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Abstract

Loss of control in flight is among the highest aviation accident categories for both the

number of accidents and the number of fatalities. The flight controls community is

seeking an improved validation tools for safety critical flight control systems. Current

validation tools rely heavily on linear analysis, which ignore the inherent nonlinear

nature of the aircraft dynamics and flight control system. Specifically, current prac-

tices in validating the flight control system involve gridding the flight envelope and

checking various criteria based on linear analysis to ensure safety of the flight control

system. The analysis and certification methods currently applied assume the air-

crafts’ dynamics is linear. In reality, the behavior of the aircraft is always nonlinear

due to its aerodynamic characteristics and physical limitations imposed by the actu-

ators. This thesis develops nonlinear analysis tools capable of certifying flight control

laws for nonlinear aircraft dynamics. The proposed analysis tools can handle both

the aerodynamic nonlinearities and the physical limitations imposed by the actuators

in the aircrafts’ dynamics. This proposed validation technique will extend and enrich

the predictive capability of existing flight control law validation methods to analyze

nonlinearities. The objective of this thesis is to provide the flight control community

with an advanced set of analysis tools to reduce aviation fatalities and accidents rate.
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Chapter 1

Introduction

1.1 Motivation

Safety-critical aerospace systems require extensive validation to ensure safety prior

to entry into service. NASA’s Aviation Safety Program (AvSP) aims to reduce the

fatality rate for commercial aircraft (e.g., large transports, general aviation, and ro-

torcraft) by 90% by 2022 [21]. A key challenge to achieving this goal is certifying

safety and performance of the flight control systems. Loss of control during flight is

among the highest accident categories across all vehicle classes for both the number

of accidents and the number of fatalities [21]. Figure 1.11 shows loss-of-control (LOC)

in flight is responsible for 35% of fatalities and 22% of accidents in the commercial

fleet from 2001 through 2009. Hence, it is crucial to validate proper functionality of

the flight control system throughout the flight envelope for both nominal and unusual

conditions (e.g., inclement weather, physical damages in aircraft).

Current flight control system validation practices involve gridding the flight enve-

lope and checking stability/performance criteria based on linear analysis to ensure

the safety of the flight control system. Standard analysis and certification methods

assume linear aircraft dynamics, yet the true behavior of the aircraft is nonlinear.

To provide some confidence that the flight control system will perform properly in

the presence of nonlinearities, exhaustive nonlinear Monte Carlo simulations and ex-

tensive flight tests are performed [21]. These two techniques, due to their random

nature, offer no guarantees regarding the worst-case behavior of the flight control

system. Additionally, software-in-the-loop and hardware-in-the-loop tests are also

1Taken from page 23 of http://www.boeing.com/news/techissues/pdf/statsum.pdf
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Figure 1.1: Statistical Summary of Fatal Accidents: Worldwide Commercial Jet Fleet
(2001 - 2009)

performed to validate the flight control system. This validation process is extensive

and has been successful in the past. It is, however, becoming increasingly challenging

to validate due to the advent of complex nonlinear flight control algorithm in aircraft.

Two phenomena are primarily responsible for aircraft nonlinearities: (i) aerodynamic

nonlinearities for operating in high angle-of-attack, and (ii) rate and/or magnitude

saturation of flight control surfaces. Aerodynamic nonlinearities are inherent proper-

ties of the aircraft dynamics. The aerodynamics exhibit strong nonlinearities, espe-

cially when the aircraft is forced to operate at the boundary of or outside of the flight

envelope due to inclement weather, physical damages or high angle maneuvers. The

falling leaf mode in the F/A-18 aircraft is one such example. Several F/A-18 aircraft

were lost due to the nonlinear loss-of-control departure phenomenon known as the

falling leaf mode [19, 20, 25, 34]. The F/A-18 baseline flight control law underwent

an extensive validation and verification process without detecting a susceptibility to

the falling leaf motion. The failure to detect the falling leaf motion is not due to the

lack of an accurate aerodynamic model. In fact, the nonlinear simulation model of

the F/A-18 used in [6] is able to reproduce the falling leaf mode. Thus, the failure

to detect this susceptibility should be attributed to the lack of appropriate analysis

tools. The falling leaf motion is due to nonlinearities in the aircraft dynamics and

cannot be replicated with linear models.
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Rate and magnitude saturation in the control surfaces are other sources of nonlinear-

ities in the flight control systems. Saturation nonlinearities come from the physical

limitations imposed by the control surface actuators and makes the flight certification

process challenging. Current practices in flight control law certification process typi-

cally involve analyzing the effect of rate/magnitude saturation assuming linear model

of the flight control system. Unfortunately, the linearity assumption of the flight

system is a restrictive modeling assumption. When the actuators are saturated, the

aircraft is operating in the nonlinear regime and hence, in all likelihood, the linearity

assumption is not valid. Two motivational examples are the crash of a Grippen at

an air show [5] and the YF-22 crash landing [11]. Pilots of these two fighter aircraft

lost control due to actuator saturation.

There is a need for improved validation tools to extend the existing flight control

law verification and validation (V&V) methods. Nonlinear analysis methods capable

of analyzing nonlinear aircraft behaviors can certainly enhance and complement the

traditional V&V techniques. Unlike the traditional tools, which are only valid at

the boundary of the operational limits, nonlinear techniques can guarantee that the

worst-case behavior of the nonlinear flight control systems will be detected.

1.2 Thesis Contributions

Certification requirements for safety-critical aircraft come from the Federal Aviation

Regulations (FARs) [21]. Demonstration of compliance to the requirements is nontriv-

ial and involve analytical, simulation-based, and experimental methods. This thesis

focuses primarily on analytical-based certification procedures.

Analytical certification methods typically rely on quantifying stability and perfor-

mance metrics of the flight control systems. Two important, commonly used metrics

for evaluating stability and performance of flight control systems are (i) size of the

region-of-attraction (ROA), and (ii) induced input-output gain. Computational tools

for estimating these metrics for linear systems, even under rate/magnitude saturation,

are well-developed. Recently, significant research [48, 50, 55, 56] has been performed

on the development of nonlinear analysis tools for computing robustness metrics such

as ROA and input-output gains for nonlinear polynomial systems. These metrics are

local properties of polynomial systems. In other words, ROA of a polynomial sys-

tem is not guaranteed to be the whole state-space. These metrics are characterized

in [48,50,55,56] via conditions based on the Lyapunov/Storage function concept. The

3



conditions are then translated into optimization problems and solved via a polynomial

sum-of-squares (SOS) optimization [38] framework.

Unfortunately, the SOS optimization framework has two major disadvantages

1. The computational requirements for sum-of-squares (SOS) optimizations grow

rapidly with the number of variables and polynomial degree.

2. The polynomial SOS techniques can only be applied to the dynamics describ-

able by a smooth polynomial vector field. Hence, dynamics describing hard

nonlinearities like actuator saturation and/or rate limits can not be analyzed

using SOS techniques.

The major contribution of this thesis is to address these disadvantages and thus enable

the application of the SOS framework to flight control V&V.

One of the main contributions of this thesis is to demonstrate the application of

SOS techniques to more realistic flight control problems of moderate complexity (4/5

states, up to degree 5 polynomial). In our previous work [6], we have successfully es-

timated ROA for a 7-state, cubic degree flight control problem using SOS techniques.

Additionally, SOS techniques often suffer from dimensional scaling issues depending

on the problem. This is particularly true for flight control problems mainly due to the

presence of (i) both fast and slow modes in the dynamics, and (ii) nonhomogeneous

units description of the states (e.g, velocity is in ft/s and pitch rate is in rad/s). This

thesis provides insights on achieving numerical stability for solving large scale SOS

optimization problem. The presentation of the thesis emphasizes the details that

allow one to develop algorithms focusing on its practical implementation rather than

on the theoretical aspects of SOS algorithm.

In addition to suffering from the numerical issues, the polynomial SOS techniques

can only be applied to the dynamics describable by a smooth polynomial vector field.

Hence, SOS techniques are not suitable for analyzing systems with rate/magnitude

saturation. One of the main goals of this thesis is to analyze polynomial systems with

saturation. Two approaches are proposed to model saturation. These approaches are

such that the polynomial SOS optimization framework is retained as the computa-

tional tool. The first approach relies on a robustness analysis framework, known as

integral quadratic constraints (IQCs). IQCs are capable of handling non-smooth non-

linearities, e.g. actuator saturation by treating the nonlinearities as a perturbation

4



to the linear dynamical system. SOS and IQC frameworks are utilized to formulate

a dissipation inequality for analyzing induced L2 gain of the polynomial systems in

feedback with saturation. The second approach models the saturation function as a

convex combination of piecewise linear functions [12, 23, 24]. The results presented

in [12, 23, 24] are extended in this thesis for saturated polynomial systems. SOS

techniques are then applied for estimating region-of-attraction of such systems.

The content and the contributions of each chapter are outlined below.

Chapter 2 provides a brief review of necessary background materials for developing

subsequent chapters. This chapter presents introductory discussion on the follow-

ing topics: (i) ROA and induced gain, (ii) SOS optimization, (iii) IQC framework,

and (iv) S-procedure. The analysis framework in this thesis relies on making con-

nections among these topics. This chapter presents a high-level discussion on these

connections.

Chapter 3 proposes a systematic approach to approximate nonlinear aircraft dy-

namics with polynomial vector fields. The longitudinal dynamics of NASA’s Generic

Transport Model (GTM) are used to demonstrate the approach. The approximated

GTM polynomial model is analyzed extensively using SOS based techniques. Since

the SOS based techniques are applicable only to polynomial systems, the polynomial

approximation is an essential step of the analysis procedures. More importantly, a

sufficiently accurate polynomial approximation is desirable. Several ad-hoc methods

to validate the accuracy of the GTM polynomial approximations are also proposed.

In Chapter 4, the SOS based approaches for estimating the ROA and the local

induced L2 gain of polynomial dynamics are presented. Unfortunately, the SOS

optimization problems for moderately sized (≥ 4-5 states, more than cubic degree

polynomial) problem is computationally challenging and often suffer from numerical

scalability issues. Thus far the SOS techniques have not been applied to moderately

sized, real engineering systems like flight control systems. The main contribution of

this chapter is in successfully applying the proposed SOS approaches to estimate the

ROA and the induced gain for a moderately sized (4-5 states), degree 5 polynomial

GTM flight control example.

Chapter 5 considers the local induced L2 gain analysis problem for polynomial sys-

tems in feedback with saturation. This chapter presents a dissipation inequality con-

dition for estimating the induced L2 gain upper bound. The main contribution of this

5



chapter is in formulating the dissipation inequality that incorporates IQC framework

to model the saturation. For polynomial systems, the dissipation inequality is verified

using SOS optimizations. The effectiveness of the proposed method is demonstrated

on two numerical examples, including the short period dynamics of the GTM model

with rate limits.

Chapter 6 presents an ROA estimation technique for polynomial systems with sat-

uration. The saturation function is modeled as a convex combination of piecewise

linear functions, as proposed in [13]. It has been shown that the set invariance con-

ditions presented in [13] are readily extended for polynomial systems. An SOS based

algorithm is proposed to estimate the region of attraction. Finally, the proposed

method is verified on a simple 2-state polynomial system.

In Chapter 7, we analyze the performance of nonlinear systems in terms of L∞ norm.

In particular, the chapter computes the L∞ gain function as a performance metric of

the nonlinear systems. The technique relies on computing the reachable set for peak

input gain and then maximizing the output direction in the estimated reachable set.

The technique is then applied on the 4-state longitudinal GTM dynamics.

6



Chapter 2

Preliminaries and Notations

The thesis aims at developing computational tools for estimating local stability and

performance properties of nonlinear flight control systems. The nonlinearities primar-

ily arise from (i) aircraft dynamics: nonlinear equations of motion and aerodynamic

characteristics, and (ii) hard nonlinearities like actuator saturation and/or rate limit.

The thesis considers a polynomial description of the nonlinearities due to the aircraft

dynamics. Stability and performance are characterized, respectively, by region-of-

attraction (ROA) and induced input-output (I/O) gain of the systems. Appropriate

set invariance conditions, based on Lyapunov/dissipation theory, are formulated to

estimate the ROA and the induced I/O gain of the system. Finally, the invariance con-

ditions are solved using freely available Sum-of-squares (SOS) optimization toolbox.

This chapter presents a brief review of background materials needed to implement

the above steps.

2.1 Notations

The set of real numbers, complex numbers and non-negative integers are denoted

by R, C and N, respectively. Rn denotes the set of all n × 1 column vectors with

real number and Rn×m denotes the set of all n × m matrices with real entries. If

Q ∈ Rn×m then QT denotes the transpose of Q. Q is symmetric if Q = QT . The

matrix Q is positive (negative) semidefinite, denoted as Q � 0(� 0), if xTQx ≥
0(≤ 0) for all x ∈ Rn. Q is positive (negative) definite, denoted as Q � 0(≺ 0), if

xTQx > 0(< 0) for all x ∈ Rn. The notation a ∈ A is read as: a is an element of

A. X ⊂ Y means that X is a subset of Y . The notation Ω(V, c) denote the sublevel

7



set {x ∈ Rn : V (x) ≤ c}. Given V (x) and dynamics f(x), define the notation

D(V, f) := {x ∈ Rn : ∇V (x)f(x) < 0} ∪ {0}. The binomial coefficient indexed by

n and k is written as ( nk ).

2.2 Stability and Performance of Nonlinear Systems

This section briefly discusses the stability and performance metrics of nonlinear sys-

tems. Stability and performance metrics are characterized by the concept of ROA

and dissipation inequality condition, respectively. Readers are encouraged to refer to

standard nonlinear systems textbooks [31, 59] for a comprehensive treatment of the

topics presented in this section.

2.2.1 Region-of-Attraction

Consider an autonomous nonlinear dynamical system of the form:

ẋ = f(x), x(0) = x0 (2.1)

where x ∈ Rn is the state vector and f : Rn → Rn is a multivariable polynomial.

Assume that x = 0 is a locally asymptotically stable equilibrium point. This assump-

tion is without loss of generality because state coordinates can always be redefined

to shift an equilibrium point to the origin. For linear systems, asymptotic stability

of an equilibrium point is a global property. In other words, if an equilibrium point

is asymptotically stable then its state trajectory will converge back to the equilib-

rium when starting from any initial condition. For nonlinear systems, asymptotically

stable equilibrium points are not necessarily globally asymptotically stable. Conse-

quently, the state trajectory is not guaranteed to converge back to the equilibrium

when starting from any initial condition. This fundamental difference between asymp-

totic stability for linear and nonlinear systems motivates the interest in estimating

an invariant region around the equilibrium point. The ROA of an asymptotically

stable equilibrium point provides an estimate to the invariant region. Roughly, the

ROA is the set of initial conditions whose state trajectories converge back to the

equilibrium [31]. Formally, the ROA is defined as:

R =
{
x0 ∈ Rn : If x(0) = x0 then lim

t→∞
x(t) = 0

}
(2.2)
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If the ROA is small, then a disturbance can easily drive the system out of the ROA

and the system will fail to return to the stable equilibrium point. Thus, the size of

the ROA can be interpreted as a measure of the stability properties of a nonlinear

system around an equilibrium point.

The invariant region of a system is usually characterized by Lyapunov theory [31,59].

Conditions provided by Lyapunov stability theory define the invariant region, specifi-

cally the ROA. For simplicity, assume we have a globally asymptotically stable (GAS)

equilibrium (the case for locally stable equilibrium is considered in the following

chapters). Proving stability of the equilibrium roughly amounts to searching for an

energy-like function V (x) : Rn → R with the following properties: (i) V (x) has

to be positive definite, i.e. V (x) > 0 and (ii) the gradient of V (x) has to decrease

along the the flow of the system, i.e. ∇V (x)f(x) < 0 (except at origin). Roughly, a

function V (x) satisfying these conditions is known as a Lyapunov function.

For a GAS equilibrium, one must obtain a Lyapunov function that satisfies the two

conditions over the whole state space region. For a locally asymptotically stable

equilibrium, the conditions need to be satisfied on a certain region of the state-

space. The following chapter provides more detail on this issue. Here, we provide

an interpretation of the condition ∇V (x)f(x) < 0. The condition ∇V (x)f(x) < 0

indicates that the gradient of the V (x) and the flow of the system f(x) must have

a negative inner product. This is possible only if the angle between the gradient of

V (x) and f(x) is greater than 90 degree. The condition ∇V (x)f(x) < 0 also implies

that when a trajectory crosses a Lyapunov surface V (x) = c, it permanently moves

inside the sublevel set Ω(V, c) := {x ∈ Rn : V (x) ≤ c}. Hence, Ω(V, c) is an

invariant region and an estimate to the ROA. Consider Figure 2.1. The trajectories

of a globally stable plant are shown in (blue) solid line and the Lyapunov surfaces

are shown in (red) dashed ellipses. Two sublevel sets, Ω(V, 1) and Ω(V, 5), are shown

in Figure 2.1. The condition ∇V (x)f(x) < 0 are demonstrated on the Lyapunov

sublevel set Ω(V, 5) at the point where the trajectory crosses the Lyapunov surface.

This thesis relies on estimating the ROA of the nonlinear systems to quantify the

stability region. As discussed in this section, the stability region is characterized by

appropriate Lyapunov function and its sublevel set.
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Figure 2.1: Demonstration of ∇V (x)f(x) < 0 on the Lyapunov sublevel set Ω(V, 5).

2.2.2 Dissipation Inequality

Input-output analysis plays a central role in performance assessments of dynamical

systems. One way to characterize the performance of dynamical systems is to estimate

the induced L2 gain.

Consider nonlinear dynamical systems of the form:

ẋ = f(x, u) (2.3a)

y = h(x) (2.3b)

where x ∈ Rn is the state vector, u ∈ Rm is the input, and y ∈ Rp is the output.

Assume that f is an n× 1 polynomial function of x and u such that f(0, 0) = 0. Also

assume that h is an p × 1 polynomial function of x such that h(0) = 0. Denote this

system by S.

Now, define the L2 norm of a signal as:

||u||2 =

√∫ ∞
0

uT (t)u(t)dt (2.4)

If the above integral is finite then u is called an L2 signal. The L2-L2 input-output
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gain of S is defined as:

||S||L2→L2 := sup
||u||2 6=0

||y||2
||u||2

(2.5)

The L2 gain is usually characterized by a storage function V . V : Rn → R, is a

continuously differentiable, positive definite function (V (0) = 0 and V (x) ≥ 0). The

connection between L2 gain and storage function of a system is described by a stan-

dard result in systems theory, known as dissipation inequality. Lemma 1 provides the

standard dissipation inequality result which can be found in textbook [31].

Lemma 1. If there exists a γ > 0 and a continuously differentiable V : Rn → R such

that:

V (0) = 0 and V (x) ≥ 0 ∀x ∈ Rn (2.6)

γ2uTu− yTy − ∂V

∂x
f(x, u) ≥ 0 ∀x ∈ Rm and ∀u ∈ Rm (2.7)

then ||y||22 ≤ V (x(0)) + γ2||u||22. Moreover, if x(0) = 0 then ||y||2 ≤ γ||u||2.

This is known as dissipation inequality with storage function V (x) and supply function

s(u, y) = γ2uTu−yTy. The dissipation inequality in Equation 2.7 provides a sufficient

condition for the L2-L2 input-output gain to be less than γ. This follows by integrating

Equation 2.7 and using the fact that V (x) is positive definite. For a zero input (u = 0)

system, the storage function can also be shown to be a Lyapunov function of the

system.

However, one issue is that the polynomial system will not, in general, be globally

stable. If the system is only locally stable, then a sufficiently large disturbance can

drive the state, and the output of the system will be unbounded. Hence, the notion of

local L2 gain is introduced where attention is restricted to “local” inputs u that satisfy

||u||2 ≤ R where R ∈ R+. The local L2 gain is formally defined in Equation 5.5.

γR := sup
d∈L2,||u||2≤R

x(0)=0

||e||2
||u||2

(2.8)

Chapter 4 discusses the issue of estimating the local L2 gain, γR.

The Lyapunov and dissipation theory frameworks are standard tools in systems anal-

ysis. A direct application of Lyapunov and dissipation theory is to generate stability
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and performance certificates of nonlinear systems by computing a Lyapunov or stor-

age function. Unfortunately, it is difficult to generate any such certificates due to

the lack of computational tools for nonlinear systems. However, we can restrict our

search for Lyapunov or storage functions only to polynomial vector fields. With this

restriction, one can utilize the SOS optimization framework to generate Lyapunov or

Storage functions.

2.3 Sum of Squares (SOS) Optimization

This section provides a brief review of SOS optimizations. Additional details can

be found in [33, 38, 39]. A polynomial p is a sum of squares (SOS) if there exist

polynomials {fi}mi=1 such that p =
∑m

i=1 f
2
i . For example, p = x2 − 4xy + 7y2 is a

sum of squares since p = f 2
1 + f 2

2 where f1 = (x− 2y)2 and f2 = 3y2. Note that if p

is a sum of squares then p(x) ≥ 0 ∀x ∈ Rn. Thus p ∈ SOS is a sufficient condition

for a polynomial to be globally non-negative. Note that the converse is not true, i.e.

non-negative polynomials are not necessarily SOS polynomials.

