
Robustness Margins for Linear Parameter

Varying Systems

Ann-Kathrin Schug∗, Peter Seiler and Harald Pfifer
Hamburg University of Technology, University of Minnesota, University of Nottingham

Aerospace Lab
Special issue on design & validation of aerospace control systems

Draft, July 2016.

Abstract

An approach to extend classical robustness margins to linear parameter varying (LPV)
systems is presented. LPV systems are often used to model aircraft dynamics that are highly
dependent on the operating conditions such as altitude and airspeed. Classical gain and
phase margins are evaluated in the frequency domain and therefore cannot be applied to LPV
systems. The proposed approach is based on a time-domain interpretation for disk margins.
Specifically, a norm bounded linear time invariant (LTI) uncertainty is interconnected to the
nominal LPV system. Next, a time-domain worst-case metric is applied to evaluate both
the robustness margin and also the robust performance degradation. The approach does not
require detailed uncertainty modeling. In addition, the analysis can be formulated as a convex
optimization leading to reliable numerical analysis tools. As an example, the LPV gain margin
of a flutter suppression controller for a flexible aircraft is evaluated.

1 Introduction

This paper presents a method to extend the notion of classical stability margins to linear parameter
varying (LPV) systems. Classical gain and phase margins are widely used as a standard formu-
lation for robustness requirements in the aerospace industry, see Section 2. They do not require
specific, detailed uncertainty models and hence these margins are easy to evaluate. Additionally,
engineers have significant experience on the interpretation of the analysis results. At the same
time, gain scheduling is a commonly used design method in aerospace. Since the classical margins
are evaluated in the frequency domain, they cannot be directly applied to LPV systems due to the
time varying nature of the dynamics. It is typical to simply evaluate the margins at “frozen” flight
conditions. However this fails to capture the effects of varying flight conditions. This motivates the
proposed generalized robustness margins for LPV systems. The approach presented in this section
provides two main extensions to the classical margins. A time domain worst-case metric can be
used to formulate a generalized robustness margin for LPV systems, see Section 3. Additionally,
this approach also considers the performance degradation before instability occurs.

Recently, the usage of a general uncertainty framework, namely integral quadratic constraints
(IQCs) [6], have gained a lot of attention in the aerospace field [16, 4]. The main focus of this
research has been the studying of the effects of complex uncertain or nonlinear elements, e.g.,
saturations. Still, these methods focus on assessing robustness over a set of “frozen” flight condi-
tions. In contrast, this work builds on novel techniques that extend the IQC framework to LPV
systems [10, 11]. This new approach builds on a time domain interpretation of IQCs and the
dissipation inequality framework. An LPV equivalent to classical disk margins can be formulated
in this framework. It retains the main characteristic of LTI disk margins. Specifically, at a frozen
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parameter value it guarantees robustness against a simultaneous gain and phase variations. It is
anticipated that an engineer’s previous experience with classical margins is directly applicable to
this novel formulation. It shall be emphasized that it only requires a simple uncertainty element,
i.e. norm-bounded uncertainty that describes the disk margin. Hence, the approach suits itself to
complex systems, e.g. the analysis of a flutter suppression controller for a flexible aircraft as shown
in Section 4

There are several recent robust performance results obtained for LPV systems whose state
matrices have rational dependence on the scheduling parameters, e.g., [13]. In contrast, the results
in this paper are for the class of LPV systems whose state matrices have an arbitrary dependence
on the parameters. This is the natural modeling framework in aerospace applications, where LPV
models are generally obtained by linearization of nonlinear systems.

2 Background

In many aerospace applications the dynamics strongly depend on the operating conditions of the
aircraft such as altitude or airspeed. The LPV framework can be used to consider this dependency
in the modeling procedure as well as the controller synthesis. The dynamics are expressed as a
function of a scheduling parameter. This section provides a brief summary of LPV modeling and
introduces the performance of nominal LPV systems. This work aims to extend classical (LTI)
robustness margins and robust performance analysis to LPV systems. The approach is based on
the concept of disk margins for LTI systems as reviewed in Section 2.2.

