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Abstract— In this paper we design and analyze a full-
information H∞ controller to in order to reduce the wake
meandering behind a wind turbine. The low frequency instability
that causes wake meandering can cause unsteady mechanical
loads on the downstream turbines resulting in early onset of
material fatigue. Controlling the wake meandering in a wind
farm can therefore reduce maintenance costs. The control design
and analysis in this paper proceeds in two steps. First, a linear
reduced order model of the turbine is obtained using snapshots
from a higher-order nonlinear 2D actuator-disk model. A full-
information H∞ controller is then designed for the reduced order
model assuming access to the entire flow field and disturbance
input. The control performance is evaluated by simulations on
the higher-order nonlinear model. The full-information controller
can not be implemented in practice. However, it can provide
insight into control design for wind farms such as identifying
desirable locations to measure the downstream flow.

I. INTRODUCTION

Many states in United States have a regulatory mandate to
increase production of energy from renewable sources. Wind
energy will be a significant contributor in achieving this target.
However, the presence of wake meandering behind turbines in
a wind farm can pose a problem in achieving this goal. The
meandering wake causes downstream turbines to experience
unsteady structural loads which can be damaging and add to
the maintenance costs. By controlling this meandering wake
therefore, wind energy production can be made more efficient
in order to maximize the power of existing wind farms. In
this paper we present an ideal, full-information control design
to control the wake meandering behind a single turbine. The
insights gained from this control design and analysis can be
used to design more realistic and implementable controllers
for wake control in wind farms.

Wake meandering behind a turbine is characterized as
the low-frequency periodic lateral displacement of the wake,
generally at downstream distances greater than three times
the turbine rotor diameter. It is a well-documented but little
understood phenomenon. The exact mechanism causing this
meandering instability is not yet known but several theories [1]
have been proposed in literature. There is evidence to suggest
that the underlying mechanism behind wake meandering is
similar to the mechanism behind the instability of helical
large-scale coherent structures found behind bluff bodies. For
axisymmetric bodies, there is no preferred direction of the
meandering. However, the fact that a wind turbine has a
specific rotational direction breaks the symmetry which results
in a preferred direction of the meandering and at a rather
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distinct frequency [2]. The frequency of meandering appears
to depend upon both the thrust coefficient and the tip-speed
ratio of the turbine [3].

The literature [4], [5], [6] on wind turbine wake studies
shows that, under both steady uniform inflow and more
realistic turbulent inflow conditions, approximations of axial
turbines as actuator disks or rotating actuator lines successfully
produce the wake-meandering instability. Furthermore, there
are studies [7], [8] supporting the assumption that the far wake
structure predicted using simplified approximations of the
turbine geometry provides a good approximation to the wake
arising in realistic turbine geometries. Moreover, the results are
in reasonable agreement with wind tunnel measurements. The
advantage of using these simplified models is that the complete
simulation can be run within minutes on a desktop computer
and the generated wake is a reasonable approximation to
higher-fidelity models.

In this paper, we use the simplifying approximation of
the axial turbine as an actuator disk in 2D flow in order to
model the wake meandering for our problem (Section II).
This nonlinear simulation has approximately 20, 000 states
and cannot be directly used to design a controller. Therefore
we obtain a reduced order linear model using the input
output reduced order modeling (IOROM) technique from [9] in
Section III. The identified linear IOROM preserves the input-
output behavior of the nonlinear system and is suitable for
control design. We assume access to full state as well as the
disturbance input and design a full-information H∞ controller
for this reduced model in Section IV. The controller perfor-
mance is validated in full-order nonlinear simulations and the
results are presented in Section V. While a full-information
controller can not be implemented in an actual wind farm, the
analysis nonetheless gives some valuable insights which are
also presented in Section V. These insights can be used for
sensor placement to give relevant measurements directly to a
output measurement based controller. Finally, conclusions and
possible directions for future work are given in Section VI.

