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Abstract— This paper focuses on robustness analysis for wind
turbine control systems. The dynamics of a wind turbine are
nonlinear and time-varying due to several effects including
blade rotation, wind shear, tower shadowing, and varying wind
conditions. Thus classical gain/phase/delay margins, computed
using frequency domain concepts, are insufficient for turbine
control systems. The robustness analysis in this paper is
instead performed in two steps. First, the turbine dynamics
are linearized at either constant wind conditions or along a
fixed (hub height) wind speed trajectory. This yields a linear
time-varying (LTV) model for the turbine dynamics. Next, disk
margins are computed using existing results for finite-horizon
LTV systems. These disk margins account for uncertainty at
the blade pitch and/or generator torque inputs. This method
is applied to assess the margins for a 2.5 MW Clipper Liberty
turbine operated by the University of Minnesota. The turbine
model and source control law used in the analysis was provided
by Clipper. These results provide additional insight into the
robustness of the existing turbine control law.

I. INTRODUCTION
This paper applies a time-varying approach for robustness

analysis of wind turbines. The proposed approach is applied
to assess the robustness margins for a 2.5MW Clipper Liberty
turbine operated by the University of Minnesota. A wind tur-
bine is inherently nonlinear and time varying. Aerodynamic
torques and bending moments depend nonlinearly on wind
speed, pitch angle, and tower and blade deflections. Further,
there is variation as the rotor turns to position the blades in a
turbulent wind profile that varies spatially with respect to the
rotor disk even in constant wind conditions. These aspects
contribute to the challenges in the control and analysis of
wind turbines. Nevertheless, good results have been obtained
using linear approximation of the wind turbine systems.

Control systems are designed using mathematical models
that are only approximate representations of the real hard-
ware. Since discrepancies between a system and its model
representation may lead to a violation of some performance
specification, or even closed-loop instability, accounting for
modeling errors is necessarily an integral part of the design
process. Classical gain and phase margins are widely used
in analyzing the effect of model uncertainties on system
stability for LTI systems. However, these metrics only use
simple effects in model variation and have a frequency
domain, infinite horizon argument.
This paper describes a time-domain approach to assess disk
margins for a utility-scale turbine. A similar method applied
to rocket launchers can be found in [1]. The method proposed
here is performed by first linearizing the turbine dynamics us-
ing an aeroelastic simulator, FAST (Fatigue, Aerodynamics,
Structures, and Turbulence) [2], that is capable of generating
linearized models of the Clipper turbine at specific wind trim
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conditions and azimuth positions. Time-varying models are
constructed at either constant or (fixed) time-varying wind
conditions. Next, the baseline control law of the Clipper
turbine is linearized. The uncertain closed-loop system is
formed with symmetric disk margin type uncertainty inserted
between the plant and the controller. Small gain theorem is
applied to obtain a sufficient condition for robustness margins
in terms of an induced L2 gain of a related system (Section
III-B). Subsequently, existing results are used to compute
the finite horizon L2 gain [3] of the system (Section III-A).
Disk gain and phase margins are then computed using the
equations described in Section III-C.

Several results are presented in this paper highlighting the
advantage this approach has over the conventional LTI anal-
ysis that is performed at constant wind conditions. Firstly,
robustness margins are evaluated considering uncertainty one
loop at a time (Section IV-A) assuming wind speed to be
constant. Next, uncertainty is considered concurrently in
all the loops (Section IV-B). In each of the above cases,
a comparison is done with the conventional time-invariant
analyses. The final and the most important result considers
the case when the wind conditions are time-varying (Section
IV-C). These insights can be very useful to assess if the
turbine is close to going unstable if we have a wind forecast
available. Drastic wind speed changes can drive the wind
turbine system to instability and this algorithm can help take
corrective measures to avoid that.

II. MODEL DESCRIPTION

A. Clipper Turbine

Fig. 1. Clipper Liberty 2.5MW Research Turbine [4]

The turbine considered in this paper is the Clipper C96
Liberty Wind Turbine (See Figure 2). This turbine is owned
and operated by the Eolos Wind Energy Research Consor-
tium [4] at the University of Minnesota (UMN). The basic
data for this turbine is given in Table I. The source code
for the control law operating on this turbine was previously
provided by Clipper to UMN. This industrial control law is
similar to existing standard wind turbine control laws [5][6].



