣∣∣
(x̄(ρ),ū(ρ),ρ)

C(ρ) :=
∂h

∂x

∣∣∣∣
(x̄(ρ),ū(ρ),ρ)

, D(ρ) :=
∂h

∂u

∣∣∣∣
(x̄(ρ),ū(ρ),ρ)

(22)



The matrices (A(ρ), B(ρ), C(ρ), D(ρ)) define a collection of parameterized LTI systems defined
for fixed operating conditions, ρ. Here, we consider the more general case where the operating
condition, specified by the parameter ρk, varies in time.

Next consider the case where the operating condition, specified by the parameter ρk, varies in
time. In general (xk, uk, yk) := (x̄(ρk), ū(ρk), ȳ(ρk)) is not a valid solution of the nonlinear system.
In other words, the parameterized state/input/output values only define an equilibrium condition for
fixed values of ρ. Despite this fact, it is still possible to construct a time varying linearization around
the parameterized values (x̄(ρ), ū(ρ), ȳ(ρ)). Re-define perturbation variables as follows for the case
where ρ varies in time:

δxk := xk − x̄(ρk), δuk := uk − ū(ρk), δyk := yk − ȳ(ρk) (23)

A valid (time-varying) linearization can be obtained when ρk is time-varying as follows:

δxk+1 = f(xk, uk, ρk)− x̄(ρk+1) (24)

A Taylor series expansion of f(xk, uk, ρk) yields:

f(x̄k(ρk) + δxk, ūk(ρk) + δuk, ρk) ≈ x̄(ρk) +A(ρk)δxk +B(ρk)δuk (25)

where A and B are as defined in (22). A similar Taylor series approximation can be performed to
linearize the output function h in terms of the matrices C and D defined in (22). Combining (24)
and (25) leads to the following parameter varying linearization:

δxk+1 = A(ρk)δxk +B(ρk)δuk + (x̄(ρk)− x̄(ρk+1))

δyk = C(ρk)δxk +D(ρk)δuk
(26)

This differs from the standard linearization at a single fixed operating point in two respects. First,
ρk varies in time and hence this is a time-varying system. More precisely, the time variations in the
state matrices (A,B,C,D) arise due to ρk and hence this is called a linear parameter varying (LPV)
system. There are many tools in the controls literature that address this class of systems [37–40].
Second, the equilibrium state varies in time due to the changing operating condition. This effect
is retained by the term x̄(ρk)− x̄(ρk+1) which provides a forcing term for the dynamics. This
model linearizes the dependence on the state and the input. The linearization approximation is
accurate as long as the state, input, and output remain near the manifold of equilibrium points
(x̄(ρk), ū(ρk), ȳ(ρk)). It is important that the nonlinear dependence on the operating condition
(specified by ρk) is retained.

2.3.2. State Consistency Issue Parameter varying linearizations can be constructed using data from
steady operating conditions specified by constant values of ρ. Specifically, the linearization only
requires state matrices (A(ρ), B(ρ), C(ρ), D(ρ)) and equilibrium conditions (x̄(ρ), ū(ρ), ȳ(ρ)) at
each fixed value of ρ. In principle, the proposed IOROM method or another model reduction method
can be used to identify reduced-order state matrices at each operating point, ρ. One key technical
issue is state consistency.

To clarify this issue, consider an autonomous system without inputs and outputs. Let A(ρ) denote
the state matrix that appears in the parameter varying linearization. DMD can be used at each
fixed value of ρ to identify a subspace spanned by Q(ρ) ∈ Rnx×r(ρ) and a reduced-order matrix
F (ρ) ∈ Rr(ρ)×r(ρ) such that A(ρ) ≈ Q(ρ)F (ρ)Q(ρ)T . The reduced-order state at the operating
point ρ is defined as z := Q(ρ)T δx ∈ Rr(ρ). This reduced-order state, z, will lack consistency if the
projection subspaceQ(ρ) depends on the parameter. In other words, the meaning of z and dimension
r(ρ) will depend on the value of ρ. Hence the state, z, at ρ1 will not, in general, be consistent in
either meaning or dimension with the state z at ρ2 6= ρ1.