SOS optimization problems involve SOS polynomial constraints. Hence, problems

with polynomial constraints can be posed within this optimization framework. The

computational solutions to these problems rely on connections between semi-definite

matrices and SOS polynomials [33, 38, 39]. Next section discusses the connections

between semi-definite matrices and SOS polynomials. Software available to solve

SOS optimization problems are also discussed.

2.3.1 Connections Between SOS Polynomials and Semidefinite Matrices

Theorem 2.1 below gives a concrete statement of the connection between sums of

squares and positive semidefinite matrices. We require two facts that follow from [43]

(refer to Theorem 1 and its preceding Lemma):

1. If p(x) is a sum of squares then p(x) must have even degree.

2. If p(x) is degree 2d (d ∈ N) and p(x) =
∑m

i=1 f
2
i then deg fi ≤ d ∀i.

Quadratic forms can be expressed as p(x) = xTQx where Q is a symmetric matrix.

Similarly, polynomials of degree ≤ 2d can be expressed as p(x) = z(x)TQz(x) where

the vector z contains all monomials of degree ≤ d. Define z as the column vector of
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all monomials in variables {x1, . . . , xn} of degree ≤ d: 1

z
.
=
[
1, x1, x2, . . . , xn, x

2
1, x1x2, . . . , x

2
n, . . . , x

d
n

]T
(2.9)

There are
(
k+n−1

k

)
monomials in n variables of degree k. Thus z is a column vector

of length lz
.
=
∑d

k=0

(
k+n−1

k

)
=
(
n+d
d

)
. This is known as the Gram matrix form.

An important fact is that p is SOS if and only if there exists Q � 0 such that

p(x) = z(x)TQz(x). Theorem 2.1 [8] provides a more formal description. Refer to [8]

for proof and additional details. Theorem 2.1 provides a connection between SOS

polynomials and positive semidefinite matrices.

Theorem 2.1. [8] Suppose p ∈ Rn is a polynomial of degree 2d and z is the lz × 1

vector of monomials defined in Equation 2.9. Then p is a SOS if and only if there

exists a symmetric matrix Q ∈ Rlz×lz such that Q � 0 and p(x) = z(x)TQz(x).

The proof of this theorem can be found in [8].

Remark 1: If p(x) can be written as p(x) = z(x)TQz(x) with Q � 0, then p(x) can

be represented as a sum-of-squares polynomial. Specifically, there exist polynomials

{fi(x)}mi=1 such that p(x) =
∑m

i=1 fi(x)2.

Remark 2: The Gram matrix Q is not necessarily unique. There may be multiple

symmetric Q satisfying p(x) = z(x)TQz(x) and this fact is demonstrated by the

following example [3]:

Example: The goal is to provide a Gram matrix representations of p(x) = 2x1
4 +

2x1
3x2−x1

2x2
2 +5x2

4. Notice p(x) can be represented as p(x) = z(x)TQpz(x) where:

z(x) =

 x1
2

x1x2

x2
2

 , Qp =

 2 1 −0.5

1 0 0

−0.5 0 5


Note that Qp is not positive semi-definite, i.e., one of the eigenvalues of Qp is negative.

Using the fact (x1x2)2 = (x1)2(x2)2, all possible Gram matrix representation of p(x)

can be written as p(x) = z(x)T (Qp + λN)z(x), where λ ∈ R and N =

 0 0 −1

0 2 0

−1 0 0

.

1Any ordering of the monomials can be used to form z.

13



Note that z(x)TλNz(x) = 0. The problem of finding an appropriate Gram matrix

form reduces to finding the values of λ ∈ R such that Qp + λN � 0. It can be shown

that λ = 1, 2 are possible candidates satisfying Qp + λN � 0.

2.3.2 Connection Between SOS Polynomials and ROA/Dissipation In-

equality

This section demonstrates how SOS polynomials can be used to characterize the ROA

and the dissipation inequality.

Assume that the Lyapunov or the storage function, in Section 2.2, is restricted to

be a polynomial. Consequently, both stability and dissipation inequality conditions

turn out to be polynomial non-negativity conditions given that the system dynamics

is represented via polynomial vector fields. The non-negativity conditions are relaxed

to be SOS polynomials. This SOS relaxation implies that the Lyapunov or the storage

function can be found by searching over a class of polynomial functions of a specified

degree satisfying the non-negativity constraints. The following example (taken from

[31]. Ch. 4, Ex. 4.27) demonstrates the procedure:

Example [31]. Consider the system:

ẋ1 = −x1 + x2
2 (2.10)

ẋ2 = −x2 (2.11)

The system is globally asymptotically stable around the origin. The objective is

to find a Lyapunov certificate proving global stability. In other words, we seek a

Lyapunov function V (x) satisfying (i) V (x) ≥ 0, ∀x 6= 0, and (ii) −∇V (x)f(x) > 0

for all x ∈ R2 ∪ {0}.

Assume the Lyapunov function to be of the following polynomial form, V (x) = 1
2
x2

1+

a1
4
x4

2, where a > 0 is to be determined. Define z(x) =

[
x1

x2
2

]
. The condition

−∇V (x)f(x) > 0 is a polynomial constraint and can be rewritten as z(x)TQz(x) > 0

with Q =

[
1 1

2
1
2

a

]
. The inequality z(x)TQz(x) > 0 can be relaxed to be an SOS

constraint. According to Theorem 2.1, z(x)TQz(x) is SOS if we can find a value of a

such that Q = QT � 0.

The example provides insight on how SOS polynomials can be used to generate the
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Lyapunov function. This is a contrived example whose analytical solution is easy to

compute. Choosing a > 1
4

will satisfy the conditions. In general, it is not easy to

compute the Gram matrix which proves non-negativity of a polynomial. Fortunately,

computing Gram matrix can be automated by available softwares for SOS optimiza-

tions. The next section discusses details on the software that will be used as the

primary computational tool in this thesis.

2.3.3 Software for SOS Optimizations

There are freely available MATLAB toolboxes for solving SOS optimizations, such as

SOSTOOLS [41], Yalmip [35], and SOSOPT [3]. These packages allow the user to

specify the polynomial constraints using a symbolic toolbox.

A SOS program is an optimization problem with a linear cost and SOS constraints

on the decision variables [41]:

min
r∈Rn

cTu (2.12)

subject to: ak,0(x) + ak,1(x)r1 + · · ·+ ak,n(x)rn ∈ SOS (k = 1, . . . Ns)

The vector c ∈ Rn and polynomials {ak,j} are given as part of the optimization data,

while r ∈ Rn are decision variables. SOS programs can be converted to semidefi-

nite programs (SDPs) using the connection between SOS polynomials and positive

semidefinite matrices. SOSTOOLS [41], Yalmip [35], and SOSOPT [3] are freely

available softwares which convert the SOS optimization into an SDP which is solved

with SeDuMi [46, 47] or another freely available SDP solver. Finally the solution of

the SDP is converted back to a polynomial solution.

A drawback of the SOS framework is that the size of the resulting SDP grows rapidly

if the SOS optimization involves polynomials with many variables and/or high degree.

For a generic degree 2d polynomial p(x) in n variables, the Gram matrix representa-

tion involves
(
n+d
d

)
monomials. An SOS constraint on p(x) is enforced via a positive

semidefinite constraint on the Gram matrix Q � 0 such that p(x) = z(x)TQz(x). For

example, for a generic degree 2d = 8 polynomial in n = 8 variables the Gram matrix

has dimension 495× 495 The size of this positive semidefinite constraint is at or near

the limits of current semidefinite programming solvers. While various techniques can

be used to exploit the problem structure [15], this computational growth is a generic

trend in SOS optimizations. For analysis of polynomial systems, this roughly lim-
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its the approach to systems with fewer than 8-10 states and cubic degree models.

Polynomial models of higher degree can be handled if there are fewer states.

Another drawback of the SOS framework is that it cannot handle hard (non-smooth)

nonlinearities like actuator saturations or rate limits. These nonlinearities cannot be

(globally) approximated by any polynomial function. Chapter 5 and 6 discusses how

to handle these hard nonlinearities for estimating the ROA and the induced gain in

terms of Lyapunov and storage function.

2.4 Generalized S-Procedure

This thesis analyzes stability and performance of the polynomial systems. The poly-

nomial system will not, in general, be globally stable. Consequently, the stability and

the dissipation inequality conditions will not hold globally, i.e., these conditions can

not be satisfied on the entire state-space. In other words, these conditions are only

valid within a certain region of the state-space. These conditions can be enforced to

hold locally using set containment constraints. For example, a locally asymptotically

stable system (ẋ = f(x)) around the origin requires the condition ∇V (x)f(x) < 0 to

hold within a sublevel set of Lyapunov function V (x). In other words, ∇V (x)f(x) < 0

is true on Ω(V, c), where c ∈ R. Set containment constraints provide a natural frame-

work to formulate this kind of local conditions.

The S-procedure [4] is heavily used in robust control theory for proving set con-

tainments involving quadratic functions. For example, let Fi be of the quadratic

form Fi(x) =

[
x

1

]T
Qi

[
x

1

]
, ∀i = 0, 1, ·,m with Qi = QT

i ∈ R(nx+1)×(nx+1). The

S-procedure addresses if the following set containment constraint is satisfied.

{x ∈ Rn : F1(x) ≥ 0, · · · , Fm(x) ≥ 0} ⊆ {x ∈ Rn : F0(x) ≥ 0} (2.13)

The S-procedure states that if there exists τi ≥ 0 ∀j = 1, · · · ,m such that F0(x) −∑m
i=0 τiFi(x) ≥ 0 ∀x, then the set containment constraint in Equation 2.13 holds. The

S-procedure can be generalized for higher order polynomials (not limited to quadratic

polynomials). Theorem 2.2 [3] provides the generalized polynomial S-procedure. Re-

fer to [3] for details on the proof.
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Theorem 2.2. [3] Let g1 and g2 be given polynomials. Define sets S1 and S2:

S1 = {x ∈ Rn : g1(x) ≥ 0}

S2 = {x ∈ Rn : g2(x) ≥ 0}

If there exists a polynomial s(x) : Rn → R such that:

(1) s(x) ≥ 0 ∀ x

(2) g1(x)− s(x)g2(x) ≥ 0 ∀ x

then S2 ⊆ S1.

Note that the S-procedure provides a sufficient constraint. The feasibility of the

problem proves the set containment constraint.

2.5 Summary

This chapter presented a summary of the background materials that are used through-

out the thesis. The chapter discussed the Lyapunov and the dissipation inequality

conditions, heavily used in the subsequent chapters, for estimating the ROA and the

induced I/O gain of nonlinear systems. The chapter also reviewed materials for the

SOS polynomials and SOS optimization framework. Available softwares for formu-

lating and solving SOS optimization problems are discussed. Finally, a generalized

S-procedure for handling set containment conditions is reviewed. Readers are encour-

aged to consult the suggested references for a more detailed treatment of all these

topics.
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Chapter 3

Polynomial Modeling of Aircraft

Dynamics

This chapter provides an ad-hoc procedure to generate a polynomial description of

the dynamics of an aircraft given its nonlinear mathematical model. The procedure

is demonstrated by applying it on a scaled experimental aircraft model, known as the

Generic Transport Model (GTM), developed by NASA. The nonlinear mathematical

model of the GTM dynamics is provided by NASA. This chapter develops a polyno-

mial description of the nonlinear GTM dynamics. Finally, the polynomial description

is validated against the nonlinear model of the GTM dynamics.

3.1 Motivation

The thesis focuses on assessing stability and performance of nonlinear flight control

systems. It turns out that the stability and performance of nonlinear systems can be

inferred by checking non-negativity of certain conditions associated with the nonlinear

systems. Unfortunately, for a generic nonlinear system (not necessarily polynomial),

checking non-negativity is “undecidable” [38]. The work of [38] develops SOS opti-

mization tool for deciding non-negativity of polynomial nonlinearities. This thesis

utilizes the SOS-based tools for assessing stability and performance of flight control

systems. Hence, it is an important step to formulate a polynomial description of the

nonlinear aircraft systems.

Unfortunately, there is no systematic procedure available for generating a polynomial

description of a nonlinear system. Polynomial description of nonlinear systems is often
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problem specific. In practice, knowledge of the nonlinear dynamics can help result in

an accurate polynomial description of the nonlinear system. This is particularly true

for dynamical systems like aircrafts. For example, the nonlinearities in the aircraft

dynamics primarily arise from (i) the equations of motion describing aircraft’s rigid

body dynamics, and (ii) the aerodynamic characteristics (e.g., lift/drag etc.) of the

aircraft. Hence, the knowledge of the nonlinear characteristics of the flight dynamics

can help generate an accurate polynomial description of the nonlinear aircraft. Next,

we focus on generating a polynomial description of the nonlinear Generic Transport

Model (GTM) Aircraft developed by NASA.

3.2 Polynomial Model Formulation of Generic Transport Model

(GTM) Aircraft

This section provides an engineering approach to approximate the nonlinear aircraft

dynamics to polynomial description. The approach taken in this section is demon-

strated by applying it to the NASA Generic Transport Model (GTM) aircraft. For

simplicity, we will focus on generating a polynomial description of the longitudinal

GTM dynamics. Similar approach can be taken for formulating polynomial descrip-

tion of the lateral dynamics.

3.2.1 Longitudinal Dynamics of GTM

The NASA Generic Transport Model (GTM) describes a remote-controlled 5.5 per-

cent scale commercial aircraft [9, 37]. The GTM aircraft parameters are provided in

Table 3.1. NASA constructed a high fidelity 6 degree-of-freedom Simulink model of

the GTM with the aerodynamic coefficients described as look-up tables. This sec-

tion describes the construction of polynomial description of the GTM longitudinal

dynamics based on the look-up table data.

Table 3.1: Aircraft and Environment Parameters
Wing Area, S 5.902 ft2

Mean Aerodynamic Chord, c̄ 0.9153 ft
Mass, m 1.542 slugs

Pitch Axis Moment of Inertia, Iyy 4.254 lbf-ft2

Air Density, ρ 0.002375 slugs/ft3

Gravity Constant, g 32.17 ft/s2

The longitudinal dynamics of the GTM are described by a four-state longitudinal
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model [45]:

V̇ =
1

m
(−D −mg sin (θ − α) + Tx cosα + Tz sinα) (3.1a)

α̇ =
1

mV
(−L+mg cos (θ − α)− Tx sinα + Tz cosα) + q (3.1b)

q̇ =
(M + Tm)

Iyy
(3.1c)

θ̇ = q (3.1d)

where V is the air speed (ft/s), α is the angle-of-attack (rad), q is the pitch rate

(rad/s) and θ is the pitch angle (rad). The control inputs are the elevator deflection

δelev (rad) and engine throttle δth (percent).

The drag force D (lbf), lift force L (lbf), and aerodynamic pitching moment M (lbf-ft)

are given by:

D = q̄SCD(α, δelev, q̂) (3.2)

L = q̄SCL(α, δelev, q̂) (3.3)

M = q̄Sc̄Cm(α, δelev, q̂) (3.4)

where q̄ := 1
2
ρV 2 is the dynamic pressure (lbf/ft2) and q̂ := c̄

2V
q is the normalized

pitch rate (unitless). CD, CL, and Cm are unitless drag, lift and pitching moment

coefficients, respectively. The coefficients are computed from look-up tables provided

by NASA.

The GTM (Figure 3.1) has one engine each on the port and starboard sides of the

airframe. Equal thrust settings for both engines are assumed. The thrust from a

single engine T (lbf) is a function of the throttle setting δth (percent). T (δth) is a

given cubic-order polynomial in NASA’s high fidelity GTM simulation model. Tx

(lbf) and Tz (lbf) denote the projection of the total engine thrust along the body x

and body z axes, respectively. Tm (lbf-ft) denotes the pitching moment due to both

engines. Tx, Tz and Tm are given by:

Tx(δth) = nENGT (δth) cos(ε2) cos(ε3) (3.5)

Tz(δth) = nENGT (δth) sin(ε2) cos(ε3) (3.6)

Tm(δth) = rzTx(δth)− rxTz(δth) (3.7)
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Figure 3.1: GTM Aircraft developed by NASA

nENG = 2 is the number of engines, ε2 = 0.0375 rad and ε3 = −0.0294 rad are angles

specifying the rotation from engine axes to the airplane body axes. rx = 0.4498 ft

and rz = 0.2976 ft specify the thrust moment arm.

For convenience, we will introduce the compact notation:

ẋ = FGTM(x, u) (3.8a)

y = x (3.8b)

where x := [V (ft/s), α(rad), q(rad/s), θ(rad)] indicates states, u := [δelev(rad), δth(%)]

indicates inputs and y indicates the outputs. Input-output description of the systems

is denoted as SG.

3.2.2 Approach to Polynomial Model Formulation

The following terms of the longitudinal model presented in Section 3.2.1 are approx-

imated by low-order polynomial functions:
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1. Trigonometric functions: sin(α), cos(α), sin(θ − α), cos(θ − α)

2. Engine model: T (δth)

3. Rational dependence on speed:
1

V

4. Aerodynamic coefficients: CD, CL, Cm

Constructing polynomial approximations of the trigonometric functions, engine model,

and rational dependence on speed is relatively straight-forward. The trigonomet-

ric functions are approximated by Taylor series expansions: sin z ≈ z − 1
6
z3 and

cos z ≈ 1− 1
2
z2 for z in units of radians. For |z| ≤ π

4
rad the maximum approximation

error for the sine and cosine functions is 0.35% and 2.2%, respectively. For the engine

model, a least squares technique is used to approximate the ninth order polynomial

function T (δth) by the following third order polynomial:

T (δth) ≈ −1.967× 10−6δ3
th + 1.150× 10−3δ2

th + 8.258× 10−2δth + 1.085 (3.9)

The maximum approximation error is 1.3% over the full range throttle inputs δth ∈
[0%, 100%]. The least squares technique is also used to compute a linear fit to

1

V
over

the desired range of interest from 100 ft/s to 200 ft/s:

1

V
≈ −4.774× 10−5V + 0.01409 (3.10)

The maximum approximation error is 9% over the specified velocity range. The linear

fit for
1

V
is used in both the α̇ equation and the equation for the normalized pitch

rate q̂.

Derivation of polynomial function approximations for the aerodynamic coefficients

requires a more detailed explanation. NASA provides raw look-up table data for the

aerodynamic coefficients in the airframe body axes, i.e. the raw data is provided for

CX , CZ , and Cm.1 In addition, each aerodynamic coefficient is computed as a sum

of three terms which model the aerodynamic effects of the basic airframe, elevator

inputs, and pitch rate. For example, CX(α, δelev, q̂) is a sum of three terms each of

1The notation refers to standard aircraft body axis conventions [45]. x is directed to the front
along the longitudinal axis of the aircraft and z is directed down. X and Z are the aerodynamic
forces along the x and z axes, respectively.
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which is computed from a look-up table:

CX(α, δelev, q̂) =CX,α(α) + CX,δelev(α, δelev) + CX,q̂(α, q̂) (3.11)

CX,α models the basic airframe dependence of the body-X force on the angle of attack.

CX,δelev and CX,q̂ model the aerodynamic effects of the elevator input and pitch rate,

respectively. For ease of approximation, all body-axis look-up tables were transformed

into lift and drag coordinates via a rotation:[
CD

CL

]
= −

[
cos(α) sin(α)

− sin(α) cos(α)

][
CX

CZ

]
(3.12)

Accurate, low-order polynomial fits could be obtained for all look-up tables after ro-

tating into the lift and drag coordinates. For example, Figure 3.2 shows the look-up

table data and cubic polynomial fits for CL,α, CD,α and Cm,α. A least squares tech-

nique is used to fit the lift and drag look-up table data. Specifically, a weighted least

square technique is applied to capture the low angle-of-attack characteristics more

accurately. The polynomial function approximations for all aerodynamic coefficient

look-up tables are provided in Appendix A. For ease of interpretation, plots of α, q

and δelev are shown in units of degs, degs/s, and degs, respectively. There are two im-

portant issues associated with the fitting procedure. First, note that the CL/CD data

is fit rather than the raw CX/CY . This can be justified by considering the structure

of the dynamic equations. For example, −D enters directly into the equation for V̇

(Equation 3.1a). V̇ can be alternatively expressed in terms of X and Z forces via the

substitution −D = X cos(α) + Z sin(α). Fitting the raw aerodynamic look-up data

for CX and CZ would introduce approximation errors in X and Z. Approximation

errors would also be introduced by the polynomial fits for cos(α) and sin(α). Directly

fitting the look-up data for CD only leads to one lumped approximation error in the

−D term as opposed to errors in both X and Z while fitting CX and CZ . Second, the

least squares solutions for the lift/drag/pitching moment data were weighted to ob-

tain extremely accurate fits at low angles of attack (−5o ≤ α ≤ 15o) and less accurate

fits at higher angles of attack (α ≥ 15o). This weighting ensures that the polynomial

model retains trim characteristics that are similar to those of the original nonlinear

model. Note that the polynomial functions fail to capture important characteristics

of the look-up table data of CL,α and Cm,α for angles of attack between 15o ≤ α ≤ 40o.