Quantity Value Units
Hub Height 80 m
Rotor Diam 96 m

Rated Wind Speed 25 m/s
Rated Gen. Speed 1133 RPM
Rated Gen. Torque 23.473 kNm

TABLE I
DATA FOR CLIPPER C96 LIBERTY TURBINE

The robustness analysis in this paper is performed using this
industrial control law. A brief outline of the control law
is provide here but full details are omitted for proprietary
reasons. As is standard, the turbine control inputs include
the blade pitch and generator torque. Figure 2 shows the
operating regions specific to the Clipper turbine. The control
law operating on the Clipper turbine is standard with a kω2

law in Region 2 for maximum power point tracking and a
PI control law to track rated rotor speed in Region 3.

0 5 10 15 20 25
Wind Speed (m/s)

0

500

1000

1500

2000

2500

3000

P
ow

er
 (

kW
)

R1

R2

R3

Cut-in
speed

Rated power

Cut-out
 speed

Fig. 2. Turbine Operating Regions

B. Linearization
The dynamics of the wind turbine are nonlinear and time-

varying. These dynamics are modeled using the Fatigue,
Aerodynamics, Structures, and Turbulence (FAST) simula-
tion package developed by the National Wind Technology
Center [2]. A FAST model for the C96 Liberty turbine was
provided to UMN by Clipper and is used for the analyses in
this paper. FAST is a comprehensive aeroelastic simulation
with capability to include up to 24 degrees of freedom.
The analyses summarized in Section V were performed
with a 17-state model that contains the generator speed,
first flapwise and edgewise bending modes for each of the
three blades, and first side-to-side and fore-aft tower bending
modes. Including additional degrees of freedom yields a
more accurate, higher fidelity model.

The analyses are performed using linearized approxima-
tions of the nonlinear wind turbine dynamics. The linearized
models are constructed, using FAST, at fixed wind trim
conditions of 6m/s, 7m/s, . . . , 25m/s. Linear interpolation
is used to obtain a linearized model at any other wind
speed. Note that the turbine dynamics are time-varying,
even at constant wind conditions, due to blade rotations,
tower shadow, etc. Thus the linearized models returned by
FAST are periodic due to their dependence on rotor angle
φ. Some of the analyses in Section IV will be performed

using the linear time-varying (LTV) models. Alternatively, an
approximate, linear time-invariant (LTI) model is obtained by
using the Multi-Blade Coordinate transformation (MBC) [7]
[8]. The MBC transforms quantities in the rotating frame,
e.g. blade bending moments, into the fixed nacelle frame.
Applying the MBC to the linearized LTV models generated
by FAST yields a transformed LTV model with weak de-
pendence on rotor angle φ. Averaging the resulting state-
space matrices over one rotor period yields an approximate
LTI model. Note that an LTI model can only be obtained if
the wind conditions are constant. This motivates the use of
a time-varying model for analysis that can handle the case
when the wind conditions are varying with respect to time.
The baseline control law described in Section II-A has non-
linearities. For example, the kω2 law in Region 2 is non-
linear. Thus, the controllers are also linearized about the
same trim conditions as considered in the FAST linearization.
Again, these linearized models are constructed at fixed wind
trim conditions 6m/s, 7m/s, . . . 25m/s.

III. TECHNICAL APPROACH
This section describes the technical approach considered

for the robustness analysis of the Clipper turbine.

A. Linear Time-Varying Systems
LTI system modeling may not describe the behavior of

some systems very accurately. As a consequence, it is perti-
nent to make use of LTV models for some applications whose
dynamics vary with respect to time. In our application, we
are mainly interested in analyzing the robustness of the wind
turbine when the dynamics are varying with respect to time.
The main challenge is that frequency domain interpretation
is not applicable to LTV systems.
Consider the following linear, time-varying (LTV) system M
defined on [0, T ]:

ẋ(t) = A(t)x(t) +B(t)u(t) (1)
y(t) = C(t)x(t) +D(t)u(t) (2)

where x ∈ Rnx is the state, u ∈ Rnu is the input, and
y ∈ Rny is the output. The state matrices A : [0, T ] →
Rnx×nx , B : [0, T ] → Rnx×nd , C : [0, T ] → Rne×nx , and
D : [0, T ] → Rne×nd are piecewise-continuous functions
of time. The state matrices are, by assumption, bounded on
[0, T ]. In addition, the analysis will be performed on a finite
horizon, i.e. T < ∞, unless noted otherwise. As a result,
u ∈ L2[0, T ] implies both x and y are in L2[0, T ] for any
x(0) [9].
Many different performance metrics can be defined for this
(nominal) finite-horizon LTV system. This paper will use the
induced gain to compute robustness metrics. Specifically, the
finite-horizon induced L2-gain of M is

‖M‖2,[0,T ] := sup

{‖y‖2,[0,T ]

‖u‖2,[0,T ]

∣∣∣∣ x(0) = 0, 0 6= u ∈ L2,[0,T ]

}
.

