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Abstract

Air data probes provide essential sensing capabilities to aircraft. The loss or cor-

ruption of air data measurements due to sensor faults jeopardizes an aircraft and its

passengers. To address such faults, sensor hardware redundancy is typically combined

with a voting system to detect and discard erroneous measurements. This approach

relies on redundancy, which may lead to unacceptable increases in system weight and

cost. This thesis presents an alternative, model-based approach to fault detection for

a non-redundant air data system. The model-based fault detection strategy uses ro-

bust linear filtering methods to reject exogenous disturbances, e.g. wind, and provide

robustness to model errors. The proposed algorithm is applied to NASA’s Generic

Transport Model aircraft with an air data system modeled based on manufacturer

data provided by Goodrich Sensors and Integrated Systems. The fault detection filter

is designed using linearized models at one flight condition. The detection performance

is evaluated at a particular reference flight condition using linear analysis and nonlin-

ear simulations. Detection performance across the flight envelope is examined, and

scheduling and blending techniques used to improve detection robustness across an

expanded flight regime are explored.
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Chapter 1

Introduction

New methods of system monitoring, fault detection, and fault diagnosis are often

required to enhance the safety and reliability of increasingly advanced technologi-

cal systems. These performance demands are particularly important for systems in

which a malfunction can result in significant equipment damage, costly environmental

harms, injuries, or deaths. Often called safety-critical or life-critical systems, these

platforms require the highest resilience to malfunction that engineers can achieve.

Such processes are traditionally found in energy infrastructure (e.g. power plants,

nuclear reactors), medical devices (e.g. implant devices, ventilation systems, robotic

surgery machines), transportation (e.g. automobiles, ships, aerospace systems), and

weapons systems. Today, modern information systems governed by vast arrays of

computers (e.g. telecommunications, banking and financial systems, transportation

control infrastructure) are essential to the preservation of life and equipment and are

breaking traditional notions of safety-critical applications. In the future, technologies

utilizing elements of fault-tolerance will become more common and more relied upon

by society.

The unique operational missions associated with each platform engender different

responses to system failure. These different responses can be broadly classified as

reliability regimes with each regime preserving the mission goals emphasized by the

system designer. One such regime is fail-operational, in which a system continues to

operate when control systems have failed. Fail-operational modes can be unsafe and

are sometimes avoided. Fail-safe systems revert to a safe mode upon control system

failure. One example of this system type is fire-on-command nuclear missiles. When
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communication systems fail, the missiles cannot be commanded to fire, and accidental

launches are avoided. Contrast this standard approach to a proposed fail-operational

Soviet missile control architecture that fired missiles upon loss of communication.

For high risk applications such as this, a conservative fail-safe reliability is favored.

Between these two extremes – and far more difficult to successfully achieve – is fault-

tolerance. Fault-tolerant systems avoid operational failures when faults occur by

executing a reconfigured control strategy which allows the system to operate safely

despite the presence of a fault. This approach requires algorithms yielding rapid,

accurate F ault Detection, I dentification, and Control Reconfiguration, or FDIR.

Each component of FDIR presents significant challenges and are somewhat indepen-

dent problems. This thesis focuses on the development of fault detection algorithms

for the critical air data sensors on commercial transport aircraft. This research works

toward the goal of enhancing aircraft fault-tolerance beyond that of existing fleets.

The general algorithms contained within this thesis, however, could be extended to

other safety-critical aerospace applications or problems within other industries.

1.1 Fault-Tolerance in the Aerospace Industry

Stringent safety requirements have driven aircraft system design for decades. The

system availability and integrity requirements for commercial flight control electronics

are typically no more than 10−9 catastrophic failures per flight hour [1,2]. The typical

industry design solution is based extensively on physical redundancy at all levels of the

design. For example, the Boeing 777 has 14 spoilers, 2 outboard ailerons, 2 flaperons,

2 elevators, one rudder and leading/trailing edge flaps [3, 4]. Each of these surfaces

is driven by two or more actuators, all connected to different hydraulic systems.

Moreover, the control law software is implemented on three primary flight computing

modules. Each computing module contains three dissimilar processors with control

law software compiled using dissimilar compilers. The inertial and air data sensors

have a similar level of redundancy.

1.2 Historical Failures due to Air Data Faults

Nearly all aircraft utilize pitot-static probes, such as those shown in Figure 1.1, to

measure total and static pressure to determine airspeed and altitude. For proper

operation, the probe ports and inlets must be free of blockages (e.g. icing blockages).
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Figure 1.1: Examples of pitot-static probes

Failures of these probes have resulted in numerous fatal accidents of commercial,

military, and general aviation aircraft. To address these failures, sensor hardware re-

dundancy is typically combined with voting systems to detect and discard erroneous

measurements. The redundancy-dependant control architectures used in the aircraft

industry achieve extraordinarily high levels of availability and integrity, yet catas-

trophic failures do occur. Three recent examples of notable air data system failures

are presented:

FedEx/McDonnell-Douglas MD-11 crash – 1999 In October 1999, a FedEx

MD-11 aircraft attempted a landing at Subic Bay, Philippines. After touchdown, the

plane rolled onto another runway, through a fence, and into the bay. According to

the investigators’ report, the probable cause of the incident was: “The failure of the

flight crew to properly address an erroneous airspeed indication during descent and

landing, their failure to verify and select the correct airspeed by checking the standby

airspeed indicator, and their failure to execute a missed approach. These failures

led to an excessive approach and landing speed that resulted in a runway overshoot.

Contributing factors to the accident were clogged pitot tube drain holes, the MD-11’s

insufficient alerting system for airspeed anomalies, and the failure of the...checklists

to refer the crew to the standby airspeed indicator.” [5]
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B-2 Spirit bomber crash – 2008 In February 2008, a USAF B-2 Spirit bomber

collected erroneous air data measurements that led to a crash and total loss of the $1.4

Billion aircraft in Guam. According to investigators, moisture in the aircraft’s Port

Transducer Units during air data calibration distorted the information in the bomber’s

air data system, causing the flight control computers to calculate an inaccurate air-

speed and a negative angle of attack upon takeoff. This led to an, “uncommanded 30

degree nose-high pitch-up on takeoff, causing the aircraft to stall and its subsequent

crash.” [6]

Air France/Airbus A330 Flight 447 crash – 2009 In June 2009, Air France

Flight 447 plummeted 38,000 feet in only 3.5 minutes and crashed mysteriously over

the Atlantic Ocean en route to Paris. The flight data recorders were recovered af-

ter a nearly two-year hunt. The recovered data seemed to indicate that the pilots

had conflicting air speed data in the minutes leading up to the crash. The aircraft

climbed to 38,000 feet when “the stall warning was triggered and the airplane stalled,”

the investigators’ report says. Investigators suspect that the aircraft’s pitot probes

malfunctioned due to ice at high altitude. [7]

1.3 Motivation for Analytical Redundancy

While the current physical-redundancy schemes are quite reliable and these failures

described are rare events, the use of physical redundancy dramatically increases sys-

tem size, complexity, weight, and power consumption. Moreover, such systems are

extremely expensive in terms of design and development costs as well as the unit

production costs. There is an increasing demand for high-integrity, yet low cost, fault

tolerant aerospace systems, e.g. unmanned aerial vehicles and fly-by-wire capabilites

in lower end business and general aviation aircraft.

This demand extends beyond the atmosphere; space technology applications are

strong candidates for implementation of these improved fault-tolerance algorithms

because they require high reliability under extensive constraints. NASA has recently

published a series of Space Technology Roadmaps highlighting technologies important

to advancing American space capabilities. These roadmaps indicate that enhanced

fault tolerance and health monitoring algorithms are essential for Robotics, Tele-

robotics and Autonomous systems as well as Entry, Descent, and Landing (EDL)
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systems. [8] [9] Substantial improvements in autonomy technology will be required in

order to expand space exploration capabilities in the coming decades. Many existing

advanced space platforms are ‘automated systems’, meaning that in unforseen condi-

tions or faulted states, they require human interaction in order to choose a course of

action. On the other hand, autonomous systems are able to resolve decisions inde-

pendently. This capacity increases system operations capability and improves mission

robustness to uncertain environments and phenomena. Fault tolerance plays a par-

ticularly important role in autonomy since system health assessment is essential to

many real-time decision-making and longer term mission-planning processes.

The demands are high; fault tolerance systems must be fast and accurate. This thesis

seeks to improve robustness of fault detection algorithms so that systems maintain

sufficiently accurate health monitoring across their performance envelope. Leverag-

ing analytical tools that may make mathematical performance guarantees can assist

verification and validation, reducing risk in operation of safety-critical systems.

1.4 Model-based Approach

The fault detection problem usually comprises a method to compute residuals and

a process to declare faults based on the residuals. It is desired that the generated

residual be a good representation of the fault of interest while being insensitive to

process and measurement noises. Generation of residuals depends on the information

available about the system. If a sufficiently accurate model of the system is available,

model based methods can be used to estimate system states and outputs. See [10],

[11], and [12] for a detailed treatment of model based and model-free fault detection

methods. Based on these methods, this paper uses the H∞ framework to design an

analytical fault detection filter for an air data system.

This thesis has the following structure. Chapter 2 describes the model structure and

operation of air data systems as well as many common fault classifications, their

manifestations, and their models. Models for the aircraft, controls, and additional

sensor systems are provided in Chapter 3. Chapter 4 describes the H∞ methods

used to design the robust fault detection filter. Simulation results and analysis for

the initial H∞ designs are given in Chapter 5. In Chapter 6, the fault detection

algorithms are refined using scheduling and blending techniques. Finally, Chapter 7

discusses conclusions of this work and directions for future research.
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Chapter 2

Air Data

This chapter describes the basic physical relationships used to create air data mea-

surements, the structure and operation of a typical pitot-static air data probe, and

common fault modes for such sensors. This information is used to construct fault

models for use in simulations that are important to the development of fault detec-

tion algorithms.

