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Abstract— The goal of this paper is to assess the robustness
of an uncertain linear time-varying (LTV) system on a finite
time horizon. The uncertain system is modeled as a connection
of a known LTV system and a perturbation. The state matrices
of the LTV system are assumed to be rational functions of
time. This is used to model the uncertain LTV system as
an connection of a time invariant system and an augmented
perturbation that includes time. The input/output behavior
of the perturbation is described by time-domain, integral
quadratic constraints (IQCs). Static and dynamic IQCs are
developed for the multiplication by time. A sufficient condition
to bound the induced L2 gain is formulated using dissipation
inequalities and IQCs. The approach is demonstrated with two
simple examples.

I. INTRODUCTION

This paper focuses on robustness analysis for a class
of uncertain linear-varying (LTV) systems. The analysis is
performed on an uncertain LTV system modeled, as shown
in Figure 1, by an interconnection of a known, nominal
LTV system HLTV and a perturbation ∆H . This intercon-
nection, denoted by Fu(HLTV ,∆H), is a standard tool for
uncertainty modeling in robust control [1]. The perturbation
can have block structure and is used to model difficult
to analyze elements including nonlinearities and dynamic
or parametric uncertainty. The analysis performed in this
paper characterizes the input-output properties of ∆H using
integral quadratic constraints (IQCs) [2], [3].
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Fig. 1. Interconnection Fu(HLTV ,∆H) of a nominal LTV system HLTV

and perturbation ∆H .

The state matrices of the LTV system HLTV are assumed
to be rational functions of time. This key assumption yields
a useful reformulation for the uncertain system. Specifically,
let ∆t denote the operator that multiplies a signal by time,
i.e. w1 = ∆t(v1) is defined by w1(t) = t ·v1(t) for all t ≥ 0.
Then, by assumption, the nominal LTV system HLTV can
be modeled by the interconnection of a linear time invariant
(LTI) system GLTI and ∆t as shown on the left side of
Figure 2. This further implies that the uncertain LTV system
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in Figure 1 is given by an interconnection of the LTI system
GLTI with an augmented perturbation ∆G :=

[
∆t 0
0 ∆H

]
. In

other words Fu(HLTV ,∆H) = Fu(GLTI ,∆G) as shown on
the right side of Figure 2.
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Fig. 2. Left: Nominal LTV system, HLTV = Fu(GLTI , ∆t).
Right: Uncertain LTV system, Fu(HLTV ,∆H) = Fu(GLTI ,∆G).

This paper presents a finite-dimensional linear matrix
inequality (LMI) condition to upper bound the induced L2

gain for this class of uncertain LTV systems. The analysis
condition, stated as Theorem 1 in Section III-C, is a variation
on the IQC theorem in [2]. There are two key technical is-
sues. First, several IQCs are required to bound time operator
∆t. These include static IQCs (Section III-A) as well as
dynamic IQCs (Section III-B) based on a specific version
of the swapping lemma [4]. Second, the main IQC stability
theorem in [2] requires the perturbation to be a bounded
operator. However, ∆t is an unbounded operator on infinite
time horizons. Theorem 1 in Section III-C uses a simple
dissipation proof that avoids this boundedness assumption.
Several simple examples are presented in Section IV to
demonstrate the proposed analysis condition.

The most closely related works on robustness of uncertain
LTV systems are [5], [6], [7], [8], [9]. These works only
assume that the state matrices of the nominal LTV system are
piecewise continuous (not necessarily rational) functions of
time. This is a more general class of uncertain LTV systems
than consider here. The price for this generalization is that
the analysis conditions are infinite dimensional (as opposed
to the finite dimensional LMIs given here). The work in
[8], [9] develops differential, time-dependent LMI analysis
conditions. Numerical algorithms are developed by enforcing
the LMIs on a finite time grid and using connections to
Riccati differential equations. The work in [5] also uses
differential LMIs developed for the special case of uncertain
LTV systems with a single, full-block uncertainty. Both [6]
and [7] propose optimizing over the IQC variables using a
Riccati Differential Equation condition.