2.1 Linear Parameter Varying Systems

Gρ ed

Figure 1: LPV System

Linear parameter varying (LPV) systems are a special class of time varying systems where the
dynamics depend on an exogenous parameter vector ρ(t) restricted to remain in a compact set
ρ(t) ∈ P ⊂ Rnρ for all t ≥ 0. An nth-order LPV system Gρ as depicted in Figure 1 has the form

ẋ(t) = A(ρ(t))x(t) +B(ρ(t)) d(t), (1)

e(t) = C(ρ(t))x(t) +D(ρ(t)) d(t),

with the continuous functions A : Rnρ → Rnx×nx , B : Rnρ → Rnx×nd , C : Rnρ → Rne×nx and
D : Rnρ → Rne×nd . In addition, x(t) ∈ Rnx is the vector containing the states of the system,
e(t) ∈ Rny is the output vector and d(t) ∈ Rnu the input vector. Given by the physical restrictions
of most practical applications the admissible parameter trajectories are defined by

A := {ρ : R+ → Rnρ |ρ(t) ∈ P, ρ̇(t) ∈ Ṗ ∀ t ≥ 0} (2)

where the admissible parameter rate is given by the subset

Ṗ := {ρ̇ ∈ Rnρ | |ρ̇i| ≤ νi, i = 1, . . . , nρ},

νi is the fastest admissible parameter variation rate.

The performance of an LPV system Gρ can be measured in terms of the induced L2-norm.

First define the norm of a signal d as ‖d‖2 =
√∫∞

0
dT (t)d(t) dt. The set of bounded signals, i.e.



d ∈ L2, are those that satisfy ‖d‖2 <∞. The gain of the system from the input d to the output e
can be defined using the signal L2-norm:

‖Gρ‖ := sup
0 6=d∈L2,ρ∈A,x(0)=0

‖e‖2
‖d‖2

(3)

A bounded-real type result exists to bound the induced L2-norm of an LPV system. First, define
the following differential operator for a symmetric matrix function P : P → Snx :

∂P (ρ, ρ̇) =

nρ∑
i=1

∂P (ρ)

∂ρi
ρ̇i, (4)

The theorem below provides a matrix inequality condition to prove stability and bound the induced
L2 gain of an LPV system with bounded parameter variation rate.

Theorem 2.1 (Bounded Real Lemma [19]) An LPV System Gρ as defined in (1) is exponen-
tially stable and ‖Gρ‖ < γ if there exists a continuously differentiable symmetric matrix function

P : P → Snx such that the following two conditions hold ∀(ρ, ρ̇) ∈ P × Ṗ

P (ρ) > 0, (5)[
P (ρ)A(ρ) +A(ρ)TP (ρ) + ∂P (ρ, ρ̇) P (ρ)B(ρ)

B(ρ)TP (ρ) −I

]
+

1

γ2

[
C(ρ)T

D(ρ)T

] [
C(ρ) D(ρ)

]
< 0. (6)

Proof. This is a standard result but a sketch of the proof is provided as it will be extended for

the robustness result. Multiply (6) on the left and right by
[
xT , dT

]
and

[
xT , dT

]T
respectively to

obtain (neglecting the dependence on time):

ẋTP (ρ)x+ xTP (ρ)ẋ+ xT∂P (ρ, ρ̇)x+
1

γ2
eT e− dT d < 0. (7)

Define a storage function V : Rnx ×P → R+ as V (x, ρ) = xTP (ρ)x. Evaluating V along the state
and parameter trajectory gives

V̇ +
1

γ2
eT e− dT d < 0. (8)

Integrating over the time interval [0, T ] and applying x(0) = 0 yields

V (T ) +
1

γ2

∫ T

0

e(t)T e(t)dt−
∫ T

0

d(t)T d(t)dt < 0. (9)

Let T → ∞ and use V (T ) ≥ 0 as well as the definition of the L2-norm to obtain bound ‖e‖2 ≤
γ‖d‖2. A slight modification of the arguments (using the compactness of P) yields the strict
inequality ‖e‖2 < γ‖d‖2.

�

2.2 Disk Margins for LTI Systems

In many applications it is important to provide a high level of robustness. Specifically, the system
performance should be insensitive to deviations between the model used for the controller synthesis
and the actual system dynamics. Classical robustness measures, e.g.gain and phase margins,
can be easily evaluated given the frequency response of the nominal system dynamics. More
modern tools, e.g. µ analysis, require more detailed descriptions of the uncertainty. In general,
an uncertain system can be described by “pulling out the uncertainty” as shown in Figure 2 [20].
This corresponds to an interconnection of a nominal (not-uncertain) system G and an uncertainty
block ∆. The signals d and e correspond to exogenous inputs and system outputs, respectively.
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Figure 2: Uncertain LTI System

The signals v and w correspond to the signals related to the modeled uncertainty. The notation
Fu(G,∆) is used to represent this interconnection structure.