2.1 Air Data Sensor Systems

The basic relationships between air data measurements and aircraft states are derived

in [2]. For altitudes in the troposphere (up to ≈ 36,000 ft), the static pressure ps is

related to altitude h by:

h =
T0

L

(
1−

(
ps
ps0

)LR/g)
(2.1)

where T0 := 518.67◦R is the temperature at sea level, L := 0.00356
◦R
ft

is the tropo-

sphere lapse rate, g := 32.17 ft
s2

is the gravity constant at sea level, ps0 := 2116.21 lb
ft2

is the static pressure at sea level, and R := 1716 ft·lb
◦R·slug is the ideal gas constant.

For compressible air and subsonic speeds, the static and total (pitot) pressures, ps
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and pt, are related to the calibrated (indicated) airspeed Vc (knots) by:

Vc = A0

√
5

(
pt − ps
ps0

+ 1

)2/7

− 5; (2.2)

where A0 := 661.48 knots is the speed of sound at sea level. The calibrated airspeed

is equal to the true airspeed at sea level but the two airspeeds differ at altitudes above

sea level. A more accurate model at high altitudes would include a model of the total

air temperature sensor used to compute true airspeed [13]. This is neglected in this

thesis; hence, the air data models are only valid at low altitudes. Because the aircraft

model described in Chapter 3 is only operational in low-altitude flight regimes, this

assumption holds for the analysis presented in this thesis.

2.1.1 Pitot-Static Probe Model

A fully operational pitot-static probe, as shown in Figure 2.1, measures static pres-

sure, ps and total pressure, pt, using independent pressure lines and transducers. The

probe captures freestream airflow via the pitot inlet port, and the moving air stag-

nates within the channels inside the probe. The total pressure is then measured at the

pitot pressure output. A static pressure measurement is obtained via small-diameter

static ports that are flush with the fuselage of the probe. The static pressure is

measured by a pressure transducer at the static pressure output. Dynamic pressure,

pdyn = pt − ps, is a calculated quantity [2, 13].

Air entering the probe frequently contains significant moisture, and this moisture

must be removed from the probe in order to prevent excessive accumulation of water

that can lead to blockage faults. In a fully-operational probe, gravity moves water

inside the probe over a small drain hole. The pressure differential between the pitot

inlet (total pressure) and drain hole (static pressure) forces water out of the probe

via the drain hole. The drain hole is quite small in comparison to the pitot opening,

and as a result there is minimal pressure loss at the pitot pressure output.

The pressure measurement devices are modeled by inverting the functions in Equa-

tions 2.1-2.2 to obtain values of static and total pressure from the GTM altitude and

airspeed states. To model sensor noise and faults in the pressure measurements, the

nominal pressure signals are corrupted by white noise and faults are added to the

pressure signals to yield pressure measurements.
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Figure 2.1: Pitot-static probe

2.1.2 Pressure Measurement Processor Model

Pressure transducer measurements are processed onboard the aircraft to yield de-

rived altitude and airspeed measurements for feedback to the control loops and to

the pilot. Equations 2.1-2.2 are applied in the simulation to produce altitude and

airspeed measurements from pressure measurements. In this thesis, all pressure sig-

nals have units of psi (lbs/in2). The air data system architecture model is depicted

in Figure 2.2. Linearizing the Air Data Conversion equations provides insight into

-h

-
V

p Transducers

Physics-Based
Pressure Model

ps(h)

pt(V, h)

ps psm- e+?

nps , fps

pt ptm- e+

6

npt , fpt

-

- hm(psm)

Vm(ptm − psm)

Air Data
Conversion

hm-

Vm-

Figure 2.2: Air data sensor architecture

appropriate magnitudes for injected faults:[
δhm

δVm

]
=

[
−1911 0

−281.4 281.4

][
δps

δpt

]
(2.3)
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From Equation 2.3, a fault (error) of magnitude 0.01 psi in ps would yield an hm error

of -19.11 ft and -2.81 knots in Vm. A fault of the same size in pt will yield an Vm error

of 2.81 knots. Equation 2.3 shows that faults injected on ps and pt both influence Vm.

If the faults are simultaneous in both ps and pt and of equal magnitude, Vm will be

unaffected.

2.1.3 Industry Standards

The accuracy specifications of air data systems are driven primarily by vehicle oper-

ational requirements. Commercial and general aviation aircraft are subject to civil

air traffic controllers and Federal Aviation Administration (FAA) regulations in the

United States. With ever-increasing flight traffic and limited airport and air traf-

fic control resources, regulators are establishing stringent requirements for air data

systems in order to ensure that aircraft can safely maintain small separations in the

airspace. One example of such requirements involves vertical aircraft separation. In

2005, regulators amended the Reduced Vertical Separation Minima (RVSM) standard

of 2000 feet to a 1000 feet standard in the United States with a goal of increasing

airspace capacity and allowing aircraft to operate closer to optimum flight trajectories

and ensure fuel savings. Thus, a RVSM-certified aircraft must maintain a minimum

of 1000 feet vertical separation between another RVSM aircraft and 2000 feet between

a non-RVSM aircraft. As of 2011, this standard has been implemented nearly world-

wide. Russia, currently in the process of planning a transition to the new standard,

is the last major nation yet to implement the protocol.

Certification for RVSM compliance requires particular avionics systems that each

have their own specifications. In the European Union, an operator shall ensure that

airplanes operated in RVSM airspace are equipped with:

1. Two independent altitude measurement systems;

2. An altitude alerting system;

3. An automatic altitude control system; and

4. A secondary surveillance radar (SSR) transponder with altitude reporting sys-

tem that can be connected to the altitude measurement system in use for alti-

tude keeping.
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The United States maintains similar standards. [14] Additionally, in order to ensure

that aircraft can safely operate in close proximity, the maximum allowable altimetry

system error is 245 feet. Thus a static pressure fault as large as ± 0.1 psi would lead

to an altitude error of nearly 200 feet; an error this size would certainly be cause for

concern for an RVSM-certified aircraft.

The FAA seeks certifiable fault-tolerance capabilities for low-cost, unmanned aircraft

that will allow for safe operation within controlled airspace. As described in Chap-

ter 1, this research seeks effective fault-tolerance approaches predicated upon analyt-

ical redundancy. Small, low-cost UAVs may not meet the avionics requirements for

RVSM certification, but analytical approaches may aid in achieving a similar degree

of performance.

These standards will inform fault modeling to ensure that the fault detection algo-

rithms are tested against realistically severe air data system faults.

2.2 Fault Modes and Modeling

This chapter details common fault modes for pitot-static probes, their potential

causes, and their effects on air data measurements. There are three broad classi-

fications of fault mechanisms in air data probes: blockage faults, airflow disruption

faults, and heater-related faults. Some faults induce the same qualitative measure-

ment errors across all flight conditions, while other faults will manifest themselves

differently depending upon aircraft maneuvering. Some of these common blockage

fault modes are targeted for this thesis. Airflow disruption faults and heater-related

faults require advanced modeling beyond the focus of this thesis, yet remain relevant

problems in the aerospace industry. A description of the different fault modes follows.

2.2.1 Blockage and Leak Faults

Pitot-static probes are exposed to the elements. This exposure makes these probes

vulnerable to blockage faults; the impact on the aircraft depends on the location of the

blockage(s) and sometimes the maneuvers the aircraft happens to be undergoing. The

static and pitot pressures internal to the probe are conveyed to pressure transducers

via pneumatic lines. Faults in the pneumatic lines can significantly alter air data

measurements.
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Blockage faults can occur as a result of a variety of causes:

• Exterior Icing (unpowered heater, failed heater, conditions exceed anti-icing

capabilities)

• Water or ice accumulation in pressure line

• Insects (e.g. Mud Dauber Wasp)

• Bird Strike

• Debris

• Protective cover left in place

An overview of common blockage faults is now provided.

2.2.1.1 Drain Hole Blockage

With a blocked drain hole and an open pitot inlet (Figure 2.3), the air data measure-

ments will be slightly erroneous. The air data transducers are calibrated to account

for the pitot pressure losses that occur with a nominally-performing (i.e. open) drain

hole. In the event that the hole experiences a blockage, this calibration induces a small

error – a small false increase in airspeed. Moreover–and perhaps more seriously– the

probe has a high probability of collecting water which can enter the pressure lines

and corrupt measurements. The static pressure measurement, and hence the altitude

measurement, will be unaffected by a drain hole blockage.

To illustrate these effects with an example using experimental data, a pitot-static

probe with a blocked drain hole was tested in a subsonic wind tunnel on a [Vs − α]

grid in order to simulate a sizeable flight envelope. Figure 2.4 shows the airspeed and

angle-of-attack combinations used during the experiment. Comparisons of nominal

and faulted static and total pressure measurements across airspeed sweeps for each

angle of attack tested are shown in Figures 2.5-2.11. The pressures are presented

in nondimensional form; the error between the test probe measurement pprobe and

a calibrated tunnel reference probe measurement pref is nondimensionalized by the
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Transducer calibrations for
pressure loss at drain hole
induce small positive error
in total pressure measurement

Figure 2.3: Pitot-static probe with drain hole blockage

tunnel dynamic pressure qc as shown in Equations 2.4-2.5.

psND =
(psprobe − psref )

qc
(2.4)

ptND =
(ptprobe − ptref )

qc
(2.5)

Nondimensionalizing in this way allows for an understanding of the quality of a set

of air data measurements that spans a broad flight regime.

Examining Figures 2.5-2.11, it is clear that a drain hole blockage has little to no

impact on the static pressure measurement indicated by the probe. This is true

across different airspeeds and angles of attack. At negative angles of attack, however,

the geometry of the probe is such that the static port captures a component of the

dynamic pressure; this is reflected in elevated static pressure indicated by the probe

relative to the tunnel reference static pressure. This effect diminishes as the angle of

attack increases, and for α ≥ 0, this behavior is no longer evident in the experimental

results.