II. BACKGROUND

A. Notation

Let Rn×m and Sn denote the sets of n-by-m real matrices
and n-by-n real, symmetric matrices. The finite-horizon L2

norm of a signal v : [0,∞) → Rn is defined as ‖v‖2 :=(∫∞
0
v(t)T v(t)dt

)1/2
. If ‖v‖2 is finite then v ∈ L2. The

projection operator PT maps any function v as follows:
(PT v)(t) = v(t) for t ≤ T and (PT v)(t) = 0 otherwise.
The extended space, denoted L2e, is the set of functions v
such that PT v ∈ L2 for all T ≥ 0. RL∞ denotes the set of
rational functions with real coefficients that have no poles on
the imaginary axis. RH∞ is the subset of functions in RL∞
that are analytic in the closed right-half of the complex plane.

B. Integral Quadratic Constraints (IQCs)

IQCs [2] are used to describe the input/output behavior
of an operator ∆. They can be formulated in either the
frequency or time domain. The time domain formulation is
used in this paper and is based on the graphical interpretation
in Figure 3. The inputs and outputs of ∆ are filtered through
an LTI system Ψ with zero initial condition xψ(0) = 0. The
dynamics of Ψ are given as follows:

ẋψ(t) = Aψ xψ(t) +Bψ1 v(t) +Bψ2 w(t)

z(t) = Cψ xψ(t) +Dψ1 v(t) +Dψ2 w(t)
(1)

where xψ ∈ Rnψ is the state and (Aψ, Bψ, Cψ, Dψ) denote
the state matrices of Ψ. Moreover Bψ := [Bψ1, Bψ2] and
Dψ := [Dψ1, Dψ2] are partitioned conformably with the
dimensions of v and w. A time domain IQC is an inequality
enforced on the output z over finite horizons. The formal
definition is given next.
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Fig. 3. Graphical interpretation for time domain IQCs

Definition 1. Let Ψ ∈ RHnz×(nv+nw)
∞ and M ∈ Snz be

given. A bounded, causal operator ∆ : Lnv2 → Lnw2 satisfies
the time domain IQC defined by (Ψ,M) if the following
inequality holds for all v ∈ Lnv2 , w = ∆(v), and T ≥ 0:∫ T

0

z(t)TMz(t) dt ≥ 0 (2)

where z is the output of Ψ driven by inputs (v, w) with zero
initial conditions xψ(0) = 0.

The notation ∆ ∈ I(Ψ,M) is used when ∆ satisfies the
corresponding IQC. Time domain IQCs, as defined above,
require the constraint to hold over all finite time horizons.
These are often referred to as hard IQCs [2]. An extensive
library of IQCs is provided in [2] for various types of
perturbations. Most IQCs are specified in the frequency

domain using a multiplier Π. Under some mild assumptions,
a valid time-domain IQC (Ψ,M) can be constructed from Π
via a J-spectral factorization [10]. This allows the library of
known (frequency domain) IQCs to be used. More general
IQC parameterizations are not necessarily “hard” but can be
handled with the method in [11].

III. ROBUSTNESS ANALYSIS

The operator ∆t : Lnv12e → Lnv12e corresponds to multi-
plication by time. If v1 ∈ Lnv12e and w1 = ∆t(v1) then
w1(t) = t · v1(t) for all t ≥ 0. Note that this operator
is passive pointwise in time, i.e. w1(t)T v1(t) ≥ 0 for all
t ≥ 0. This section exploits additional properties of time
multiplication to derive static and dynamic IQCs for ∆t.
Then an LMI condition is presented to bound the induced
L2 gain of the uncertain LTV system.