As noted above, classical gain and phase margins are common robustness metrics. These
margins measure the amount of (individual) gain or phase that can be tolerated before a single
closed-loop becomes unstable. On the other hand, symmetric disk margins, as described in [3, 1],
allow for simultaneous variations in both gain and phase within a prescribed disk. The remainder
of the section briefly reviews the disk margin concept as this will be used to formulate the proposed
robustness margins for LPV systems. Consider the interconnection shown in Figure 3 where G
and K are single input / single output (SISO) LTI systems and ∆ is an LTI uncertainty. The
symmetric disk margins are related to robustness with respect to this uncertainty interconnection.
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∆
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Figure 3: Input Disk Margin Interconnection

The open loop transfer function, without ∆, from input w to output v is given by 1
Si−Ti

where Si := 1
1+GK and Ti := GK

1+GK are the sensitivity and complementary sensitivity functions

at the plant input. Thus the disk margin interconnection is equivalent to Fu( 1
Si−Tk ,∆) (with no

disturbance and error channels). By the small gain theorem [5, 20], the uncertain disk margin
interconnection is stable if and only if ‖∆‖∞ < ‖ 1

Si−Ti ‖∞. Thus the stability radius (margin) can
be defined as r := 1/‖Si − Ti‖ where r typically satisfies 0 < r < 1.

Block diagram manipulation can be used to bring the disk margin interconnection into the
equivalent form shown in Figure 4. The alternative form provides a useful connection back to
classical gain and phase margins. This implies that the interconnection is stable for all real gains

from uK to u in the interval
[

1−r
1+r ,

1+r
1−r

]
. This proves the following symmetric lower and upper disk

gain margins:

GMl =
1− r
1 + r

, GMu =
1 + r

1− r
. (10)

Similarly, stability of Figure 4 for all ‖∆‖∞ < r can be used to show that the loop is stable for
additional phase (from uK to u) within the following disk phase margin limits:

PMl = −2 cot(r), PMu = 2 cot(r). (11)

These are called disk margins due to a connection in the Nyquist domain. Specifically, stability
of the interconnection in Figure 4 for all ‖∆‖∞ < r implies the open loop Nyquist curve of GK
stays outside the disk containing −1 and with diameter passing through [−GMu, −GMl]. Figure
5 shows the disk margins for an example transfer function. The critical point (-1,0) is marked in



red. The interval on the real axis between the disk (orange) and the critical point corresponds
to the gain margin and the intersection of the disk and the circle around the origin with radius 1
marks the arc of the phase margin. For further information on disk margins the reader is referred
to e.g. [3].
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Figure 4: Equivalent Input Disk Margin Interconnection
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Figure 5: Disk Margin in the Nyquist Plane

3 LPV Robustness Margins

This section extends the disk margin defined in the previous section to LPV systems. At a frozen
parameter value, it retains the frequency domain interpretation given above. However, it is derived
completely in the time domain. This allows using disk margins to consider the time varying nature
of gain scheduled controllers.

3.1 LPV Disk Margins

The generalized disk margin interconnection in Figure 6 will be used for the analysis. This contains
two significant differences from the previous disk margin interconnection in Figure 3. First, the
plant Gρ and controller Kρ are allowed to be LPV systems. Here ρ is a parameter vector defining
the flight condition. Second, an input d and output e are added in order to consider performance
criteria. This corresponds to a plant input disturbance and plant output error. More generally,
performance inputs/outputs can be included at any point in the feedback diagram depending on
the specific application.
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Figure 6: Input Disk Margin Interconnection for LPV Systems

It is common to evaluate the classical margins with Gρ and Kρ evaluated at specific grid points
of ρ. With a constant ρ both the plant and controller are then LTI systems at the fixed operating
condition. The disk margin analysis presented in Section 2.2 can be directly applied to this LTI
interconnection. However, the resulting analysis does not consider the actual time varying nature
of ρ. The approach proposed in this paper directly deal with the time varying operating conditions
using the framework developed in [10].

Two basic robustness analysis problems will be considered based on the LPV interconnection
in Figure 6:

1. LPV Disk Margins: Let ∆ be an LTI uncertainty. Compute a stability margin r such that
the LPV interconnection is stable for all ‖∆‖∞ < r and all ρ ∈ A.