As predicted, the plots also indicate a small false increase in the total pressure mea-

sured by the faulted probe. Since the static measurements in the nominal and faulted

probes do not deviate, the difference in the total pressure measurements would, to

12



an aircraft avionics suite, indicate differing airspeeds. In this case, the faulted probe

would indicate an erroneously high airspeed. This effect is fairly consistent through-

out the envelope tested, but its magnitude is slightly diminished for near-zero angles

of attack and is exacerbated for larger magnitude angles of attack.
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Figure 2.4: Flight envelope grid points for wind tunnel experiments
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Figure 2.5: Comparison of nominal and faulted air data measurements for a drain
hole blockage; α = −15 ◦
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Figure 2.6: Comparison of nominal and faulted air data measurements for a drain
hole blockage; α = −10 ◦
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Figure 2.7: Comparison of nominal and faulted air data measurements for a drain
hole blockage; α = −5 ◦
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Figure 2.8: Comparison of nominal and faulted air data measurements for a drain
hole blockage; α = 0 ◦. Note the vertical axis change from the previous three figures.
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Figure 2.9: Comparison of nominal and faulted air data measurements for a drain
hole blockage; α = 5 ◦
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Figure 2.10: Comparison of nominal and faulted air data measurements for a drain
hole blockage; α = 10 ◦
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Figure 2.11: Comparison of nominal and faulted air data measurements for a drain
hole blockage; α = 15 ◦
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2.2.1.2 Pitot Inlet Blockage

With a blocked pitot inlet and an open drain hole (Figure 2.12), the drain hole

becomes a static port. Therefore, the total pressure output will match the static

pressure output. A pitot inlet blockage, however, is not evident at the beginning of

a takeoff roll because the pilots and aircraft avionics are not anticipating a dynamic

pressure indicative of a moving aircraft.

Drain hole effectively
becomes a static port

�

Pressure Outputs are equivalent
�
�
�
��3

��
��

�
��
�*

Figure 2.12: Pitot-static probe with pitot inlet blockage

2.2.1.3 Pitot Inlet and Drain Hole Blockages

A pitot inlet blockage combined with a drain hole blockage (Figure 2.13, presents a

more complex set of effects. In this case, the pitot pressure channel becomes a closed

system, and the pressure therefore remains constant during all aircraft maneuvers.

The indicated airspeed will be misleading in different ways (depending upon the

particular aircraft maneuver).

When the aircraft climbs, the static pressure correctly decreases while the dynamic

pressure incorrectly increases. In a descent, the static pressure correctly increases

while the dynamic pressure incorrectly decreases. For an aircraft increasing or de-

creasing in airspeed, the dynamic pressure incorrectly remains constant. Table 2.1

describes the effects of a drain hole blockage combined with a pitot inlet blockage on

the airspeed and altitude measurements.
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Pitot channel becomes closed
system and pressure becomes
stuck at previous value

-

Figure 2.13: Pitot-static probe with combined pitot inlet and drain hole Blockage

2.2.1.4 Static Port Blockage

A blocked static port (Figure 2.14) directly impacts the altitude measurement and

adversely impacts the dynamic pressure (and thus indicated airspeed) in a manner

similar to a pitot inlet blockage. When the aircraft climbs, the static pressure in-

correctly remains constant while the dynamic pressure incorrectly decreases. In a

descent, the static pressure incorrectly remains constant while the dynamic pressure

incorrectly increases. When increasing or decreasing in airspeed while maintaining a

particular altitude, the static and dynamic pressure are correct. Table 2.1 describes

the effects of a static port blockage on the airspeed and altitude measurements.
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Static pressure channel
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pressure becomes stuck
at previous value

?

Figure 2.14: Pitot-static probe with static port blockage
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2.2.1.5 Water in Probe or Pressure Lines

The presence of water within an air data probe or its attached pressure lines (Fig-

ure 2.15 can lead to significant fluctuations in pressure measurements. A meniscus

formed within a pressure line will cause increased pneumatic lag due to the weight

of the water present in the line. The magnitude of the pressure fluctuations and

the associated pneumatic lag is influenced by the mass and location of the water in

the line. Unlike with port blockages, potential impacts on the altitude and airspeed

measurements are not as clearly defined.

Blocked drain hole
causes accumulation
of water in channel�

A
A
A
A
A
A
AKMeniscus may form;

pressure fluctuations
may occur due to water
movement in channel

Figure 2.15: Pitot-static probe with water blockages

A summary of blockage fault effects is presented in Table 2.1. When a fault does

not impact the validity of a particular measurement, the corresponding table entry

indicates that the measurement is ’Correct.’
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Table 2.1: Blockage fault effects for pitot-static probes
Fault Aircraft

Maneuver
Vs Measurement h Measurement Figure

Drain
Hole
Blockage

All Small false in-
crease in airspeed

Correct Figure 2.3

Pitot Inlet
Blockage

All Airspeed drops
to zero; Remains
stuck at zero

Correct if only
the pitot inlet af-
fected. Incorrect
if static measure-
ment also affected
(e.g. bird strike,
protective cover,
etc.)

Figure 2.12

Pitot Inlet
and Drain
Hole
Blockage

Climb False increase in
airspeed

Correct

Figure 2.13
Descent False decrease in

airspeed
Correct

Increasing
airspeed

Airspeed falsely
remains constant

Correct

Decreasing
airspeed

Airspeed falsely
remains constant

Correct

Static
Port
Blockage

Climb False decrease in
airspeed

Altitude remains
incorrectly
constant.
Altitude rate
(Vertical Speed
Indicator)
remains stuck at
zero

Figure 2.14
Descent False increase in

airspeed
Increasing
airspeed

Correct if alti-
tude remains con-
stant

Decreasing
airspeed

Correct if alti-
tude remains con-
stant

Water in
Probe or
Pressure
Lines

All Various Various Figure 2.15
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2.2.1.6 Pneumatic Line Leakage

Air pressures are conveyed to pressure transducers via pneumatic lines attached to the

air data probe. Leakages in the pneumatic lines corrupt pressure measurements. The

particular effects of such a fault depend upon which system is leaking (pitot or static),

leakage severity, and the ambient pressure in the location of the leak. Leaks could

occur in a pressurized cabin compartment or in an unpressurized bay; the ambient

pressure in the location of the leak influences the magnitude and direction of any

errors in the air data measurements.

2.2.2 Airflow Disruption Faults

Pitot-static probes are placed in locations on an aircraft fuselage which are expected

to experience laminar airflow that is unlikely to be fouled in-flight by moving control

surfaces or by the fuselage itself. While this provides for maximum sensor accuracy,

airflow disruptions that do occur may still adversely impact measurements collected

by the air data probes. The most common example of such airflow disruptions can

occur with aircraft icing. Icing-related blockage faults internal to pitot-static probes

were previously discussed; ice accretion on the fuselage or the exterior of the probe

can significantly disrupt airflow in the vicinity of the static ports, introducing errors

into the static pressure measurement. In such a case, the pitot pressure measurement

is unlikely to be significantly impacted.

2.2.3 Heater Faults

Pitot-static probes contain heaters embedded within their surfaces which discourage

ice accretion on the surface of the probe and melt ice crystals which may have en-

tered the pitot inlet, allowing for proper drainage and preventing blockages. Heater

elements can completely fail (in which they short circuit and no longer provide any

heat) or experience slow-acting faults such as resistance drift. Changing resistances

of the heater element cause fluctuations in heat output.

2.2.4 Faults Studied and Future Modeling Work

Because blockage faults in air data probes are common, and since their effects are

more easily modeled than the effects related to airflow disruption or heater faults,

the focus of this thesis is blockage fault detection. Blockage faults tend to be fast-
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acting and cannot necessarily be predicted via regular monitoring and maintenance

(although consistent probe cleaning minimizes risk). Blockage faults also tend to

exhibit steady-state behaviors – particularly for full blockages – yet there are instances

where a partial blockage or the presence of water in the pressure lines could lead to

time-varying adverse effects on the air data measurements. Faults relating to airflow

disruptions (e.g. from icing) or heater faults involve more complex studies of icing

aerodynamics and heater element construction and control. In order to investigate

fault-tolerance approaches for these failure scenarios, higher fidelity models of the

air data probes are necessary. One way to achieve a better understanding of time-

varying behaviors would be to perform experiments using high-frequency pressure

transducers. Most current air pressure transducers often operate at frequencies near

1 Hz, and data that could be used to describe time-varying effects may be lost at

such low frequencies.
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Chapter 3

Aircraft Model

The platform considered for this research is the NASA Generic Transport Model

(GTM), a remote-controlled, 5.5 percent scale commercial aircraft [15]. The aircraft

weighs approximately 50 lbs. and can reach airspeeds of up to 200 miles per hour.

Because the aircraft is also dynamically-scaled, it is a useful platform for software and

control systems design in NASA’s Safety and Security Program. NASA constructed

a high fidelity 6 degree-of-freedom Simulink model of the GTM [16] with the aero-

dynamic coefficients provided as look-up tables. The GTM Simulink model captures

key flight dynamics characteristics of the GTM aircraft and the commercial transport

aircraft it is designed after and provides a useful starting point for this analysis.

3.1 Generic Transport Model Longitudinal Dynamics

This section describes the longitudinal dynamics of the GTM aircraft. Important

GTM aircraft geometric and mass parameters – as well as relevant constants – are

provided in Table 3.1. Using this information, the nonlinear equations of motion can

be written.
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Table 3.1: Aircraft and environment parameters

Wing Area, S 5.902 ft2

Mean Aerodynamic Chord, c̄ 0.9153 ft
Mass, m 1.795 slugs

Pitch Axis Moment of Inertia, Iyy 4.655 slugs-ft2

Air Density, ρ 0.002377 slugs/ft3

Gravity Constant, g 32.17 ft/s2

The longitudinal dynamics of the GTM are described by a standard five-state longi-

tudinal model [17]:

V̇ =
1

m
(−D −mg sin (θ − α) + Tx cosα + Tz sinα) (3.1)

α̇ =
1

mV
(−L+mg cos (θ − α)− Tx sinα + Tz cosα) + q (3.2)

q̇ =
(M + Tm)

Iyy
(3.3)

θ̇ = q (3.4)

ḣ = V sin(θ − α) (3.5)

where V is air speed (knots), α is angle of attack (deg), q is pitch rate (deg/s), θ is

pitch angle (deg), and h is altitude (ft). The control inputs are the elevator deflection

δelev (deg) and engine throttle δth (percent).