II. PROBLEM FORMULATION

A. Wind Turbine Setup

Consider a horizontal axis wind turbine with a rotor diame-
ter of 1D [m] located at an arbitrary location in a rectangular
field which spans 20D in the streamwise x-direction and 5D
in spanwise y-direction. The turbine is modeled as an actuator
disk with an input axial induction factor a. The axial induction
factor is defined as a := 1− u

Uin
with u denoting the average

horizontal air speed across the rotor plane and Uin denoting
the average inflow air speed. The power captured from the
turbine is given by:



P =
1

2
ρAu3CP (a) (1)

where ρ [kg/m3] is the air density, A [m] is the area swept
by the rotor, u [m/s] is the wind speed perpendicular to the ro-
tor plane, and CP (a) is the non-dimensional power coefficient,
which is a function of the axial induction factor [10]:

CP (a) = 4a(1− a)2 (2)

As the wind turbine extracts energy from the incoming
wind, a wake is generated behind the turbine. The wake
interior is characterized by reduced wind speeds and increased
turbulence. In the case of a wind farm, we can have a turbine
operating in the wakes of upstream turbines and this can
result in overall loss of power production and greater structural
loading for the downstream turbines. The reduction in velocity
immediately downstream of a turbine is directly related to the
momentum extracted from the flow which is determined by
the turbine thrust coefficient CT (a), which is also a function
of the axial induction factor [10]:

CT (a) = 4a(1− a) (3)

The optimal induction factor that maximizes the power cap-
tured from the wind turbine is a0 = 1

3 . This optimal induction
factor gives rise to a power coefficient of CP0

= 16
27 and a

thrust coefficient of CT0
= 8

9 .
On a real turbine, CP and CT are typically modeled as

functions of the tip-speed ratio λ and blade-pitch angle β
which can be many-to-one mapping from (β, λ) to CP and
CT [11]. We use CT (a) as an input in this paper which can be
mapped into equivalent blade-pitch angle and tip-speed ratio
contour. Choosing a specific (β, λ) pair then depends on other
parameters like loads and operating conditions. There is no
simple formula for this which is generically applicable to all
turbines. However, for a given rotor, a tool like the standalone
driver for AeroDyn v15 [12] can be used to compute the CP
and CT as a function of β and λ.

B. Governing Equations
The actuator disk model [13], [14], [15] considered in this

paper solves the 2D unsteady, incompressible Navier-Stokes
equations assuming a linear drag force acting on the flow due
to the turbine. The typical operating wind speeds for a wind
turbine do not exceed Mach 0.1 at sea level and hence the
assumption of incompressibility is justified. We assume that
the freestream flow is orthogonal to the turbine rotor plane and
that any disturbances in the freestream act solely to perturb the
streamwise flow. We also assume that all velocities are non-
dimensionalized by freestream velocity U∞ [m/s], all spatial
lengths are non-dimensionalized by the turbine diameter D,
time t is non-dimensionalized by T = 1s and pressure p
is non-dimensionalized by ρU2

∞. The dimensionless Navier-
Stokes equation governing the evolution of the flow under the
assumptions outlined above are given by:
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Here (u, v) denote the streamwise and spanwise velocity
components and (x, y) denote the streamwise and spanwise
coordinates. The Reynolds number, Re is defined as Re :=
U∞D
ν where ν [m2/s] is the kinematic viscosity. f is the

forcing due to the turbine and fD is the disturbance forcing
acting on the flow.

The forcing due to each turbine is a nonlinear func-
tion of space and the time-varying thrust coefficient, i.e.
f = f(x, y, CT (t)). For modeling purposes, this forcing is
split into two components f(x, y, CT (t)) = fT (x, y, CT0

) +
fC(x, y, CT (t)). Here, fT is the constant forcing due to the
turbine operating at the a thrust coefficient of CT0

= 8
9 which

corresponds to optimal axial induction factor of a0 = 1
3 . The

forcing profile for fT is largest at the rotor hub and decreases
in magnitude towards the blade tip. The forcing fC is due
to the variations in the axial induction. This term is modeled
as a time-varying input CT (t) multiplied by a spatial profile.
The input CT (t) can be mapped back to an equivalent axial
induction factor a(t). The spatial profile for fC is smallest at
rotor hub and increases in magnitude outwards towards the
blade tip. The disturbance forcing fD is a spatial sinusoid at
approximately unit distance downstream from the inlet which
spans the field in y-direction and acts to break the symmetry of
the incoming flow. Additional details on the forcing functions
can be found in the Appendix.