To circumvent this issue, a single consistent subspace Q ∈ Rnx×r should be used at all operating
conditions. The reduced-order state z := QT δx ∈ Rr then has a consistent meaning for all parameter
values. Moreover, a reduced-order matrix F (ρ) ∈ Rr×r can be identified at each value of ρ such that



Algorithm 1 Reduced-Order Parameter Varying Linearization

1: Given: Collection of parameter grid points {pjg}
ng

j=1.

2: Data Collection: At each grid point j = 1, . . . , ng do the following:
3: Equilibrium: Compute the equilibrium condition (x̄(pjg), ū(pjg), ȳ(pjg)) at ρ = pjg.
4: Experiment: Excite the nonlinear system (17) with fixed ρk = pjg. The initial condition x0

and input uk should be near the equilibrium condition (x̄(pjg), ū(pjg)).
5: Snapshots: Define the matrices of snapshot deviations from the equilibrium conditions at
pjg:

X0(pjg) := [x0 − x̄(pjg), . . . , xns−1 − x̄(pjg)] ∈ Rnx×ns (28)

X1(pjg) := [x1 − x̄(pjg), . . . , xns
− x̄(pjg)] ∈ Rnx×ns (29)

U0(pjg) := [u0 − ū(pjg), . . . , uns−1 − ū(pjg)] ∈ Rnu×ns (30)

Y0(pjg) := [y0 − ȳ(pjg), . . . , yns−1 − ȳ(pjg)] ∈ Rny×ns (31)

6: Construct Subspace for State Reduction:
7: Stack Data: Define matrix of all state data: X0 := [X0(p1

g), . . . , X0(p
ng
g )] ∈ Rnx×(nsng).

8: POD Modes: Compute POD modes of X0.
9: Subspace: Choose r modes, denoted Q ∈ Rnx×r, to capture sufficient energy in X0.

10: Reduced-Order State Matrices: At each grid point j = 1, . . . , ng do the following:
11: IOROM: Use snapshot data (X0(pjg), X1(pjg), U0(pjg), Y0(pjg)) and subspace Q to compute

state matrices (F (pjg), G(pjg), H(pjg), D(pjg)) via the IOROM steps in Section 2.2.

A(ρ) ≈ QF (ρ)QT . This would lead to a reduced-order parameter varying linearization of the form:

zk+1 = F (ρk)zk + (z̄(ρk)− z̄(ρk+1)) (27)

where z̄(ρ) := QT x̄(ρ) is the equilibrium state projected onto the reduced subspace. The next
section presents a method to address this state consistency issue.

2.4. Reduced-Order Parameter Varying Linearizations

One proposed approach for constructing an IOROM for a nonlinear system (1) is shown in
Algorithm 1. First, a collection of parameter values are selected (Line 1). Second, data is collected
from the nonlinear system at these selected parameter values (Lines 2-5). The collected data includes
the equilibrium conditions as well as state/input/output snapshots obtained by exciting the nonlinear
system. The algorithm, as written, assumes that the same number of snapshots ns are obtained at
each grid point. However, the number of snapshots can easily change with each grid point. Third, a
single r-dimensional subspace of the state space is constructed (Lines 6-9). The subspace, defined
by an orthogonal matrix Q ∈ Rnx×r, is constructed from the POD modes of the snapshots obtained
from all parameter values. Fourth, reduced-order state matrices are computed at each parameter
vector using the IOROM approach described in Section 2.2 (Lines 10-11).

The outcome of Algorithm 1 is a single r-dimensional subspace Q as well as equilibrium
conditions and reduced-order state matrices computed at the selected grid points. This yields a
reduced-order parameter varying linearization of the nonlinear system of the form:

zk+1 = F (ρk)zk +G(ρk)δuk + (z̄(ρk)− z̄(ρk+1))

δyk = H(ρk)zk +D(ρk)δuk
(32)

where z := QT δx ∈ Rr is the reduced-order state and z̄(ρ) := QT x̄(ρ) ∈ Rr is the reduced-order
equilibrium state. The single subspace defined by Q is used to construct state matrices at all



Algorithm 2 Hybrid POD/Gram-Schmidt approach to Construct Subspace

1: Given: Collection of parameter grid points {pjg}
ng

j=1 and snapshotsX0(pjg) from each grid point.
2: Initial Point: Use standard POD to compute r1 modes Q(p1

g) ∈ Rnx×r1 to capture sufficient
energy in X0(p1

g).
3: Iterative Processing: For j = 2, . . . , ng, iteratively compute additional modes at each grid

point. Given Q1 := [Q(p1
g), . . . Q(pj−1

g )], use iterative POD to compute rj additional modes
Q(pjg) ∈ Rnx×rj to capture sufficient energy in X0(pjg).