The drag force D (lbs), lift force L (lbs), and aerodynamic pitching moment M (lb-ft)

are given by:

D = q̄SCD(α, δelev, q̂) (3.6)

L = q̄SCL(α, δelev, q̂) (3.7)

M = q̄Sc̄Cm(α, δelev, q̂) (3.8)

where q̄ := 1
2
ρV 2 is the dynamic pressure (lbs/ft2) and q̂ := c̄

2V
q is the normalized

pitch rate (unitless). CD, CL, and Cm are unitless aerodynamic coefficients computed

from look-up tables provided by NASA. NASA provided raw look-up table data for

the aerodynamic coefficients in the airframe body axes, i.e. the raw data is provided

for Cx, Cz, and Cm. This notation refers to standard aircraft body axis conventions

[17]. x is directed to the front along the longitudinal axis of the aircraft and z is

directed down. X and Z represent the aerodynamic forces along the x and z axes,
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respectively. The body-axis look-up tables CX and CZ were transformed into lift and

drag coordinates via a rotation of angle α about the lateral axis.

The GTM has two engines, one on the port side and the other on the starboard side

of the airframe. Equal thrust settings for both engines is assumed. The thrust from

a single engine T (lbs) is a function of the throttle setting δth (percent). T (δth) is

specified as a ninth-order polynomial in NASA’s high fidelity GTM simulation model.

Tx (lbs) and Tz (lbs) denote the projection of the total engine thrust along the body

x-axis and body-z axis, respectively. Tm (lbs-ft) denotes the pitching moment due to

both engines. Tx, Tz and Tm are given by:

Tx(δth) = nENGT (δth) cos(ε2) cos(ε3) (3.9)

Tz(δth) = nENGT (δth) sin(ε2) cos(ε3) (3.10)

Tm(δth) = rzTx(δth)− rxTz(δth) (3.11)

nENG = 2 is the number of engines. ε2 = 1.98 deg and ε3 = 2.23 deg are angles that

specify the rotation from engine axes to the airplane body axes. rx = 0.4223 ft and

rz = 0.3336 ft specify the moment arm of the thrust.

3.2 Actuator Dynamics

The actuator dynamics are modeled as linear systems. The elevator actuator for the

longitudinal GTM has a 5Hz bandwidth, first-order system with a 10 ms delay and

is shown in Equation 3.12. The engine dynamics are modeled as the second order

system shown in Equation 3.13.

Actelev = e−0.01s 31.42

s+ 31.42
(3.12)

Actth =
−0.147s+ 0.731

s2 + 1.36s+ 0.731
(3.13)
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3.3 Aircraft Trim and Model Linearization

A steady, level reference flight condition is chosen within the GTM flight envelope.

The GTM, including actuator dynamics, is trimmed at the following condition:

x̄ =


V

α

q

θ

h

 =


75 knots

5.63 deg

0 deg/s

5.63 deg

500 ft

 , ū =

[
δth

δelev

]
=

[
33.098 %

0.072 deg

]
(3.14)

The nonlinear GTM dynamics are linearized about this trim condition to yield a

8-state system G with two inputs and five outputs (Equations 3.15 and 3.16).

ẋ = AGx +BGu

y = CGx +DGu (3.15)

where

AG =



−0.0724 −0.1509 0.0022 −0.3327 0 −0.0128 0.0635 −0.2007

−0.3848 −2.3677 0.9428 0.0000 0 0.0006 −0.0031 −1.8647

−0.8623 −39.4439 −3.2854 0 0 −0.1525 0.7569 −310.2071

0 0 1.0000 0 0 0 0 0

−0.0000 −1.3090 0 1.3090 0 0 0 0

0 0 0 0 0 −1.3360 −0.7314 0

0 0 0 0 0 1.0000 0 0

0 0 0 0 0 0 0 −31.4159


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BG =



0 0

0 0

0 0

0 0

0 0

1 0

0 0

0 4


, CG =


1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

 , DG =


0 0

0 0

0 0

0 0

0 0

 (3.16)

This resulting linear model is used for control law development, initial filter synthesis,

and simulation.

3.4 Control Law

The GTM longitudinal axis flight control law is an airspeed/altitude hold autopilot

designed using a combination of classical loop-at-a-time and H∞ techniques. The

design allows for fault detection simulation and analysis while holding the GTM at

a cruise condition or performing simple longitudinal maneuvers. These control laws

serve merely to provide a closed-loop aircraft model that approximates the flight

characteristics of a true aircraft for the purposes of simulation. The full control law

interconnection is shown in Figure 3.1.

- δth

- δelevSAS

Kh
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qm

6

e -
–

hm

-+hcmd

?

θm

-e- Kθ

–?

Vm

KV
-
+

e--Vcmd
–
+

Control Law

Figure 3.1: Autopilot control law architecture
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3.4.1 Airspeed Hold Autopilot

The Airspeed Hold Autopilot consists of three sequentially closed loops: a stability

augmentation system (SAS), a pitch angle (deg) tracking controller, and finally an

airspeed (knots) tracking controller. Together, these three loops generate the appro-

priate elevator deflection command (deg).

The innermost controller is a SAS that increases damping in the longitudinal axis

oscillatory modes. It takes measured pitch rate and pitch angle commands as mea-

surements and has elevator deflection as its output. The SAS is designed using the

H∞ framework for robust control. An ideal model with additional damping is defined

in the frequency domain using the GTM transfer function from elevator input to pitch

rate. This model has the same low-frequency characteristics as the GTM in open-

loop. A model-matching problem is formulated, and a controller is synthesized such

that the closed-loop GTM dynamics match those of the ideal model. The resulting

inner loop behaves like the open-loop aircraft: with significantly damped phugoid and

short period oscillations. [18]

Unfortunately, the SAS formulated in this manner is a 15-state system; such a large

system adds too much complexity to the overall aircraft control law. A reduced-

order system can be fit to match the frequency response of the full system in order

to streamline the control law. In this case, a five state model is found to exhibit a

nearly identical frequency response up to frequencies exceeding 10 rad/s. At higher

frequencies, the original SAS provides higher signal attenuation than the reduced

version and a phase discrepancy arises. At such frequencies, however, the dynamics

of the GTM roll off, and the impact of this discrepancy is minimized. A frequency

response comparison of the full-state and reduced-order SAS is shown in Figure 3.2,

and the state-space matrices for the reduced-order SAS are shown in Equation 3.17.

The reduced-state stability augmentation is suitable to use given its equivalent system

response within the important range of frequencies.

ASAS =


−20.1728 21.1728 −21.1728 21.1728 −10.5864

28.9184 −29.9184 30.9184 −30.9184 15.4592

−7.9238 7.9238 −8.9238 9.9238 −4.9619

−6.0079 6.0079 −6.0079 5.0079 −2.0039

6.2792 −6.2792 6.2792 −6.2792 2.1396

 ,
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BSAS =


0.9729 0.3040

−1.2429 −0.2936

−0.2833 0.0736

1.1815 0.0534

−1.0579 −0.0323

 , CSAS =


14.9714

−14.9714

14.9714

−14.9714

7.4857



>

, DSAS =

[
−0.0156

−0.0354

]>

(3.17)

A pitch angle tracker Kθ is closed around the inner-loop SAS. It is designed using

proportional-integral control and pitch angle measurement (deg) feedback to provide

errorless steady-state pitch command tracking. The controller has a step response

rise time of 0.785 s and 15.5% overshoot. The coefficients of the transfer function are

negative due to the sign convention for elevator deflection. The controller is given by:

Kθ = −0.60− 0.72

s
(3.18)

Time-domain parameters for the closed-loop step response from θcmd to θ, as well as

stability margins, are presented in Table 3.2.

Table 3.2: Pitch-angle tracker parameters

Rise Time 0.785 s
Overshoot 15.5 %

Settling Time 34.2 s
Steady-state Error 0

Bandwith 1.90 rad/s
Gain Margin 7.76 dB @ 7.11 rad/s
Phase Margin 51.6 deg @ 1.44 rad/s

The airspeed tracker KV is closed around the pitch-angle tracking and SAS loops.

It is designed using proportional-integral control and airspeed measurement (knots)

feedback. The sign convention for the elevator deflection again requires that the

coefficients of the transfer function are negative. The airspeed tracker has a step

response rise time of 1.74 s and 13.0% overshoot, and is given by:

KV = −1.44− 0.30

s
(3.19)
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Figure 3.2: Comparison of SAS frequency responses
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Time-domain parameters for the closed-loop step response from Vcmd to V , as well as

stability margins, are presented in Table 3.3.

Table 3.3: Airspeed tracker parameters

Rise Time 1.74 s
Overshoot 13 %

Settling Time 16.6 s
Steady-state Error 0

Bandwith 0.88 rad/s
Gain Margin 13.9 dB @ 2.18 rad/s
Phase Margin 66.6 deg @ 0.561 rad/s

3.4.2 Altitude Hold Autopilot

The altitude hold autopilot consists of a single loop utilizing altitude measurement (ft)

feedback and lead compensation with low-pass filtering. The controller Kh generates

the appropriate throttle command (percent), and it has a step response rise time of

5.94 s and 18.3% overshoot. The controller is given by:

Kh =
0.088s+ 0.44

0.017s2 + 0.32s+ 1
(3.20)

Time-domain specifications for the closed-loop step response from hcmd to h, as well

as stability margins, are presented in Table 3.4.

Table 3.4: Altitude tracker specifications

Rise Time 5.94 s
Overshoot 18.3 %

Settling Time 41.7 s
Steady-state Error 0

Bandwith 0.24 rad/s
Gain Margin 7.76 dB @ 2.18 rad/s
Phase Margin 66.6 deg @ 0.561 rad/s

3.5 Inertial Sensors

Sensors for angle of attack, pitch rate, and pitch angle are modeled as unity with

additive white noise and bias on the true states. Sensor dynamics are neglected in

37



the model. The sensor noise parameters are derived from sensor data on the NASA

GTM T2 aircraft and are presented in Table 3.5 [16]. Equations 3.21-3.23 are used

Table 3.5: Inertial sensor parameters

Measurement Noise nα nq nθ
Standard Deviation 0.031 deg 0.4737 deg/s 0.05 deg

Bias 0 deg -0.0115 deg/s 0 deg
Scale Factor 1 1 1

to represent the state measurements to be fed back to the autopilot controllers and

fault detection filters:

αm = α + nα (3.21)

qm = q + nq (3.22)

θm = θ + nθ (3.23)

38



Chapter 4

Fault Detection: H∞-synthesis

The H∞-synthesis framework is used to design filters to estimate disturbances, e.g.

faults, at the plant input. H∞ methods offer a number of advantages over traditional

Kalman filtering, including superior performance in the presence of model uncertainty

and the ability to filter process noise and exogenous disturbances without necessarily

having a statistical model of those inputs [19].