The mismatch between the raw data and the polynomial fitting causes the polynomial

and look-up table models to have different trim characteristics for angles of attack in
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Figure 3.2: Look-up table data and polynomial fit for CL,α, Cm,α, CD,α

this range. Both models were simulated with numerous doublet and step inputs. The

qualitative characteristics of both the trajectories are similar.

A degree seven polynomial model of the GTM is obtained after replacing all non-

polynomial terms with their polynomial approximations. The polynomial system,

denoted as SP is provided below:

ẋ = PGTM(x, u) (3.13a)

ỹ = x (3.13b)

where x := [V (ft/s), α(rad), q(rad/s), θ(rad)], and u := [δelev(rad), δth(%)]. The

degree seven polynomial model PGTM(x, u) is provided in Appendix A.

3.3 Polynomial Model Validation

This section compares the polynomial description of the GTM model SP against the

model SG provided by NASA.
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The polynomial function of the GTM involves approximations due to the polynomial

least-squares fits. The polynomial approximation to the “original nonlinear model”

is only valid within a certain state-space region. The term “original nonlinear model”

refers to the high-fidelity simulation model provided by NASA, SG in Equation 3.8.

The polynomial approximations of the trigonometric function (sin(α), cos(α) etc.)

are valid up to approximately ±50 deg for the corresponding angle. This provides

an upper bound on the range of validity for the polynomial model in the α direction.

The look-up table data for the basic airframe aerodynamic coefficients is within the

range of 5 deg ≤ α ≤ 85 deg, providing a lower bound on the region of validity in

the α direction. Hence, the polynomial model is valid for 5 deg ≤ α ≤ 50 deg. The

least-square approximation to the rational dependence on speed (
1

V
) is valid over the

range from 100 ft/s to 200 ft/s with a maximum error of approximately 9%. The

least-square approximation of the look-up table data to the rate derivative terms, i.e.

CL,q̂ , CD,q̂, Cm,q̂, is valid for −70 deg/s ≤ q ≤ 70 deg/s. This limits the range of

validity in the pitch rate direction.

The ranges mentioned above provide insight on the “size” of the state-space region

the polynomial approximation is valid for. The ranges, however, do not indicate if the

polynomial model captures the right dynamic characteristics of the original model.

Numerical tools do not exist to rigorously perform this comparison and hence the

validation performed in this section will rely on heuristic procedures. However, the

validation provides some confidence that the polynomial model provides, for engi-

neering purposes, a sufficiently accurate approximation.

3.3.1 Comparisons of Trim Conditions & Simulation Responses

The trim conditions for level flight across the range of velocities V ∈ [100, 200] ft/s are

computed to assess the quality of the polynomial approximation. The trim conditions

assume level flight (α = θ) and no pitch rate (q = 0 deg/s). Figure 3.3 shows the trim

angle-of-attack α and trim inputs (δelev, δth) versus trim speed for both the original

nonlinear model and the polynomial approximation. The trim behavior is similar for

both models.

The response of both models were simulated with a variety of pulse, step and doublet

inputs to the elevator and throttle channels. The time-domain responses are similar

for both the polynomial and original model. Figure 3.4 provides a particular simu-

lation response between the two models. This particular simulation is performed by
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Figure 3.3: Trim states and inputs vs. trim speed for both polynomial and original
nonlinear model.

perturbing the elevator and throttle channels with a pulse input of −3o and 15%.

Figure 3.4 shows there is excellent qualitative agreement between the trajectories of

the two models. Similar results were obtained at many other simulation scenarios.

Unfortunately, neither simulation responses nor trim condition comparisons qualify as

rigorous approaches for validating the approximated polynomial model. Nonetheless,

they provide an useful metric to model validation for engineering purposes.

3.4 Summary

This chapter presents an ad-hoc approach to describe the nonlinear longitudinal flight

dynamics in terms of polynomial functions. The approach is demonstrated on the

GTM’s longitudinal dynamics. The polynomial description of the GTM flight dy-

namics is then validated against the original nonlinear GTM dynamics provided by

NASA. The validation procedures used are heuristic as rigorous and computable met-

rics of the approximation error between a generic nonlinear (non-analytic) model and
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Figure 3.4: Simulation Comparison

a polynomial model is still an open problem.
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Chapter 4

Local Stability and Performance

Analysis of Polynomial Systems

This chapter discusses SOS techniques for estimating both the ROA and the local

induced L2 gain of nonlinear dynamics described by smooth polynomial vector field.

The techniques are then applied on the GTM flight control system to assess its sta-

bility and performance.

Computing the ROA and the induced L2 gain of nonlinear flight control systems is

challenging and is typically not included in the standard flight control certification

process. The current certification process can certainly be enriched by including SOS

techniques for estimating the ROA and the induced L2 gain of nonlinear flight control

systems [6]. The SOS estimation techniques rely on Lyapunov/Dissipation theory and

the connection between the SOS optimization and the semidefinite programming.

This connection has been investigated in detail in [26–28,48,49,55,56] and numerical

examples are also provided in the mentioned references.

Unfortunately, the SOS estimation techniques have been proven to be computation-

ally challenging [3]. The computational burden for SOS optimization problem grows

rapidly with the state dimension and the degree of polynomial nonlinearities. Due to

the computational challenges the SOS techniques have not been applied to moder-

ately large-scale (usually at least 4−5 states and/or cubic nonlinearities) engineering

problem, e.g. flight control systems. Moreover, SOS optimization techniques may

suffer from numerical conditioning issue and hence fail to produce sensible results.

In practice, numerical conditioning issue in SOS techniques is very typical in flight
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control problems.

The main contribution of this chapter is in the application of both the ROA and

the L2 gain estimation technique to a moderately large-scale, real engineering prob-

lem. Particularly, the techniques are applied on the polynomial longitudinal GTM

model, formulated in Section 3.2. The GTM model contains 4 states and up to fifth

order nonlinearities. Hence, solving the SOS optimization problem turns out to be

computationally challenging. This chapter provides insights on solving moderately

large-scale problems like the GTM. Section 4.1 and 4.2 describe the techniques for es-

timating the ROA and the induced L2 gain, respectively. The techniques are applied

to NASA’s 4-state longitudinal GTM model in Section 4.1.3 and 4.2.1 to estimate

stability and performance metrics of the nonlinear flight control system. Note that

the techniques are not applicable to (polynomial) systems with actuator saturation

and/or rate limit.

4.1 Technical Approach to the Region-of-Attraction (ROA)

Estimation

This section describes the technical approach to estimate the region of attraction

for polynomial systems. Consider an autonomous polynomial dynamic system of the

form:

ẋ = f(x), x(0) = x0 (4.1)

where x ∈ Rn is the state vector, f : Rn → Rn is a multivariable polynomial and

x(0) = x0 is the initial state of the system. Assume that the origin (x = 0) is a

locally asymptotically stable equilibrium point. This assumption is without loss of

generality because state coordinates can always be redefined to shift an equilibrium

point to the origin. We are interested in computing the ROA (R) of the origin of the

system 4.1. Recall the ROA (R) is defined as:

R =
{
x0 ∈ Rn : If x(0) = x0 then lim

t→∞
x(t) = 0

}
(4.2)

Computing the exact ROA for polynomial dynamical systems is difficult. There

has been significant research devoted to estimating invariant subsets of the ROA

[7, 10, 16–18, 38, 51, 52, 58]. The approach taken in this chapter is to restrict the

ROA computation to ellipsoidal approximations of the ROA. Given an n× n matrix

N = NT > 0, define the shape function p(x) := xTNx and level set Ω(p, β) := {x ∈

29



Rn : p(x) ≤ β}. p(x) defines the shape of the ellipsoid and β determines the size

of the ellipsoid Ω(p, β). The choice of p(x) or N is problem dependent and reflects

dimensional scaling information as well as the importance of certain directions in the

state space. N can typically be chosen to be diagonal with Ni,i := 1/x2
i,max. With

this choice, Ω(p, β = 1) is a coordinate-aligned ellipsoid whose extreme points along

the ith state direction are ±xi,max. In this form, the level set value β provides an

easily interpretable value for the size of the level set. The shape function p(x) also

plays an important role in achieving better scalability properties of the optimization

algorithm. Given the shape function p(x), the ROA estimation problem reduces to

finding the largest ellipsoid Ω(p, β) contained in the ROA:

β∗ = max β (4.3)

subject to: Ω(p, β) ⊂ R

It is important to realize that Equation 4.3 does not provide an exact characterization

of the ROA. Instead, Equation 4.3 is an optimization problem which determines the

’best’ ellipsoidal ROA approximation. The lower and upper bounds for β∗ satisfying

β ≤ β∗ ≤ β̄ are computed. If the lower and upper bounds are close then the largest

ellipsoid level set, defined by Equation (4.3), has been effectively computed.

4.1.1 Upper Bound Computation

This section focuses on estimating the upper bound β̄ of the ellipsoidal ROA approx-

imation. The upper bound is computed via a search for initial conditions leading

to divergent trajectories. Recall the initial condition of the system is denoted by

x(0). Assume the trajectory of the system is divergent starting from x(0) = x0,div.

In other words, limt→∞ x(t) = +∞ when starting from x(0) = x0,div. This implies

that x0,div /∈ R. Define β̄div := p(x0,div) and Ω(p, β̄div) = {x ∈ Rn : p(x) ≤ β̄div}
then Ω(p, β̄div) 6⊂ R which implies β∗ ≤ β̄div and Ω(p, β∗) ⊆ Ω(p, β̄div). An exhaus-

tive Monte Carlo search is used to find the tightest possible upper bound on β∗.

Specifically, random initial conditions are chosen starting on the boundary of a large

ellipsoid. For example, choose x0 satisfying p(x0) = βtry where βtry is sufficiently large

such that βtry � β∗. If a divergent trajectory is found, the initial condition is stored

and an upper bound on β∗ is computed. βtry is then decreased by a factor of 0.995

and the search continues until a maximum number of simulations is reached. β̄MC

denotes the smallest upper bound computed with this Monte Carlo search. Figure

4.1 demonstrates the concept of the ROA upper bound on a 2-state problem. The
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blue solid line indicates stable trajectories while the red dashed line indicates unsta-

ble trajectories. The green solid ellipse is the estimated upper bound, since an initial

condition (marked as rectangle) on this ellipse will result in a divergent trajectory.

Figure 4.1: Upper Bound Estimate of ROA. Red (dashed) curves indicate unstable
trajectories and blue (solid) curve indicate stable trajectories.

4.1.2 Lower Bound Computation

This section focuses on estimating the lower bound β of the ellipsoidal ROA ap-

proximation. The lower bound is computed using Lyapunov functions and the re-

cent results connecting SOS polynomial optimization to semi-definite programming

mentioned in Section 2.3. The algorithm to compute a lower bound using SOS opti-

mizations is briefly described here. The full algorithmic details are described in the

references [26–28,48,49,55,56].

Formally, Lemma 2 states the main Lyapunov theorem that will be used to quantify

an invariant region. The proof of the lemma can be found in [48] and also in textbooks,

e.g. in [59]. Given V and dynamics f(x), define D(V, f) := {x ∈ Rn : ∇V (x)f(x) <

0} ∪ {0}.

Lemma 2. If there exists a real scalar γ > 0 and a continuously differentiable function
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V : Rn → R such that:

V (0) = 0 and V (x) > 0 ∀x 6= 0 (4.4)

Ω(V, γ) := {x ∈ Rn : V (x) ≤ γ} is bounded. (4.5)

Ω(V, γ) ⊂ D(V, f) (4.6)

then for all x0 ∈ Ω(V, γ), the solution of Equation (4.1) exists, satisfies x(t) ∈ Ω(V, γ)

for all t ≥ 0, and Ω(V, γ) ⊂ R.

A function V , satisfying the conditions in Lemma 2, is a Lyapunov function and

Ω(V, γ) provides an estimate of the ROA. Given any Lyapunov function V , it is

desirable to find the largest sublevel set Ω(V, γ) that is provably contained within the

ROA. If Ω(V, γ) is bounded ∀γ > 0 then this problem can be formulated as:

γ∗ := sup
γ

γ

subject to: Ω(V, γ) ⊂ D(V, f) (4.7)

For a given Lyapunov function V , the sublevel set Ω(V, γ∗) is the largest provably

invariant subset of the ROA. Technically, it can be shown by a continuity argument

that there will be a point x0 on the boundary of Ω(V, γ∗) such that ∇V (x0)f(x0) = 0.

Thus a more precise statement is Ω(V, γ∗) ⊂ R for all γ < γ∗.

If x = 0 is asymptotically stable, a linearization can be used to compute a Lyapunov

function [22]. Let A := ∂f
∂x

∣∣
x=0

be the linearization of the nonlinear dynamics about

the origin and compute P > 0 that solves the Lyapunov equation ATP + PA = −I.

VLIN(x) := xTPx is a quadratic Lyapunov function that satisfies the conditions of

Lemma 2 for sufficiently small γ > 0. VLIN can be used to compute a lower bound

on β∗ by solving two maximization:

γ∗ := max γ (4.8)

subject to: Ω(V, γ) ⊂ D(VLIN , f)

β := max β (4.9)

subject to: Ω(p, β) ⊂ Ω(V, γ∗)

The first maximization finds the largest level set Ω(V, γ∗) of VLIN such that Lemma 2
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can be used to verify Ω(V, γ∗) ⊆ R. The second maximization finds the largest

ellipsoid Ω(p, β) contain within Ω(V, γ∗).

Figure 4.2 demonstrates the concept of lower bound estimate to the ROA. The axis

represents the state-space. The outermost (red) solid curve in Figure 4.2 indicates

the region where ∇V (x)f(x) < 0. The dashed (green) curve denotes the sublevel set

of Lyapunov function, Ω(V, γ). This is an invariant subset of the ROA.

Figure 4.2: Lower Bound Estimate of ROA. The maroon ellipse p(x) ≤ β indicates
the lower bound estimate of the invariant set V (x) ≤ γ.

The shape function p(x) reflects a cost function on the direction in the state-space.

In other words, p(x) skews the analysis direction according to the analyst’s choice.

The choice of the shape function p(x) dictates the growth direction of the Lyapunov

sublevel set V (x) ≤ γ. It is important to realize that p(x) ≤ β is not an invariant

region, rather it is an inner estimate of an invariant sublevel set V (x) ≤ γ.

The computational algorithm used in the analysis replaces the set containment con-

straints in Equation 4.8 and 4.9 with a sufficient S-procedure condition involving

non-negative functions. For example, Ω(p, β) ⊂ Ω(V, γ∗) in Equation (4.9) is replaced
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by

β := max
β, s(x)

β (4.10)

subject to: s(x) ≥ 0 ∀x

− (β − p(x)) s(x) + (γ∗ − VLIN(x)) ≥ 0 ∀x

The function s(x) is a decision variable of the optimization, i.e. it is found as part of

the optimization. The function s(x) arises from the generalized S-procedure, which

is discussed in Chapter 2.4.

It is straight-forward to show that the two non-negativity conditions in Equation (4.10)

are a sufficient condition for the set containment condition in Equation (4.9). If s(x) is

restricted to be a polynomial then both constraints involve the non-negativity of poly-

nomial functions. Finally, replacing the non-negativity conditions in Equation (4.10)

with SOS constraints, the SOS optimization problem is as follows:

β := max β (4.11)

subject to: s(x) is SOS

− (β − p(x)) s(x) + (γ∗ − VLIN(x)) is SOS

There is software available to set up and solve these SOS problems [3,35,41,47]. β
LIN

will denote the lower bound obtained from Optimization (4.11) using the quadratic

Lyapunov function obtained from linearized analysis.

Unfortunately, β
LIN

is usually orders of magnitude smaller than the upper bound

β̄MC . Several methods to compute better Lyapunov functions exist, including V -

s iterations [26–28, 49], bilinear optimization [48], and the use of simulation data

[55,56]. In this thesis, the V -s iteration is used. The Lyapunov function V (x) in the

iteration is initialized with VLIN . The iteration also uses functions l1(x) = −ε1xTx
and l2(x) = −ε2xTx where ε1 and ε2 are small positive constants on the order of

10−6 to enforce strict positivity of the solution obtained from the SOS optimization

framework. The V -s iteration algorithm steps are:

1. γ Step: Hold V fixed and solve for s2 and γ∗

γ∗ := max
s2∈SOS,γ

γ s.t. − (γ − V )s2 −
(
∂V

∂x
f + l2

)
∈ SOS (4.12)
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2. β Step: Hold V , γ∗ fixed and solve for s1 and β

β := max
s1∈SOS,β

β s.t. − (β − p)s1 + (γ∗ − V ) ∈ SOS (4.13)

3. V step: Hold s1, s2, β, γ∗ fixed and solve for V satisfying:

− (γ∗ − V )s2 −
(
∂V

∂x
f + l2

)
∈ SOS

− (β − p)s1 + (γ∗ − V ) ∈ SOS

V − l1 ∈ SOS, V (0) = 0

4. Repeat as long as the lower bound β continues to increase.

Remark 1: The iteration is initialized with the linearized Lyapunov function VLIN .

However, it is not obvious if the γ step is feasible given the linearized Lyapunov

function. [54] has shown that the γ step is feasible for a restricted class of polynomial

systems given the linearized based analysis. Specifically, the system takes the form of

ẋ = Ax + f2(x) + f3(x), where f2 and f3 are purely quadratic and cubic polynomial

vector fields.

The basic issue of the V − s iteration step is that searching for a Lyapunov function

V results in a bilinear term V s2 in the γ step. This bilinear term can not be handled

directly within the SOS programming framework because the constraints in SOS

programs must be linear in the decision variables. The V − s iteration avoids the

bilinearity in V s2 by holding either s2 or V fixed. Note, both β and γ steps are still

bilinear in βs1 and γs2. However, a bisection search on β and γ can be used for both

the steps. Consequently, each step of this iteration is a linear SOS optimization that

can be solved with available software. In the V -s iteration, the Lyapunov functions

are allowed to have polynomial degree greater than two. Increasing the degree of the

Lyapunov function will improve the lower bound at the expense of computational

complexity.

The V step in the V − s iteration requires additional discussion. An interior-point

linear matrix inequality solver is used to find a feasible solution to the feasibility

problem in the V step. The Lyapunov function V used in the γ and β steps will be

feasible for the constraints in the V step. Thus it is possible for the solver to simply

return the same Lyapunov function that was used in the γ and β steps. While this

is possible, it is typical for the solver to return a different V that allows both γ and
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β to be increased at the next iteration. This step can be justified by the fact that

interior point solvers try to return a solution at the analytic center of set specified by

the linear matrix inequality constraints. Thus the V step typically returns a feasible

V that is “pushed away” from the constraints. A more formal theory for the behavior

of this feasibility step is still an open question.

Alternate Approach to V − s Iteration

A modified V − s iteration approach is developed to reduce the computational time.

We will refer to this approach as modified V −s iteration. To avoid confusion, we will

refer to the V − s iteration approach discussed above as the original V − s iteration.

The original V − s iteration is computationally expensive due to the bisection search

on both βs2 and γs1 in the β and γ steps. The computational time can be greatly

reduced by reducing the bisection search to unidirectional search on the optimization

parameters. The main idea behind the modified V − s iteration is to hold the mul-

tipliers (s2 and s1) fixed and maximize β and γ respectively. This requires an initial

feasible knowledge about the multipliers (s2 and s1). The initial feasible solution

of the multipliers can be achieved by running the original V − s iteration for one

iteration step. The modified V − s iteration approach is outlined below:

1. Initialization: Run V − s iteration for n steps. Usually, n = 1 is sufficient.

2. Hold β, γ∗, s2 fixed and solve for V and s1 by solving Equation 4.12 and 4.13.

3. Hold V , γ∗, s1 fixed and maximize β subject to Equation 4.12. Denote the

maximum value as β.

4. Hold V , s2 fixed and maximize γ subject to Equation 4.13. Denote the maxi-

mum value as γ∗.

5. Hold V , γ∗ fixed and find a feasible s2(x) subject to Equation 4.13.

6. Stopping Criteria: Repeat (2) - (5) as long as the lower bound β continues to

increase or maximum iteration has been reached.

Note that the steps from (2)- (5) do not involve bisection. The initialization step only

requires the V −s iteration to run for one step. All other steps turn out to be a linear

SOS optimization problem. This modified V − s iteration can greatly reduce the
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computational time of estimating ROA compared to the previously proposed V − s
iteration. The modified V − s iteration approach usually works well in practice.

Next, we focus on applying the ROA estimation technique on the GTM flight control

example.

4.1.3 ROA Analysis of 4-State Longitudinal GTM Model

This section estimates the stability region of the 4-state longitudinal GTM dynamics

with a simple proportional inner-loop control law. The stability region is defined in

terms of ROA. The ROA estimation is performed for two different flight conditions,

one close to the stall speed and the other one away from the stall speed. The objective

of the analysis is to compare the size of ROA between the two flight conditions.