4: Subspace: Stack modes to form a single subspace defined by Q := [Q(p1
g), . . . , Q(p

ng
g )].

parameter values. Hence the reduced order state z retains a consistent meaning across the parameter
domain. Note that Algorithm 1 only computes the state matrices and equilibrium conditions on a
grid of specified parameter values. Interpolation (e.g. linear, spline, etc.) must be used to evaluate
the state matrices and equilibrium conditions at any parameter value not contained in this grid. It
is assumed that the grid of parameter values is sufficiently dense that this interpolation is accurate.
The choice of this grid is problem dependent.

The parameter varying linearization can be used to approximate the response of the nonlinear
system for an initial condition x0, input uk, and parameter trajectory ρk. Specifically, the initial
condition and input for the nonlinear system define a corresponding initial condition z0 = QT (x0 −
x̄(ρ0)) and input δuk = uk − ū(ρk) for the parameter varying system. The reduced-order, parameter
varying linearization (32) can be simulated to obtain the state response zk and output δyk. These
correspond to the state response xk = Qzk + x̄(ρk) and output yk = δyk + ȳ(ρk) for the full-order
nonlinear system.

The subspace construction step of Algorithm 1 (Lines 6-9) requires the SVD of the matrixX0 that
contains the snapshot data from all the operating points. This matrix has nsng columns and hence
the SVD of X0 may be computationally intractable if there are many grid points. A suboptimal,
but more computationally efficient approach, is to iteratively process the snapshot data from each
grid point. The basic idea is to determine a set of modes Q(p1

g) that capture the energy in the
snapshots at the first grid point. Next, additional modes Q(p2

g) are computed so that the combined
set [Q(p1

g), Q(p2
g)] captures the energy in the snapshots at the second grid point. The procedure

continues iteratively computing new modes Q2 := Q(pjg) to combine with previously computed
modes Q1 := [Q(p1

g), . . . , Q(pj−1
g )]. The benefit is that only snapshots obtained from one grid point

are required for the calculations. This iterative procedure requires a method to compute the optimal
(new) modesQ2 that should be added to some given modesQ1. Theorem 1 in the appendix provides
a POD-type result to perform this iterative calculation. Algorithm 2 gives the detailed steps for the
iterative subspace construction. This method can be thought of as a hybrid POD/Gram-Schmidt
approach. Also, it is assumed that the snapshots from one simulation or experiment have comparable
amounts of energy, which makes this approach reasonable. This iterative method can replace the
single-step method described in Lines 6-9 of Algorithm 1. The remaining steps of Algorithm 1 are
unchanged even when combined with the iterative subspace calculation.

There are several benefits of the proposed reduced-order LPV models. The main benefit is that the
models can be used for standard, gain-scheduled control. In addition, more formal control analysis
and synthesis tools have been developed for LPV systems [37–39]. This LPV modeling approach
can yield models that are accurate over a wide range of operating conditions for a nonlinear system.
This is in contrast to the existing reduced-order modeling approaches described above which, for
the most part, are used to construct a single linear model. In addition, the proposed method relies
on input/output data from a forced response and does not require linearization of the system or
the construction/simulation of the system adjoint as in BPOD. Finally, the reduced-order model
involves a projection onto a well-defined reduced-order subspace. This retains a physical meaning
in the reduced-order states. In other words, the reduced-order state can be used to approximate
the full-order state of the system. This provides insight into the key spatial modes of fluid/structure
systems and is not simply a black-box identification technique, often seen in subspace identification.



The last section in this paper emphasizes the application of this method to develop LPV models for
high-dimensional systems.