4.1 H∞ Problem Formulation

The H∞ filtering problem is formulated as a variant of a standard H∞ optimal control

problem. The principles used to design controllers can be used to develop a filter that

estimates parameters of interest – in this case, pressure measurement faults.

4.1.1 H∞ Control Formulation

H∞ optimal control methods are used to synthesize controllers that can achieve robust

performance, mitigating the impact of exogenous disturbances to the system. The

standard H∞ control formulation, shown in Figure 4.1, consists of a plant P and

controller K, with signal u containing the control variables, y the measured variables,

w the exogenous signals such as reference commands and disturbances, and z the

error signals. H∞ methods provide a tool to minimize the error signals in a way that

achieves the desired control objectives.

The closed-loop system can be represented with a partitioned plant as shown in
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Figure 4.1: Standard system configuration for H∞ optimal control design

Equations 4.1-4.2. [
z

y

]
=

[
P11 P12

P21 P22

][
w

u

]
(4.1)

u = Ky (4.2)

In this general formulation, the closed-loop transfer function from the exogenous

signals w to the errors z can be represented by the linear fractional transformation

FL(P,K) = P11 + P12K(I − P22K)−1P21 (4.3)

Minimizing the infinity norm of this LFT minimizes the gain across all frequencies

from exogenous inputs to errors. Thus, for a given γ, an H∞ algorithm will generate

a stabilizing controller for which ‖ FL(P,K) ‖∞< γ. The value of γ is reduced

iteratively until a controller can no longer be found at a γ-value sufficiently less than

the value of the previously successful iteration. [20] [21]

4.1.2 H∞ Filter Formulation

Using the framework from the H∞ control problem, a filtering problem can be con-

structed. A H∞ filter is synthesized from the linearized GTM model to estimate

faults associated with the static and total pressure measurements. Unmodeled dy-

namics and model uncertainty are first neglected for this analysis, but the framework

is easily extended later to include uncertainty. Those considerations will be important

as the fault detection algorithm is refined in the next chapter.

The linearized aircraft dynamics are connected with the autopilot (Figure 3.1), in-

ertial sensor models, and air data sensor architecture (Figure 2.2) to form the gen-

eralized plant. The interconnection for this generalized plant, genGTM , is shown
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in Figure 4.2 and has the following inputs: the autopilot reference signals r̃ =

[ Vcmd hcmd ]>, the inertial measurement noises, ñ = [ nα nq nθ ]>, and the injected pitot

faults f̃ = [ fps fpt ]>. The errors ẽ are the difference between the injected faults and

estimated faults f̂ = [ f̂ps f̂pt ]>. The generalized GTM plant has measurement outputs

y = [ psm ptm αm qm θm ]>. These are the measurements that will be available to the

fault detection filter.

The objective of the H∞ filter synthesis is to generate a stable filter F which mini-

mizes norm between the disturbances and the errors. Because this formulation has a

generalized plant that is already closed-loop, the filter can take advantage of the ex-

pected closed-loop system dynamics to generate fault estimates. These estimates are

more accurate than estimates that would result from the common open-loop synthe-

sis approach that fails to model the dynamics associated with the expected operation

of a controlled system in the field. Note that the pitot noise enters the system in

the same manner as pitot faults (see Figure 2.2). As a result, F tracks the sensor

noise as well as the faults. Algorithms for processing the estimated fault information

generated by F can compensate for this noise.

Weighting functions are used to describe the expected frequency content of the inputs

and the desired frequency content of the errors, the normalized inputs [ r n f ]> and

outputs e. Figure 4.3 shows the desired interconnection of the filter with the general-

ized plant genGTM with signal weights and filter F . Input and output signals with

tildes represent their respective normalized signals in physical units.

For fault detection, the disturbances are the autopilot reference signals r and the

inertial measurement noises n. The filter seeks to track the injected faults f with the

fault estimates f̂ while rejecting inertial measurement noise n and reference commands

r. Similar H2 and H∞ model matching approaches to FDI filter design have been

applied in [22–27].

4.2 Signal Weighting Methodology

In signal-based H∞ control design, the size of signals entering and exiting the system

– across all frequencies – becomes the primary focus. Different signals can inher-

ently have different magnitudes depending upon the physical parameter represented.

Sometimes the magnitude of a signal is constant across all frequencies, and sometimes

it is highly frequency dependent. In order to account for these inherent differences
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in a way that makes the formulated problem amenable to optimization algorithms,

the control designer must use weighting functions to describe the expected or known

frequency content of exogenous signals. Additionally, the designer may desire error

signals to have particular frequency content; weighting the error signals introduces

those specifications into the problem formulation. Weights are also used for uncer-

tainty modeling in order to reflect model accuracy across frequencies; system models

are often more or less accurate in particular frequency ranges, and it is prudent to

introduce uncertainty wherever the model dynamics are less accurate.

4.2.1 Simple Weighting Approach

Because the synthesized H∞ filter will have states equal in number to the generalized

plant for which it is optimized, adding complexity to the generalized plant rapidly

increases the complexity of the combined plant-filter system. As a first check, it is

desirable to ascertain how well faults can be estimated using constant weighting on

the input signals. Because the weights should represent the relative size or importance

of exogenous signals, knowledge of these signal sizes informs the initial choices. A

dynamic weighting function on the filter output, Wfhat, is initially used as the sole

performance tuning mechanism.
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Wref

The reference weighting function defines relative size of the autopilot reference com-

mands. The airspeed reference command for the GTM trim condition (Equation 3.14)

is 75 knots and the altitude reference command is 500 feet. Thus, we choose the weight

to be:

Wref =

[
1 0

0 6.6667

]
(4.4)

This ensures that the weighted generalized plant properly reflects the relationship

between the two reference command channels.

Wnois

The standard deviations of the noise in each channel of the inertial sensor measure-

ments are shown in Table 3.5. The entries in Wnois are selected to reflect those

differing noise levels in each measurement.

Wnois =

0.031 0 0

0 0.4737 0

0 0 0.05

 (4.5)
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Wfault

Static and total pressures are measured in the same units with similar transducers; it

is reasonable to assume that the maximum fault would be equivalent in each channel.

Thus, the weighting function should reflect that. Section 2.1.3 explained that a 0.1 psi

static pressure fault would be significant for a commercial aircraft (and an extremely

large deviation for the low-flying GTM aircraft), so that value is selected.

Wfault =

[
0.1 0

0 0.1

]
(4.6)

Wfhat

A single dynamic weight on the filter output can be used to ensure that the filter does

not respond too rapidly to faults when detected. Without a dynamic weight limiting

the frequency of the response, the H∞ algorithm will generate a filter F that is like

a pseudoinverse of genGTM , responding almost instantaneously to an injected fault.

Such a filter would be prohibitively sensitive if implemented on a real aircraft; thus,

measures must be taken to prevent such a filter from generated.

A fault estimate weight is chosen that provides almost no penalty to low frequency

fault estimates but penalizes high frequency responses by rising sharply in magnitude

above 4 radians per second as shown in Figure 4.4.

Wfhat =
80(s+ 357.5)

s+ 357.8
(4.7)

Simple Approach Results

To gauge the efficacy of the simple approach with constant weights on the inputs and

a dynamic weight on the fault estimate penalizing high frequency responses, a filter is

synthesized and simulated with the linear GTM model. The fault injected is a static

pressure step of magnitude 0.1 psi at time t = 1 second. The static pressure fault

estimate should track the injected fault and the total pressure fault estimate should

indicate that no fault is present. The results of the simulation are shown in Figure 4.5.

The static fault estimate responds rapidly – but not too rapidly – with a rise time

of approximately 1 second. There is a significant error, however, between the actual
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fault and the estimated fault in the static channel. Such an error is unacceptably

large ( 50%), and a more comprehensive weighting strategy is required. Notably, the

simple approach correctly indicates that no fault is occurring in the total pressure

channel.

4.2.2 Multi-weight Approach

While the simple weighting approach shows some promise, a more comprehensive

methodology may can achieve stronger results. Wref does not need dynamic weight-

ing, but the other exogenous signals have expected frequency content that can be

included in the problem formulation by revising the weights.

Wnois

For mid-grade inertial sensors that may be utilized on a small UAV, the sensor noise

magnitude is greater at high frequencies while the noise magnitude is reduced at low

to intermediate frequencies.

Wnois =
3.5s+ 0.5248

s+ 349.9

1 0 0

0 10 0

0 0 1

 (4.8)

The magnitude frequency responses for Wnois are shown in Figure 4.6. The weighting

on the inertial sensor noise is chosen iteratively so that the transfer function from

ñ to f̂ on the unweighted genGTM interconnection with F has gain less than 1 for

all frequencies. The weighting on the nq signal is an order of magnitude larger than

the other weightings due to the higher noise level on the pitch rate sensor output.

The transfer functions from inertial sensor noise to pressure fault estimates show

stronger attenuation in the f̂ps channel; this fact is important for analysis of the filter

performance.

Wfault

Faults are injected into the static and total pressure channels to corrupt the measure-

ments. The fault weight, Equation 4.9, is chosen such that the DC gain represents

large faults (-20 dB). The weight is small for frequencies greater than 5 rad/s to
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penalize tracking of high frequency faults. The aircraft dynamics roll off near this

frequency; hence, the effect of higher frequency faults will not appear in the angle

or rate measurements. This diminishes the tracking ability of F at high frequencies.

The high frequency gain of Wfault is -60 dB. The magnitude frequency responses of

the diagonal elements of Wfault are shown in Figure 4.7.

Wfault =
0.001s+ 3.562

s+ 35.27
I2 (4.9)

Werror

The error weight represents the inverse of the allowable tracking error at each fre-

quency. Normally, the error weight would be large at low frequency to ensure close

tracking. Tracking at high frequency is less desirable and error weightings will roll off

to some small high frequency gain. The particular nature of this problem, however,

is such that the usual error weighting methodology cannot be adopted for the gener-

alized GTM filter synthesis. Equation 4.10 shows the DC gain of Pf̃ ỹ, the partition

of genGTM from f̃ to ỹ.