2. Worst-Case Gain: Again let ∆ be an LTI uncertainty. In addition, assume the uncertainty
satisfies a given norm-bound b < r, i.e. ‖∆‖∞ < b. Compute the worst-case gain from d to
e over this set of uncertainties and and all ρ ∈ A.

The analysis requires a time-domain characterization of the uncertainty. Let w = ∆(v) where both
w and v are assumed to be scalar signals to simplify this discussion. The norm-bound ‖∆‖∞ < b
implies the following frequency-domain constraint on the input-output signals:∫ ∞

−∞
b2|V (jω)|2 − |W (jω)|2 dω =

∫ ∞
−∞

V (jω)∗
(
b2 −∆(jω)∗∆(jω)

)
V (jω) dω ≥ 0 (12)

where V (jω) and W (jω) are the transforms of the signals v(t) and w(t). By Parseval’s theorem
[20], this inequality is equivalent to an infinite-horizon, time-domain constraint:∫ ∞

0

[
v(t)
w(t)

]T [
b2 0
0 −1

] [
v(t)
w(t)

]
dt ≥ 0. (13)

The causality of ∆ implies that this constraint also holds for all finite intervals [0, T ], for all
v ∈ L2, w = ∆(v) and T > 0 [10]. The time-invariance of ∆ can be used to formulate a tighter
constraint as is standard in structured singular value (µ) analysis [12, 7]. Specifically, ∆ is LTI and
hence it commutes with any stable, minimum-phase LTI system D, i.e. D(s)∆(s) = ∆(s)D(s).
This property is the basis for the use of frequency-domain “D”-scale conditions in µ analysis [12, 7].
The equivalent time-domain formulation is obtained by noting that if w = ∆v then Dw = ∆Dv.
Hence the filtered signals (ṽ, w̃) := (Dv,Dw) satisfy the same norm bound constraints as (v, w).
To simplify notation, combine the scalings D and stack the filtered signals as follows:

z :=

[
ṽ
w̃

]
= Ψ

[
v
w

]
where Ψ :=

[
D 0
0 D

]
(14)

As noted above, the filtered signals (ṽ, w̃) := (Dv,Dw) satisfy the same norm bound constraints
as (v, w). This leads to the following time-domain inequality.



Definition 3.1 Let ∆ be an LTI system satisfying ‖∆‖∞ < b. In addition, let D be a stable,
minimum phase LTI system. Define Ψ as in Equation 14 and M =

[
b2 0
0 −1

]
. Then ∆ satisfies∫ T

0

z(t)T M z(t)dt ≥ 0. (15)

for all v ∈ L2, w = ∆(v) and T ≥ 0.

Equation 15 is a specific example of a time-domain Integral Quadratic Constraint (IQC). IQCs
provide a general framework, introduced in [6], for studying various uncertainties such as infinite
dimensional systems or hard non-linearities. There is an existing library of IQCs (Ψ,M) for
particular classes of uncertainties. The (Ψ,M) given in Definition 3.1 is for the particular class of
LTI, norm-bounded uncertainty. The more general IQC framework can be used to obtain worst-
case stability margins for other cases, e.g. systems with saturation. However, this paper will focus
on norm bounded, LTI uncertainties in order to assess LPV disk margins.

3.2 LPV Worst-Case Gain

The (nominal) stability conditions of Section 2.1 can now be combined with the time domain con-
straint on the input/output behavior of the uncertainty block ∆. This can be used to assess the
robust performance of an uncertain LPV system. First note that the LPV disk margin interconnec-
tion (Figure 6) is a special instance of the more general uncertain LPV system interconnection in
Figure 7. Here the nominal (not uncertain) LPV system Tρ is connected to the uncertainty block.
In addition the dynamic filter Ψ, used to describe the IQC in Definition 3.1, is also appended to
the diagram. The combined dynamics of Tρ and Ψ are described by the following LPV system:

ẋ = A(ρ)x +B1(ρ)w +B2(ρ)d
z = C1(ρ)x +D11(ρ)w +D12(ρ)d
e = C2(ρ)x +D21(ρ)w +D22(ρ)d

(16)

The state vector combines the state of Tρ and the state of Ψ, i.e. x =
[
xTTρ , x

T
Ψ

]T
. The perturbation

block ∆ is unknown and is not considered for the purposes of analysis. Instead, w is treated as
external signal subject to the constraint on z given in Equation 15. This effectively replaces the
precise relation w = ∆(v) by the imprecise time domain inequality.