The 4-state longitudinal (polynomial) GTM dynamics have been developed in Chap-

ter 3. An inner loop (proportional) pitch rate feedback is used to improve the damping

of the longitudinal model of the GTM aircraft PGTM(x, u), mentioned in Equation

3.13:

δelev = Kqq + δelev,t = 0.0698q + δelev,t (4.14)

where δelev,t denotes the trim value. Equations 3.13 and 4.14 describe the polynomial

dynamics of the closed-loop system with the thrust being held at its trim value.

The stall speed for the GTM is known to be 90 ft/s [1,32]. The analysis is performed

around the level flight conditions at (i)V = 100 ft/s, close to the stall speed and (ii)

V = 150 ft/s, away from the stall speed. The trim points are given below:


Vt

αt

qt

θt

 =


150.00 ft/s

0.04690 rad

0 rad/s,

0.04690 rad

 ,
[
δelev,t

δth,t

]
=

[
14.78 %

0.0506 rad

]
(4.15)


Vt

αt

qt

θt

 =


100.00 ft/s

0.1505 rad

0 rad/s,

0.1505 rad

 ,
[
δelev,t

δth,t

]
=

[
15.73 %

−0.0223 rad

]
(4.16)

The subscript “t” denotes a trim value.

The goal is to perform the ROA analysis for the closed loop GTM aircraft around
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the mentioned flight conditions and compare the size of their stability region. This

analysis will help the flight control engineer to gain insight about the safe flight

envelope.

First, we focus on the ROA analysis around the level flight condition at V = 150

ft/s, away from the stall speed. We employ the estimation technique mentioned in

Section 4.1. Recall, the estimation require a shape function p(x). Consider the shape

function to be p(x) = xTNx where,

N := diag(50 ft/s, 0.3491 rad, 0.8727 rad/s, 0.3491 rad)−2 (4.17)

:= diag(50 ft/s, 20 deg, 50 deg/s, 20 deg)−2

The shape function, p(x), roughly scales each state by the maximum magnitude

observed during the flight condition. At straight and level flight, α and θ are expected

to have similar deviations. Hence, the maximum deviation for both α and θ are chosen

to be of the same magnitude. The velocity is assumed to deviate at most 50 ft/s from

its trim airspeed of 150 ft/s during the flight condition. Recall, the polynomial model

is valid over the range of airspeed from 100 ft/s to 200 ft/s. The maximum deviation in

pitch rate is chosen so that it stays within the range of model validity in the pitch rate

direction. Recall that the polynomial model is valid for −70 deg/s ≤ q ≤ 70 deg/s.

The polynomial model of the longitudinal dynamics was modified in two ways to

make it suitable for the computational algorithms. First the states were redefined

as z := x− xt := [V − Vt, α− αt, q − qt, θ − θt]T to shift the trim condition to the

origin of the state space. Next, all polynomial terms with degree greater than five

and/or coefficients less than 10−6 were removed from the model. The terms have

negligible effect on the model but their removal greatly reduces the computation time

for the lower bounds due to the computation of the V -s iteration growing rapidly

with the degree of the polynomial model and the Lyapunov function.

Scaling of the model is another important issue for the numerical stability of the V -s

iteration. The magnitude of the coefficients in the fifth order closed-loop polynomial

model can vary greatly. For example, the magnitude of the minimum and maximum

coefficients in the velocity derivative equation (V̇ ) are 3.335× 10−6 and 2.902× 102,

respectively. Scaling of the closed-loop state-space dynamics is used to improve the

numerical conditioning. The states are scaled as zscl = Dz where D = N2. In the

zscl coordinates the shape function is p(zscl) = zTsclzscl. After scaling the magnitude of

the minimum and maximum coefficients in the velocity derivative equation (V̇ ) are
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4.132 × 10−6 and 0.7072, respectively. The V -s iteration is run on the scaled model

and results converted back to unscaled coordinates.

The V -s iteration with a quartic Lyapunov function resulted in a lower bound estimate

of β
4

= 3.360. This verifies that the ellipsoid Ω(p, β) := {x ∈ Rn : p(x) ≤ β} is a

subset of the ROA. The center of the ellipsoid is at the trim condition. It has a length

of 20 deg ·
√
β = 36.66 deg along the α axis. The other axis lengths can be computed

similarly. The upper bound from Monte Carlo simulation approach is computed to be

β̄MC = 3.760. In other words, Monte Carlo simulation found an unstable trajectory

with a point on the ellipsoid Ω(p, β
MC

).
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Figure 4.3: Lower and Upper Bound Estimate of ROA for the GTM longitudinal
model at V = 150 ft/s; the rectangular region defines the validity region of the model

The ROA ellipsoidal bounds on the ROA can be visualized by plotting slices of the

ellipsoids Ω(p, β) and Ω(p, β
MC

). Figure 4.3 shows slices of these ellipsoidal ROA

bounds in the α-q plane. The solid ellipse is the slice of the Ω(p, β). Every initial

condition within this ellipsoid will return to the trim condition (marked as an ’x’).

The dashed ellipse is the slice of Ω(p, β
MC

) in the α-q plane. There is an unstable

trajectory that touches Ω(p, β
MC

) although it may not necessarily touch the ellipse

in the α-q plane. The Monte Carlo search returned the following initial condition
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yielding an unstable trajectory.

x0,div := [148.82 ft/s, −0.62 rad, 0.37 rad/s, 1.19 rad]T

:= [148.81 ft/s, −35.70 deg, 21.21 deg/s, 68.51 deg]T

The dotted rectangular box in Figure 4.3 shows the region of validity for the model.

The region of validity for the polynomial model is explained in Section 3.2.2. The

closeness of the inner and outer ellipsoids implies, for engineering purposes, that the

best ROA ellipsoid problem has been solved.

Now, we focus on performing the ROA analysis around the straight level flight con-

dition at V = 100 ft/s, close to the stall speed of 90 ft/s. From flight dynamics

perspective, the stall region is crucial and hence the flight control engineer need to

investigate the stall region more closely. The stability and performance of any aircraft

usually diminished at stall speed. Particularly, the aircraft possesses zero controlla-

bility at stall speed. Hence, this is region is more sensitive to disturbances.

We perform ROA analysis at V = 100 ft/s. Figure 4.4 shows α − q slices of the

ellipsoidal bounds to the ROA. The V -s iteration with a quartic Lyapunov function

verifies that the ellipsoid Ω(p, β) := {x ∈ Rn : p(x) ≤ 1.460} is a subset of the

ROA. Again, the center of the ellipsoid is at the trim condition and It has a length of

20 deg ·
√
β = 24.16 deg along the α axis. The other axis lengths can be computed

similarly. The upper bound from Monte Carlo simulation approach is computed to

be β̄MC = 1.950.

It is evident from comparing Figure 4.4 and Figure 4.3 that the size of ROA close to

the stall speed has shrunk significantly. This is expected as discussed earlier. In fact,

the reduction of the ROA size is more dramatic if the volume of the ROA estimate is

considered. The volume of the ellipsoid Ω(p, β) is proportional to β(n/2) where n = 4

is the state dimension. This corresponds to a volume decrease of 5.296 for the model

close to the stall speed. Thus information from these two ellipsoids can be used to

draw conclusions about the safe flight envelope.

Both lower (β) and upper bounds (β̄MC) of the ROA ellipsoid provide useful informa-

tion. The lower bound ellipsoid Ω(p, β) defines the set of initial conditions for which

the control law will bring the aircraft back to its trim point. If the aircraft is per-

turbed due to a wind gust or other upset condition but remains within this ellipsoid,

the control law will recover the aircraft and bring it back to trim. For example, the
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Figure 4.4: Lower and Upper Bound Estimate of ROA for the GTM longitudinal
model at V = 100 ft/s; the rectangular region defines the validity region of the model

state [V, α, q, θ]T = [Vt, 30.00 deg, 20.00 deg/s, θt]
T is inside Ω(p, β) for both flight

conditions. Similarly, the control law will bring the aircraft back to its trim point if

a disturbance pushes the GTM aircraft to this state then. The upper bound ellipsoid

Ω(p, β
MC

) contains at least one initial condition that will cause the aircraft to diverge

from its trim condition. Upset conditions that push the aircraft state to this upper

bound ellipsoid could lead to loss of control. In other words, information from these

two ellipsoids can be used to draw conclusions about the safe flight envelope. The size

of these ellipsoids measure the robustness of the flight control law to disturbances.

In summary, the ellipsoids define a metric for the safe flight envelope of the GTM

aircraft.

Remark 1:The ellipsoidal bounds in Figure 4.3 and/or Figure 4.4 are symmetric

about the trim point. This is due to the choice of a shape function p centered at the

trim point. The region of interest in the state space is not symmetric about the trim

point. For example, the model region of validity is skewed toward positive angles of

attack. It is possible to perform the ROA analysis with shape functions that are not

symmetric about the trim point. However the theoretical and algorithmic details of

non-symmetric shape functions have not been fully developed.
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4.2 Induced L2 (L2 → L2) Gain Estimation

Consider a polynomial dynamical system of the form:

ẋ = f(x, u) (4.18a)

y = h(x) (4.18b)

where x ∈ Rn, u ∈ Rnu is the state and input vector. f : Rn × Rnu → Rn is

a multivariable polynomial describing system dynamics and y = h : Rn → Rny is

a multivariable polynomial denoting the output equation. Assume, f(0, 0) = 0 and

h(0) = 0. The polynomial system will not, in general, be globally stable. If the system

is only locally stable then a sufficiently large disturbance can drive the state and the

output of the system will be unbounded. Hence, it is of interest to characterize the

local L2 gain where attention is restricted to “local” inputs u that satisfy ||u||2 ≤ R

where R ∈ R+. This section presents an approach to estimating the local (induced) L2

gain, γR, of the System 4.18 from u to y. The local L2 gain, defined in Equation 5.5,

is stated here again for completeness:

γR := sup
u∈L2,||u||2≤R

x(0)=0

||e||2
||u||2

(4.19)

Computing the exact input-to-output gain γR for nonlinear systems is a challenging

problem [2]. Instead, we will be interested in estimating lower and upper bounds of the

gain. Lower bounds will be computed by randomly searching for a destabilizing input.

This section focuses on estimating upper bounds. Lemma 1 provides a dissipation

inequality for characterizing the upper bound of the induced L2 gain for globally stable

system. The dissipation inequality in Equation 2.7 can be restricted to hold only on

a certain sub-level set of the state space in order to estimate the local induced L2

gain. Lemma 3 provides a local dissipation inequality to quantify how the L2 energy

gain varies for different input size, R. This result is proved in [48] but very similar

results are given in textbooks, e.g. by [59].

Lemma 3. If there exists γ > 0 and a polynomial V : Rn → R such that:

V (0) = 0 and V (x) > 0 ∀x 6= 0 (4.20)

∇V (x)f(x, u) ≤ uTu− 1

γ2
yTy ∀x ∈ ΩV, R2 and u ∈ Rnu , (4.21)
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then the system in Equation 4.18 with x(0) = 0 satisfies ||y||2 ≤ γR whenever ||u||2 ≤
R .

There are two equivalent questions one may ask: (i) Given R such that ||u||2 < R,

what is a tight upper bound for the induced L2 → L2 gain γ , or (ii) Given the upper

bound γ, what is the largest value of R such that ||y||2 ≤ γR whenever ||d||2 < R?

We focus on answering the latter question.

Similar to the ROA problem, the dissipation inequality conditions provided by Lemma 3

can be turned into an SOS optimization problem. The dissipation inequality (Equa-

tion 4.21) in Lemma 3 can be expressed as the following set containment condition:

ΩV,R2 ⊂ {(x, u) : ∇V (x) · f(x, u) ≤ uTu− 1

γ2
yTy} (4.22)

The set containment constraint in Equation 4.22 is replaced with a sufficient condition

involving non-negative polynomials [38] by applying generalized S-procedure.

−[(R2 − V )s(x, u)+∇V · f(x, u)− uTu+
1

γ2
yTy] ≥ 0 (4.23)

where the function s(x, u) ≥ 0 is a decision variable of the optimization, i.e. it is found

as part of the optimization. If s(x, u) and V (x) are restricted to be polynomial, both

constraints involve the non-negativity of polynomial functions. The non-negativity

conditions can be replaced by sufficient SOS constraints. Finally, the dissipation

inequality conditions provided in Lemma 3 are reformulated as an SOS optimization

problem.

R̄ := maxR

subject to:

V (x) is SOS, V (0) = 0 (4.24a)

− [(R2 − V )s+∇V · f(x, u)− uTu+
1

γ2
yTy] is SOS (4.24b)

s(x, u) is SOS (4.24c)

Note that the above optimization problem is bilinear in decision variables. For exam-

ple, the term V s(x, u) in Equation (4.24b) is bilinear in decision variable. If either

V or s is fixed then the problem is quasiconvex and can be solved via bisection on

R. Thus a V -s type iteration, similar to the one proposed for estimating the ROA,
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is formulated where V is solved for fixed s and vice versa. The storage function V

in the iteration is initialized with the linearized storage function VLIN by solving the

following SOS condition.

−∇VLIN · fLIN(x, u)−uTu+
1

γ2
LIN

yTLINyLIN is SOS (4.25)

where fLIN , yLIN represents the linearization of f and y, γLIN is the L2 energy gain

for linearized system. Note that Equation (4.25) can be written as a Linear Matrix

Inequality (LMI) in (x, u) if VLIN is restricted to be quadratic, VLIN = xTPx. [4]

presents the LMI formulation of the dissipation inequality. γLIN can be found by

solving for the smallest possible γ that satisfies the feasibility of Equation 4.25 or the

LMI formulation.

The V -s iteration algorithm is applied for a given γ > γLIN . The iteration steps are:

1. R2/s Step: Hold V fixed and solve for s and R̄

R̄ := maxR

subject to:

Equation (4.24b) - (4.24c)

This step performs a bisection search on R.

2. V step: Hold R̄, s(x, u) fixed and solve for V satisfying Equation (4.24a) -

(4.24c).

3. Repeat R2/s and V step as long as the R̄ continues to increase.

Remark 2: The feasibility of the R2/s step was established in [54] for a restricted

class of polynomial system given that the linear analysis is conclusive. Specifically,

the class of system takes the following form:

ẋ = f(x, u) = Ax+Bu+ f2(x) + f3(x) + (g1(x) + g2(x))u

y = h(x) = Cx+ h2(x)

where A, B and C are linear representation of the vector fields f(x, u) and h(x). f2,

g2, h2 are purely quadratic, f3 is cubic, and g1 is linear polynomial vector fields in

x. Proof of feasibility is constructive and hence specific to the polynomial dynamics

represented by f(x, u) and h(x).
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Similar to the ROA V − s iteration steps, there is no guarantee that the V step will

provide a different storage function at each iteration step. It is possible to obtain the

same storage function from the previous step. While this is possible, it is typical for

the solver to return a different V that allows R to be increased at the next iteration.

Next, we investigate the induced L2 gain behavior of the GTM flight control example.

4.2.1 Induced L2 Gain Analysis of 4-State Longitudinal GTM Model

This section describes the computation of the L2 gain bounds for both open and

closed-loop longitudinal dynamics of the GTM. The L2 → L2 gain analysis is per-

formed around the flight condition mentioned in Equation 4.15. The controller is

the simple proportional pitch rate feedback control mentioned in Equation (4.14).

Equations 3.13 and 4.14 describe a 4-state seven degree polynomial dynamics of the

closed-loop system with the thrust being held at its trim value.

Consider an additive disturbance, delev in the elevator channel. Physically, this ad-

ditive disturbance can be viewed as wind disturbances in the elevator channel. The

objective is to quantify the controller’s performance against the wind disturbances in

the elevator channel. Particularly, this section estimates the L2 → L2 gain from ele-

vator disturbances (delev) to pitch rate (q) for both open and closed-loop longitudinal

dynamics of the GTM.

Note the SOS optimization problem for induced gain estimation of the GTM involve

5 polynomial variables (4-state and delev) as opposed to 4 in the case of the ROA

estimation problem. To reduce computational time, the induced L2 gain analysis

was performed on a cubic order GTM model. The cubic order model is extracted

from the 4-state seven degree polynomial model by retaining terms upto cubic order.

Moreover, the cubic order model was validated against the original nonlinear GTM

model by comparing numerous simulation responses. The analysis is performed on

this cubic order model for both open-loop and closed-loop dynamics.

The V − s iteration is applied to estimate the induced L2 gain of the GTM. Fig-

ure 4.5 indicates how the induced gain of the system varies as the size of the elevator

disturbances ||delev||2 increases. The horizontal axis indicates the size of the elevator

disturbances, ||delev||2 around the trim input value and the vertical axis shows the

estimated bounds of the induced gain from delev to q.

The linear gain is estimated by solving the LMI formulation of the dissipation in-
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equality [4] for both the open-loop and closed-loop linearized system. The induced

gain for the open-loop system is computed to be 23.9 and the pitch rate feedback

reduces the induced gain of the closed-loop system to 16.6. Note that the induced

gain for the linearized system is the same for different input sizes. Hence, computing

the induced L2 gain of nonlinear systems is important in assessing how disturbances

of different sizes affect the controller’s performance.
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Figure 4.5: Estimation of induced L2 − L2 gain bounds from delev to q for open-loop
and closed-loop GTM model. The open-loop and the closed-loop system is found to
be divergent with an input size of 0.08 and 0.11, respectively.

The upper bounds are estimated for both the open-loop and closed-loop dynamics by

searching for quadratic and quartic storage function. The quadratic storage function

for the open-loop (marked as -o) proves that the system can tolerate disturbance of

size ||delev||2 < 9.10 × 10−3, while the quadratic storage for the closed-loop (marked

as -×) proves the system can tolerate disturbance of size ||delev||2 < 1.26× 10−2. The

quartic storage function improves these bounds. The quartic storage function for

the open-loop system (marked as - -�) and the closed-loop system (marked as - -B)

proves the system can tolerate an input disturbance of size ||delev||2 < 3.80 × 10−2

and ||delev||2 < 5.20 × 10−2, respectively. Clearly, the pitch rate feedback improves

the induced gain of the system. However, these bounds are an upper estimate of the

induced gain of the system. The lower bounds are estimated by randomly searching
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for inputs that cause the state trajectory to diverge. An input of size ||delev||2 =

8.00 × 10−1 is found which causes the open-loop system to diverge. The closed-loop

system is found to be divergent for an input of size ||delev||2 = 1.10× 10−1. Note that

the lower bounds are not shown in the Figure 4.5.

Figure 4.5 shows that the pitch rate feedback certainly improves GTM’s robustness

against the wind disturbance in the elevator channel. Moreover, Figure 4.5 also shows

how the system performs against wind disturbances of different sizes. In contrast, the

linearized analysis does not provide any insights on how disturbances of different sizes

affect the system.

The upper bound results are conservative. The quadratic storage function provides a

very conservative estimate. Note that the lower bound is below all gains (linearized,

quadratic, and quartic). This is reasonable since the other gains are supposed to be

upper bounds on the actual gain.

4.3 Summary

This chapter focuses on estimating the ROA and the induced L2 gain for smooth

polynomial dynamical systems. Lyapunov and dissipation theory are used to esti-

mate lower bound for the ROA and upper bound for the induced L2 gain. Sufficient

set containment conditions are formulated to estimate these bounds. Iterative al-

gorithms based on SOS optimization are formulated to solve the set containment

conditions. These SOS based bounds can be very conservative. Hence, simulation

based bounds are also proposed to complement the SOS based bounds. Both the

ROA and the L2 gain estimation techniques are then applied to the GTM’s longitudi-

nal polynomial dynamics. The presentation of this chapter is more along the lines of

discussing practical implementation issues of the SOS algorithms for moderately large

scale problems, rather than a detailed description of the theory or algorithms them-

selves. The presentation also focused on how the SOS tools can help the flight control

engineers to verify stability and performance of nonlinear flight control systems.
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Chapter 5

Local Performance Analysis of

Polynomial Systems with Actuator

Saturation

This section considers the problem of estimating the local induced L2 gain of poly-

nomial systems with actuator saturation. A majority of the research on analyzing

feedback control systems with actuator saturation assumes that both the plant and

the controller are linear. In practice, the Circle and the Popov criteria are two com-

monly used methods [31] for analyzing feedback control systems. The Circle crite-

rion analyzes a linear time invariant (LTI) system in feedback with a memoryless,

time-varying sector bounded static nonlinearity. The Popov criterion analyzes an

LTI system with a memoryless, static sector-bounded nonlinearity. The Circle or

the Popov criteria are used in [22, 40] to estimate Lyapunov functions for proving

stability and performance bounds for linear systems with actuator saturation. The

Lyapunov function is found by solving Linear Matrix Inequality (LMI) conditions.

Another method, not involving Circle and Popov criteria, can be found in [13], where

the saturated linear systems are analyzed by expressing the saturation function as a

convex combination of piecewise linear functions.