Pf̃ ỹ|ω=0 =


−0.0370 0.0370

−0.0370 0.0370

−49.984 49.984

0 0

−49.984 49.984

 (4.10)

Note that the matrix representing the DC gain is rank deficient. Thus, faults in the

direction f = [1 1]> are indistinguishable from an unfaulted conditon. The unobserv-

ability of this fault direction at DC has a simple physical explanation. As mentioned

previously, a simultaneous and equal fault in both pitot probes has no effect on the

airspeed measurement. A fault in the f = [1 1]> direction only causes a bias in the

altitude measurement. The model for the longitudinal dynamics is unaffected by a

constant offset in altitude. Thus, a fault in the f = [1 1]> direction will cause the

closed loop system to adjust to a biased value of altitude but all measurements will

appear, in steady state, to converge back to their original trim conditions.
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This rank deficiency places limits on the fault detection performance at low frequen-

cies. For a filter F to ensure perfect fault tracking at low frequency, F must be a

pseudoinverse of Pf̃ ỹ over that frequency range. In particular, a filter F that would

make the tracking error arbitarily small at low frequency cannot be synthesized by

hinfsyn [28] because the partition is rank-deficient and its pseudoinverse does not

exist.

To circumvent this problem, Werror is chosen such that the DC gain is small (-40

dB) and begins to roll up at 10−5 rad/s to -12 dB at 10−2 rad/s. For frequencies

greater than 10−2, the traditional approach of rolling off to a small high frequency

gain (-60 dB) is applied. This error weighting has a small DC gain, rolls up at very

low frequencies, and rolls down again at higher frequencies as shown in Figure 4.8;

this allows for the best filter performance given the inherent system limitations.

Werror =
0.0011s2 + 0.1106s+ 4.606× 10−5

s2 + 0.4683s+ 4.606× 10−3
I2 (4.11)

4.3 FDI Filters

The weighted interconnection shown in Figure 4.3 is generalized into the weighted

generalized plant Pgen [29]. The filter F is synthesized with a γ-value of 0.1045 using

Pgen and hinfsyn to meet the objectives described in Sections 4.1-4.2. The hinfsyn

algorithm synthesizes a filter at the low γ-value for a few reasons. First, the small

weight choices scale γ to be small. Next, model uncertainty is not considered in this

formulation, allowing for stronger filter attenuation of disturbances. Having achieved

a fault detection filter, the filter performance will be analyzed in the subsequent

chapter.
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Chapter 5

H∞ Fault Detection Results

The fault detection performance of the filter F synthesized in Chapter 4 is examined

for three fault scenarios. First, fault detection performance is analyzed for a small

step fault in the static pressure measurement of the closed-loop linear and nonlinear

GTM models. The total pressure measurement is unfaulted. Similarly, fault detection

performance is also evaluated for a step fault in the total pressure measurement of

the linear and nonlinear GTM models while the static pressure measurement remains

unfaulted. Finally, the performance of the synthesized filter is examined for a simul-

taneous fault in ps and pt in the closed-loop nonlinear GTM. Detection performance

is analyzed in the presence of inertial sensor noise for all simulations.

5.1 Chosen Faults and Desired Filter Performance

A simple representation of certain air data blockages can be obtained by injecting

step faults into the static and total pressure measurements. The performance of the

synthesized filter under these scenarios is examined.

The filter should yield estimates that track the generalized fault inputs reasonably

quickly with minimal steady-state error. False positives are very undesirable. Any

fault detection system implemented with the goal of control reconfiguration must be

sufficiently fast as to allow for reconfiguration before undesired aircraft maneuvers

become unsafe.
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5.2 Step Fault Detection

The fault tracking performance of F for a small step fault in the static pressure

measurement is shown in Figure 5.1. At time t = 1 second, a step fault of magnitude

0.01 psi is injected into the static pressure measurement signal for the linear and

nonlinear generalized plant using the filter F . The simulation has a duration of 4

seconds and inertial and pitot sensor noise is included. The filter outputs f̂ should

track the fault in the faulted static pressure channel and additionally show no fault

in the unfaulted total pressure channel.

The filter detects the static pressure fault in the linear model rapidly, rising to cor-

rectly estimate the fault magnitude within 1.5 seconds. Additionally, the filter fault

estimate effectively tracks the static pressure measurement fault after detection. The

filter does not yield errorless fault tracking, however, due to the genGTM rank defi-

ciency described in Section 4.2. The slowest pole of F has a frequency on the order

of 10−5 rad/s, so the fault estimation error will grow quite slowly. The fault estimate

will eventually decay to zero in the faulted channel and drift away from zero in the

unfaulted channel. Measures to combat this drift must be designed into any algorithm

that can be implemented on an operational system.

Because noise on the inertial sensors is fed into the filter, the resulting fault estimates

in both channels will be noisy to some extent. In these simulations, however, the

fault estimate in the total pressure fault channel will generally exhibit slightly higher

noise levels relative to the static pressure fault estimate. As stated in Section 4.2,

inertial sensor noise couples to f̂pt more strongly than f̂ps , accounting for the higher

noise levels in the total pressure estimate. Since the inertial measurements are fed

into the airspeed-hold autopilot, the filter relies on these measurements to detect the

presence of a fault in the airspeed measurement more than it does for the altitude

measurement. Consequently, the noise levels in f̂pt are larger. While the H∞ filter is

designed to minimize the effect of sensor noise on the fault estimates by penalizing

high frequency filter outputs, noise in the estimates cannot be entirely eliminated.
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Figure 5.1: Fault estimation: ps step fault, linear and nonlinear GTM
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Next, the same simulations are conducted with a total pressure fault rather than a

static pressure fault. Figure 5.2 shows that the filter detects the total pressure fault in

the linear model and tracks the fault with some residual noise for the reasons explained

above. The filter correctly estimates no fault on the static pressure measurement.

Similar to the static pressure fault case, the estimates will eventually drift during

long simulations.

Next, a fault of equal magnitude injected simultaneously into the static and total

pressure channels will not have an impact on the airspeed measurement. Because

such a compound fault has limited observability, it is interesting to examine the

ability of F to detect such a condition. Again, 0.01 psi step faults are injected into

both the static and total pressure measurements at time t = 1.

Figure 5.3 shows the fault estimates for the simultaneous fault in the nonlinear GTM.

Figure 5.4 shows the control input and aircraft state responses of the nonlinear GTM

simulation for the simultaneous fault condition. The simultaneous fault results in a

bias in the altitude measurement while the indicated airspeed is correct. Note that all

of the control inputs and aircraft states– except the altitude measurement–converge

back to the original trim condition. The only effect of the simultaneous fault is that

the aircraft converges to an offset altitude. Despite the simultaneous fault that does

not appear in the airspeed measurement at zero frequency, the filter is able to detect

the initial step in both measurements as faults. The filter uses the inertial state

measurements to track the fault by compensating for the dynamic response of the

aircraft to the step changes in the measurements. The fault estimates eventually

decay to zero due to the unobservability of this fault in steady state. Because this

decay is so slow, however, a fault identification and reconfiguration algorithm would

have sufficient time to respond to the fault occurring in this simulation.

5.3 Time-Varying Fault Detection

While none of the faults described in Chapter 2 would necessarily exhibit a clear

periodic behavior, it is possible that loose, partial port blockages or fluid in the

pneumatic lines could cause time-varying fluctuations in the air data measurements.

Therefore, a full analysis must include investigations into the ability of the fault

detection algorithm to succeed in the event of a fault with frequency content.

Because the closed-loop aircraft dynamics roll off at moderate frequencies, high fre-
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Figure 5.2: Fault estimation: pt step, linear and nonlinear GTM
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Figure 5.3: Fault estimation: simultaneous ps and pt step faults, linear and nonlinear
GTM
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pt step faults
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quency variations in the pressure measurements will not adversely impact the GTM

aircraft in controlled flight. Fluctuations with lower frequency content, however, could

pose a problem.

To examine the ability of the filter to detect time-varying faults, sinusoidal faults

replace the step faults in the previously detailed simulations. The amplitude of the

injected sinusoids is 0.01 psi – as with the step faults – and the first frequency con-

sidered is 0.03 radians per second. The faults are initiated with the simulation at

t = 0 and run for 45 seconds in order to capture data over a larger fraction of the

fault period. Figure 5.5 shows the fault estimate tracking for the linear and nonlinear

GTM models with a static pressure measurement fault. The filter tracks the slow

sinusoidal fault well and properly indicates nominal operation for the unfaulted total

pressure measurement channel.

The filter has shown positive results for steady-state faults and for slowly time-varying

faults, so an examination of a higher frequency fault is considered. The previous

simulation is run with a fault frequency of 0.3 radians per second – an order of

magnitude faster – and all other parameters left the same. Figure 5.6 shows the fault

estimates tracking well in the linear model, but the estimates in the nonlinear model

begin to drift away from the true fault. With time, the estimates become sufficiently

inaccurate to suggest a false positive fault identification in the total pressure channel.

This example illustrates the degraded performance of the filter for time-varying faults

of increasing frequencies. Moreover, it shows some limitations of this fault detection

approach and filter design for a nonlinear system.

5.4 Filter Disturbance Rejection

Pilot reference commands in theH∞ filtering problem are the analog of disturbances in

the H∞ control problem. When a pilot supplies a reference command for the aircraft

to change airspeed or altitude, it desirable that the fault detection filter performs

such that false positives are not triggered due to the aircraft’s motion. Furthermore,

it is important that a fault that exists can continue to be detected during aircraft

maneuvers.

To determine whether the filter can avoid false positive detections when the aircraft is

changing airspeed or altitude, simulations of the nonlinear GTM are conducted with

no faults and various changes in the altitude or airspeed reference commands.
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Figure 5.5: Fault estimation: ps 0.03 rad/s sinusoidal fault, linear and nonlinear GTM
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Figure 5.6: Fault estimation: ps 0.3 rad/s sinusoidal fault, linear and nonlinear GTM
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Figure 5.7 shows the filter disturbance rejection for two different steps in the airspeed

reference command at t = 5 seconds: 3 knots and 10 knots. The smaller airspeed

step of 3 knots roughly corresponds to the 0.01 psi error in the dynamic pressure

that was simulated previously. The static pressure measurement fault estimate is

hardly impacted by this maneuver. The total pressure measurement fault estimate

is influenced more, but the estimate is approximately 0.001 – an order of magnitude

smaller than the 0.01 psi fault. By properly designing thresholds to declare faults,

one could effectively ignore these small variations during a small airspeed change.