As noted above, u ∈ L2[0, T ] implies y ∈ L2[0, T ]. Thus
the L2 gain is finite for any fixed horizon T < ∞. The
next theorem provides a necessary and sufficient condition
to bound the induced L2[0, T ] gain of M . This is an existing
result [10], [11], [3] that will form the basis for our numerical
calculations.



Theorem 1 (Bounded Real Lemma): Let γ > 0 be given
such that R(t) := D(t)TD(t) − γ2I < 0 for all t ∈ [0, T ].
Then the following statements are equivalent:

1) ‖M‖2,[0,T ] < γ
2) There exists a differentiable, function P : [0, T ]→ Snx

1 such that P (T ) = 0, P (t) ≥ 0 and

Ṗ +ATP + PA+ CTC−
(PB + CTD)R−1(PB + CTD)T = 0

(3)

This is a Riccati Differential Equation (RDE).

B. Small Gain Theorem
The small gain theorem [12] gives sufficient conditions un-

der which a feedback connection of two systems is bounded-
input, bounded-output stable. This section will briefly sum-
marize the small gain theorem for the specific case of
LTV systems. Consider the feedback interconnection shown
in Figure 3. Let M : L2[0,∞) → L2[0,∞) and ∆ :
L2[0,∞) → L2[0,∞). The feedback connection is defined
by the following equations:

d1 = u1 + ∆u2 (4)
d2 = u2 −Mu1 (5)

The small gain theorem is stated next.

M

∆
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y1

y2

−
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Fig. 3. Interconnection for Small Gain Theorem

Theorem 2 (Small Gain Theorem): Assume the feedback
connection in Figure 3 is well-posed with ‖M‖2,[0,∞) < γM
and ‖∆‖2,[0,∞) < γ∆ where γM , γ∆ < ∞. The feedback
connection is bounded-input, bounded-output stable if
γM · γ∆ < 1.

Although the theorem is stated using an infinite horizon
argument, it is not viable to perform our analysis on an
infinite horizon. Thus, we chose a sufficiently long time
horizon [0, T ] that is computed using the method described
in Section III-D.

C. Symmetric Disk Margins
This section briefly reviews the use of symmetric disk

margins for robust stability analysis [13][14]. First recall that
classical gain and phase margins account for the amount of
gain or phase variation that can be tolerated by a feedback
system. These margins can be interpreted in the Nyquist
plane when the plant G and controller K are LTI. Specifi-
cally, the gain margin is the amount of gain variation that can
be inserted between the plant and controller while retaining
closed-loop stability. This is interpreted as an interval on the
negative real axis that contains −1 and which excludes the

1Here S denotes the set of symmetric matrices with the dimension given
in the superscript.

Nyquist plot of L = GK. The phase margin is the amount of
phase variation that can be tolerated while retaining closed-
loop stability. This is interpreted as an arc along the unit
circle that includes −1 and which also excludes the Nyquist
plot of L. These margins are computed for single-input,
single-output LTI feedback systems, e.g. using Bode plots.

Symmetric disk margins [15], as described further below,
can be interpreted as a disk containing −1 that excludes
L. There are two main reasons to use disk margins rather
than classical gain/phase margins. First, it is possible (though
rare) for a system to have good gain and phase margins
and yet have a Nyquist plot of L that comes close to -1
(i.e the feedback system is not very robust). Disk margins
provide a region (in all directions) that excludes L. Second,
symmetric disk margins can be computed from the L2[0, T ]
norm of a specific system using the small gain theorem. This
does not require a frequency response and hence generalizes
naturally for LTV feedback systems. Moreover, it yields
a numerical procedure to compute multi-loop margins for
multi-input, multi-output systems. This is useful for assessing
the robustness of the wind turbine feedback system. In
particular, the multi-loop margins correspond to robustness
with respect to (independent) uncertainty introduced into the
blade pitch and generator torque feedback paths.
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Fig. 4. Symmetric Disk Margin Setup