3. APPLICATION: WIND FARMS

This section demonstrates the proposed IOROM approach on a variation of the low Reynolds
number actuator disk example that has been used in wind farm literature [41, 42]. This example
has approximately 20,000 states and exhibits highly nonlinear behavior. The IOROM algorithm has
also been successfully applied to a more realistic wind farm model using a large eddy simulation
with 3.6 million states. Details on that example can be found in [43].

3.0.1. Model Formulation The actuator disk model is considered in this paper as a demonstration
of the proposed parameter varying IOROM approach [41,42]. The actuator disk is used to represent
wind turbines in the flow field. In this specific example, we will use two turbines, one directly
downstream of the other, see Figure 1. The flow within the two turbine array is modeled using the
two-dimensional unsteady, incompressible, Navier-Stokes equations. The typical operating wind
speeds in a wind farm do not exceed 25 m/s. This is low relative to the speed of sound at sea level
(∼300 m/s) and hence it is sufficient to assume incompressibility [44]. Let (u, v) [m/s] denote the
streamwise and spanwise velocity components and (x, y) [m] denote the streamwise and spanwise
distance. Under these assumptions, the nondimensionalized dynamics for (u, v) are governed by the
following partial differential equations:

∂u
∂x

+
∂v
∂y

= 0 (33)

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= −∂p
∂x

+
1

Re

(
∂2u
∂x2

+
∂2u
∂y2

)
+ fx,1 + fx,2 (34)

∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

= −∂p
∂y

+
1

Re

(
∂2v
∂x2

+
∂2v
∂y2

)
+ fy,1 + fy,2 (35)

where p is pressure in the flow, Re is the Reynolds number, and fx is a force turbines apply to the
flow in the x direction. The equations have been nondimensionalized by Re. Re is defined as the
ratio of inertial forces to viscous forces: U∞D

ν where U∞ is the freestream velocity [m/s], D is the
diameter of the turbine [m], and ν is the kinematic viscosity [m2/s]. By changingRe in this example,
it is effectively changing the freestream velocity. The dynamics of the system vary depending on the
parameter, Re, that is being simulated.

The loading of each turbine is defined linearly. Specifically, assume that all spatial units have been
nondimensionalized by the turbine diameter D. If the hub of the upstream turbine is placed at x = x1

and y = y1 then the rotor plane lies within y1 − 1
2 ≤ y ≤ y1 + 1

2 . The forcing term introduced by
the turbines is then given by:

fx,i(x, y, t) :=

{
kTx,iCT,i(ai(t))(y− yi) if x = xi & |y− yi| ≤ 0.5
0 else (36)

fy,i(x, y, t) :=

{
kTy,iCT,i(ai(t))(1− |x− xi|) if y = yi & |x− xi| ≤ 0.1
0 else (37)

where i = 1, 2 indicates the upstream and downstream turbines. Note that fx is defined such
that it will introduce an asymmetry to the flow that will induce wake meandering. The constant
kT := Uin,i, Uin is the average nondimensionalized velocity across the rotor, and CT,i is the thrust
coefficient of the turbine, which is a function of the turbine operation, i.e. the axial induction



factor, a. According to actuator disk theory, CT can be related to the axial induction factor by:
CT = 4a(1− a) [45]. Physically, the axial induction factor is a measure of how much the wind
slows down due to the action of the turbine. The optimal operating point is a = 1

3 . In this particular
example, a2 is the single input to this system, i.e. a1 is fixed at the optimal operating point and a2

is allowed to vary about the optimal operating point. The loading magnitude can be changed by
the thrust coefficient. On utility-scale turbines, this would be equivalent to changing the blade pitch
angle or generator torque [1, 45]. These equations are solved using standard CFD methods [46].
Specifically, a central differencing scheme was used for the two-dimensional actuator disk model.
The grid is defined by Nx points in the streamwise x direction and Ny point in the spanwise y
direction. For this actuator disk model, the typical spacing between grid points is δx = 0.1 and
δy = 0.1 with a typical time step of δt = 0.01.

Figure 1. Two-turbine setup (left) and the corresponding baseflow (right) for the low Re flow specified. It
should be noted that the flow is depicted as if you are looking at the two-turbine array from above.