For the simulation of the actuator disk model, the equations
are solved using a central differencing scheme [16]. The
rectangular region with the turbine is divided into a grid with
Nx points in the x-direction and Ny points in the y-direction.
Each grid point is associated with a u and v velocity, thus the
model has 2 × Nx × Ny states. For our particular example,
the field is L = 20 units long in x-direction and W = 5
units wide in the y-direction. The turbine hub is located at
(x0, y0) = (5, 2.5). The spacing between the grid points is
δx = 0.1 and δy = 0.1 with a time step of δt = 0.01. The
resulting model has 20, 502 states. The boundary conditions
of the model are set to:

u(x = 0, y, t) = u(x, y = 0, t) = u(x, y = W, t) = U∞

v(x = 0, y, t) = v(x, y = 0, t) = v(x, y = W, t) = 0

The Reynolds number for our simulation is set to 50. This
small value of Re is not realistic for wind turbines where the
appropriate Reynolds number is of the order of 106. However,
for the purposes of this paper, we are restricting ourselves
to a low Reynolds number to demonstrate the feasibility and
possible insights that can be gained from full-information
control of wake meandering.

C. Wake Meandering
Figure 1 shows an instantaneous pseudocolor plot of the

streamwise (top subplot) and spanwise (bottom subplot) flow
field in our simulation. For this simulation, the disturbance
input is selected to be a uniformly distributed, zero-mean
random signal with magnitude 0.3. The excitation input, CT
is a sum of sines at 1.1 and 1.23 rad/s superimposed with a
uniformly distributed, zero-mean random noise of magnitude
0.1. The wake meandering as evidenced by the characteristic
periodic lateral displacement of the wake behind the turbine
can be clearly seen from the plot.



This meandering wake can cause many problems in a
wind farm. Downstream turbines located in the path of such
oscillating wakes experience fluctuating inflow conditions. The
changing inflow conditions adversely affect the structural loads
on downstream turbines. The unsteady loads can cause early
onset of material and structural fatigue thereby adding to
maintenance costs. Wake control can therefore give significant
revenue boost by reducing the costs of operation. In the
following sections, we obtain a reduced order model from the
full-order actuator disk simulation and design a controller for
the turbine wake meandering.

Fig. 1. Flow-field of the 20, 502 state simulation at t = 45.0. First subplot
shows u and second subplot shows v. The vertical black line represents the
location of the actuator disk.

III. MODEL REDUCTION

The actuator disk model obtained in the Section II-B has
more than 20, 000 states, and as such is not suitable for control
design. The nonlinearity of the model adds another compli-
cation as the extensive theory available for control of linear
models can not be applied [17]. Therefore, we first construct a
reduced order linear model that captures the dominant input-
output behavior of the nonlinear model. There are several
techniques available in literature for reducing the model order,
such as balanced truncation [18], [19], proper orthogonal
decomposition (POD) [20], [21], balanced POD [22], [23],
[24], dynamic mode decomposition [25], [26], [27], and input-
output reduced order models (IOROMs) [28], [29], [9]. A good
overview of existing approaches can be found in [30].