Symmetric disk margins are computed by introducing
an LTI uncertainty ∆ into the feedback loop as shown in
Figure 4. The plant G and/or controller K can be LTV
systems but are assumed, for this initial discussion to be
SISO. The closed-loop system in Figure 4 can be brought
into the form shown in Figure 3 with M := (S − T )
where S := 1

1+KG and T := KG
1+KG are the sensitivity and

complementary sensitivity at the plant input, respectively.
Assume ‖M‖2,[0,T ] < γ. By the small gain theorem, the
feedback loop is stable for all ‖∆‖ ≤ 1

γ and 1
γ is the

symmetric disk margin. This result can be used to provided
guaranteed bounds on the classical gain and phase margins.
Specifically, the feedback system in Figure 4 is equivalent
to the one shown in Figure 5.

G
1 + ∆

1−∆
K y−

uK u

Fig. 5. Simplified Symmetric Disk Margin Interconnection

Assume ‖M‖2,[0,T ] < γ and denote the symmetric disk



margin as rmin := 1
γ . It can be shown, based on Figure 5,

that the feedback loop is stable for gain variations in the
range

[
1−rmin

1+rmin
, 1+rmin

1−rmin

]
[13][14][15]. The disk gain margin

thus is:

GM l =
1− rmin
1 + rmin

, GMu =
1 + rmin
1− rmin

(6)

Similarly, an expression for the disk phase margin is:

PMl = −2 cot(rmin), PMu = 2 cot(rmin) (7)

Note that bounds on the symmetric disk margin can, via the
small gain theorem, be computed for LTV systems from the
induced L2 gain of a related system M .

D. Algorithmic Implementation
Using the results mentioned above, an algorithm is written

to compute symmetric disk margins for the wind turbine
system with the baseline controller. The first step in this
implementation is to get the state-space matrices of the block
M mentioned in III-C. A linearization of the FAST turbine
model is utilized to obtain the plant state matrices. The model
is linearized about specific trim conditions (β̄, τ̄ , ω̄) where
β̄, τ̄ and ω̄ are the trim blade pitch, generator torque and
rotor speed of the plant at a trim wind speed v̄. This is
done for various wind speeds ranging from 6m/s to 25m/s.
Also note that FAST produces state matrices at azimuth
angles (φ) spread 2 deg apart from 0 deg to 358 deg. A
total of 180 state matrices is obtained. If the blade bending
degrees of freedom are not enabled while linearizing, the
matrices will be very close to each other. However, there
might be significant differences in the matrices from one
azimuth angle to another i.e., the models will vary as the
blades traverse from 0 deg to 360 deg. Thus, state-matrices
are obtained for various azimuth angles and wind speeds.
These are integrated together to form matrices of the form
Acl(φ, v), Bcl(φ, v), Ccl(φ, v) and Dcl(φ, v) where:

φ = Azimuth angle in degrees
v = Wind speed in m/s

With this, we have state matrices at just 180 different
azimuth locations and at various wind speeds from 6m/s to
25m/s. But this is not adequate for our analysis. φ and v are
quantities that are dependent on time. Thus, in order to obtain
a time-varying model of the turbine, we need state matrices at
every azimuth angle and wind speed. This is accomplished by
interpolating φ and v over a rectilinear 2D grid. The process
is called bilinear interpolation and this dynamically gives the
right state matrices as time progresses.

Given these state matrices, the induced L2[0, T ]-norm is
computed from Theorem 1. A bisection method is employed
to find the γ such that ‖M‖2,[0,T ] < γ until the gamma
selected comes arbitrarily close to the induced L2-norm,
‖M‖2,[0,T ]. The existence of a solution to the Riccatti Differ-
ential Equation 3 and the positive semi-definiteness of P (t)
is checked in every iteration of the bisection algorithm. The
disk margins of the closed-loop system are then calculated
using the procedure described in III-C.
The time-horizon, for the purpose of this analysis, has been
approximately chosen based on the settling time of the
equivalent LTI model because running computations over an

infinite horizon is infeasible. For this wind turbine system,
it is observed that at constant wind conditions, the settling
time is higher for higher wind speeds. Exploiting this fact, we
find the peak wind speed in the wind speed data given. For
instance, consider the wind profile shown in Figure 9. The
peak wind speed here is 22.8m/s. We then find the settling
time (ts) of the system using its step response. Next, we
validate this against the final time (tf ) in the wind speed
data given. If tf ≥ ts, then the time horizon is sufficiently
long and can be used for our analysis. If not, we can get
data spread over a longer horizon and then proceed. In this
case, tf = 25s and ts = 20s. Thus, we can make an infinite
horizon approximation for this time-varying system.