A. Static IQCs for ∆t

Let X and Y be any nv1×nv1 matrices satisfying X � 0
and Y = −Y T . Then w1 = ∆t(v1) implies:[

v1(t)
w1(t)

]T [
0 X + Y

X + Y T 0

] [
v1(t)
w1(t)

]
= t · v1(t)T (2X + Y + Y T )v1(t)

≥ 0 ∀t ≥ 0

(3)

Hence ∆t satisfies the quadratic constraint in Equation 3 at
each point in time. Thus ∆t satisfies the time domain IQC
defined by (Ψ,M) with

Ψ := I2nv1 and M :=

[
0 X + Y

X + Y T 0

]
This is a static IQC because the filter Ψ contains no dy-
namics. This IQC holds for all T ∈ [0,∞) as required by
Definition 1 and hence it can be used for infinite-horizon
analysis. It is also useful to define an IQC for finite-horizon
analysis. Specifically, let X , Y , and Z be nv1×nv1 matrices
with X,Z � 0 and Y = −Y T . Then for any T0 ∈ [0,∞),[

v1(t)
w1(t)

]T [
T 2

0Z X + Y
X + Y T −Z

] [
v1(t)
w1(t)

]
= t · v1(t)T (2X + Y + Y T )v1(t)

+ (T 2
0 − t2) · v1(t)TZv1(t)

≥ 0 ∀t ∈ [0, T0]

(4)

This implies that ∆t satisfies the time domain IQC defined
by (Ψ,M) with

Ψ := I2nv1 and M :=
[

T 2
0Z X+Y

X+Y T −Z

]
(5)

The IQC in Equation 2 only holds for T ∈ [0, T0]. Hence it
technically does not satisfy Definition 1 which requires the
IQC to hold for all T ≥ 0. However, the IQC in Equation 5
can be used to bound the induced L2 gain over the finite
horizon [0, T0].

B. Dynamic IQCs for ∆t

Dynamic IQCs for ∆t are derived in this section as a
corollary of the Swapping Lemma [4]. First let δ : R→ R be



a differentiable function of time and define the multiplication
operator ∆δ : Lnv12e → Lnv12e as follows: if v1 ∈ Lnv12e and
w1 = ∆δ(v1) then w1(t) = δ(t) · v1(t) for all t ≥ 0. The
swapping lemma for ∆δ is stated next.

Lemma 1. [4] Let F ∈ RHnF×nv1∞ have a realization with
state matrices (AF , BF , CF , DF ). Then

F∆δ = ∆δF − FC∆δ̇FB

where the state realizations of FB and FC are given by
FB := (AF , BF , I, 0) and FC := (AF , I, CF , 0).

The swapping lemma yields a class of dynamic IQCs for
∆t as given in the next corollary.

Corollary 1. Let F ∈ RHnF×nv1∞ be given with realization
(AF , BF , CF , DF ) and define FB and FC as in Lemma 1.
∆t satisfies the following time-domain IQC for any X � 0
and Y = −Y T of appropriate dimension:

Ψ :=

[
F 0

FCFB F

]
and M :=

[
0 X + Y

X + Y T 0

]
(6)

Proof. The derivative of time is simply one, i.e. ∆ṫ(v1) =
v1. Hence the swapping lemma for ∆t simplifies to:

F∆t = ∆tF − FCFB (7)

Let w1 = ∆t(v1) for some v1 ∈ Lnv12e . Figure 4 provides a
graphical interpretation of the swapping lemma result. The
input to the dashed box is v1 and the output is F∆t(v1) =
Fw1. This output is equal to (∆tF−FCFB)v1 by Equation 7
and as shown inside the dashed box of Figure 4. The internal
signals ṽ1 and w̃1 = ∆t(ṽ1) satisfy the static quadratic
constraint in Equation 3:[

ṽ1(t)
w̃1(t)

]T [
0 X + Y

X + Y T 0

] [
ṽ1(t)
w̃1(t)

]
≥ 0 ∀t ≥ 0 (8)

These internal signals satisfy ṽ1 = Fv1 and w̃1 = FCFBv1+
Fw1. Substitute these relations into Equation 8 to verify that
∆t satisfies the dynamic IQC in Equation 6.
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Fig. 4. Swapping Lemma for ∆t

The dynamic IQC in Corollary 1 holds for all T ≥ 0 and
can be used for infinite-horizon analysis. A dynamic IQC for
analysis on the finite horizon [0, T0] is given by:

Ψ :=

[
F 0

FCFB F

]
and M :=

[
T 2

0Z X + Y
X + Y T −Z

]
(9)

where X,Z � 0 and Y = −Y T . This fact follows similar
to Corollary 1 but using the static finite horizon constraint
in Equation 4.