Tρ

∆

Ψ

ed

vw

z

Figure 7: Worst-Case Gain Analysis Interconnection

The robust performance of this general uncertain LPV system (Figure 7) can be measured
by the worst-case induced L2 gain from input d to output e over all uncertainties ∆ satisfying
the finite-time horizon constraint in (15). The following theorem (from [10]) provides a matrix
inequality condition to compute the upper bound on the worst case L2-gain of Fu(Tρ,∆).

Theorem 3.2 (Extended Bounded Real Lemma [10]) Let Fu(Tρ,∆) be well posed for any
∆ ∈ IQC(Ψ,M). Then the worst case gain of Fu(Tρ,∆) is upper bounded by γ <∞ if there exists



a continuously differentiable P : P → Snx and a scalar λ > 0 such that the following conditions
hold for all (ρ, ρ̇) ∈ P × Ṗ:

P (ρ) > 0, (17) P (ρ)A(ρ) +A(ρ)TP (ρ) + ∂P (ρ, ρ̇) P (ρ)B1(ρ) P (ρ)B2(ρ)
B1(ρ)TP (ρ) 0 0
B2(ρ)TP (ρ) 0 −I


+λ

 C1(ρ)T

DT
11(ρ)T

DT
12(ρ)T

M [
C1(ρ) D11(ρ) D12(ρ)

]
(18)

+
1

γ2

 C2(ρ)T

D21(ρ)T

D22(ρ)T

 [ C2(ρ) D21(ρ) D22(ρ)
]
< 0

Proof. The proof is similar to Theorem 2.1. The uncertainty ∆ is assumed to satisfy the IQC
defined by (Ψ,M) and therefore the signal z satisfies (15) for any T > 0. Define a storage function
V (x, ρ) = xTP (ρ)x as in the proof of Theorem 2.1. Left/right multiplication of Equation 18 by[
xT , wT , dT

]
and

[
xT , wT , dT

]T
leads to the following dissipation inequality

V̇ − dT d+ λzTMz +
1

γ2
eT e < 0 (19)

Integrating (19) over the finite time horizon [0, T ] and using the initial condition x(0) = 0 along
with the conditions λ > 0 and P (ρ) > 0 leads to the gain bound ‖e| ≤ γ‖d‖. This holds for any
input d ∈ L2, admissible parameter trajectory ρ ∈ A and uncertainty ∆ ∈ IQC(Ψ,M). Therefore
the worst-case gain is upper bounded by γ.

�

If the linear matrix inequality (LMI) conditions in Theorem 3.2 are feasible, then the system
is stable for the selected uncertainty bound b. A bisection can be used to find the largest value of
b for which the LMI is feasible. This largest uncertainty bound corresponds to the stability (disk)
margin, denoted r, for the LPV system. For example, the interconnection in Figure 6 is stable

for all real gains all real gains from uK to u in the interval
[

1−r
1+r ,

1+r
1−r

]
. The other disk margin

interpretations given in Section 2.2 have similar extensions to the LPV interconnection. The key
point is that the plant and controller are LPV and the time-domain analysis enables the robustness
with respect to LTI (disk-margin) uncertainty to be evaluated.

Theorem 3.2 can also be used to evaluate performance in addition to the stability margin. In
particular it is important to emphasize that the performance can become unacceptable before the
system becomes unstable. Thus it is useful to evaluate the performance degradation for uncertainty
bounds within the stability margin. In other words, a plot of worst-case gain vs. uncertainty bound
b will approach infinity as b→ r. The performance degradation as the bound b increases provides
additional useful information beyond simply knowing the stability margin r. It should also be
mentioned that this approach can be used to obtain generalized delay margins for LPV systems
using existing time-domain IQCs for time delays. The work in [9] provides detailed information on
IQCs for time-delayed LPV systems.

3.3 Numerical Implementation

The conditions in Theorem 3.2 involve infinite dimensional LMIs, i.e. the conditions must hold
for all ρ ∈ P. An approximation based on gridding is proposed in [18]. Specifically, the parameter
space is approximated by a finite grid over (P × Ṗ). The system in (1) is then evaluated at each
grid point. The LMI conditions in Theorem 3.2 are enforced only at the grid points leading to finite
dimensional linear matrix inequalities. Since the conditions depend affinely on the parameter rate
it is sufficient to enforce them only at the rate bounds ±νi. Thus no gridding over Ṗ is needed.