IV. RESULTS AND DISCUSSION
This section explains the robustness analysis of the Lib-

erty wind turbine that incorporates the baseline control
architecture described in Section II-A. Since multiple SISO
loops are involved in this setup, there are many forms of
uncertainties that can be considered. Results pertaining to
three different forms of uncertainties have been presented
below. The control inputs, blade pitch and generator torque
are controlled by two different control laws. The effect
of uncertainty is considered loop-at-a-time first and then
considered simultaneously in both the channels. Furthermore,
a time-varying analysis of the turbine is presented when the
wind speed follows a prescribed (not necessarily constant)
trajectory varying in time.

A. Loop-at-a-time Analysis
The closed-loop model of the Clipper turbine with the

baseline control architecture consists of 2 SISO loops.
Loop-at-a-time margins analyze the effect of uncertainty
in one channel on the entire system. The plant model
considered in this analysis is described in Section II-B. The
analysis is performed for fixed wind speeds from 6m/s to
25m/s. As noted previously, the linearized turbine models
are time-varying even when wind speeds are fixed due to
the rotational effect. Thus, the state matrices described in
III-D get simplified to Acl(φ), Bcl(φ), Ccl(φ) and Dcl(φ).
Since the feedback loop mainly consists of two SISO
loops, two types of uncertainties have been considered in
this section. Symmetric disk margin uncertainty is injected
in the blade pitch or generator torque loops individually.
Induced L2[0, T ]-gain and symmetric disk margins are then
calculated using the procedure described in Section III.
First, the analysis is performed using a 1-state model of
the turbine which only includes the generator degree-of-
freedom. Next, it is performed using the 17-state model
described in Section II-B. Figures 6 and 7 show the lower
bounds (GMl) on the LTV disk margins as a function of
wind speed for both the torque (blue diamond) and pitch
uncertainty (red circle). Due to the symmetric nature of the
margins, the upper-bound is simply GMu = 1/GMl. The
torque loop is only active in regions 2 and 2.5. As a result,
the symmetric disk margins are [0,∞) (the closed-loop is
all-pass with unity gain) and are not shown for Region 3.
Similarly, the pitch loop is active only in regions 2.5 and 3.
Hence the symmetric disk margins for the blade pitch are
not shown in Region 2.
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Fig. 6. Disk gain margin lower bounds (1-state model) with uncertainty
considered one loop at a time.
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Fig. 7. Disk gain margin lower bounds (17-state model) with uncertainty
considered one loop at a time.

When wind speeds are fixed, MBC transformation and
averaging, explained in Section II-B, can be used to obtain
an approximate LTI model. Figure 7 shows bounds on the
LTI disk margins as a function of airspeed for both the LTI
torque (magenta square) and LTI pitch uncertainty (black
triangle).
It can be seen that when the rotating degrees of freedom are
not included, i.e., in the 1-state model case (Figure 6), the
LTI and LTV disk margins exactly line up. However, there
are differences in the LTI/LTV disk margins for the 17-state
model case (Figure 7). Specifically, the margins deviate from
each other from 12m/s to 18m/s. Although these differences
can be attributed to the rotating degrees of freedom and the
approximation technique used to obtain the time-invariant
model, it is unclear, however, why these differences exist
only in the wind speed range 12m/s− 18m/s. We hypoth-
esize that the collective degree-of-freedom obtained using
MBC transformation matches the three out-of-plane degrees
of freedom of the individual blades at higher wind speeds.
Additionally, the 17-state model has significantly higher
lower-bounds than the 1-state model indicating that system
may not be as robust as it seems in the 1-state model.