Analyzing nonlinear systems with saturated input is still an ongoing research problem.

Analysis tools for nonlinear systems in feedback with an actuator saturation are not

yet well-developed. This chapter presents a method for estimating an upper bound

of the local induced L2 gain for polynomial systems with hard nonlinearities, e.g.,

saturation and rate limits. The gain upper bound condition is formulated in terms of a
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dissipation inequality that incorporates an integral quadratic constraint to model the

hard nonlinearities. The dissipation inequality can be verified using sum-of-squares

optimizations. This approach is applied to systems with actuator’s position and rate

limits. The effectiveness of the proposed method is demonstrated in two numerical

examples.

5.1 Problem Formulation

The main goal of this chapter is to analyze performance of polynomial dynamic sys-

tems in feedback with actuator saturation. Consider the feedback interconnection

-
d

-

w

G
-

e

�sat(·) v

Figure 5.1: Feedback Interconnection of G− sat(·)

in Figure 5.1. The input-output equations associated with this interconnection are

given by Equations 5.1 and 5.2.

[
e

v

]
= G

[
d

w

]
(5.1)

w = sat(v) (5.2)

G(x, d, w) is a dynamical system expressed by polynomial vector fields of the following

form:

ẋ = f(x, d, w) (5.3)[
e

v

]
=

[
h1(x)

h2(x)

]
= h(x) (5.4)
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where x(t) ∈ Rn is the state vector, d(t) ∈ Rnd is the exogenous input, e(t) ∈ Rne

is the regulated output. w(t) ∈ Rnw and v(t) ∈ Rnv are the interconnection signals

between G and sat(·). Moreover, f : Rn×Rnd ×Rnw → Rn and h : Rn → Rne+nv are

both multivariable polynomials. Assume f(0, 0, 0) = 0 and h(0) = 0. Note that h is

not considered as a function of inputs w and d, i.e. G has no direct feedthrough from

the inputs (d, w) to the outputs (e, v).

The problem is to estimate an upper bound to the local induced L2 gain γR, as defined

in Equation 5.5, of the interconnection ( Figure 5.1 ) from d to e. The local L2 gain is

defined where attention is restricted to “local” inputs d that satisfy ||d||2 ≤ R where

R ∈ R+. The local L2 gain is formally defined in Equation 5.5.

γR := sup
d∈L2,||d||2≤R

x(0)=0

||e||2
||d||2

(5.5)

5.2 Induced L2 Gain Analysis

The approach is divided into three steps. First, the ∆ operator is modeled using the

Integral Quadratic Constraint (IQC) framework [36]. Second, a dissipation inequality

is formulated which provides a condition to estimate the local L2 energy gain bound

[29]. Finally, a computational approach is proposed using the SOS framework.

5.2.1 Review of IQCs

IQCs, introduced in [36], provide a general framework for robustness analysis of linear

dynamical systems with respect to uncertainties or nonlinearities. Assume that the

uncertainties or nonlinearities are represented by ∆ in Figure 5.2. IQCs are used

to constrain the input-output behavior of the uncertainties or nonlinearities. This

section will focus on how to model ∆ using the IQC theory. It is required that ∆ be a

bounded, causal operator which maps from L2 → L2. Let Π : jR→ C(nv+nw)×(nv+nw)

w
-∆-

v

Figure 5.2: Uncertainties or nonlinearities represented by ∆

be a measurable, bounded Hermitian-valued function. ∆ is said to satisfy the IQC

50



defined by Π, if for all v ∈ L2, with w = ∆(v), the following inequality holds [36],

∫ ∞
−∞

[
v̂(jω)

ŵ(jω)

]∗
Π(jω)

[
v̂(jω)

ŵ(jω)

]
dω ≥ 0 (5.6)

where v̂(jω) and ŵ(jω) are Fourier transforms of v and w, respectively. If the IQC

multiplier Π is rational and uniformly bounded on the imaginary axis, then Equa-

tion 5.6 has an equivalent time domain expression. In that case, Π can be factorized

as, Π(jw) = Ψ(jw)∗MΨ(jw), where M is a constant matrix and Ψ(s) is a stable

Linear Time Invariant (LTI) filter.

Remark: The Laplace variable in this thesis is denoted as s. This is to avoid

confusion with the SOS multiplier s.

The time domain interpretation of the IQC in Equation 5.6 can be formulated as [36]:∫ ∞
0

yψ(t)TMyψ(t)dt ≥ 0 (5.7)

where yΨ is the output of the following state-space realization (See Figure 5.3).

w-∆
v-

-
- Ψ(s) -yψ

Figure 5.3: Time Domain Interpretation of IQCs

ẋΨ(t) = AΨxΨ +BΨ1v +BΨ2w (5.8)

yΨ(t) = CΨxΨ +DΨ1v +DΨ2w (5.9)

xΨ(0) = 0 (5.10)

Moreover, ∆ is said to satisfy the “hard” IQC defined by Π if,∫ T

0

yψ(t)TMyψ(t)dt ≥ 0 ∀ T <∞ (5.11)

∆ is said to satisfy the “soft” IQC defined by Π if it is not “hard”, i.e. if the

time domain quadratic constraint does not hold for all finite time intervals T. The
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notions of “soft” and “hard” depend on the factorization of Π [44]. The dissipation

inequality condition derived in this paper assumes that the “hard” conditions hold,

i.e. the time-domain IQC condition is valid over all finite time intervals.

5.2.1.1 IQC Modeling of Saturation

In this chapter, we are particularly interested in analyzing feedback systems with

saturation nonlinearities. Assume ∆ = sat(·) denotes the normalized unit saturation

function defined as:

sat(v) =


1 if v > 1

v if |v| ≤ 1

−1 if v < −1

(5.12)

The saturation nonlinearity, in this chapter, is modeled using the IQC framework.

Particularly, this chapter focuses on finding a “hard” IQC factorization of saturation

nonlinearity. In other words, the time domain IQC constraint of saturation should

satisfy
∫ T

0
yψ(t)TMyψ(t)dt ≥ 0, where yψ is the output of the stable LTI filter Ψ, as

shown in Figure 5.4, and M is a constant matrix.

w-sat(·)v-

-
- Ψ(s) -yψ

Figure 5.4: Time Domain Interpretation of IQCs

Several different multipliers are known for (amplitude) saturation in literature [29].

We will state two important IQC descriptions of saturation in terms of Π. Recall that

Π can be factorized as Π(jw) = Ψ(jw)∗MΨ(jw).

1. In practice, saturation is often viewed as a sector bounded (slope restricted)

nonlinearity. We will first derive how any nonlinearities lying inside [α β] sec-

tor, can be represented in the IQC framework. The representation is then

generalized for the saturation nonlinearities.

Consider Figure 5.3. Assume, ∆ represents [α β] sector bounded nonlinearity

as shown in Figure 5.5.
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Figure 5.5: α and β are the slopes of the straight lines. The nonlinearity (green
curve) lies within these slopes and is known as sector bounded or slope-restricted
nonlinearities.

Consequently, ∆ satisfies [w − αv]T [βv − w] ≥ 0, which is equivalent to:[
v

w

]T [
−αβ (α+β)

2
(α+β)

2
−1

][
v

w

]
≥ 0 (5.13)

Assume a static description of the LTI filter Ψ in Figure 5.3. Specifically, Ψ = I

and yψ =

[
v

w

]
. Now the [α β] sector bounded nonlinearity satisfies Equation

5.11 with the following constant matrix M :

M =

[
−αβ (α+β)

2
(α+β)

2
−1

]
(5.14)

Saturation can be viewed as [0, 1] sector bounded nonlinearity. Hence, an

appropriate multiplier is:

Π1 =

[
0 1

1 −2

]
(5.15)

2. Popov IQC [29] can also be used to model actuator saturation. The multiplier
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is:

Π2(jω) := ±

[
0 jω

−jω 0

]
(5.16)

However, this is not a proper IQC as it is not bounded on the imaginary axis. [36]

proposes a method of circumventing this problem.

3. Any conic combination of the above two multipliers is also considered as an

appropriate IQC multiplier for the saturation function: Π :=
∑2

i=1 ciΠi for any

ci ≥ 0 (i = 1, 2)

Next, we focus on formulating the dissipation inequality.

5.2.2 Local Dissipation Inequality Formulation

This section presents the dissipation inequality providing the induced L2 gain for

nonlinear systems in feedback with sat(·). The dissipation inequality is formulated

based on the connection between IQC theory and dissipation theory shown in [29,44].

This connection has been investigated previously in [29,44].

Figure 5.6 shows the analysis interconnection structure which is obtained by simply re-

placing the relation w = sat(v) with the time domain IQC constraint,
∫ T

0
yψ(t)TMyψ(t)dt ≥

0. This interconnection is used to formulate the dissipation inequality provided in

Theorem 5.1. For notational simplicity, let, x̃ =

[
x

xψ

]
and F (x̃, w, d) =

[
ẋ

ẋψ

]
.

-d
-

w

G
-e

� v

-
- Ψ(s) -

yψ

Figure 5.6: Analysis Interconnection Structure
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Theorem 5.1. Assume the interconnection of G and sat(·) is well-posed and sat(·)
satisfies the hard IQC defined by Π = Ψ∗MΨ. If ∃ a smooth, continuously differen-

tiable function V : Rnx+nxψ → R and real numbers γ, λ > 0 such that:

V (0) = 0 and V (x̃) ≥ 0 ∀ x̃ (5.17)

ΩV,R2 := {x̃ : V (x̃) ≤ R2} is bounded (5.18)

∇V · F (x̃, w, d) ≤ dTd− 1

γ2
eT e− λ(yTψMyψ)

∀x̃ ∈ ΩV,R2 ,∀d ∈ Rnd and ∀w ∈ Rnw (5.19)

then ||d||2 < R implies ||e||2 ≤ γ||d||2.

Proof. The theorem assumes the dissipation inequality holds only over a sublevel

set, ΩV,R2 . Hence, the proof first ensures that the state remains in the sublevel set

for all finite time. Let x̃(0) = 0 and d be any input such that ||d||2 < R. Since the

interconnection is assumed to be well-posed, unique solutions to the ODEs exist for all

finite time. Assume ∃ a T1 > 0 such that x(T1) /∈ ΩV,R2 . Define T2 := infx(T )/∈ΩV,R2 T .

By continuity of the ODE solutions, x(T2) ∈ ∂ΩV,R2 , where ∂(ΩV,R2) indicates the

boundary of the set ΩV,R2 . We can conclude that x(t) ∈ ΩV,R2 for all t ∈ [0, T2].

Thus the dissipation inequality holds along the trajectory from [0, T2]. Integrating

this dissipation inequality gives:∫ T2

0

V̇ (x̃)dt ≤
∫ T2

0

(dTd− 1

γ2
eT e)dt−

∫ T2

0

λ(yTψMyψ)dt

Since the hard IQC satisfies
∫ T2

0
λ(yTψMyψ)dt ≥ 0 and V (x̃(0)) = 0, this inequality

gives:

R2 = V (x̃(T2)) ≤
∫ T2

0

dTd dt ≤ ||d||22 < R2

This is a contradiction and hence the assumption that ∃ a T1 > 0 such that x(T1) /∈
ΩV,R2 is not true. Thus ||d||2 < R implies x(t) ∈ ΩV,R2 for all finite time. Hence the

dissipation inequality holds along the trajectories of x̃ for all finite time.

Integrating the dissipation inequality (Equation 5.19) from t = 0 to t = T with the

initial condition x̃(0) = 0 and using V (x̃(0)) = 0 and V (x̃(T ) ≥ 0 yields:
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0 ≤
∫ T

0

λ(yTψMyψ)dt ≤
∫ T

0

(dTd− 1

γ2
eT e)dt

This implies that 1
γ2

∫ T
0
eT e dt ≤

∫ T
0
dTd dt for all finite time T and hence ||e||2 ≤

γ||d||2.

Remark 1 Notice, ||e||2||d||2 ≤ γ implies γR ≤ γ. Hence, γ provides an upper bound

estimate of the local L2 gain.

Remark 2 In the dissipation inequality formulation, λ is a Lagrange multiplier for

the time domain constraint. It can be shown that the dissipation inequality can not

be satisfied with λ = 0. Hence, the restriction of λ to be strictly positive is without

loss of generality.

Remark 3 The dissipation inequality formulated is restrictive in the sense that it is

applicable only when hard factorization exists for the IQCs. Additionally, the theo-

rem also requires the storage function to be positive definite. In [44], it was incor-

rectly claimed that this dissipation inequality condition is equivalent to the standard

frequency domain IQC condition when G is restricted to be a linear system. The

dissipation inequality condition in Theorem 5.1 is, for general multipliers, a more

conservative condition than the standard frequency-domain IQC test.

Remark 4 Theorem 5.1 remains valid if sat(·) is replaced by a causal, bounded (in

L2 sense) operator ∆. In other words, sat(·) can be replaced by any operator for

which an IQC description is available.

Remark 5 The operator sat(·) or ∆ can be modeled as conic combinations of several

multipliers. Hence, the term λ(yTψMyψ) in the dissipation inequality can be replaced

by
∑p

i=1 λi(y
T
ψi
Miyψi). Less conservative bounds on the L2 gain will be computed if

more IQCs are used.

Theorem 5.1 provides a dissipation inequality for nonlinear systems in feedback with

actuator saturation. The dissipation inequality condition characterizes an upper

bound of the induced L2 gain of such systems. In the case of polynomial systems

in feedback with the saturation, SOS estimation technique can be applied to com-

pute the upper bound of the induced L2 gain. The induced L2 gain characterization

is of practical importance, particularly for flight control systems, where the actuator

saturation plays an important role in affecting the performance of the system.
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5.2.3 L2 → L2 Gain Computation

The computational approach is similar to the L2 gain estimation technique mentioned

in Chapter 4.2. The set containment constraint in the dissipation inequality, Equation

5.19, is replaced with a sufficient non-negative condition by applying generalized S-

procedure. The non-negative conditions are then relaxed to be SOS inequality. The

conditions provided in Theorem 5.1 are reformulated as an SOS optimization problem:

R̄ := maxR

subject to:

V (x̃) is SOS, V (0) = 0 (5.20a)

− [(R2 − V )s(x̃, w, d) +∇V · F (x̃, w, d)− dTd+
1

γ2
eT e

+λ(yTψMyψ)] is SOS (5.20b)

λ is SOS (5.20c)

s(x̃, w, d) is SOS (5.20d)

The storage function V in the iteration is initialized with the linearized storage func-

tion VL by solving the following SOS condition.

−∇VL · FL(x̃, w, d)−dTd+
1

γ2
L

eT e+ λ(yTψMyψ) is SOS (5.21)

where FL represents the linearization of F and γL is the L2 energy gain with G = FL

in Figure 5.1. Now, the V -s iteration algorithm is applied for a given γ > γL. The

V -s iteration steps are:

1. R2/s Step: Hold V fixed and solve for s and R̄

R̄ := maxR

subject to:

Equation (5.20b) - (5.20d)

2. V step: Hold R̄, s(x̃, w, d) fixed and solve for V satisfying Equation (5.20a) -

(5.20c).

3. Repeat R2/s and V step as long as the R̄ continues to increase.

57



5.2.4 Guaranteed SOS Feasibility

The SOS optimization problem posed in Equation 5.20 provides an upper bound to

the induced L2 gain of system 5.1 from d to e. Assume the linearized condition in

Equation 5.21 provides a finite gain γL. However, it is not clear, given a finite gain

γL, if a feasible solution to the SOS conditions in Equation 5.20 exists. Next, we

investigate feasibility of the optimization problem 5.20 given that a finite gain γL

exists.

The feasibility of the solution depends on the structure of the nonlinear systems.

Specifically, we will consider the following structure of the polynomial dynamics:

ẋ = f(x,w, d) = Ax+Bww +Bdd+ f23(x) + g12(x)w + h01(x)d2 +m01(x)w2

(5.22)[
e

v

]
=

[
C1

C2

]
x+

[
0

D2

]
d (5.23)

w = sat(v) (5.24)

wheref23 is quadratic and cubic in x, g12 is linear and quadratic in x, and h01(x), m01(x)

are affine in x. A, Bw, Bd, C1, C2, D2 are matrices (of reals) of appropriate dimen-

sions. Here, x represents the states, w, d represents the inputs and e, v indicates the

outputs. Assume that the saturation is modeled as [α β] sector bounded nonlinearity.

Hence, an appropriate IQC description of saturation can be described by yTψMyψ,

where

yψ =

[
w

v

]
, M =

[
−αβ (α+β)

2
(α+β)

2
−1

]
=

[
M11 M12

MT
12 M22

]

Assume that the linearized dissipation inequality condition (Equation 5.21) corre-

sponding to the dynamics of Equation 5.22 is feasible. According to the KYP-lemma,

there exist P = P T � 0 and λ > 0 such that the following LMI is satisfied.

Λ =

A
TP + PA+ CT

1 C1 + λCT
2 M11C2 PBw + λCT

2 M12 PBd + λCT
2 M11D2

(PBw + λCT
2 M12)T λM22 λMT

12D2

(PBd + λCT
2 M11D2)T (λMT

12D2)T −γ2 + λDT
2 M11D2

 � 0

(5.25)

Theorem 5.2. Consider Equation 5.22 and a sector bounded IQC description for
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saturation. If there exist a P = P T � 0 and λ > 0 such that Equation 5.25 is

satisfied then the SOS constraints in Equation 5.20 are always feasible.

Proof. Define the storage function V in Equation 5.20 to be V = xTPx. Let, s =xw
d

, and r = s
⊗

x, where
⊗

denote the Kronecker product. There exists constant

matrix Q1, Q2 such that,

2xTP
(
f23(x) + g12(x)w + h01(x)d2 +m01(x)w2

)
= rTQ1r + sTQ2r + rTQT

2 s

The dissipation inequality can be rewritten in the following form:

∇(V )ẋ− γ2dTd+ eT e+ λ(yψ
TMyψ) =

[
s

r

][
Λ Q2

QT
2 Q1

][
s

r

]

Let, s1 = α(xTx+wTw+dTd), where α > 0. Hence, the term V s1 = α(xTPx)(xTx+

wTw). According to Lemma II.5 from [54], there exists a H � 0 such that rTHr =

α(xTPx)(xTx+wTw). Now we focus on the local dissipation inequality as mentioned

in Equation 5.20b. Define,

D := −∇(V )ẋ− γ2dTd+ eT e+ λ(yψ
TMyψ)− (R2 − V )s1(x,w)

The dissipation inequality condition is quadratic in x, w, d, r and can be written as:

D :=

[
s

r

]([
−Λ −Q2

−QT
2 −Q1

]
+

[
−αγ2R2I 0

0 αH

])[
s

r

]
(5.26)

With proper choice of α and R the dissipation inequality can be made SOS. Since,

H � 0 and Λ ≺ 0, there is an α > 0 such that,[
−Λ −Q2

−QT
2 −Q1

]
+

[
0 0

0 αH

]
� 0

With this α fixed, by continuity, there exists R > 0 such that,[
−Λ −Q2

−QT
2 −Q1

]
+

[
−αγ2R2I 0

0 αH

]
� 0
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The proof of Theorem 5.2 is specific for the dynamics described in Equation 5.22

and for sector bounded IQC description. The proof is constructive and hence does

not apply when the dynamics are different than Equation 5.22. In that case, similar

arguments can be made to prove or disprove SOS feasibility.

5.3 Applications

This section presents two examples involving estimation of the L2 energy gain bound.

The first example investigates amplitude saturation and the second example is the

GTM short period flight control system with rate saturation.

5.3.1 Amplitude Saturation

Consider the feedback interconnection shown in Figure 5.1 with sat(·) denoting a

normalized unit amplitude saturation function. The dynamics of G are given as:

ẋ1 = −x1 + x2 + αx2
2 (5.27)

ẋ2 = −x2 + d+ w (5.28)[
e

v

]
=

1

2

[
x1

x1

]
(5.29)

The goal is to estimate the upper bound of the L2 → L2 gain from d to e for different

values of α. The term α is a weighting on the nonlinearity of the dynamics. For

α = 0, G reduces to a linear model. In that case, the L2 gain from d to e can be

computed by using the IQCβ [30] toolbox. The saturation is modeled as a [0, 1] sector

bounded nonlinearity. The L2 gain computed with the IQCβ toolbox for the linear

plant (α = 0) in feedback with saturation is γ = 1.0. It is expected that as α goes

to zero, the L2 gain of the nonlinear plant in feedback with the saturation should

converge to γ = 1.0. The purpose of this example is to understand the conservatism

introduced by the dissipation inequality condition.

The first step in analyzing the problem is to model the saturation in the IQC frame-

work. This entails replacing the precise relation w = sat(v) with the time domain

IQC,
∫ T

0
yψ(t)TMyψ(t)dt ≥ 0. In this specific example, the [0 1] sector bounded

nonlinearity is considered.