For more significant maneuvers – such as the 10 knot airspeed step depicted in Fig-

ure 5.7 – the filter outputs could indicate a false positive. This suggests, not surpris-

ingly, that the fault detection filter is most robust to disturbances such as changing

reference commands when the aircraft remains near the reference flight condition at

which the filter was designed.

Figure 5.8 shows the filter disturbance rejection for two different steps in the altitude

reference command: 20 feet and 100 feet. Similar to the step choices for the airspeed

maneuvers, the smaller 20 foot altitude step corresponds roughly to the step in the

altitude measurement when a 0.01 psi fault occurs in the static pressure measurement.

For an altitude change of this magnitude, very little error in the fault estimates is

observed. The error is, in fact, less than the error for the 3 knot airspeed step. This is

due to the fact that the aircraft dynamics do not change for altitude variations nearly

as significantly as they change when airspeed is altered. Even small airspeed variations

can significantly alter aerodynamic forces and moments on the aircraft. Altitude

variations must be large in order to experience total pressures and total temperatures

that are sufficiently different to cause a similar change in the aerodynamic forces and

moments on the aircraft.

5.5 Summary

These experiments demonstrate that this filter can work well at detecting small

steady-state and slowly time-varying faults in regions of the flight envelope near the

reference flight condition at which the aircraft is trimmed and for which the filter is

designed. The next chapter will explore refinements to this fault detection algorithm

in order to better understand how successfully faults can be detected throughout the

flight envelope of the aircraft.
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GTM simulation
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GTM simulation
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Chapter 6

Scheduling and Estimate Blending

Analysis of the fault detection results presented in Chapter 5 indicates that faults

can be well-detected provided that aircraft is operating at or near the reference flight

condition for which the filter is designed. While this is promising, any effective,

implementable fault detection algorithm must perform consistently for most or all

operating points within the flight envelope. The fault detection algorithm, therefore,

must be refined in order to extend its performance capabilities beyond the limited

cases shown in Chapter 5. This will allow for a more realistic assessment of the suc-

cesses – and remaining challenges – associated with the model-based fault detection

techniques presented in this thesis. Refinements to the fault detection filters exam-

ined in this chapter include: control scheduling, filter scheduling, DK-iteration filter

synthesis, and filter output blending approaches.

For a model-based approach, the characterization of the underlying dynamics of the

model–and the ability to account for variations of those dynamics–is crucial. Before

making any adjustments to the filter design, it is important to recall that the aircraft

autopilot described in Section 3.4 was designed for a single flight condition, shown in

Equation 3.14. Open-loop aircraft dynamics vary according to the aircraft operating

point; using a controller designed for a single operating point for a set of plants can

yield a set of closed-loop systems with significant dynamics variation across the set. A

filter designed for just one of these conditions (as in Chapter 4) can produce erroneous

fault estimates at off-design conditions due to the variation of the closed-loop system

dynamics.
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In order to demonstrate this behavior, fault detection performance for a set of GTM

operating points is examined using the previously designed filter and control law. At

the low altitudes flown by the GTM, variations in altitude between operating points

have negligible effects on the associated aircraft dynamics. Changes in airspeed have

a more significant effect on in-flight aerodynamic forces, and these variations will

more adversely impact fault detection efficacy. The GTM model is trimmed and

linearized about a set of steady, level reference flight conditions; airspeeds vary from

60 to 90 knots in 5 knot increments, and all altitudes are 500 feet. This results in

seven distinct GTM models for simulation. The same control law from Chapter 3 and

filter from Chapter 4 are used for each of the models. The model corresponding to

the original trim condition from Chapter 3 (75 knots airspeed, 500 feet altitude), for

the purposes of explanation, is considered the design model since it is used to develop

the control law and filter designs. All other models are considered off-design models.

Figure 6.1 shows the fault estimate response to a 0.01 psi static pressure step fault

for the GTM linearized about each of the seven trim conditions associated with the

airspeed sweep. As shown in the previous chapter, the filter properly estimates the

static pressure measurement fault and correctly indicates no fault in the total pressure

measurement for the design model. For the set of off-design models, however, there

are significantly larger estimation errors for the static pressure channel than for the

design model. In the total pressure channel, fault estimates incorrectly indicate that

the total pressure measurement is somehow faulted. These errors are sizeable, and

similar unacceptable errors are seen when introducing a step fault in the total pressure

channel or sinusoidal faults in either channel. Measures to reduce dynamics variations

across the flight envelope are required for the filter to more consistently estimate

faults.

6.1 Control and Filter Scheduling

Implementing a scheduled controller is the first step to improving fault detection

performance and does not require modification of the filter. The control law was

originally developed using a loop-at-a-time approach, and a scheduled controller can

be achieved by scheduling each tracking loop in succession. While the complexity

of gain scheduling can vary significantly depending on the particular application,

designing the scheduled controllers for this thesis is a simple process. For each tracking

loop, a new controller of the same type as described in Section 3.4 is designed for
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Figure 6.1: Fault detection: performance across airspeed swept models with ps step
fault
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the linear model corresponding to the 90 knots reference flight condition. Constants

are adjusted such that time and frequency response characteristics of the controlled

aircraft model correspond closely to those of the original controlled GTM model from

Chapter 3. Adjusting the controller gains in this manner removes significant variation

of the full aircraft dynamics between those two conditions. After determining the

appropriate constants for the 90 knots reference flight condition, an interpolation is

performed for airspeeds between 75 and 90 knots. This process yields the scheduled

set of controllers over the airspeed sweep.

Simulations with the scheduled control law are conducted in order to assess the fault

detection performance across the airspeed interval. A linear GTM model is derived on

2.5 knot intervals over the entire airspeed sweep(i.e. [75, 77.5,...90]). As with previous

simulations, 0.01 psi faults in the static and total pressure channels are injected into

each of these models. Figures 6.2-6.3 show the fault estimate responses without and

with control scheduling, respectively. False positives continue to be a problem, and the

estimates from the off-design models consistently exhibit a scaling behavior. Control

scheduling is shown to insufficiently reduce model variation between reference flight

conditions. Perhaps more advanced techniques in control design and scheduling could

lead to marginal improvements, but filter refinement stands to have a greater impact

upon fault detection performance.

While the filter performs well at the flight condition for which it was designed, it is

sensitive to measurement changes at off-design flight conditions. One approach to

counter the negative effects of the filter sensitivity is to deploy a set of fault detec-

tion filters that are designed for different operating points within the flight envelope.

Scheduling filters in this way forms the basic principle behind more advanced linear,

parameter-varying filtering designs, and it can significantly improve the utility of a

fault detection algorithm. [30]

For each reference condition used in the control scheduling, a filter is synthesized

in the manner outlined in Chapter 5. The design of the filters (i.e. their weighting

functions) remains unchanged. As with the control scheduling simulations, static

and total step faults are injected into the models–this time adding scheduled filters–

across the airspeed sweep. Simulation results are shown in Figures 6.4-6.5. Fault

tracking performance is quite strong since each filter is tuned for the GTM dynamics

at each flight condition. Furthermore, no false positive fault estimates are provided
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Figure 6.2: Fault detection: ps step fault with control scheduling over [75 90] knots
airspeed interval
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Figure 6.3: Fault detection: pt step fault with control scheduling over [75 90] knots
airspeed interval
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Figure 6.4: Fault detection: ps step with control and filter scheduling over [75 90]
airspeed interval

72



0 5 10 15 20
−2

0

2

4

6

8

10

12
x 10

−3

time [s]

f p s [p
si

]

 

 

f
fhat Design
fhat Off−design

0 5 10 15 20
−2

0

2

4

6

8

10

12
x 10

−3

time [s]

f p t [p
si

]

Figure 6.5: Fault detection: pt step with control and filter scheduling over [75 90]
airspeed interval
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by the filters. Of course, it is not feasible to synthesize a unique fault detection

filter for every possible point in the flight envelope in the manner used here. For an

implementable fault detection system, it is necessary to accurately estimate faults at

operating points in between the filter design points. Put another way, the robustness

of the fault detection filter(s) must be further enhanced in order to ensure adequate

performance for a general operating point in the flight envelope.

6.2 Uncertainty Modeling and DK -iteration

Recall from Chapter 4 that the H∞ problem formulation does not include uncertainty

modeling. By mathematically representing model uncertainty within a generalized

plant prior to controller(filter) synthesis, a H∞ controller can be chosen such that the

closed-loop system is more robust to uncertainty. This improvement to the original

GTM generalized plant yields a more realistic model for filter synthesis and fault

detection simulations. The DK -iteration filter synthesis technique is employed in

order to compare fault detection performance with the previously considered H∞

approach.

6.2.1 Problem Formulation

The DK -iteration procedure is a numerical technique for approximating µ-synthesis

controller design. In µ-synthesis design, the goal is to minimize the structured singular

value µ of the robust performance problem for an uncertain generalized plant. D-K

iteration combines H∞ synthesis and µ-analysis techniques and can yield improved

results.