B. Multi-loop Analysis
In this section, we discuss the case when there is

uncertainty in both the pitch and torque feedback loops.
These are allowed to vary simultaneously. Since the
uncertainty block here is multi-input multi-output, there are
different forms of structures that can be considered. In our
analysis, we are mainly interested in analyzing uncertainty
that is decoupled in nature. This analysis describes how
much independent and concurrent symmetric disk variation
can occur independently in each feedback channel while
maintaining stability of the closed-loop system. Thus, the
structure of the uncertainty block for ∆1,∆2 ⊂ C boils
down to:

∆ =

[
∆1 0
0 ∆2

]
(8)

Figure 8 shows both the LTV disk margins (lower) bounds
as a function of wind speed with the uncertainty introduced
in both the blade pitch and generator torque loops. As noted
in Section II-B, the MBC transformation and averaging can
be used to obtain an approximate LTI model at fixed wind
speeds. Figure 8 also shows disk margin (lower) bounds
for these LTI models. The multi-loop margins result in
a structured uncertainty as shown in Equation 8. Hence
constant D-scales can be used to reduce the conservatism
in the induced L2[0, T ]-gain condition that appears in the
small gain theorem. This is similar to the use of D-scales
in structured singular value analysis [16][17][18]. The LTV
results were obtained with a D-scale of the form:

D =

[
d 0
0 1

]
(9)

where d > 0. This involves a solution to a convex optimiza-
tion problem. Since the objective is non-differentiable, an
approximate gradient descent algorithm with constant step
size is implemented to solve the problem.
Note that the generator torque alone is active in Region 2
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Fig. 8. Disk Margin lower bounds (17-state model) with multi-loop
uncertainty

and hence the blade pitch uncertainty has no effect at low
wind speeds. Thus, the results in Figures 7 and 8 are similar
in Region 2. Similarly, the only loop active in Region 3
is the blade pitch feedback loop and hence the generator



torque uncertainty has no effect at high wind speeds. Thus,
the results in Figures 7 and 8 are similar in Region 3.
However, since both the torque and pitch loops are active
in Region 2.5, it is useful to analyze the the effect of multi-
loop uncertainty. In this region, the uncertainty in the two
loops can interact. It can be seen that the turbine has much
smaller stability margins (between 0.8 and 0.9) in Region
2.5 (9-11.75m/s). This indicates a potential robustness issue
due to the interacting uncertainty in the two loops. Finally,
note that the LTI/LTV results are similar again indicating
that the rotational time-varying effects are minor at fixed
wind speeds.

C. Variable Wind Conditions

Results discussed till now were focused on frozen wind
conditions. The main advantage of the algorithm is its ability
to handle varying wind conditions. Section III-D explains
how the proposed algorithm is modified so that the input to
the algorithm is a varying wind speed profile and the output
is the disk gain margin. Several wind speed profiles can be
considered in this case but that which is of most interest to
us is the behavior of the turbine at high wind speeds. Wind
gusts at high mean wind speeds are typically used to examine
the effect of structural loads on the turbines. An extreme and
canonical example is the so-called "Mexican-hat" gust shape,
as it is presented in Figure 9. Its sudden change in wind
shape can possibly cause extreme changes in load or even
closed-loop instability. Simulations are performed to verify
this claim. Both loop-at-a-time and multi-loop analyses are
carried out for this wind gust profile.
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Fig. 9. Mexican Hat Wind Gust

First, the uncertainty is considered in the torque loop.
Since, the torque loop is inactive in Region 3, which is where
the turbine is operating for the given wind gust, the disk gain
margins are [0,∞). In other words, the finite-horizon induced
L2-gain is ≈ 1. Second, uncertainty is considered in the pitch
loop and the resulting disk gain margin is [0.436, 2.293]. It
also follows, due to the fact that there is only one active
feedback loop, that the multi-loop margins are same as that
of loop-at-a-time margins considered in the pitch feedback
path i.e., [0.436, 2.293].
The results indicate a reduction in the robustness margins of
the turbine as compared to the ones obtained at frozen wind
conditions. This shows that frozen wind speed analysis is
insufficient to conclude anything about the robustness of the

system and also necessitates a rigorous time-varying analysis
to gain better insights into the robustness of the system.

V. CONCLUSIONS
This paper applies a time-varying approach for robustness

analysis of the 2.5 MW Clipper Liberty turbine. A time-
varying model is first constructed by linear interpolation of
LTI models at different wind trim conditions obtained from
FAST. The state matrices are then utilized to compute the
finite-horizon induced L2[0, T ]-gain. Small Gain Theorem
is then used to compute disk gain margins of the system.
Loop-at-a-time and multi-loop analysis is performed for both
frozen and varying wind conditions. This approach can be
very useful in analyzing the robustness of the turbine given
real wind speed data from the turbine. Future research could
explore better control techniques if the margins are found to
be too low.
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