The dissipation inequality condition is solved to estimate the local L2 gain for three
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different values of α. The L2 gain of the nonlinear plant in feedback with saturation

is estimated with a quadratic storage function and the multiplier s is a quadratic

function of [x1;x2;w; d]. Figure 5.7 shows that as α goes close to zero, the dissipation

inequality recovers the linear results. Hence, for this particular example, the dissi-

pation inequality condition does not introduce any conservatism as α tends to zero.

This example also verifies the correctness of the dissipation inequality condition.

0 20 40 60 80 100 120

1

1.5

2

2.5

3

Input Size, R

L 2 G
ai

n,
 γ

 

 

α = 0.01

α = 0.005

α = 0.001

Linear System Gain α = 0

Figure 5.7: L2 gain bounds with quadratic storage function for different size of inputs
and different values of α.

5.3.2 GTM Short Period Control with Rate Saturation

Consider the longitudinal dynamics of the GTM aircraft (Equation 3.13) around the

flight condition specified in Equation 5.30.
Vt

αt

qt

θt

 =


150.00 ft/s

0.04690 rad

0 rad/s,

0.04690 rad

 ,
[
δelev,t

δth,t

]
=

[
14.78 %

0.0506 rad

]
(5.30)

The subscript “t” denotes a trim value. A polynomial short period model is extracted

from the 4-state polynomial model, Equation 3.13, by holding V , θ and δth at their
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trim values. The short period model has two states x := [α q] and the elevator

deflection (δe in radian) as the control input. The state α is the angle of attack (rad)

and q is the pitch rate (rad/s). The polynomial short period model is given by:

α̇ = (−1.492α2 + 4.239α− 3.236)α + (3.063× 10−3α + 6.226× 10−3q + 9.227× 10−1)q

+ (2.402× 10−1α− 6.491× 10−2δe − 3.166× 10−1)δe

q̇ = (−7.228α2 + 18.36α− 45.34)α− 4.372q + (41.50α− 59.99)δe

Consider Figure 5.8. P is a two-state short period polynomial model provided above.

The damping of the short period dynamics are improved with a proportional pitch

rate (q) feedback control and is denoted by K, where K = 4 π
180

. An exogenous

disturbance d affects both states and enters the plant additively. The goal is to

estimate an upper bound of the local L2 gain from d to q under rate limit saturation.

For simplicity, the rate limit in this example is designed to have a bandwidth of 1

rad/s. In reality, the GTM rate limit bandwidth is faster than 1 rad/s.

r = 0
- g- K - g?

d

- g- sat -
∫? δe

- P
q
-

6

Figure 5.8: Feedback interconnection of GTM short period dynamics

IQC Modeling of Rate Saturation: The first step is to model the rate limit saturation

within the IQC framework. In the rate limiter, an integrator appears in combination

with a saturation. This interconnection is not L2 stable and hence the IQC framework

cannot be used. However, [42] resolves this issue by encapsulating the nonlinearity in

an artificial feedback loop, as shown in Figure 5.9. Let the feedback encapsulated

rate limiter be denoted by δ̃e = Γsat(δecmd). This is defined by the relations,

δ̇e = sat(δecmd − δe), δe(0) = 0

δ̃e = δe + sat(δecmd − δe)
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δecmd- g- sat -
∫

- g -
δe? δ̃e

6

Figure 5.9: Feedback encapsulation of rate limit

The following IQC multipliers are used to model the feedback encapsulated rate limit

saturation, δ̃e = Γsat(δecmd).

1. The gain from δecmd to δ̃e is shown not to exceed
√

2 in [42]. This forms the

basis of the following multiplier.

ΠΓ1 =

[
2 0

0 −1

]
(5.31)

2. Another IQC multiplier can be derived by observing that the relation from

(δecmd − δe) to δ̇e can be modeled as a [0, 1] sector bounded nonlinearity. The

corresponding IQC multiplier is:

ΠΓ2 =

[
0 jω

jω+1

(· )∗ −2( jω
jω+1

)∗( jω
jω+1

)

]
(5.32)

3. Any conic combination of the above two multipliers is also considered an appro-

priate IQC multiplier for the Γsat operator: ΠΓ :=
∑2

i=1 ciΠΓi for any ci ≥ 0

(i = 1, 2)

Remark Note that the IQCs are provided for the encapsulated rate limiter, Γsat.

Hence to use the IQCs for the encapsulated rate limit, an (s + 1) filter is introduced

at the output of the rate limit and a 1
(s+1)

filter is introduced at the input of P . The

feedback interconnection of P̃ = P
s+1

and the encapsulated rate limit is then analyzed.

The input-to-output gain from d to q of this modified loop is equivalent to the d to

e gain for the original problem.

The L2 → L2 gain from d to q is estimated for the GTM dynamics under rate

saturation. The rate saturation is modeled with a conic combination of the multipliers
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ΠΓi for i = 1, 2. The multiplier s is a quadratic function of [α; q;xΨ; δe; d]. xΨ is

the state of the Ψ filter used in the factorization of ΠΓ2 . Figure 5.10 indicates how

the induced gain of the system varies as the size of the disturbance ||d||2 increases.

The horizontal axis indicates the size of the disturbance, ||d||2 and the vertical axis

shows the estimated bounds of the induced gain from d to q. The upper bounds

are estimated for both quadratic (marked as –x) and quartic (marked as -�) storage

functions. The induced gain for the linearized system is also shown (marked as --).

The lower bound (marked as -o) is estimated using the algorithm proposed in [53].
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Figure 5.10: Estimation of induced L2−L2 gain bounds for GTM short period under
rate limit

The linear gain is estimated by solving the dissipation inequality for the linearized

system and is computed to be 1.65. The quadratic and quartic storage function prove

that the system can tolerate a disturbance input of a size ||d||2 < 0.4 and ||d||2 < 0.5,

respectively. The storage function proves that the system cannot be destabilized by

any input of size less that 0.5. The lower bound demonstrates that the system gain

becomes unbounded for ||d||2 < 1.83. In other words, there exists an input of size

1.83 which will destabilize the system. Note, for small ||d||2 the lower bound is below

all three gains (linearized, quartic, quadratic). This is expected since the three gains

are supposed to be upper bounds on the actual gain.

64



The upper bound results are conservative. The conservativeness is possibly due to

the IQCs that are used for modeling rate saturation. The IQC in Equation 5.31

is constant and the other dynamic IQC in Equation 5.32 arises from modeling the

saturation as sector bound nonlinearity.

5.4 Connection Between Dissipation Inequality to Lyapunov

Function

Consider the feedback interconnection of Figure 5.1 with d = 0 and e = 0. For

convenience, this interconnection is presented here again in Figure 5.11.

-

w

G

�sat(·) v

Figure 5.11: Feedback Interconnection of G− sat(·)

One may then ask the question: if there are no external disturbances (d = 0) in System

5.3, does the dissipation inequality imply Lyapunov stability? In other words, can the

storage function V in the dissipation inequality (Equation 5.19) be used as a Lyapunov

function to conclude stability of the origin? It turns out that the storage function

can be used as a Lyapunov function to prove stability of the origin if the time domain

IQC constraint of saturation is satisfied point-wise in time, i.e. yψ(t)TMyψ(t) ≥ 0 ∀t.
Theorem 5.3 provides conditions as to when the storage function is equivalent to a

Lyapunov function.

Theorem 5.3. Suppose the assumptions of the dissipation inequality of Theorem 5.1

is satisfied on a domain D ⊂ Rn+nψ that contains the origin. Specifically,

V (0) = 0 and V (x̃) ≥ 0 ∀ x̃ ∈ D

∇V · F (x̃, w) ≤ −λ(yTψMyψ) ∀x̃ ∈ D, and ∀w ∈ Rnw

If the following conditions are satisfied,
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• Time domain IQC constraint of saturation is satisfied point-wise in time →
yTψMyψ ≥ 0∀ x̃ ∈ D, and ∀w ∈ Rnw

• No solution of F (x̃, w) can stay identically in S = {x̃ ∈ D|h1(x) = 0} other than

the trivial solution x̃(t) = 0. This is also known as the zero-state observability

condition.

then the origin of F (x̃, w) is asymptotically stable.

Proof. A brief sketch of proof is included here. The condition yTψMyψ ≥ 0 is satisfied

point-wise in time and hence ∇V · F (x̃, w) ≤ −λ(yTψMyψ) < 0 ∈ D − {0}. Using

zero-state observability assumption, it can be shown that V (x̃) is positive definite in

the domain. This concludes that the system is asymptotically stable.

5.4.1 Equivalence to Circle Criterion

Assume G represents a linear system, G = GLIN(s). Specifically, the feedback inter-

connection in Figure 5.11 is represented by

ẋ = Ax+Bw (5.33)

v = Cx (5.34)

w = sat(v) (5.35)

where A, B, C are matrices of appropriate dimensions and sat(·) lies in the [α, β]

sector. The stability of the system in Equation 5.33 is provided by the well-known

Circle Criteria [31]. It is convenient, for the purpose of applying the Circle Criteria,

to transform the sat(·) lies in [0, ∞] sector via loop transformation [31] of Figure

5.12.

After the loop transformation, the linear system, indicated as Z(s) in Figure 5.12,

takes the following form:

ẋ = (A− αBC)x+Bŵ (5.36)

v̂ = (β − α)Cx+ ŵ (5.37)

The saturation nonlinearity now belongs to the [0, ∞] sector, as shown in the bottom

part of the Figure 5.12. Investigating stability of the original system 5.33 is now equiv-

alent to investigating stability of the loop transformed linear system Z(s) in feedback
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Figure 5.12: Saturation nonlinearity is transformed from [α, β] sector to [0, ∞]
sector.

with with sat(·) in the [0, ∞] sector. The Circle Criteria will be applied on this

transformed system. The Circle Criteria states that the loop transformed feedback

interconnection in Figure 5.12 is stable if Z(s) is a positive real transfer function.

Positive real transfer functions can be characterized by the Kalman-Yakuubovich-

Popov (KYP) Lemma (see Lemma 6.3, [31]). The KYP lemma states that Z(s) is

strictly positive real if and only if there exist matrices P = P T > 0, L, and W and a
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scalar ε > 0 such that

(A− αBC)TP + P (A− αBC) = −LTL− εP (5.38)

PB = (β − α)CT − LTW (5.39)

W TW = 2 (5.40)

Equation 5.38 provides conditions for Z(s) to be strictly positive real, hence, proving

absolute stability of the original system 5.33. In other words, if we can find matrices

P = P T > 0, L, and W and ε > 0 such that Equation 5.38 is satisfied then the

original system 5.33 is stable. Equation 5.38 can be turned into the following LMI:[
A− αBC)TP + P (A− αBC) (β − α)CT − PB

−2

]
= −εP ≺ 0 (5.41)

The LMI in Equation 5.41 turns out to be equivalent to applying Theorem 5.3 on

the transformed system in Figure 5.12. Specifically, Theorem 5.3 states the system

in Figure 5.12 is stable if we can find a storage function V (x) > 0 satisfying

V̇ ≤ −(yTψMyψ) (5.42)

where yψ =

[
ŵ

−v̂

]
and M =

[
0 1

1 0

]
is an appropriate multiplier for sat(·) lying

in [0, ∞] sector. If V (x) is taken to be a quadratic storage function, specifically

V (x) = xTPx, then Equation 5.42 can be written as the LMI in Equation 5.41.

Theorem 5.3 is shown to be equivalent to the Circle Criteria for linear systems in

feedback with saturation nonlinearity. Next, we show the application of Theorem

5.3.

5.4.2 Application

Linear System with Saturation [Example 7.4 in [31]]

Consider the linear system in feedback with saturation nonlinearity presented in Equa-
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tion 5.43.

ẋ =

[
0 1

1 0

]
x+

[
0

1

]
w (5.43)

y =
[
2 1

]
x (5.44)

w = −sat(y) (5.45)

where sat(y) belongs globally to the sector [0 1]. The objective of this example is

to study the stability of the system using Theorem 5.3. The stability of this system

has previously been studied in [31] using the Circle Criteria. The linear system

under study is not Hurwitz and hence the Circle Criteria showed that the system is

absolutely stable if the saturation belongs to the sector [α1], where α > 0.5359. Here

we will apply Theorem 5.3 to recover the results obtained in [31].

Next, Theorem 5.3 is applied to search for an optimal sector α∗ such that the system

in Equation 5.43 remains absolutely stable for nonlinearities lying between [α∗1].

Assume that a quadratic Lyapunov function, V (x) = xTPx is used to solve the

condition V̇ ≤ −(yTψMyψ) provided by Theorem 5.3. Here, yψ =

[
y

−w

]
and M =[

−2α∗ 1 + α∗

1 + α∗ −2

]
. This condition can be relaxed to be SOS constraint. The SOS

framework can then be used to maximize α∗ satisfying the condition V̇ ≤ −(yTψMyψ).

The SOS optimization returns an optimal α∗ to be 0.536. Hence, Theorem 5.3 recovers

the results obtained by the Circle Criteria.

Theorem 5.3 also provides a Lyapunov function. The ROA can be characterized by

the sub-level set of the Lyapunov function, Ωc = {x ∈ R2|V (x) ≤ c}, where c needs to

be computed. The ROA can then be approximated by solving for maximum c subject

to the set containment condition Ωc ⊂ {|y| ≤ 1
α
}. Figure 5.13 shows the ROA for

the system obtained by the Lyapunov function from Theorem 5.3. Theorem 5.3 can

be viewed as a process which has automated the conditions provided by the Circle

Criteria.

5.5 Summary

This chapter presents a method for estimating the upper bound of the induced L2

gain for polynomial dynamical systems in feedback with saturation. The method
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Figure 5.13: Region of attraction obtained by the Lyapunov function from Theorem
5.3.

relies on merging the dissipation theory with the IQC framework. The SOS opti-

mization framework has been used for computing the bounds. The conservativeness

of the results are quantified by estimating the lower bound of the induced gain. The

technique has been applied to the short period model of the GTM dynamics. A pos-

sible future direction of research will be to reduce the conservativeness of this method

by including a rich description of IQCs. The framework can also be extended to

handle uncertainty. This requires further investigation.

The storage function from the dissipation inequality is shown to be a Lyapunov func-

tion under certain (restrictive) assumptions. This connection results in a condition

for inferring the stability of polynomial systems in feedback with saturation. For

linear systems, this stability condition is equivalent to the well known Circle Criteria.

The condition introduces an absolute stability framework for polynomial type “Lure”

systems.
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Chapter 6

Local Stability Analysis of

Polynomial Systems with Actuator

Saturation

This chapter considers the local stability analysis of polynomial systems in feedback

with actuator saturation. The work presented in this chapter is motivated by the

stability results in [23]. Polytopic set invariance conditions are formulated in [23] for

estimating the ROA of linear systems in feedback with actuator saturation. The key

idea in formulating the set invariance conditions relies on representing the saturation

as a convex hull of a group of linear (possibly nonlinear) feedbacks. In the case

of linear systems, quadratic Lyapunov functions can be computed by turning the

stability conditions into LMI conditions.

This chapter focuses on extending the invariance conditions in [23] to a polynomial

system in feedback with actuator saturation. For polynomial systems, the invariance

conditions can be verified using SOS optimizations. An iterative algorithm is provided

to solve the optimization problem. Finally, the algorithm is applied to a polynomial

system with actuator saturation.

6.1 Problem Formulation

Consider the feedback interconnection in Figure 6.1.
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w

G

�sat(·) v

Figure 6.1: Feedback Interconnection of G− sat(·)

G is a dynamical system expressed by a polynomial vector field of the following form:

ẋ = f(x) + g(x)w (6.1a)

v = h(x) (6.1b)

w = sat(v) (6.1c)

where x ∈ Rn is the state vector, w ∈ Rnw and v ∈ Rnv are the interconnection signals

between G and sat. Moreover, f : Rn → Rn, g : Rn → Rnw and h : Rn → Rnv are

multivariable polynomials. Assume f(0, 0) = 0 and h(0) = 0. Note that G is affine in

input. This assumption is required for the set invariance conditions presented later.

Assume sat(·) denotes the normalized unit saturation function defined in Equation

5.12. System 6.1 can be compactly written as:

ẋ = f(x) + g(x)sat
(
h(x)

)
(6.2)

The objective of this chapter is to estimate the ROA (R) for the polynomial system

defined by Equation 6.2. The approach involves the following steps. First, appropri-

ate invariance conditions for polynomial system are derived by extending the ideas

presented in [23]. Second, these invariance conditions are relaxed to be non-negative

polynomials and formulated as an SOS optimization problem. Finally, an iterative

algorithm is proposed for solving the SOS optimization problem.

From here onwards, we will present results for single input systems for simplicity.

These results are also applicable for multiple input systems, unless otherwise noted.
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6.2 Polytopic Set Invariance Conditions

This section focuses on deriving invariance conditions to estimate R for Equation 6.2.

In other words, we are interested in estimating the largest sublevel sets of Lyapunov

function Ω(V, γ) = {x ∈ Rn|V (x) ≤ γ} such that Equation 6.3 is satisfied. Define,

D(V (x), r(x)) := {x ∈ Rn : ∇V (x)r(x) < 0} ∪ {0}.

γ∗ := sup
γ

γ

subject to: Ω(V, γ) ⊂ D
(
V, f(x) + g(x)sat (h(x))

)
(6.3)

We review previous works on actuator saturation analysis by [12,23,24] and presents

the main invariance results. The previous works focus on estimating the ROA for

linear systems in feedback with saturation. Consider the linear representation of G:

ẋLIN = Ax+Bw (6.4a)

vLIN = Hx (6.4b)

Define the linear system in feedback with saturation:

ẋLIN = Ax+Bsat(Hx) = GLIN (6.5)

The key idea in [23] is based on the following property of the saturation function: For

any p ∈ R and q ∈ [−1, 1], there exists φ ∈ [0, 1] such that:

sat(p) = φp+ (1− φ)q (6.6)

In other words, sat(p) can be expressed as a convex combination of p and any q ∈
[−1, 1]. See Lemma 7.3.2 in [23] for an extension of this property for multi-input

systems.

The next theorem uses this property to develop a sufficient condition for the set

containment constraint in Equation 6.3. For l : Rn → R, define W (l) := {x ∈ Rn :

|l(x)| ≤ 1}.

Theorem 6.1. [ [12,23,24]] Assume there exists a continuously differentiable function

V : Rn → R such that V (0) = 0, V (x) > 0 ∀x 6= 0, Ω(V, γL) is bounded, and

Ω(V, γL) ⊂ D(V, (A+BH)x) (6.7)
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If there exists l : Rn → R such that:

Ω(V, γL) ⊂ D(V,Ax+Bl(x)) (6.8)

Ω(V, γL) ⊂ W (l) (6.9)

then Ω(V, γL) ⊂ R.

Proof. By Equation 6.9, |l(x)| ≤ 1 for all x ∈ Ω(V, γL) and hence for each x ∈ Ω(V, γL)

there is φ(x) ∈ [0, 1] such that

sat(Hx) = φ(x)Hx+
(
1− φ(x)

)
l(x) (6.10)

It follows that ∀x ∈ Ω(V, γL)

∇V (x)
(
Ax+Bsat(Hx)

)
= φ(x)∇V (x)(A+BH)x+

(
1− φ(x)

)
∇V (x)

(
Ax+Bl(x)

)
(6.11)

By Equations 6.7 and 6.8, both terms on the right side are strictly negative ∀x ∈
Ω(V, γL). Thus Ω(V, γL) ⊂ D(V,GLIN ). Ω(V, γL) ⊂ R follows from Lemma 2 (See

Chapter 4).

Theorem 6.1 is a restatement of the results in [12,23,24], e.g. Theorem 7.4.1 in [23].

The main result of the chapter is an extension to Theorem 6.1. Theorem 6.1 can be

trivially extended for systems with nonlinear dynamics. The proof is straightforward

and similar to the proof presented for Theorem 6.1. Hence, the proof is omitted. The

theorem is stated next:

Theorem 6.2. Assume there exists a continuously differentiable function V : Rn → R
such that V (0) = 0, V (x) > 0 ∀x 6= 0, Ω(V, γ) is bounded, and

Ω(V, γ) ⊂ D
(
V, f(x) + g(x)h(x)

)
(6.12)

If there exists l : Rn → R such that:

Ω(V, γ) ⊂ D
(
V, f(x) + g(x)l(x)

)
(6.13)

Ω(V, γ) ⊂ W (l) (6.14)
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then Ω(V, γ) ⊂ R.

Both Theorem 6.1 and 6.2 provide conditions for a sublevel set of V to be inside the

ROA. The theorems are simplified for single input systems but can be generalized

for systems with multiple inputs. The assumption in Equation 6.12 means that V is

a Lyapunov function for the closed-loop dynamics. This is a necessary condition for

V to be a Lyapunov function for dynamics with actuator saturation. The remaining

two assumptions in Equations 6.13 and 6.14 are sufficient conditions for the set con-

tainment constraint in Equation 6.3. The essential step of the proof is to express the

closed-loop dynamics with saturation as a convex combination of the dynamics and

dynamics with the auxiliary feedback l(x). Thus this result can be interpreted as a

common Lyapunov condition for polytopic systems [4].