For our problem we use the model reduction approach
from [9] to obtain a two-input one-output linear model. The
two inputs are the freestream disturbance and turbine thrust
coefficient. The disturbance input is included in order to model
its effect on the wake meandering. The thrust coefficient acts
as the control input. The single output is the measurement
of spanwise velocity v at (xM , yM ) = (13, 2.5). This output
is convenient to observe the fluctuations in v due to wake
meandering. The model is constructed at a single operating
point defined by the non-dimensional freestream velocity U∞
and optimal turbine input. In order to obtain the linear reduced
order model, we excite the nonlinear system about the chosen
operating point using the inputs and gather state, input and
output snapshots from the simulation. One snapshot is gathered
for every 20 steps of the nonlinear simulation giving an effec-
tive time step of 20δt = 0.2. A lower-order projection basis for
the states is obtained using proper orthogonal decomposition
and then a linear model fit is obtained for the reduced state,
input and output snapshots. The reduced order system matrices

are given by: [
F G
H D

]
=

[
QTX1

Y0

] [
QTX0

U0

]†
(4)

where F,G,H,D are the matrices for the reduced order
model, Q is the set of POD projection modes, and X0, X1,
are the state snapshots and U0 and Y0 are respectively the
input and output snapshots. † denotes the Moore-Penrose
pseudoinverse of the matrix. Further details of the algorithm
can be found in [9]. The approach can be extended to capture
wider operating conditions using parameter-varying models
[17] and gain-scheduled control.

Fig. 2. Bode plots of the identified reduced order linear model.

A 34 state reduced order model is identified using this
approach. The Bode plot of the identified reduced order model
is given in Figure 2. In the figure, G corresponds to transfer
function from CT and Gd corresponds to transfer function
from freestream disturbance to the measured output. The time
step of 0.2 between snapshots gives a Nyquist frequency
of ωh = 15.71 rad/s which is approximately 10 times the
observed wake meandering frequency (≈ 1 − 1.5 rad/s). The
total time of simulation was chosen to be 100 which sets
the minimum identifiable frequency of ωl = 0.06 rad/s. The
identification signal for input CT was selected to be a chirp
signal with frequency range [ωl, ωh/2] rad/s and magnitude
1/9 while a uniform random noise with magnitude 0.3 was
selected as the disturbance input. Thus the identified model is
valid between approximately 0.06 rad/s and 7.85 rad/s.

The validation results of the IOROM model for the same
input as that described in Section II-C are given in Figure 3.
The first subplot shows the output from the nonlinear system
vs. the output obtained from IOROM. The green vertical line
represents the time instant t = 45.0 for which the subsequent
pseudocolor subplots are drawn. The pseudocolor plots in
Figure 3 are obtained by lifting up the reduced order states
to obtain approximations for the full-order nonlinear states.
The reduced order model is able to adequately capture the
nonlinear output as well as behavior of full-order system states
as can be clearly seen by comparing the pseudocolor plots in
Figure 3 to Figure 1.

IV. FULL-INFORMATION H∞ CONTROLLER
The next step is to synthesize a controller using the reduced

order model. Our initial designs could not reduce the wake



meandering using the single measurement at (xM , yM ). This
section focuses on a full-information design to gain insight into
additional measurements that are most beneficial. In particular,
we investigate a full-information H∞ controller that has access
to all the states as well as the disturbance.

Fig. 3. IOROM validation results. First subplot compares the output of
the reduced order system to that of full order simulation. Second and third
subplots show the approximations to the full order states obtained from the
reduced order states at t = 45.0

The solution for discrete-time full-information H∞ con-
troller is first described for a generic system. In particular,
noting the slight abuse of the notation, consider a discrete-
time linear system of the following form:

xk+1 = Axk +B1uk +B2dk

ek = Cxk +D1uk +D2dk

yk =

[
I
0

]
xk +

[
0
I

]
dk

(5)

where xk ∈ Rnx is the state, uk ∈ Rnu is the control input,
dk ∈ Rnd is the disturbance, ek ∈ Rne is the error, and
yk ∈ Rnx+nd is the measurement. A, B1, B2, C, D1 and D2

are constant system matrices of appropriate dimensions. Note
that the measurement vector includes the full state as well as
the disturbance. Thus the controller has access to all possible
information required to reduce the effect of the disturbance on
the error.