C. Robust Induced L2 Gain

The uncertain LTV system is modeled by Fu(GLTI ,∆G)
as shown in Figure 2. The nominal system GLTI is described
by the following state-space model:

ẋG(t) = AG xG(t) +BG1 w(t) +BG2 d(t)

v(t) = CG1 xG(t) +DG11 w(t) +DG12 d(t)

e(t) = CG2 xG(t) +DG21 w(t) +DG22 d(t)

(10)

where xG ∈ RnG is the state. The inputs are w ∈ Rnw and
d ∈ Rnd while v ∈ Rnv and e ∈ Rne are outputs. The
partitioning v := [ v1v2 ] and w := [w1

w2
] is consistent with the

structure of the augmented perturbation ∆G :=
[

∆t 0
0 ∆H

]
.

Well-posedness of the interconnection Fu(GLTI ,∆G) is
defined as follows.

Definition 2. Fu(GLTI ,∆G) is well-posed if for all xG(0) ∈
RnG and d ∈ Lnd2e there exists unique solutions xG ∈ LnG2e ,
v ∈ Lnv2e , e ∈ Lne2e , and w ∈ Lnw2e satisfying Equation (10)
and w = ∆(v) with a causal dependence on d.

The objective is to assess the robustness of the uncertain
LTV system Fu(GLTI ,∆G) as shown on the right of Fig-
ure 2. For a given ∆G, the induced L2 gain from d to e is
defined as:

‖Fu(GLTI ,∆G)‖ := sup
0 6=d∈Lnd2 [0,∞),

xG(0)=0

‖e‖2
‖d‖2

(11)

The robustness of Fu(GLTI ,∆G) is analyzed using the
interconnection shown in Figure 5. The extended system of
GLTI (Equation 10) and the IQC filter Ψ (Equation 1) is
governed by the following state space model:

ẋ(t) = Ax(t) + B
[
w(t)
d(t)

]
z(t) = C1 x(t) +D1

[
w(t)
d(t)

]
e(t) = C2 x(t) +D2

[
w(t)
d(t)

] (12)

The extended state vector is x := [
xG
xψ ] ∈ Rn where n :=

nG + nψ . The state-space matrices are given by

A :=

[
AG 0

Bψ1CG1 Aψ

]
, B :=

[
BG1 BG2

Bψ1DG11 +Bψ2 Bψ1DG12

]
C1 :=

[
Dψ1CG1 Cψ

]
, C2 :=

[
CG2 0

]
,

D1 :=
[
Dψ1DG11 +Dψ2 Dψ1DG12

]
D2 :=

[
DG21 DG22

]
The actual system to be analyzed is Fu(GLTI ,∆G) with

input d. The analysis is instead performed with the extended
LTI system (Equation 12) and the constraint ∆G ∈ I(Ψ,M).
The constrained extended system has inputs (d,w). The IQC
implicitly constrains the input w such that the constrained
extended system without ∆G includes all behaviors of the
original system Fu(GLTI ,∆G).

The following LMI is used to assess the robust perfor-
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Fig. 5. Extended LTI system of GLTI and filter Ψ.

mance of Fu(GLTI ,∆G) 1:[
ATP + PA PB
BTP

[
0nw 0

0 −γ2Ind

]]
+ (·)T

[
C2 D2

]
+ (·)TM

[
C1 D1

]
� −εI

(13)

This inequality is compactly denoted as
LMIRob(P,M, γ2) � −εI . This notation emphasizes
that the constraint is an LMI in (P,M, γ2) for fixed (G,Ψ).
The dependence on (G,Ψ) is not explicitly denoted but
will be clear from context. The next theorem formulates a
sufficient condition to bound the (robust) induced L2 gain
of Fu(GLTI ,∆G). The proof uses IQCs and a standard
dissipation argument [12], [13], [14], [15].

Theorem 1. Let GLTI be an LTI system defined by (10)
and ∆G : Lnv2e → Lnw2e be a causal operator. Assume
Fu(GLTI ,∆G) is well-posed and ∆G ∈ I(Ψ,M). If there
exists ε > 0, γ > 0 and P > 0 such that

LMIRob(P,M, γ2) � −εI (14)

then ‖Fu(G,∆)‖2 < γ.