6.3 Estimation of Region of Attraction

This section focuses on formulating an optimization algorithm to estimate the ROA.

Theorem 6.2 provides conditions for a sublevel set of V to be inside the ROA. A

function V that satisfies the conditions in Theorem 6.2 is a Lyapunov function and

Ω(V, γ) provides an estimate of the ROA. Another optimization can be formulated to

determine the largest estimate of the ROA:

γNL := sup
l,γ

γ

subject to:

Ω(V, γ) ⊂ D
(
V, f(x) + g(x)h(x)

)
(6.15a)

Ω(V, γ) ⊂ D
(
V, f(x) + g(x)l(x)

)
(6.15b)

Ω(V, γ) ⊂ W (l) (6.15c)

The subscript NL indicates that the optimization problem provides an ROA estimate

of the polynomial dynamics mentioned in Equation 6.2. This section focuses on

formulating optimization algorithm to find optimal γNL of 6.15.

Optimization 6.15 implicitly assumes that V satisfies the other conditions in Theorem

6.2. The sublevel set Ω(V, γ) is a provable subset of the ROA for any γ < γNL.

The constraints in this optimization are sufficient conditions for the set containment

constraint in Equation 6.3. Hence γNL ≤ γ∗, i.e. the optimization in Equation 6.15

may give conservative results relative to the optimization in Equation 6.3.
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Previous works [23] have focused on estimating ROA for linear systems in feedback

with saturation (Equation 6.5). Specifically, [23] provides a Semi-definite program-

ming (SDP) formulation for Theorem 6.1 when l is restricted to be a linear function:

l(x) = Lx for some L ∈ Rnw×n. In particular, let γLIN denote the solution of this op-

timization. The conversion to an SDP requires the additional assumption that V be a

quadratic function. Let V (x) = xTPx where P > 0 and (A+BH)TP+P (A+BH) < 0

and assume that P is known. Given these restrictions, the optimization in Equa-

tion 6.15 is equivalent to [12]:

γ−1
LIN = inf

τ,L
τ

subject to: (6.16)

(A+BL)TP + P (A+BL) < 0[
τ L

LT P

]
≥ 0

where τ := 1/γ. SDPs such as this one can be efficiently solved for systems of

moderate state dimensions (< 100) [4]. The two constraints are referred to as linear

matrix inequalities (LMIs). Next, we focus on formulating an algorithm to solve the

optimization problem 6.15 for polynomial systems..

For a given polynomial Lyapunov function V , Theorem 6.2 provides appropriate

conditions for a set to be invariant. With all the Lyapunov functions satisfying the

conditions, it is desirable to choose the “best” one to obtain a least conservative

estimate of the ROA. Next, we introduce the notion of shape function to quantify

“best”. Given an n×n matrix N = NT > 0, define the shape function p(x) := xTNx

and level set E(N, β) := {x ∈ Rn : p(x) ≤ β}. p(x) defines the shape of the ellipsoid

and β determines the size of the ellipsoid E(N, β). The choice of N is problem

dependent and reflects dimensional scaling information as well as the importance of

certain directions in the state space. N can typically be chosen to be diagonal with

Ni,i := 1/x2
i,max. With this choice, E(N, β = 1) is a coordinate-aligned ellipsoid whose

extreme points along the ith state direction are ±xi,max. In this form, the level set

value β provides an easily interpretable value for the size of the level set.

Given the shape function N , the problem is to find the largest ellipsoid E(N, β)

76



contained in the ROA:

β∗ = max β (6.17)

subject to: E(N, β) ⊂ R

As discussed in Chapter 4.1, determining the best ellipsoidal approximation to the

ROA is still a challenging computational problem. We focus on estimating a lower

bound for β∗ satisfying β ≤ β∗. Estimating a lower bound β can be posed as the

following optimization problem which entails solving the set containment conditions:

β := sup
V >0,l,γ,β

β (6.18)

subject to:

E(N, β) ⊂ Ω(V, γ)

Equations (6.12)− (6.14)

The above optimization problem provides an estimate to the lower bound β∗. The

optimization grows the shape function contained within the sublevel set of Lyapunov

function Ω(V, γ). The following section discusses the computational issue of this

optimization problem.

6.3.1 SOS Iteration Algorithm

This section turns the set invariance conditions provided by Theorem 6.2 into a Sum-

of-Squares (SOS) [33, 38] optimization problem. Similar to the approach taken in

previous chapters, all the set containment constraints in the optimization problem
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6.18 are reformulated as an SOS optimization problem:

β := max
V >0,l,γ,β

β

subject to:

V (x) is SOS, V (0) = 0 (6.19)

− [s1(x)(β − xTNx)− (γ − V )] is SOS (6.20)

− [∇V · (f(x) + g(x)h(x)) + s2(x)(γ − V )] is SOS (6.21)

− [∇V · (f(x) + g(x)l(x)) + s3(x)(γ − V )] is SOS (6.22)

− [s4(x)(γ − V )− (−l(x) + 1)] is SOS (6.23)

− [s5(x)(γ − V )− (l(x) + 1)] is SOS (6.24)

si(x) is SOS ∀i = 1, 2, 3, 4, 5 (6.25)

Note that the optimization problem is bilinear in the decision variables. Hence, an

iterative approach needs to be taken. The iteration steps are very similar to the V −s
iterations as discussed in Chapter 4.

The Lyapunov function V in the iteration is initialized with the linearized Lyapunov

function VLIN = xTPx by solving the linear matrix inequality ATP + PA < 0.

1. Initialization Step: Set V = VLIN and solve for γ and a feasible s2 satisfying

Equation (6.21).

2. l Step: Hold V and γ fixed and solve for l(x), si(x) satisfying Equation (6.21)

- (6.25).

3. β Step: Hold V , γ fixed and solve for s1 and β

β∗ := maxβ

subject to:

Equation (6.20)

4. V step: Hold β̄, l(x), si fixed and solve for V and γ such that

γ∗ := max γ

subject to:

Equation (6.19) - (6.24)
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5. Repeat l Step, β Step and V Step as long as the β∗ continues to increase.

Note that the initialization step computes a feasible γ for polynomial dynamics f(x)+

g(x)h(x) by solving Equation (6.21) while holding V = VLIN . The solution results in

an initial sublevel set Ω(VLIN , γ) which is then used to seed the iteration. Specifically,

Ω(VLIN , γ) is guaranteed to produce a feasible solution for the l Step. For example,

Equation (6.22) in l Step is trivially satisfied by setting l(x) = h(x) and Equation

(6.23) -(6.24) are satisfied by setting sj = 1
γ

for j = 4, 5 and using the fact that

|l(x)| ≤ 1. Next we focus on the application of the algorithm.

6.4 Application: F/A-18 Longitudinal Flight Control System

with Saturation

Consider the feedback interconnection of Figure 6.2. P represents the polynomial

dynamics of the F/A-18 aircraft’s longitudinal direction. The input to the plant P

is the elevator deflection, δelev and pitch rate q denotes the output of the plant. The

controller Kq is a proportional pitch rate feedback gain. The controller generates the

elevator deflection command δelevcmd , which passes through the saturation block and

produces the input to the plant P . The goal of this section is to estimate the ROA

of the feedback system shown in Figure 6.2.

- Kq

δelevcmd
- sat

δelev
- P

q
-

Figure 6.2: Feedback Interconnection of the F/A-18 Longitudinal Direction

Consider the longitudinal dynamics of the F/A-18 aircraft, which can be found in

[6]. We generate a polynomial description of the longitudinal F/A-18 dynamics as

presented in [6]. Denote the polynomial description as Flong. The details of generating

the polynomial description are omitted here. The polynomial description Flong is

79



presented in Appendix B. The plant P then takes the following input-output form:

ẋ = Flong(x, u) (6.26a)

y = q (6.26b)

where x := [V (ft/s), α(rad), q(rad/s), θ(rad)]T , and u := δelev(rad). Moreover, the

pitch rate feedback gain is Kq = 0.1.

We consider a steady wing level flight condition around 260ft/s for the purpose of

analysis. Equation 6.27 provides the flight condition:
Vt

αt

qt

θt

 =


260.00 ft/s

0.6095 rad

0 rad/s,

0.6095 rad

 , δelev,t = −0.3038 rad (6.27)

The subscript “t” denotes a trim value. Next we estimate the ROA of the feed-

back system shown in Figure 6.2 using the SOS estimation procedure presented in

Section 6.3.1. We first apply the estimation technique on the short period dynam-

ics of the polynomial plant Flong. The short-period dynamics involve two states,

xSP = [α(rad), q(rad/s)]T and the ROA estimated by the SOS algorithm can be

verified against the phase plane simulation. Finally, the SOS estimation technique is

applied on the 4-state longitudinal dynamics presented in Equation 6.26.

6.4.1 Analysis of Short Period Model

This section focuses on the ROA estimation of the short period model. A polynomial

short period model is extracted from the 4-state polynomial model (Flong) by holding

V and θ at their trim values and considering the α̇ and the q̇ equation of Flong. In

this case, the plant P in Figure 6.2 takes the following form:

ẋSP = FSP (xSP , u) (6.28a)

y = q (6.28b)

Figure 6.3 shows the phase plane for the short period model. The solid trajectories

are stable, while the dashed trajectories grow unbounded The ROA consists of all the

points that lie on the stable trajectories.
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Figure 6.3: Phase plane simulation for polynomial short period model with lower
bound estimation of ROA; Stable trajectories are denoted by solid and dashed denotes
the unstable trajectories

Next, the V -s iteration technique is applied on the short period model. We employ

the V -s iteration procedure for a quartic Lyapunov function. The shape function

is chosen to be p(z) = zT z where z := [α − αt, q − qt]
T . The (black) solid ellipse

in Figure 6.3 shows the ellipsoidal estimate of the ROA for the shape function p(z)

and lies within the stable region. The level set of the quartic Lyapunov function

found by the V -s iteration procedure is also plotted in Figure 6.3 a (cyan) dotted

curve. The sublevel set of the Lyapunov function lies within the stable region and

provides a better (in terms of conservativeness) estimate of the ROA. Note that the

(black) solid ellipse provides an under approximation to the invariant region certified

by the quartic Lyapunov sublevel set. Unfortunately, the sublevel set of the Lyapunov

function cannot be visualized for higher-dimensional (more than 2-states) systems.

Hence, the shape function is useful for plotting the ROA estimates.

The short period analysis provided confidence on the correctness of the V -s iteration

technique. Additionally, the Lyapunov sublevel set provided a non-conservative esti-

mate of the ROA. Hence, it is possible to get tighter ellipsoidal estimate of the ROA

by choosing the shape function p(z) appropriately. Next, we focus on applying the

V -s iteration technique on the 4-state polynomial dynamics as presented in Equation

6.26.
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6.4.2 ROA Analysis of 4-State Longitudinal F/A-18 Model

ROA analysis is performed for the F/A-18 aircraft around the steady, wing level flight

condition at V = 260 ft/s. The shape function is p(x) = xTNx where

N := diag(100 ft/s, 0.3491 rad, 0.8727 rad/s, 0.3491 rad)−2 (6.29)

:= diag(100 ft/s, 20 deg, 50 deg/s, 20 deg)−2

The polynomial model of the longitudinal F/A-18 dynamics is modified in two ways

to make it suitable for the computational algorithms. First, the states are redefined

as z := x− xt := [V − Vt, α− αt, q − qt, θ − θt]T to shift the trim condition to the

origin of the state space. Next, we perform scaling of the model, which is another

important issue for the numerical stability of the V -s iteration. The states are scaled

as ẑ = Dz where D = N2. In the ẑ coordinates the shape function is p(ẑ) = ẑT ẑ.

The V -s iteration with a quartic Lyapunov function resulted in a lower bound estimate

of β = 0.630. This verifies that the ellipsoid Eβ := {x ∈ Rn : p(x) ≤ β} is a

subset of the ROA. The center of the ellipsoid is at the trim condition. It has a

length of 20 deg ·
√
β

4
= 15.88 deg along the α axis. The other axis lengths can

be computed similarly. The upper bound, denoted as Eβ̄, is computed by the Monte

Carlo simulation approach as described in Section 4.1.1. The upper bound is found

to be β̄ = 0.748. The ellipsoid Eβ̄ := {x ∈ Rn : p(x) ≤ β̄} is an over approximation

of the ROA. The ROA ellipsoidal bounds on the ROA can be visualized by plotting

slices of the ellipsoids Eβ and Eβ̄. Figure 6.4 shows slices of these ellipsoidal ROA

bounds in the α-q plane. The solid ellipse is the slice of the Eβ̄. There is an unstable

trajectory that touches Eβ̄ although it may not necessarily touch the ellipse in the

α-q plane. The Monte Carlo search returned the following initial condition yielding

an unstable trajectory.

x0,div := [236.66 ft/s, 0.5745 rad, −0.7203 rad/s, 0.6313 rad]T

The dotted ellipse is the slice of the Eβ. Every initial condition within this ellipsoid

will return to the trim condition (marked as an ’x’). The closeness of the upper and

the lower bound indicates that the best ellipsoidal ROA approximation problem has

been solved for engineering purposes.
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Figure 6.4: Lower and Upper Bound Estimate of ROA for the F/A-18 4-state longi-
tudinal model with actuator saturation

6.5 Summary

This chapter presents a method for estimating a lower bound of the ROA for poly-

nomial dynamical systems in feedback with saturation. The actuator saturation is

expressed as a convex combination of linear feedbacks. This idea is the key to formu-

lating a polytopic set invariance condition for estimating the bound on the ROA. The

SOS optimization framework has been used for computing the bound. The conserva-

tiveness of the results are quantified by estimating the upper bound of the ROA via

a Monte Carlo search for a divergent trajectory. The technique has been applied to

the short period model and the 4-state longitudinal model of the F/A-18 dynamics.
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Chapter 7

Peak Gain Analysis

This chapter analyzes the performance of nonlinear systems in terms of L∞ norm. In

other words, the size of the signals, in this chapter, are measured using the L∞ norm.

Particularly, the chapter computes the L∞ gain function as a performance metric

of the nonlinear systems. The technique is then applied on the 4-state longitudinal

GTM dynamics.

The previous chapters have focused on computing the induced L2 gain of nonlinear

systems. The induced L2 gain computation requires the assumption that the signals

of interest belong to the L2 signal space. In other words, the signals must have finite

energy when integrated over time. This assumption seems trivial for nonpersistent

signals. From a practical standpoint, engineers are often interested to analyze the

effect of the system when the peak value (in time) of the signals is given. In other

words, the signals of interest are measured in L∞ norm. Analyzing system’s perfor-

mance in terms of L∞ norm, also known as peak gain analysis, can provide a lot of

insight to the worst case behaviors of the system. This is particularly true for flight

control systems. For example, flight control engineers are often interested to know

how far the aircraft can be pushed when the pilot gives a certain size of pulse input

to the elevator channel. Peak gain analysis turns out to be a natural framework to

answer this question.
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7.1 L∞ Gain Function Estimation

Consider a polynomial (time-invariant) dynamical system of the form:

ẋ = f(x, d) (7.1a)

y = h(x) (7.1b)

where x ∈ Rn, d ∈ R, y ∈ R denote the state vector, exogenous input, and output of

the system, respectively. The dynamics of the system is described by a multivariable

polynomial function denoted by f : Rn×R→ Rn. The output equation is represented

by a multivariable polynomial function h(x) : Rn → R. Also assume that f(0, 0) = 0

and h(0) = 0.

Remark We consider SISO system for simplicity purpose. The results presented in

this chapter are also applicable for MIMO systems unless otherwise noted.

L∞-norm (in time), denoted as || · ||∞, is used to measure the signal size. For any

continuous signal e(t), the L∞-norm is defined as:

||e||∞ := sup
t≥0
|e(t)| (7.2)

The input d is viewed as a norm-bounded disturbance signal such that ||d||∞ ≤ R,

where R ∈ R+. Define the set of admissible disturbance D = {d ∈ Rm : d ∈
L∞ and ||d||∞ ≤ R}. We are interested in investigating the worst case effect of the

disturbance signal d ∈ D, on the system as the disturbance size R varies. The worst

case behavior of nonlinear systems is usually quantified by the induced L∞ gain or

the L∞ gain function of the system [14]. These two metrics are defined below.

The induced L∞ gain, denoted as γ∞(R), is defined as:

γ∞(R) := sup
d∈D, x(0)=0

||y||∞
||d||∞

(7.3)

The L∞ gain function, denoted as Σ∞(R), is defined as:

Σ∞(R) := sup{||y||∞ : d ∈ D, x(0) = 0} (7.4)

The subscript∞ in both equations indicates that the signals are measured in the L∞

norm.
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The goal of this chapter is to compute the L∞ gain function, Σ∞(R), given the input

size R. The characterization of Σ∞(R) can be thought of as a two-step process. The

first step involves characterizing a reachable set of the system with disturbance d ∈ D.

The reachable set R∞(x) represents the set of points that can be reached in finite

time by a trajectory generated by Equation 7.1a with some admissible disturbance

input d ∈ D. For a fixed time T ≥ 0, the reachable set is formally defined as [4]:

R∞(x) := {x(T )| x, d satisfies Equation 7.1a, x(0) = 0, d ∈ D, T ≥ 0} (7.5)

The second step performs a maximization of the output direction h(x) on the reach-

able set R∞(x). The peak gain function can now be rewritten as:

Σ∞(R) := sup{||h(ξ)||∞ : ξ ∈ R∞(x)} (7.6)

The first step in computing the L∞ gain function Σ∞(R) involves characterizing

the reachable set R∞(x). Unfortunately, exact characterization of the reachable set

R∞(x) is challenging and hence, we focus on estimating an upper bound of the set

R∞(x).

Lyapunov arguments are typically used to bound reachable sets. Lemma 4 provides

a local inequality condition to quantify an upper bound of the reachable set R∞(x).

A brief sketch of proof is also provided.

Lemma 4. If there exists ε > 0 and a polynomial V : Rn → R such that:

∇V (x)f(x, d) ≤ −ε whenever V (x) = 1 and d ∈ D, (7.7)

and define the sublevel set Ω(V, 1) = {x : V (x) ≤ 1} then, if ẋ = f(x, d), x(0) ∈
Ω(V, 1), and d ∈ D, we have x(T ) ∈ Ω(V, 1) for 0 ≤ t ≤ T .

Proof. This is a proof by contradiction. Suppose ẋ = f(x, d), x(0) ∈ Ω(V, 1), and

d ∈ D for 0 ≤ t ≤ T . Also assume that V satisfies Equation 7.7. Now, suppose

that x(T ) /∈ Ω(V, 1). This implies that V (x(0)) ≤ 1 and V (x(T )) > 1. Hence, ∃ a

t0 ∈ [0, T ] such that V (x(t0)) = 1, ∇V (x(t0))f(x, d) ≥ 0. However, it is assumed

that ∇V (x)f(x, d) ≤ −ε < 0, ∀t ∈ [0, T ]. This gives us a contradiction.

Note that the positive scalar ε guarantees strict negativity of the gradient of the

Lyapunov function V. Lemma 4 states that every trajectory that starts in Ω(V, 1)
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will stay there in future with disturbance d ∈ D. This implies R∞(x) ⊂ ΩV, 1

given 0 ∈ Ω(V, 1). Hence, the Lyapunov sublevel set Ω(V, 1) of Lemma 4 gives an

over approximation of the reachable set R∞(x). The set Ω(V, 1) also provides an

conservative estimate of the reachable set and in turn measuring the worst case effect

of the disturbance d on the state x.

The second step in computing the L∞ gain function Σ∞(R) involves solving for Equa-

tion 7.6. Equation 7.6 relies on maximizing the size of the output h(x) on the reach-

able set. However, only an upper bound estimate of the reachable set is available.

Consequently, computing the L∞ gain function Σ∞(R) is restricted to an upper bound

estimate of Σ∞(R). Denote this upper bound estimate of Σ∞(R) as Σ̄∞(R). Equation

7.6 is relaxed to compute Σ̄∞(R):

Σ̄∞(R) := sup{||h(x)||∞ : x ∈ Ω(V, 1)} (7.8)

If Ω(V, 1) is bounded then this problem can be formulated as:

Σ̄∞(R) := sup
β

β

subject to: Ω(V, 1) ⊂ {x ∈ Rn : ||h(x)||∞ ≤ β} (7.9)

The two step procedure discussed above gives an upper bound estimate of the L∞

gain function Σ∞(R). Specifically, the conditions provided by Lemma 4 and Equation

7.9 can be combined to provide characterize an upper bound estimate of the L∞ gain

function. Formally, the characterization is given in the following Lemma. This result

can also be found in [57] (See Lemma 6.1.1)

Lemma 5. For any ε > 0, if ∃ a real scalar β > 0 and a continuously differentiable

function V : Rn → R such that Ω(V, 1) is bounded and

∇V (x)f(x, d) ≤ −ε ∀x ∈ {x ∈ Rn : V (x) = 1} and d ∈ D, (7.10)

Ω(V, 1) ⊂ {x ∈ Rn : ||h(x)||∞ ≤ β} (7.11)

then for system in Equation 7.1 ||y||∞ ≤ β whenever d ∈ D.