A full-information H∞ controller for the system in Eq. (5) is
found by solving the following discrete-time algebraic Ricatti
equation (DARE) [31]:

P =ATPA+ CTC

−
[
BT1 PA+DT

1 C
BT2 PA+DT

2 C

]T
G(P )−1

[
BT1 PA+DT

1 C
BT2 PA+DT

2 C

]
(6)

where the matrix G(P ) is invertible and defined as

G(P ) :=

[
DT

1 D1 DT
1 D2

DT
2 D1 DT

2 D2 − I

]
+

[
BT1
BT2

]
P
[
B1 B2

]
(7)

The controller is then given by the static feedback law uk =
F1xk + F2dk where:

F1 := −(DT
1 D1 +BT1 PB)−1(BT1 PA+DT

1 C), (8)

F2 := −(DT
1 D1 +BT1 PB)−1(BT1 PB2 +DT

1 D2) (9)

Additional details can be found in [31].
This result is applied using the reduced order model for the

actuator disk dynamics and hence nx = 34. There is a single
control input at the turbine (nu = 1) and a single disturbance
near the upstream boundary condition (nd = 1). Finally,
the error, i.e. the signal to be minimized, is a 2 × 1 vector
containing the downstream lateral velocity and weighted input
and thus ne = 2. All these signals are as described in
Section III. The next section discusses the performance of this
full-information controller. In addition, the controller matrices
are used to gain insights that can be used to identify the
information that is most important for wake control.

V. RESULTS AND DISCUSSION
A full-information controller was designed using an aug-

mented plant P obtained by augmenting the reduced order
model with a weight W = 64

27
(s+30)3

(s+40)3 to penalize the control
input at high frequencies.

P =

[
W 0
G Gd

]
(10)

Note that the implementation of controller on the nonlinear
model requires a projection of the full-order state down to the
reduced order state using the projection modes. For the plant
P , the controller can be written as uk = F1Q

Txfullk +F2dk+

F3x
W
k where xfullk is the full-order system state, xWk is the

state of weight W , and QT contains the projection modes.
The full-order, nonlinear, actuator disk model was simulated

with the controller and the results are shown in Figure 4. For

Fig. 4. Full-information controller results for the nonlinear model

this simulation, the actuator disk model was initialized at the
base flow conditions and the input disturbance was designed to
be a uniformly distributed, zero mean random noise signal of
magnitude 0.3. The first subplot shows the control input CT
relative to the trim value of CT0

= 8
9 . As the total thrust

coefficient cannot exceed 1, the limiting positive value of
control input is 1 − CT0

≈ 0.11. The required control effort
never exceeds 0.06 so clearly the controller does not demand



excessive control authority. The second subplot compares the
output of the system without control (red line) with the
controlled output (blue dashed line). It can be seen that the
controller successfully suppresses the wake meandering.

The ideal, full-information controller obtained in Section IV
can intuitively be understood to give the best possible control
performance as there is no information hidden from the
controller. While such a controller is not realistically imple-
mentable, the exercise provides several valuable insights. The
first term F1Q

Txfullk of the control input can be understood as
Kxfullk where K = F1Q

T is the control gain applied to full-
order states. The distribution of values in K therefore informs
about the states which are most important for control purposes.
In other words, the states for which the control gain is high
are most important to the full-information controller.

Figure 5 shows the pseudocolor plots of K for both stream-
wise and spanwise velocity components. There appear to be
four locations which are important for u and two locations
which are most important for v. These points of importance,
i.e. large magnitude gains, correspond to the areas of sharp
red or blue color downstream of the turbine. We think that
the four highlighted gains in the streamwise direction might
be the controller attempting to act on the vorticity of the flow.
However, further investigations are underway.

Fig. 5. Controller Insight from distribution of control gain K

We hypothesize that using only six measurements at loca-
tions corresponding to high gain as inputs for an output mea-
surement based controller we might be able to recover most
of the full-information control performance. Another approach
would be try to estimate these states from measurements at
other, perhaps more feasible locations and use those estimates
for an observer based control design.