Proof. Let d ∈ L2 and xG(0) = 0 be given. By
well-posedness, Fu(GLTI ,∆G) has a unique solution
(xG, v, w, e). Define a storage function by V (x) := xTPx.
Left and right multiply the LMI (13) by [xT , wT , dT ] and its
transpose to show that V satisfies the following dissipation
inequality for all t ∈ [0, T ]:

V̇ + eT e+ zTMz ≤ (γ2 − ε) dT d (15)

Integrate over [0, T ] and use x(0) = 0 to obtain:

x(T )TP (T )x(T ) +

∫ T

0

zT (t)M(t)z(t)dt

− (γ2 − ε)‖d‖22,[0,T ] + ‖e‖22,[0,T ] ≤ 0.

Apply P � 0 and ∆ ∈ I(Ψ,M) to conclude:

‖e‖22,[0,T ] ≤ (γ2 − ε)‖d‖22,[0,T ] (16)

Take the limit as T →∞ to conclude ‖Fu(G,∆)‖2 < γ.

This is a standard dissipation inequality argument. This
result does not require the perturbation ∆G to be a bounded

1The notation (·)T in (13) corresponds to an omitted factor required to
make the corresponding term symmetric.

operator. This is important as ∆t is not a bounded operator
on an infinite horizon. Also note that the finite horizon IQCs
given in the previous section are valid over the horizon
[0, T0]. These can be used to bound the gain of the uncertain
LTV system over this finite horizon. The result is similar to
Theorem 1 and is not formally stated.

IV. EXAMPLES

A. Nominal LTV Analysis

Consider the following LTV system HLTV

ẋH(t) = −
(

1 +
0.9t

1 + 0.9t

)
xH(t) + d(t) (17)

e(t) = 5xH(t) (18)

This is a nominal LTV system with no uncertainty. The IQCs
developed in the previous section can be used to bound the
induced L2 gain for this LTV system. First, the nominal LTV
system is expressed as HLTV = Fu(GLTI ,∆t) where GLTI
is given by:

ẋG(t) = −xG(t)−
√

0.9w1(t) + d(t) (19)

v1(t) =
√

0.9xG(t)− 0.9w1(t) (20)
e(t) = 5xG(t) (21)

The dynamic IQC given in Corollary 1 for ∆t is used with
the following filter

F (s) :=

[
1,

1

s+ 2
, . . . ,

1

(s+ 2)7

]T
(22)

The matrices X � 0 and Y = −Y T are decision variables
solved by optimization. Specifically, gain γ is minimized
subject to the LMI condition in Theorem 1. This is solved
using CVX [16] yielding the bound on the (infinite-horizon)
induced L2 gain of γ = 3.18.

The dynamic IQC describes a set of uncertainties that
include ∆t. Hence the LMI condition is only sufficient, i.e.
it yields an upper bound on the induced L2 gain. There
are necessary and sufficient Riccati Differential Equation
conditions that can be used to compute exact bounds (within
a bisection tolerance) on the induced L2 gain of the nominal
LTV system [17], [18], [19]. These exact bounds can be used
to assess the conservativeness of the dynamic IQC developed
for ∆t. The Riccati Differential Equation condition yields
an induced L2 gain of 2.92 on a finite horizon of [0, 6] sec.
Longer time horizons yield the the same result to two decimal
places. The IQC bound of 3.18 is 9% larger than this “exact”
result. The conservatism introduced by using the dynamic
IQC is relatively small for this example.

To continue this analysis, the induced gain was com-
puted on different finite horizons [0, T0] with T0 ∈
{0.01, 0.1, 0.5, 1, 2, . . . , 6}. The exact results using the
Riccati Differential Equation condition are shown as the blue
solid curve in Figure 6. A bound on the gain was also
computed using the dynamic IQC but with the additional
finite horizon term shown in Equation 5. This yields the
red dashed curve in Figure 6. It took approximately 22



nF 1 2 3 4 8
γ 5.00 3.71 3.37 3.25 3.18

TABLE I
INFINITE HORIZON INDUCED L2 GAIN BOUNDS USING F (s) IN EQ. 23

seconds on a standard laptop to compute the IQC bounds
on all nine finite horizons. As noted above the curves for
the Riccati and IQC conditions converge to 2.92 and 3.18,
respectively as T0 → ∞. The IQC bound is slightly larger
on all horizons indicating some conservatism in the IQC
condition. However, the benefit of the IQC condition is that
it can also be used to bound the gain for uncertain LTV
systems. This is demonstrated in Section IV-B.
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Fig. 6. Nominal Induced L2 Gain vs. Time Horizon using IQCs (red
dashed) and Riccati Differential Equations (blue solid).