The setup has two turbines spaced 5D apart in the streamwise direction. There is a point 3D
downstream of the second turbine where the wind speed is measured (indicated by the white triangle
in Figure 1). For simplicity, as mentioned above, we assume that we can only control the wind speed
by actuating the second turbine. As a result, the system that will be identified will be a single-input-
single-output system where the input is the axial induction factor of the downstream turbine, a2, and
the output is the spanwise velocity, v at the white triangle in Figure 1. In addition, the domain in the
streamwise direction was set to 20D with 201 grid points and in the spanwise direction was set to
5D with 51 grid points. This would amount to 20,000 states for this particular example by having
2 velocity components per grid point. More realistic, higher fidelity codes for wind farms will have
even larger state dimensions [2,47]. It is important to note that the Re used in these simulations will
be on the order of 10. This is a low Re in comparison with the Re typically experienced by wind
farms, which is on the order of 106.

3.0.2. IOROM Method: Single Operating Point First, the IOROM method discussed in Section 2.2
will be implemented for the actuator disk problem at one particular operating point, i.e. a single Re.
We will use Algorithm 1, but as examples become larger than this, i.e. large eddy simulations where
the states are on the order of millions rather than tens of thousands, Algorithm 2 will have to be
implemented. One way to do is to use the technique used for large streaming data sets in [48].

The IOROM method is used to construct a single time-invariant model withRe held constant. The
system is simulated with Re = 50 and a2 = u = 1/3, i.e. the downstream turbine input is fixed at
the optimal operating point, to determine the equilibrium point x̄(Re) for this parameter value. Next,
the nonlinear system (33) is excited for Tf = 100 s (recall the timestep for this simulation is 0.01 s).
This system is excited at the second turbine with a chirp excitation input u(t) = 0.250.25 sin(ω(t)t),
where ω(t) = 0.0628(50)

t
Tf [rad/s]. This excites the nonlinear system with frequencies from 0.01

to 0.2 Hz. The nonlinear system is simulated and snapshots of the state/input/output are collected
every 0.5 s. This yields 200 snapshots over the 100 s simulation.

Using the IOROM approach, we were able to construct a model with 20 states. This was selected
by examining the model fitting error. Because the state dimension is large, the model fitting error
cannot be computed directly. Instead, (16) was used to compute the model fitting error. The model
error decreases as more modes are used but begins to plateau at 20 modes, see Figure 2. At this point,
there is minimal benefits to increasing the order of the model. As stated previously, it is possible



Figure 2. Model fitting error computed for the actuator disk example using the IOROM technique.

that the performance of the model will degrade as the model order increases because the model will
be overfitting to the nonlinearities of the system.

Figure 3. IOROM Results of the actuator disk example. The top plot shows the flow field reconstructed using
20 modes. The middle plot shows the full-order nonlinear flow. The bottom plot shows the output (indicated
by the triangle in the top and middle plot) of the reduced-order model compared to the full-order model. The
output for this particular example is the velocity fluctuations at the measurement point 3D downstream of

the second turbine.

The reduced-order model was validated using a square wave as an input to the second turbine.
The results can be seen in Figure 3. One of the main advantages to this method is that the full



Figure 4. This plot shows the output of the reduced-order models constructed using ERA and the IOROM
approach proposed in this paper. The output for this particular example is the velocity fluctuations at the

measurement point 3D downstream of the second turbine.

state can be reconstructed from the reduced-order state. Figure 3 shows the results of the reduced-
order model as compared to the full-order model. The top plot shows the reconstructed flow field
from the 20 state model identified from the IOROM approach. The middle plot shows the full-order
actuator disk model. Visually, the top plot and the middle plot show good agreement. The bottom
plot shows the output; i.e. the velocity measured 3D downstream of the second turbine. The output
of the reduced-order model closely matches the output of the full-order model.