Lemma 5 contains set containment arguments for estimating an upper bound Σ̄∞(R)

of the gain function. The conditions in Lemma 5 can be turned into the following
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optimization problem.

Σ̄∞(R) := sup
β,V

β

subject to:

{x : V (x) = 1, d ∈ D} ⊂ {x : ∇V (x)f(x, d) ≤ −ε} (7.12a)

Ω(V, 1) ⊂ {x : ||h(x)||∞ ≤ β} (7.12b)

The positive scalar ε is a small positive number that ensures the strict negativity of

the term ∇V (x)f(x, d) on the set {x ∈ Rn : V (x) = 1} and d ∈ D.

The computational algorithm used in the analysis replaces the set containment con-

straints in Equation 7.12 with a sufficient S-procedure condition involving non-negative

functions. Consequently, the non-negative functions can be replaced by SOS con-

straints. Hence, estimating Σ̄∞(R), given an input size R, can be formulated as an

SOS optimization problem.

Σ̄∞(R) := sup
β,V,r,s0,s1

β

subject to:

− ε−∇V (x)f(x, d)− r(x) (1− V (x))− s1(x, d)(R2 − d2)is SOS (7.13a)

(β2 − h2)− s0(x)(1− V )is SOS (7.13b)

s0(x), s1(x, d)is SOS (7.13c)

The functions s0(x), s1(x, d), r(x) arise from the generalized S-procedure and are

decision variables of the optimization. The function r(x) is not necessary to be non-

negative as the constraint∇V (x)f(x, d) ≤ −ε needs to hold on the set {x : V (x) = 1}.
Note that the positive scalar ε is not a decision variable of the optimization and is

typically chosen by the analyst.

Equation 7.13 provides an upper bound to the gain function given an input size R.

Another equivalent question can be asked: given an upper bound β, what is the

largest value of R such that ||d||∞ ≤ R whenever ||h(x)||∞ ≤ β ? We can formulate

an SOS optimization problem, similar to the one in Equation 7.13, to find the largest
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value of R given an upper bound β.

R̄ := sup
V,r,s0,s1

R

subject to:

− ε−∇V (x)f(x, d)− r(x) (1− V (x))− s1(x, d)(R2 − d2) is SOS (7.14a)

(β2 − h2)− s0(x)(1− V ) is SOS (7.14b)

s0(x), s1(x, d) is SOS (7.14c)

Note that both the optimization problem as mentioned in Equation 7.13 and Equation

7.14 are bilinear in decision variables. For example, the term V (x)r(x) is bilinear in

decision variable. A V -s type iteration technique, where r is solved for fixed V and

vice versa, is proposed to solve the SOS optimization problem. Hence, we require

an initial V to seed the iteration. The Lyapunov function V is initialized with the

linearized Lyapunov function VLIN = xTPx, P > 0 by solving the following SOS

condition.

−ε−∇VLIN(x) · fLIN(x, d)− r(x) (1− VLIN(x))− s1(x, d)(R2 − d2) is SOS (7.15)

where fLIN represents the linearization of f . Consider, fLIN = Ax+Bd, where A, B

are matrices of appropriate dimensions. For linear system, r(x) and s1(x, d) can be set

to constant value of rc and sc, respectively. Equation (7.15) represents the condition

for estimating reachable sets for peak inputs. Equation (7.15) is presented in [4] for

R = 1. Equation (7.15) can be formulated as an LMI in (x, d):−(ATP + PA) + rcP −PB 0

−(PB)T sc 0

0 0 −ε− sc − rc

 � 0 (7.16)

By setting ε = 0 and rc = −sc Equation 7.17 reduces to the following LMI:[
−(ATP + PA)− scP −PB

−(PB)T sc

]
� 0 (7.17)

Note that Equation 7.17 is bilinear in sc and P . Equation 7.17 can be solved by

holding sc to a fixed value and searching for a feasible P > 0. The linearized Lyapunov

function VLIN = xTPx can be used to seed the V -s iteration. Next, the V -s iteration
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steps are given for the optimization problem mentioned in Equation 7.14.

1. R2/s Step: Hold V fixed and solve for s and R̄

R̄ := maxR

subject to:

Equation (7.14a) - (7.14c)

This step performs a bisection search on R.

2. V step: Hold R̄, s0(x), s1(x, d) fixed and solve for V satisfying Equation (7.14a)

- (7.14c).

3. Repeat R2/s and V step as long as the R̄ continues to increase.

Remark 1: The iteration is initialized with the linearized Lyapunov function VLIN .

However, it is not obvious if the R2/s step is feasible given the linearized Lyapunov

function. In practice, we have found another initialization technique that may work.

For example, one can use the quadratic Lyapunov function that proves the ROA of

the corresponding autonomous dynamics, i.e., ẋ = f(x, d = 0).

7.2 Application

This section describes the computation of upper and lower bounds on the L∞ gain

function for the closed-loop longitudinal dynamics of the GTM. The analysis is per-

formed around the flight condition mentioned in Equation 4.15. The controller is

the simple proportional pitch rate feedback control mentioned in Equation (4.14).

Equations 3.13 and 4.14 describe a 4-state seven degree polynomial dynamics of the

closed-loop system with the thrust being held at its trim value.

Consider an additive disturbance, delev in the elevator channel for the purpose of

analysis. Assume that the disturbance is norm bounded such that ||delev||∞ ≤ R.

Physically, this additive disturbance can be viewed as wind disturbances in the el-

evator channel. The objective is to quantify the worst case behavior of the pitch

rate state against the wind disturbances in the elevator channel. In other words, we

are interested in estimating the maximum value of ||q||∞ as the size of the elevator

disturbances ||delev||∞ varies. The proposed problem is equivalent to computing an

L∞ gain function as mentioned in Equation 7.4. However, the problem can be solved
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by asking an equivalent question. Given the maximum value of ||q||∞ what is the

maximum size of the elevator disturbance ||delev||∞? An upper bound on the maxi-

mum size of the input can be extracted by employing the SOS based V -s iteration

technique for solving Equation 7.14.

The analysis is performed on a cubic order GTM model to reduce the computational

time. The cubic order model is extracted from the 4-state seven degree polynomial

model by retaining terms upto cubic order.

Figure 7.1 indicates how the worst case behavior of the pitch rate state varies as

the size of the elevator disturbances R increases. The horizontal axis indicates the

size of the elevator disturbances R and the vertical axis shows the size of the pitch

rate state β. The upper bounds (marked as blue x) are found by searching for a

quartic Lyapunov function to solve Equation 7.14 using the V -s iteration technique.

Different values of β are assumed and the maximum value of R is computed for each

β. The upper bound results indicate that the GTM can tolerate a disturbance of size

||delev||∞ ≤ 5.7×10−3. This bound is an upper estimate of the worst case behavior of

the pitch rate direction. The lower bounds are estimated by randomly searching for

inputs that cause the state trajectory to diverge or maximize the gain in the pitch

rate direction. The lower bound (marked as red o) indicates the system can tolerate

a disturbance of size ||delev||∞ ≤ 5.7 × 10−3. An input of size ||delev||∞ = 0.014 is

found which causes the GTM trajectory to diverge.

0 0.002 0.004 0.006 0.008 0.01 0.012
0

0.1

0.2

0.3

0.4

0.5

0.6

R, ( ||d
elev

||
∞
)

β
, (

 ||
q|

| ∞
)

 

 

Upper Bound: Quartic Lyapunov
Lower Bound: Simulation

Figure 7.1: Estimation of peak gain function of the 4-state longitudinal GTM dy-
namics.
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7.3 Summary

This chapter presents the peak gain function analysis of polynomial systems. The

analysis problem is divided into two steps. First, an upper bound of the reachable set

is characterized given the peak value of the input. Second, the output of interest is

maximized on the reachable set. This two step process provides an upper bound on

the peak gain function. The problem is solved using the SOS optimization framework.

The technique is then applied to the 4-state longitudinal GTM dynamics.
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Chapter 8

Conclusion

This chapter summarizes the main contribution of this thesis and discusses some

future research directions.

8.1 Contributions

This thesis developed quantitative nonlinear analysis tools for the purpose of analyt-

ical certification of nonlinear flight control laws. The analytical certification relied on

computing the ROA and the induced gain as stability and performance metrics, re-

spectively. Computation of the ROA and the induced gain of nonlinear flight control

laws relied on utilizing the SOS optimization framework. The main contributions of

this thesis are outlined below:

1. This thesis proposes a framework for analyzing local performance properties

of polynomial systems in feedback with actuator saturation. In particular, we

formulated a dissipation inequality condition for estimating the local induced

L2 gain for polynomial systems in feedback with actuator saturation. The

formulation of the dissipation inequality relies on modeling the saturation in

the IQC framework and analytically expressing the saturation constraint. The

dissipation inequality condition is then formulated by merging the SOS and the

IQC framework.

2. This thesis proposes a method for estimating the ROA of polynomial systems

in feedback with actuator saturation. We formulated set invariance conditions

for ROA estimation. The key idea in formulating the set invariance conditions
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relies on placing the saturation in a convex hull of a group of linear (possibly

nonlinear) feedbacks. This idea has its origin in the work of [23]. This thesis

extends the stability conditions proposed in [23] for polynomial systems.

3. The SOS based nonlinear analysis tools developed in this thesis are known to be

computationally challenging and often suffer from numerical scalability issues

for moderately large-scale systems. One of the main contributions of this thesis

is in applying this SOS based nonlinear analysis techniques to a moderately

large-scale (usually at least 4−5 states and/or cubic nonlinearities) engineering

problem, e.g. flight control systems. In particular, we apply the SOS based

techniques to the longitudinal GTM and to the longitudinal F/A-18 plant.

8.2 Future Research

There are some interesting research directions that were not pursued in this thesis.

They are discussed below:

1. In this thesis, we have not discussed the computation of reachable sets for poly-

nomial systems in feedback with actuator saturation. The reachable sets under

input constraint provide insights to the determination of safe flight envelope

and hence, an important aspect in flight control law certification process.

2. Theorem 5.1, presented in this thesis, remains valid if for any causal, bounded

(in L2 sense) operator ∆ in place of sat(·). This indicates that Theorem 5.1

can be used to answer performance questions for uncertain polynomial systems.

This introduces a notion of robust performance analysis of polynomial systems.

It will be interesting to apply Theorem 5.1 to such case.

3. The SOS based analysis techniques rely on expressing the nonlinear dynamics

via polynomial description. Hence, it is important to quantify the accuracy

of the polynomial description of the original nonlinear dynamics. This thesis

presents an ad-hoc approach to compare the polynomial description to the orig-

inal nonlinear system. However, a formal approach is needed to quantify if the

polynomial dynamics is a true description of the original nonlinear systems.

This is an open research problem.

4. Throughout the thesis, we implemented SOS based V -s iteration technique for

estimating stability and performance metrics. The numerical aspects of the
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iteration steps are not analyzed in this thesis. For example, it is not clear why

the V step in the iteration typically returns a different V in each iteration.

Moreover, the thesis does not emphasize on formulating an “efficient” iteration

technique rather the thesis simply develops an iteration procedure that provides

feasible results. Specifically, one can envision formulating a different estimation

technique which minimizes the computational time.
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Appendix A

Polynomial Longitudinal GTM

Model

The longitudinal model of the GTM dynamics is presented in this chapter.

A.1 Physical Parameters of GTM

The GTM aircraft parameters were provided in Table 3.1. For convenience and com-

pleteness, the physical parameters are presented below again.

Table A.1: Aircraft and Environment Parameters
Wing Area, S 5.902 ft2

Mean Aerodynamic Chord, c̄ 0.9153 ft
Mass, m 1.542 slugs

Pitch Axis Moment of Inertia, Iyy 4.254 lbf-ft2

Air Density, ρ 0.002375 slugs/ft3

Gravity Constant, g 32.17 ft/s2

A.2 Longitudinal Aerodynamic Model

This section provides closed-form polynomial expression for the aerodynamic model

of the GTM’s longitudinal dynamics. The aerodynamics model presented here char-

acterizes the lift force, drag force and pitching moment. The forces and the moment

are modeled based on the contribution from (i) the bare airframe, denoted as C(·)α ,

(ii) the elevator deflection, denoted as C(·)δelev
, and (iii) the normalized pitch rate,
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denoted as C(·)q . The notation (·) can be replaced by L, D, M to indicate lift, drag

and pitching moment, respectively. The aerodynamic coefficients are computed from

look-up tables provided by NASA.

A.2.1 Lift Coefficient, CL

The lift coefficients are presented below:

CLα = 2.141α3 − 6.575α2 + 5.299α + 5.337× 10−2 (A.1a)

CLδelev = 3.750α2 − 3.438× 10−1αδelev + 2.831× 10−5δ2
elev − 2.004α

+ 8.0474× 10−3δelev + 2.543× 10−3 (A.1b)

CLq = −4.089× 10−7V 2q2 + 2.970× 10−5V αq + 2.415× 10−4V q2

− 7.512× 10−4V q + 2.297× 10−2α2 − 8.771× 10−3αq

− 3.566× 10−2q2 − 1.673× 10−2α + 2.219× 10−1q + 3.703× 10−3 (A.1c)

The total lift force coefficient is:

CL = CLα + CLδelev + CLq (A.2)

A.2.2 Drag Coefficient, CD

The drag coefficients are presented below:

CDα = −1.477α3 + 3.110α2 − 1.303× 10−1α + 3.064× 10−2 (A.3a)

CDδelev = −195.1α2 + 1.435× 10−1αδelev + 1.818× 10−5δ2
elev + 1.525α

+ 4.770× 10−4δelev − 1.904× 10−3 (A.3b)

CDq = −7.206× 10−8V 2q2 − 7.336× 10−4V αq + 4.256× 10−5V q2

+ 2.117× 10−5V q − 2.197× 10−2α2 + 2.166× 10−1αq

− 6.285× 10−3q2 − 3.023× 10−3α− 6.253× 10−3q

+ 2.210× 10−4 (A.3c)

The total drag force coefficient is:

CD = CDα + CDδelev + CDq (A.4)
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A.2.3 Pitching Moment Coefficient, Cm

The pitching moment coefficients are presented below:

Cmα = −2.199× 10−1α3 + 5.912× 10−1α2 − 1.498α + 1.516× 10−1 (A.5a)

Cmδelev = 1.263αδelev − 3.294× 10−2δelev (A.5b)

Cmq = 9.010× 10−4V q − 2.661× 10−1q (A.5c)

The total pitching moment coefficient is:

Cm = Cmα + Cmδelev + Cmq (A.6)

A.3 Engine Model

The GTM has one engine each on the port and starboard sides of the airframe.

Equal thrust settings for both engines are assumed. The thrust from a single engine

T (lbf) is a function of the throttle setting δth (percent). T (δth) is a given cubic-order

polynomial in NASA’s high fidelity GTM simulation model. Tx (lbf) and Tz (lbf)

denote the projection of the total engine thrust along the body x and body z axes,

respectively. Tm (lbf-ft) denotes the pitching moment due to both engines. Tx, Tz

and Tm are given by:

Tx(δth) = nENGT (δth) cos(ε2) cos(ε3) (A.7)

Tz(δth) = nENGT (δth) sin(ε2) cos(ε3) (A.8)

Tm(δth) = rzTx(δth)− rxTz(δth) (A.9)

nENG = 2 is the number of engines, ε2 = 0.0375 rad and ε3 = −0.0294 rad are angles

specifying the rotation from engine axes to the airplane body axes. rx = 0.4498 ft

and rz = 0.2976 ft specify the thrust moment arm. T (δth) is given by the following

polynomial expression:

T (δth) ≈ −1.967× 10−6δ3
th + 1.150× 10−3δ2

th + 8.258× 10−2δth + 1.085 (A.10)
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A.4 Polynomial Longitudinal Model Formulation

The drag force D (lbf), lift force L (lbf), and aerodynamic pitching moment M (lbf-ft)

are given by:

D = q̄SCD(α, δelev, q̂) (A.11)

L = q̄SCL(α, δelev, q̂) (A.12)

M = q̄Sc̄Cm(α, δelev, q̂) (A.13)

where q̄ = 1
2
ρV 2. The longitudinal dynamics of the GTM presented in Equation 3.1

contain the rational term 1
V

and the trigonometric terms e.g., sin (θ − α), cos (θ − α),

cosα, and sinα. The trigonometric functions are approximated by Taylor series

expansions: sin z ≈ z− 1
6
z3 and cos z ≈ 1− 1

2
z2 for z in units of radians. The rational

term
1

V
is replaced by a linear fit, denoted as Vinv, over the desired range of interest

from 100 ft/s to 200 ft/s, provided by Equation 3.10. This approximation is provided

below for completeness:

1

V
≈ Vinv = −4.774× 10−5V + 0.01409 (A.14)

With the approximation, the polynomial longitudinal GTM model is presented:

V̇ =
1

m

(
−D −mg((θ − α)− 1

6
(θ − α)3) + Tx(1−

1

2
α2) + Tz(α−

1

6
α3)

)
(A.15a)

α̇ =
Vinv
m

(
−L+mg(1− 1

2
α2)− Tx(α−

1

6
α3) + Tz(1−

1

2
α2)

)
+ q (A.15b)

q̇ =
(M + Tm)

Iyy
(A.15c)

θ̇ = q (A.15d)
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Appendix B

Polynomial Longitudinal F/A-18

Model

The longitudinal model of the F/A-18 dynamics is presented in this chapter. For a

more detailed and full 6-DoF F/A-18 model development, refer to [6]. The longitu-

dinal F/A-18 model is presented below.

B.1 Physical Parameters of the F/A-18

The F/A-18 aircraft parameters related to the longitudinal direction are provided in

Table B.1.

Table B.1: Aircraft and Environment Parameters
Wing Area, S 400 ft2

Mean Aerodynamic Chord, c̄ 11.52 ft
Mass, m 1034.5 slugs

Pitch Axis Moment of Inertia, Iyy 151293 lbf-ft2

Air Density, ρ 0.001066 slugs/ft3

Gravity Constant, g 32.17 ft/s2

B.2 Longitudinal Aerodynamic Model

This section provides closed-form polynomial expression for the aerodynamic model

of the F/A-18’s longitudinal dynamics. The aerodynamics model presented here char-

acterizes the lift force, drag force and pitching moment. Details on the aerodynamic
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coefficients can be found in [6] and the references mentioned therein.

B.2.1 Lift Coefficient, CL

The lift coefficients are presented below:

CLα = 1.1645α3 − 5.4246α2 + 5.6770α− 2.0400× 10−2 (B.1a)

CLδstab = 2.1852α3 − 2.6975α2 + 0.4055α− 5.7250× 10−1 (B.1b)

The total lift force coefficient is:

CL = CLα + CLδstab · δstab (B.2)

B.2.2 Drag Coefficient, CD

The drag coefficients are presented below:

CDα = 1.4610α4 − 5.7341α3 + 6.3971α2 − 0.1995α + 4.2000× 10−3 (B.3a)

CDδstab = −3.8578α3 + 4.2360α2 − 0.2739α− 3.6600× 10−2 (B.3b)

The total drag force coefficient is:

CD = CDα + CDδstab · δstab (B.4)

B.2.3 Pitching Moment Coefficient, Cm

The pitching moment coefficients are presented below:

Cmα = −1.2897α2 + 0.5110α− 8.6600× 10−2 (B.5a)

Cmδstab = 0.9338α2 − 0.3245α− 9.0510× 10−1 (B.5b)

Cmq = 64.7190α3 − 68.5641α2 + 10.9921α− 4.1186 (B.5c)

The total pitching moment coefficient is:

Cm = Cmα + Cmδstab · δstab + Cmq ·
( c̄

2V

)
q (B.6)
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B.3 Polynomial Longitudinal Model Formulation

The drag force D (lbf), lift force L (lbf), and aerodynamic pitching moment M (lbf-ft)

are given by:

D = q̄SCD(α, δstab) (B.7)

L = q̄SCL(α, δstab) (B.8)

M = q̄Sc̄Cm(α, δstab, q) (B.9)

where q̄ = 1
2
ρV 2. Similar to the polynomial GTM formulation, we will approximate

the rational term 1
V

and the trigonometric terms e.g., sin (θ − α), cos (θ − α), cosα,

and sinα.

The rational term
1

V
is replaced by a linear fit, denoted as Vinv, over the desired range

of interest from 240 ft/s to 300 ft/s, provided by Equation 3.10.

1

V
≈ Vinv = 5.1359× 10−8V 2 − 4.1556× 10−5V + 1.1180× 10−2 (B.10)

With the approximation, the polynomial longitudinal F/A-18 model is presented:

V̇ =
1

m

(
−D −mg((θ − α)− 1

6
(θ − α)3) +

T

m
(1− 1

2
α2)

)
(B.11a)

α̇ =
Vinv
m

(
−L+mg(1− 1

2
α2)− T (α− 1

6
α3)

)
+ q (B.11b)

q̇ =
(M + ltT )

Iyy
(B.11c)

θ̇ = q (B.11d)
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