It should be emphasized that this gridding is only an approximation. Feasibility of the LMIs on a
finite grid does not guarantee feasibility for all P. However, the gridding approximation is often
sufficient on practical problems. Typically the process is to solve the LMIs on a coarse grid and
then to verify the results on a denser grid.

Another issue is that the matrix function P in Theorem 3.2 is itself parameter dependent. This
function P can be expanded in terms of a finite number of basis functions

P (ρ) =

nρ∑
j

bj(ρ)Pj , (20)

where bj : Rnρ → R can be any user-defined differentiable basis functions. The matrices Pj
appearing in this expansion describe the function P with a (finite) number of decision variables.

The final issue is the description of the IQC which involves the scaling D. In µ-analysis the
search over the D-scales is performed in the frequency domain on a grid of frequencies. This
approach cannot be replicated for LPV analysis as the condition in Theorem 3.2 is formulated in
the time domain. Instead, many different D-scales, e.g. {Di}Ni=1 can be selected. Each Di defines
a valid IQC with corresponding filter Ψi. The LMI conditions in Theorem 3.2 can be augmented
in order to handle these multiple dynamic filters Ψi. The extended system then includes the
additional dynamics of all Ψi. The corresponding LMI condition in (18) is modified to include one
term corresponding to each selected Di:

N∑
i=1

λi

 C1i(ρ)T

D11i(ρ)T

D12i(ρ)T

Mi

[
C1i(ρ) D11i(ρ) D12i(ρ)

]
(21)

The constants λi are decision variables each of which must be ≥ 0. The output state matrices
(C1i(ρ), D11i(ρ), D12i) corresponding to the output zi of filter Ψi. The analysis includes a search
for the constants λi that lead to the feasibility of the LMI conditions in Theorem 3.2. It is worth
noting that, in principle, Ψ and M do not have to be LTI but could potentially be LPV. However,
the use of LPV (Ψ,M) has not be fully developed in the literature and will not be pursued here.

4 Application on a Flexible Aircraft

The proposed method is used to evaluate the LPV robustness margins of an flutter suppression
controller of a flexible aircraft. The airframe is a small, radio-controlled aircraft denoted mini-
MUTT, as shown in Figure 8. The design is based on Lockheed Martins Body Freedom Flutter
vehicle [2]. The mini-Mutt has a mass of 6.7 kg and a wing span of 3 meters. It was build completely
in-house at the University of Minnesota to study the usage of active control to suppress detrimental
structural and aerodynamic interactions. These undesired interactions lead to a phenomenon
called flutter which is an unstable oscillation that can potentially destroy the aircraft. Given the
catastrophic consequences of flutter, it is paramount to have an insightful and accurate robustness
metric available.

4.1 System Description

The modeling of the aircraft incorporates structural and rigid body dynamics as well as aerody-
namics. The procedure can be found in [14]. The final model which is used is adapted from [8]
and describes the longitudinal dynamics for straight and level flight. The system has a total of six
states as well as one input and three output signals.
A schematic overview of the aircraft is depicted in Figure 9 showing the available sensors and
actuators. The aircraft has a total of 8 flaps on the back of the wing. The body flaps are unused
in this example while the inner two are aileron and elevator respectively. The flutter suppression
controller has full authority over the outboard flap deflection denoted by δ, such that u = δ. The
plant output signals are the pitch rate q and the vertical acceleration at the center of gravity aCG



Figure 8: mini-MUTT

and the wing tips aWT , such that y = [q aCG aWT ]. A 4th-order short period approximation of
the full model as proposed in [15] is used. The first two states of the state space representation
are associated to the rigid body dynamics and consist of the angle of attack α and pitch rate
q. The remaining states represent the generalized displacement and velocity of the first flexible
mode, denoted by η and η̇ respectively. Therefore, the approximated plant model is of 4th-order
and consists of the four states α, q, η, η̇. The dynamics strongly depend on the airspeed and it is
therefore straightforward to represent the aircraft model as a parameter varying model. Specifically,
the airspeed is assumed to be a measurable exogenous signal which can be used as the scheduling
parameter parameter ρ(t). Additionally, the sensor and actuator dynamics and the assumed time
delay as described in[15] are included, leading to the final 6th-order LPV model.