Uncertain perturbations to the system of interest are represented by the diagonal

matrix

∆ = diag{∆i} (6.1)

where each ∆i represents a particular uncertainty source. The controller K and

plant P are configured with ∆ to form the general control configuration for uncertain

systems shown in Figure 6.6. The system contains three sets of inputs: perturbations

w, disturbances d, and controls u. There are three sets of outputs: perturbation

outputs z, errors e and measurements y.
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Figure 6.6: System configuration for uncertain plant control synthesis

The design objective is to choose a stabilizing controller K such that for all pertur-

bations ∆, belonging to the set of allowable perturbations, the system is stable and

satisfies

‖ FL[FU(P,∆), K] ‖∞≤ 1 (6.2)

The upper linear fractional transformation represents the perturbed plant in Equa-

tion 6.2. Define D to be the set of matrices D which satisfy D∆ = ∆D. The parame-

ter considered in the DK -iteration procedure is the upper bound on µ (Equation 6.3)

represented in terms of the scaled singular value:

µ(N) ≤ min
D∈D

σ̄(DND−1) (6.3)

For DK -iteration, the goal is to find the controller minimizing the peak value of the

upper bound over all frequency

min
K

(min
D∈D
‖ DN(K)D−1 ‖∞) (6.4)

This computation is an iterative, two-step minimization process:

1. K-step: Synthesize an H∞ controller for min
K
‖ DN(K)D−1 ‖∞ with fixed D(s).

2. D-step: Find D(jω) to minimize σ̄(DND−1(jω)) with fixed N . The magnitude

of each element of D(jω) is fit to a stable, minimum-phase transfer function

D(s).
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This iteration is repeated until satisfactory performance is achieved, the H∞ norm

no longer decreases, or ‖ DND−1 ‖∞< 1 [20].

As with the H∞ synthesis detailed in Chapter 4, the objective of the DK -iteration

approach is to design a filter F to track fault signals in the static and total pressure

measurements rather than other exogenous signals. To formulate the DK-iteration for

the GTM, an uncertainty model must first be created. Input uncertainty is frequently

modeled in control design due to its presence in any practical application. Perturbed

throttle and elevator control inputs uP are given by

uP = (I + ∆IWI)u (6.5)

whereWI is the input uncertainty weight and ∆I is the 2x2 block-diagonal, normalized

input uncertainty. The uncertainty is norm-bounded to be less than 1. For simplicity,

a constant WI of 0.50 is chosen, representing a maximum of 50% uncertainty in either

the elevator command or throttle command. This is a large level of uncertainty that

will provide a conservative performance estimate. A block diagram of the input

uncertainty architecture is shown in Figure 6.7. Using this architecture and the

GTM model derived previously, the MATLAB dksyn function is used to synthesize

the filter.

-

∆WI
-

u

-

?e+
-

uP

Figure 6.7: Multiplicative input uncertainty

6.2.2 Results

The GTM fault detection simulations are configured for control signal perturbations.

The previous results show that the accuracy of fault estimates is sensitive to small

changes in the aircraft’s flight condition. This sensitivity motivates filter scheduling

across many flight conditions. Before moving forward with implementing a scheduled

filter throughout the flight envelope, however, it is useful to ascertain whether the

uncertainty modeling and DK -iteration approach can improve filter accuracy at a

given flight condition in the presence of input perturbations.
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The hinfsyn and dksyn filters are generated based on the GTM linear model asso-

ciated with the 75 knot, 500 foot reference flight condition. Rather than simulating

the filters with the model upon which they were designed, the GTM model is then

linearized about the 77.5 knot, 500 foot reference flight condition, and the H∞ and

DK -iteration filters are simulated with that model in the presence of uncertainty. This

allows for a comparison of filter performance–in the presence of input uncertainty–at

an off-design operating point. A filter that is more effective at off-design flight con-

ditions is more suitable for extension to the entire flight envelope as it provides an

additional level of robustness.

For constant step faults such as those used previously, both filters perform similarly.

The differences in filter performance, while small, become more apparent when ex-

amining time-varying faults. This is to be expected, as input uncertainty will have

the greatest impact when the control inputs are varying. For time-varying faults, the

controller commands more control surface actuation than for a step fault (which al-

lows the aircraft to reach a new trim condition relatively quickly). The injected static

pressure fault is a sinusoid with 0.01 psi amplitude and 0.03 rad/s frequency. Twenty

random input uncertainty models are selected and the fault detection performance

is repeatedly simulated with each uncertainty model. Figure 6.8 shows the overlaid

fault estimate responses with the DK -iteration filter simulation results in the top two

plots and the H∞ filter simulation results on the bottom.

Comparing fault tracking in the static pressure measurement channel, both the DK

and H∞ track the sinusoidal fault well. For a filter simulated at an off-design flight

condition, this is a promising sign. Additionally, there is little variance in the fault

estimates among the twenty uncertain models; either filter can accommodate signifi-

cant input uncertainty and track faults of this type. In the unfaulted total pressure

measurement channel, both filters fail to track zero and show small sinusoidal cross-

coupling effects. The cross-coupling is potentially small enough to avoid triggering a

fault flag depending on the chosen thresholding scheme. The effects of uncertainty

are also more apparent in this channel. The DK filter has a more consistent response

with a smaller variance in the fault estimate between simulations. The H∞ does

not perform as well, and for particular uncertainty combinations the fault estimate

response begins to diverge from the other simulated responses. These differences are

small, but they show that the filter performance can be improved to be less sensitive

to flight conditions and unmodeled dynamics–yet still provide useful fault estimates.
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Figure 6.8: Fault detection performance comparison for DK -iteration and H∞-
syntheis with multiplicative input uncertainty
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6.3 Estimate Blending

Using the DK -iteration approach, a series of scheduled filters can be generated as

in Section 6.1. For automated implementation, a process must be established to

effectively stitch the filters together so that an aircraft moving about different flight

conditions can continue to receive a smooth, accurate fault estimate. There are a

variety of ways to approach this problem, including LPV techniques. For this thesis,

not specifically focused on the estimate blending problem, a simpler approach will be

explored in order to understand the initial fault detection abilities and shortcomings

of model-based techniques.

A series of filters are synthesized over the airspeed sweep [75, 76, 77...90] knots and

500 feet altitude. These filters are scheduled based on that airspeed vector, with

linear interpolation on the filter state space matrices between breakpoints.

It is desirable that the aircraft be able to move about the flight envelope without

inducing a false positive fault indication in either the static or total pressure channel.

To verify that this is possible, the aircraft is simulated at the 90 knot, 500 foot steady,

level reference flight condition. At t = 5, the aircraft is provided a -20 knot airspeed

step, causing the aircraft to slow through (and beyond) the entire airspeed sweep for

which filters were designed. This is repeated 15 times with random input uncertainty,

and Figure 6.9 shows the overlaid fault estimate responses.

The filter correctly indicates no fault in either channel and provides a consistent

response in the presence of uncertainty. There is a larger variance on the total pressure

fault estimate, yet it is not so large as to indicate a false positive. Due to changes in

total pressure associated with airspeed changes, it is expected that the total pressure

fault estimates may have a higher variance than the static pressure.

Next, the same simulation is performed with simultaneous static and total pressure

step faults of size 0.01 psi. The faults occur at the same time the aircraft is com-

manded to reduce airspeed, t =5 seconds. With properly function fault detection

filters, the aircraft should be able to reduce its airspeed yet still correctly estimate

the faults. Figure 6.10 shows that the filter is able to track the faults well despite the

moving aircraft. The estimate in the total pressure measurement channel is, again,

less precise than the static fault measurement. Further refinements to this algorithm

could be used to fine-tune filter performance to meet particular specifications.

79



0 5 10 15 20 25 30 35 40 45

−0.01

−0.005

0

0.005

0.01

f p s [p
si

]

0 5 10 15 20 25 30 35 40 45

−0.01

−0.005

0

0.005

0.01

f p t [p
si

]

 

 

f
fhat (dksyn)

Figure 6.9: Disturbance rejection: -20 knot airspeed step with scheduled control and
blended DK -iteration filters
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Figure 6.10: Disturbance rejection with static and total pressure step faults: -20 knot
airspeed step with scheduled control and blended DK -iteration filters
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6.4 Summary

This chapter has demonstrated a number of refinements to the fault detection tech-

nique in order to improve performance at conditions for which the filter and controller

were not specifically designed. The approach was improved via scheduled control, in-

put uncertainty modeling, DK -iteration filter synthesis, linear interpolation based

filter scheduling. The improved filters were shown to be successful at detecting a

simultaneous fault in a maneuvering aircraft as well as rejecting effects related to

commanded aircraft maneuvers.
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Chapter 7

Conclusion

This thesis developed a simple model of an air data system based upon knowledge of

industry-standard devices. This model was combined with the a nonlinear longitudi-

nal model of the NASA GTM aircraft in order to provide a fault detection research

platform. Using this platform, this thesis developed a method to detect faults in a

pitot-static probe using H∞ synthesis of a robust fault detection filter. Signal weights

were chosen to circumvent the unobservable fault at low frequency. The performance

of the fault detection filter was analyzed on the linear and nonlinear longitudinal

GTM dynamics for individual step faults, individual sinusoidal faults, and a simul-

taneous, equal magnitude fault in each pressure measurement. This approach was

shown to be effective for detecting step faults and combinations of step faults. The

filters were also effective in rejecting the influence of small pilot inputs upon the fault

estimates. Large aircraft maneuvers were shown to cause sufficient inaccuracy in the

fault estimates to incorrectly indicate the presence of a fault when it did not exist.

This motivated the need for a filter that could more accurately detect faults at off-

design conditions in broader regions of the flight envelope. Refinements to the filtering

technique were explored, starting with scheduling the controller in order to reduce

dynamics variations at different reference flight conditions. This yielded improve-

ments but was insufficiently effective. Filter scheduling showed that consistent fault

estimates could be achieved at different reference flight conditions provided the air-

craft was flying at a filter design condition. The need for performance between design

conditions remained, and an alternative filter synthesis technique using DK -iteration

with uncertainty modeling was examined. Extending this technique to an expanded
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flight envelope, successful simultaneous step fault detection and disturbance rejection

was demonstrated.

Going forward, enhancements in air data probe modeling must be made in order to

improve the knowledge base necessary to better detect and identify air data system

faults should they occur. This thesis considered relatively simple faults, but faults

involving complex heating mechanisms and very slow-acting drift faults pose difficult

challenges for air data system reliability. In order to provide true fault tolerance

for air data systems, approaches to these problems must be explored. Perhaps the

most important short-term goal is to enhance the fault detection algorithms so that

estimates are more accurate at off-design conditions. This thesis has considered fault

detection performance in a small piece of the flight envelope with relatively small

aircraft maneuvers. Real aircraft undergo far more extreme maneuvers over a wide

flight envelope, and extending these results to those scenarios is required. Using

linear parameter-varying techniques has shown promise in other applications and

would potentially provide a stronger understanding of fault tolerance implications at

all parts of the flight regime.
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