The IOROM technique that was used to identify a low-order model for the actuator disk example
was compared to another existing technique, eigensystem realization algorithm (ERA), that is
capable of constructing an input/output model. It is important to note that the model generated
by ERA is in balanced coordinates, which can be useful in identifying the most observable and
controllable states of the system. However, this is also a drawback in the sense that these coordinates
do not have physical meaning and are difficult to incorporate into a scheduling/parameter varying
model. This IOROM technique has also been compared to BPOD in [49]. A separate simulation
was run to obtain the impulse response data necessary for ERA using an impulse as an input. The
model obtained from the IOROM approach and ERA are both obtained for a single operating point,
i.e. Re = 50.

Figure 4 shows the results of the input/output relationship obtained using ERA and the IOROM
approach on the actuator disk example. In Figure 4, the input to the system is shown on the top,
where u(t) = 0.25 + 0.25 sin(0.5t). The output of the reduced-order models are shown on the
bottom plot. This bottom plot shows that ERA has a difficult time identifying the system at this
particular operating point. This is in part due to the excitation signal. With the IOROM technique, a
chirp signal was used, which excites the dynamics at a range of frequencies. With ERA, an impulse
is used and is unable to capture the essential dynamics of the system. This IOROM technique has a
much larger excitation energy than the impulse used by ERA. This allows the IOROM to capture a
better input/output model. However, to use this IOROM approach, the system must be of the form
where it is easily excitable by a controllable input. It should be noted that ERA has been extended
to include non-impulse inputs using observer Kalman identification (OKID) [15]. This ERA-OKID
approach was applied to the actuator disk problem and no performance benefit was observed in
comparison with ERA. This is likely due to the strong nonlinearities present in this particular
example. This indicates that the additional state information used with the input/output data for
the IOROM approach can help identify a low-dimensional model for the actuator disk example.
Lastly, it should be noted that ERA has been extended to a time-varying framework in [12–14]. A



comparison between this IOROM approach and other time varying approaches will be explored in
future work.

3.0.3. IOROM Parameter Varying Method The parameter varying method described in Section 2.4
is used to construct parameter varying reduced-order models. A grid of five parameter values was
selected, Rej = {10 : 10 : 50}. At each fixed value of Re in this grid, the system was simulated
with u = 0 to determine the corresponding equilibrium point, x̄(Rej). Next, the nonlinear system
is excited for Tf = 100 s at each Rej with a chirp excitation input u(t) = 0.25 + 0.25 sin(ω(t)t),

where ω(t) = 0.0628(50)
t

Tf . The Re changes the effective wind speed of the simulation which
changes the dynamics within the system. For example, wake meandering is an oscillation that
happens in this particular flow due to the instabilities in the wake. Wake meandering instabilities
increase, i.e. the magnitude increases, as the Re increases in this particular example. The chirp
signal frequencies were chosen to capture the wake meandering frequency. The chirp signal excites
the nonlinear system at frequencies between 0.01 Hz to 0.5 Hz. Again, the nonlinear system is
simulated and snapshots of the state/input/output are collected every 0.5 s. This yields 200 snapshots
over the Tf = 100 s simulation for each parameter grid point.

The basic single step procedure (Algorithm 1) is used to construct the subspace modes Q. This
example is small enough that it was possible to compute the SVD on snapshots obtained at all grid
points. In addition, a MapReduce technique in [50] can be used to compute the SVD of large, tall-
skinny matrices. Twenty modes were selected and reduced-order models were constructed at each
grid point using the IOROM procedure.

Lastly, Figure 5 compares a time-domain step response of the full-order nonlinear system and
the reduced-order LPV model. The Re varies at Re(t) = 25− 10 sin(0.1t). The controllable input
was a square wave where the amplitude was 0.25 with a 50% duty cycle. The nonlinear system was
simulated with a time step of 0.01 s and the reduced-order parameter varying model was simulated
with a time step of 0.5 s. Linear interpolation was used to compute the state matrices and equilibrium
points appearing in the LPV model for parameter values not contained in the five point grid. It should
be emphasized that a different input signal was used for the validation of this LPV model and the
simulation is varying across a wide range of Re. The input/output relationship of the reduced-order
LPV model is in close agreement with the full-order nonlinear system. These results indicate that
this reduced-order LPV model can be used for predictive purposes and/or control design.