To test our hypothesis, we made the disturbance gain F2 = 0
to neglect the disturbance feedback and then gradually zeroed
out the entries in the gain matrix1 starting from the smallest
to the largest in magnitude. As K is gradually emptied, the
gains at those six locations are preserved the longest (being
largest in magnitude) while the smaller gains are made zero.
Using these gain matrices, the simulation was rerun and the
variance in the measured controlled output was calculated.
Figure 6 shows the semi-log plot of variance of controlled
output (normalized with respect to the open loop variance) vs.

1It is important to note that, in general, modifying the control gain matrix
can cause the closed loop system to go unstable.

the log of percentage of non-zero entries in K. The results are
encouraging and it can be seen that with only ≈ 15% non-zero
entries in K, the variance in output is better than that obtained
using the full gain matrix2. When ≈ 100% of the entries of
K are zero, the system is essentially running with no control
and the normalized closed loop variance approaches 1. More
formal sparsity-promoting techniques [32] will be investigated
in the future for obtaining a sparse K.

Fig. 6. Variance in measured output (normalized w.r.t. open-loop variance)
as the entries of gain matrix K are zeroed out

VI. CONCLUSIONS
This paper considers the control of wake meandering behind

a turbine modeled with a simplified, nonlinear 2D actuator
disk model. A linear reduced order model is constructed
from input-output data to approximate the full-order nonlinear
simulation. This reduced order model is then used to design
a full-information controller which is successfully validated
in the nonlinear simulation. The control gains of the full-
information controller are used to identify the information
most useful for control. This approach can also be used for
analyzing a full-information controller for a wind farm model
in Simulator fOr Wind Farm Applications (SOWFA). The
insights gained from high-fidelity models like SOWFA can
be valuable in deciding measurement locations and designing
controllers for actual wind farms, which also forms a direction
for further future work.

APPENDIX
A. Turbine Forcing

As the hub of the turbine is placed at (x0, y0), the rotor
plane lies within (y0 − 1

2 ) ≤ y ≤ (y0 + 1
2 ). The forcing terms

introduced by the turbines are defined as:

fT (x, y, CT0
) = 0.7CT0

CθxCθy (1− |∆x|)(1− |∆y|)0.7

fC(x, y, CT (t)) = CT (t)sign(∆y)(1− |∆x|)|∆y|0.7

for (x0 − 2δx) ≤ x ≤ (x0 + 2δx)

and (y0 − 1
2 − 2δy) ≤ y ≤ (y0 + 1

2 + 2δy).

For all other values of x and y, fT = 0 and fC = 0.
Here ∆x = (x − x0) is the x-direction displacement from
the hub center, δx is the x-spacing between grid-points, and

2This increase in performance is because we are optimizing with respect
to the H∞ norm but then doing the performance evaluation (Figure 6) with
respect to output variance.



Cθx = cos π2
∆x
2δx works to smooth the transition from unforced

to forced region in the flow field. ∆y , δy and Cθy are defined
analogously in terms of y. CT0

is the thrust coefficient of
the turbine operating the optimum axial induction factor of
a = 1

3 , and CT (t) is the variation of thrust coefficient about
this optimum value.

B. Disturbance Forcing
The disturbance forcing is intended to break the spatial

symmetry of the free stream. The forcing acts at approximately
1D downstream of the flow field inlet. The disturbance forcing
can be computed as per the below pseudocode:

Initialize fD = zeros(Nx, Ny)
for i = 1 to Ny − 4

for j = 1 to 4

for k = 1 to 4

x = k + 9
y = NX ∗ (i+ j − 1)
Cx = 0.25 ∗

(
1 + cos

(
(k − 2.5)π

2

))
Cy = 0.25 ∗

(
1 + cos

(
(j − 2.5)π

2

))
fD(x, y) = fD(x, y) + g(i)CxCy

end loop of k
end loop of j

end loop of i

where g is given by:

g(y) =

8∑
i=1

sin(2π(i
y

Ny
+ rand)) (11)

Here rand is a random number between 0 and 1.
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