The LPV controller is mainly based on the H∞ design which is also proposed in [15]. In this
work the airspeed is assumed to be constant 30 m/s. To adapt the controller design to the LPV
description of the system, the loopshaping approach can be systematically extended using the

Outboard Flap

Wing Tip Accelerometer

Center Accelerometer

Pitch Rate Gyro

Outboard Flap

Wing Tip Accelerometer

Figure 9: Schematic Overview



synthesis algorithm provided in [19]. Weighting filters can be used to shape the individual transfer
functions of the performance channels. The modal velocity η̇ of the first flexible mode is used as a
non-measurable performance output. Since the main objective of the flutter suppression controller
is to attenuate the mode, this can be achieved by pushing down the peak in the associated transfer
function using a constant weighting filter.

4.2 Robustness Analysis

Aircraft Model

∆

Controller
η̇

q
aWT

aCG

−

d

v

w

δK δ

Figure 10: Equivalent Input Disk Margin Interconnection

The LPV robustness margin analysis is performed on the closed-loop system of the aircraft and
the LPV flutter suppression controller as shown in Figure 10. The parameter range is assumed to
be ρ = [20, . . . , 40] m/s and the parameter variation rate is bounded by ±10 m/s2. The worst-case
performance is computed for increasing values of b by solving the LMI conditions in Theorem 3.2.
The results are then normalized by the L2 gain of the nominal system (b = 0). Recall, that a norm
bounded uncertainty is assumed to satisfy an IQC of the form

Ψ1 = I2, M =

[
b2 0
0 −1

]
. (22)

A second filter with simple dynamics

Ψ2 =

 1

s+ 1
0

0
1

s+ 1

 (23)

is added to the analysis. Initially, a constant matrix function P is used for the LMI conditions
in Theorem 3.2. The analysis is then repeated, using linear and quadratic basis functions for the
approximation of P (ρ), i.e. P (ρ) = P0 + ρP1 and P (ρ) = P0 + ρP1 + ρ2P2.

Evaluation

The analysis results using quadratic basis functions are shown in Figure 11. The optimization
algorithm could not find any feasible solutions using a constant P and a linear basis functions.
Hence, only the analysis using quadratic storage functions if shown in the figure. Adding an
additional IQC with internal dynamics shows only minimal improvement of the results. As a
comparison, a lower bound of the disk margin is computed based on the µ-Analysis framework.
Specifically, at each frozen value ρ and each value of b, the Matlab function wcgain is used to
compute LTI worst-case gain. The largest gain of all grid points is then plotted as a function of
the uncertainty norm bound b, labeled LTI in Fig. 11.

The grey dashed line in the figure is the LPV disk margin, i.e. the uncertainty bound at which
no stability can be guaranteed. The upper bound for the LPV robustness margin in the given
example is bmax ≈ 0.27, corresponding to a real gain at the plant input of about 1.7 (4.6 dB).
As a comparison, the lowest LTI input-disk margin over all individual grid points is 4.9 dB. As
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Figure 11: Norm Bounded Uncertainty Worst-Case Gain

mentioned previously, this is only a single number. While it gives some insight on the robustness of
the controller, additional insight can be gained by considering the performance degradation. The
gain at b = 0 is the nominal performance of the system and is used as a reference for the robustness
performance analysis. The degradation can be interpreted in the following way. The performance
of the controller is already degraded by a factor of two at an uncertainty b ≈ 0.18 and by a factor
of three at b ≈ 0.23. This performance degradation is a valuable metric for controller evaluation.
In many practical aerospace applications, stabilization is not sufficient for the safe operation and
some level of performance is required.

Note that in this example the lower bounds computed via wcgain are close to the upper bounds
on the worst-case gain for the uncertain LPV system. In general, the gap between both methods
can be large. Recall, that wcgain is only an LTI analysis at each (frozen) grid point. The LPV
analysis maximizes the gain over all allowable parameter trajectories while the wcgain analysis
can be viewed as restricting the trajectory to be frozen at a single parameter value.

5 Conclusion

A novel approach to extend classical disk margins to LPV systems has been proposed. It allows the
analysis of gain-scheduled controller which is the predominant control architecture in aerospace.
Unlike classical margins, the proposed margin incorporates the time variations in the analysis.
The problem is formulated as a convex optimization which can be readily solved even for complex
systems. The applicability was demonstrated on a flutter suppression controller for a flexible,
unmanned aircraft.