4. CONCLUSION

This paper described a method to construct reduced-order models for high-dimensional nonlinear
systems. It is assumed that the nonlinear system has a collection of equilibrium operating points.
The method has two main components. First, a reduced-order linear system is constructed at
each equilibrium point using input/output data. Second, a parameter varying linearization is used
to connect these linear models. A nonlinear actuator disk example was used to demonstrate this
method. Future work will apply this method to construct reduced-order parameter varying models
for wind farm control using higher-fidelity models.
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Figure 5. Time domain signal of the Reynolds number, input, and output. The output of the reduced-order
LPV model is compared to the full-order nonlinear simulation. Note that the input is the turbine forcing on

the downstream turbine and the output is the velocity fluctuations 3D downstream of the second turbine.
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Theorem 1
Let Q1 ∈ Rnx×r1 be a given matrix with QT1 Q1 = Ir1 . Let X ∈ Rnx×ns be given snapshot data.



Define the SVD of the projected snapshot matrix (Inx −Q1Q
T
1 )X = UΣV T . Let r2 be any non-

negative integer such that r2 ≤ rank((Inx −Q1Q
T
1 )X) and σr2 > σr2+1. Then

min
Q2∈Rnx×r2 , QT

2 Q2=Ir2
C1∈Rr1×ns

C2∈Rr2×ns

‖X −Q1C1 −Q2C2‖2F =

rank(X)∑
k=r2+1

σ2
k (38)

An optimal solution is given by C1,opt = QT1 X , Q2,opt = Ur, and C2,opt = ΣrV
T
r where Σr, Ur,

and Vr are associated with the first r singular values and vectors of (Inx
−Q1Q

T
1 )X .

Proof
Use Gram-Schmidt orthogonalization to construct a matrix Q1,⊥ ∈ Rnx×(nx−r1) such that[
Q1 Q1,⊥

]
is orthogonal. The orthogonal invariance of the Frobenius norm thus implies

‖X −Q1C1 −Q2C2‖2F =
∥∥∥[ QT

1

QT
1,⊥

]
(X −Q1C1 −Q2C2)

∥∥∥2

F
=
∥∥∥[QT

1 X−C1−QT
1 Q2C2

QT
1,⊥X−Q

T
1,⊥Q2C2

]∥∥∥2

F
(39)

The second equality follows from QT1 Q1 = Ir1 and QT1,⊥Q1 = 0(nx−r1)×r1 . The error can be split
as:

‖X −Q1C1 −Q2C2‖2F = ‖QT1 X − C1 −QT1 Q2C2‖2F + ‖QT1,⊥X −QT1,⊥Q2C2‖2F (40)

The second term is unaffected by the choice of C1. Moreover, for any (Q2, C2) the first term
can be made equal to zero by the choice C1,opt = QT1 X −QT1 Q2C2. In fact, QT1 Q2 = 0 may
be assumed without loss of generality. Specifically, the choice of Q2 only affects the second
term of (40) (assuming the optimal choice for C1 just specified). Perform a change of variables
Q2 =

[
Q1 Q1,⊥

] [
Q̃2

Q̂2

]
. This change of variables fromQ2 to

[
Q̃2

Q̂2

]
is invertible since

[
Q1 Q1,⊥

]
is orthogonal. Substitute this change of variables into the second error term to obtain ‖QT1,⊥X −
QT1,⊥Q2C2‖2F = ‖QT1,⊥X − Q̂2C2‖2F . Thus Q̃2 has no effect on the second term and may be set to
zero. Q2 can be selected to have the form Q1,⊥Q̂2 and hence QT1 Q2 = 0. In this case, the optimal
choice for C1 simplifies to C1,opt = QT1 X .

Retaining the assumption that QT1 Q2 = 0 as well as C1,opt = QT1 X , the total error is given by:

‖X −Q1C1 −Q2C2‖2F = ‖(Inx
−Q1Q

T
1 )X −Q2C2‖2F (41)

By the standard POD result this cost is minimized by the choice Q2,opt = Ur, and C2,opt = ΣrV
T
r

where Σr, Ur, and Vr are associated with the first r singular values and vectors of (Inx −Q1Q
T
1 )X .

It can be shown that this construction satisfies the assumption QT1 Q2,opt = 0.