The gain bound computed using the LMI condition in
Theorem 1 depends on the chosen filter F (s). Consider filters
of the following form where nF is a fixed, positive integer:

F (s) :=

[
1,

1

s+ 2
, . . . ,

1

(s+ 2)(nF−1)

]T
(23)

Table I shows the infinite-horizon induced L2 gain bounds
obtained with the LMI condition in Theorem 1 for several
values of nF . The bound γ = 3.18 given for nF = 8 was
already reported above. The gain bound steadily improves
with increasing values of nF . The larger (worse) gain bound
of γ = 5.0 was found using the static multiplier F (s) =
1 corresponding to nF = 1. We also obtain γ = 5.0 on
all finite horizons with the static multiplier F (s) = 1. It
seems, based on this one example, that static multipliers are
ineffective for finite-horizon analysis. No formal proof of this
statement has been obtained as of yet. Additional details on
IQC parameterizations can be found in [3].

B. Robust LTV Analysis

Consider the feedback system shown in Figure 7. The plant
P is given by the following second-order, LTV system:

ẋP (t) =

[
0 1
−4 −2ζ(t)

]
xP (t) +

[
0
1

]
u(t) (24)

y(t) =
[
4 0

]
xP (t) (25)

where ζ(t) := 0.2 + 0.63t
1+0.9t . The controller is a simple

proportional gain K = 2. The uncertainty ∆H is assumed
to be a causal operator with norm-bound ‖∆H‖ ≤ b. The
goal is to compute a bound on the gain from disturbance
d to error e. The closed-loop uncertain LTV system has a
rational dependence on time and hence it can be modeled by
Fu(GLTI ,∆G) as shown on the right of Figure 2.

d - e -6
e

K -

-∆H

?e - P -

6

Fig. 7. Uncertain LTV Feedback System

The dynamic IQC for ∆t (Corollary 1) is used with the
filter F (s) given in Equation 22. The following static IQC
is used for ∆H :

Ψ := I2 and M :=
[
b2 0
0 −1

]
(26)

An (infinite-horizon) upper bound on the induced L2

gain was computed using the LMI condition in Theorem 1.
Figure 8 shows the gain bound for twelve different values of
the uncertainty bound b. It took approximately 24 seconds
on a standard laptop to compute these IQC bounds. The
IQC condition yields a bound on the nominal gain (b = 0)
of 2.09. For comparison, the Riccati Differential Equation
condition yields an induced L2 gain of 1.90 on a finite
horizon of [0, 10] sec. Longer time horizons yield the the
same value to two decimal places. This value is shown as
the red circle in Figure 8. The IQC condition yields a nominal
gain that is about 10% higher than the exact value from the
Riccati Differential Equation. However, the IQC condition
can also be used to assess the robust performance when the
uncertainty ∆H is introduced into the feedback loop.

V. CONCLUSIONS

This paper derived LMI conditions to bound the induced
L2 gain of an uncertain LTV system. The uncertain system
was assumed to have state matrices with rational depen-
dence on time. This enables the uncertain system to be
formulated as an interconnection of a time invariant system
and an augmented uncertainty that includes time. Static
and dynamic integral quadratic constraints were introduced
to bound the time operator. These can be used as part
of a dissipation inequality condition to bound the induced
L2 gain on either finite or infinite horizons. Two simple
examples were provided to demonstrate the approach. Future
work will include additional studies on the conservatism of
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Fig. 8. Robust Induced L2 Gain vs. Uncertainty Bound.

the proposed approach and possible extensions to synthesis
conditions.
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