Acknowledgments

This work is supported by the NASA NRA Cooperative Agreement under Grant No. NNX14AL36A,
entitled “Lightweight Adaptive Aeroelastic Wing for Enhanced Performance Across the Flight En-
velope”. Mr. John Bosworth is the Technical Monitor. Additionally, it is supported by the National
Science Foundation under Grant No. NSF-CMMI-1254129 entitled “CAREER: Probabilistic Tools
for High Reliability Monitoring and Control of Wind Farms”.



References

[1] D. Bates and I. Postlethwaite,eds. “Robust multivariable control of aerospace systems”. Vol.
8, IOS Press, 2002.

[2] J. Beranek, L. Nicolai, M. Buonanno, E. Burnett, C. Atkinson, B. Holm-Hansen and P.
Flick. “Conceptual design of a multi-utility aeroelastic demonstrator”. 13th AIAA/ISSMO
Multidisciplinary Analysis Optimization Conference, Vol. 3, 2010.

[3] J. D. Blight, R. Lane Dailey and D. Gangsaas. “Practical control law design for aircraft using
multivariable techniques”. International Journal of Control, Vol. 59, pp. 93-137, 1994.

[4] F. Demourant “New algorithmic approach based on integral quadratic constraints for stability
analysis of high order models”. In Proceedings of the European Control Conference, pp. 359-
364, 2013.

[5] C. A. Desoer and M. Vidyasagar. “Feedback systems: input-output properties”. Vol. 55,
Siam, 2009.

[6] A. Megretski and A. Rantzer. “System analysis via integral quadratic constraints”. IEEE
Transactions on Automatic Control, Vol. 42, pp. 819-830, 1997.

[7] A. Packard and J. Doyle. “The complex structured singular value”. Automatica, Vol. 29, pp.
71-109, 1993.

[8] H. Pfifer and B. Danowsky. “System Identification of a Small Flexible Aircraft”. In Proceedings
of the AIAA SciTech Conference, 2016.

[9] H. Pfifer and P. Seiler. “Integral quadratic constraints for delayed nonlinear and parameter-
varying systems”. Automatica, Vol. 56, pp. 36-43, 2015.

[10] H. Pfifer and P. Seiler. “Robustness analysis of linear parameter varying systems using integral
quadratic constraints”. International Journal of Robust and Nonlinear Control, Vol. 25, pp.
2843-2864, 2015.

[11] H. Pfifer and P. Seiler. “Less conservative robustness analysis of linear parameter varying
systems using integral quadratic constraints”. International Journal of Robust and Nonlinear
Control, 2016.

[12] M. G. Safonov. “Stability and robustness of multivariable feedback systems”. MIT Press,
1980.

[13] C. Scherer, I. Kose. “Gain-Scheduled Control Synthesis Using Dynamic-Scales”. IEEE Trans-
actions on Automatic Control, Vol. 57, pp 2219-2234, 2012.

[14] D.K. Schmidt, W. Zhao and R.K. Kapania. “Flight-Dynamics and Flutter Modeling and
Analysis of a Flexible Flying-Wing Drone”. In Proceedings of the AIAA SciTech Conference,
pp. 4-8, 2016.

[15] J. Theis, H. Pfifer and P. Seiler. “Robust Control in Flight: Active Flutter Suppression”. In
Proceedings of the AIAA Science and Technology Forum, 2016.

[16] J. Veenman, K. Hakan , and C. W. Scherer. “Analysis of the controlled NASA HL20 atmo-
spheric re-entry vehicle based on dynamic IQCs”. In AIAA Guidance, Navigation and Control
Conference, 2009.

[17] M.R. Waszak and D.K. Schmidt. “Flight dynamics of aeroelastic vehicles”. Journal of Aircraft,
Vol. 25, pp. 563-571, 1988.

[18] F. Wu. “Control of linear parameter varying systems”. Doctoral dissertation, University of
California at Berkeley, 1995.



[19] F. Wu, X.H. Yang, A. Packard and G. Becker. “Induced L2-norm control for LPV system
with bounded parameter variation rates”. American Control Conference, Vol. 3 IEEE, pp.
2379-2383, 1995.

[20] K. Zhou, J.C. Doyle and K. Glover. “Robust and optimal control”. Vol. 40, New Jersey:
Prentice hall, 1996.


