
System Identification

for the

Clipper Liberty C96 Wind Turbine

A THESIS

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

Daniel Showers

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

Peter J. Seiler, advisor

June 2014



c© Daniel Showers 2014



Acknowledgments

I want to thank all those around me who supported me through the years. I would

like to especially thank my wife, Lauren, my parents, my sister, and the Bruneau

family for their support.

I also want to thank Pete Seiler for mentoring me through the process and for teaching

me a lot along the way.

This material is based upon work supported by the National Science Foundation

Graduate Research Fellowship under Grant No. 00039202. Any opinion, findings, and

conclusions or recommendations expressed in this material are those of the authors

and do not necessarily reflect the views of the National Science Foundation.

i



Abstract

System identification techniques are powerful tools that help improve modeling ca-

pabilities of real world dynamic systems. These techniques are well established and

have been successfully used on countless systems in many areas. However, wind tur-

bines provide a unique challenge for system identification because of the difficulty

in measuring its primary input: wind. This thesis first motivates the problem by

demonstrating the challenges with wind turbine system identification using both sim-

ulations and real data. It then suggests techniques toward successfully identifying a

dynamic wind turbine model including the notion of an effective wind speed and how

it might be measured. Various levels of simulation complexity are explored for in-

sights into calculating an effective wind speed. In addition, measurements taken from

the University of Minnesota’s Clipper Liberty C96 research wind turbine are used

for a preliminary investigation into the effective wind speed calculation and system

identification of a real world wind turbine.
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Chapter 1

Introduction

The development of renewable energy sources is important for our future because

of the finite amount of fossil-based fuels and the environmental concerns associated

with them. As a result, we have seen a large increase in the amount of installed

capacity from renewable energy sources. One of the fastest growing renewable energy

technologies is wind power. As more and more wind turbines are installed worldwide,

understanding their dynamics and how to control the amount of power they can

capture becomes essential for successful integration into the grid.

Current control strategies for wind turbines use simple techniques when taking the

flexible dynamics of the turbine into consideration. They are designed using simple

models and look-up tables that are only valid in steady state operation, and they

are verified through high fidelity models such as the FAST (Fatigue, Aerodynamics,

Structures, and Turbulence) wind turbine simulator maintained by the National Re-

newable Energy Laboratory (NREL). In order to design more advanced controllers

to maximize energy and minimize structural loads, the dynamics of the wind turbine

must be taken into consideration. Currently, FAST is used to create these dynamic

models and to design advanced controllers for the simulation environment. However,

there is a lack of verification methods for these high fidelity models, specifically in

validating the flexible dynamics. There is a substantial difference between simulation

and real world environments and, therefore, system identification is a useful approach

to create dynamic models from real data.

Wind turbines present unique challenges to conventional system identification tech-
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niques. The challenge with applying system identification techniques to wind turbines

is the temporal and spatial unsteady nature of wind. These challenges have motivated

my thesis which investigates the best way to measure wind speeds for wind turbine

system identification.

In this thesis, I will present and motivate some of the challenges of verifying wind

turbine models using both simulated and real data. I will then detail approaches

taken to resolve these problems.

The following structure outlines the flow of the thesis. Chapter 2 provides an in-

troduction to the wind turbine dynamic model and a background of current control

strategies. In addition, Chapter 2 points out immediate challenges and shortcomings

of using standard modeling techniques. Chapter 3 provides a brief theoretical back-

ground description of the subspace identification algorithm, closed-loop multi-variable

output error state space (CLMOESP). In addition, it gives some results and insights

gained from applying this method for various simulated levels of complexity. Chapter

4 introduces the notion of an effective wind speed and shows how the CLMOESP

algorithm can be used to calculate it. Finally, Chapter 5 serves as a conclusion for

the thesis and gives suggestions for future work.
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Chapter 2

Background

Wind turbines are complex machines due to their large size and intricate interaction

with their environment. The complicated nature of the turbine leads to complex,

nonlinear dynamics. However, current wind turbine controller design depends upon a

simplified model of the wind turbine, which is insufficient for advanced control design

or system analysis.

2.1 Wind Energy

Wind energy is a young technology that has seen a rapid growth worldwide in the

past 15 years as demonstrated in Figure 2.1.

Figure 2.1: Recent rapid growth of total installed wind power capacity [1]

At the end of 2013, wind power was responsible for close to 4 percent of the total global
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electricity generated, and 103 countries are now using wind power on a commercial

basis. In some countries, wind power has reached over 20 percent of the electricity

supply [1]. In the United States, wind accounts for about 32 percent of electricity

from renewable sources [3].

Because wind power now holds a significant portion of generated electricity worldwide

and is growing rapidly, it is important to increase the competitiveness of wind energy

with other power sources by lowering the cost. This can be done by maximizing the

power captured from a turbine and by lowering loads on turbines, extending their life.

Smart design of control systems can achieve both of these objectives using advanced

control design methods, which require detailed models. Data-driven modeling and

verification can help provide such models.

2.2 The Wind Turbine

The most prevalent wind turbine design is a three bladed, horizontal axis wind tur-

bine (HAWT). In this configuration, three evenly spaced blades rotate in a vertical

plane. A yaw control system ensures that the plane of rotation is predominantly

perpendicular to the incoming wind direction. HAWTs are the predominant configu-

ration in the marketplace, and their use of active control makes them ideal for control

research [4].

Figure 2.2: Illustration of a typical wind turbine setup. From US Department of
Energy
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Figure 2.2 shows, in more detail, the components of a typical HAWT. The incoming

wind provides a lift force on the blades, which generates a torque and rotates the low-

speed shaft. A gearbox increases the rotational rate of the low-speed side, making

it suitable for electrical generation in the generator. The rotating shafts, gearbox,

controller and generator are housed in the nacelle that sits atop the wind turbine

tower. The nacelle also provides a mounting point for the rotor, which consists of the

three blades and the hub that connects them. The blades are able to pitch along their

main axis, controlling how much lift the blades are able to generate. The wind vane

and anemometer provide wind speed and direction measurements to the controller [5].

Figure 2.3: The Eolos Wind Research Station [2]

The University of Minnesota is a member of the Eolos wind energy research consor-

tium, where industry and researchers can collaborate. One of the facilities that is a

part of Eolos is the Wind Research Field Station in Rosemount, MN seen in Figure

2.3. The primary component of this research station is a Clipper Liberty C96 wind

turbine. The C96 has at 96 meter rotor diameter and is rated to produce 2.5 MW

of power. In addition to the sensors normally available on a wind turbine, this re-

search station also has a meteorological tower, blade sensors, foundation sensors, and

a portable LIDAR [2]. Measurements from these sensors are available to consortium

members, providing a wealth of data to use for research purposes. Finally, all of

the controller and high fidelity simulation files for the wind turbine are available for
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research.

2.3 Wind Turbine Modeling

A wind turbine on its own is an unstable system. The wind develops a torque on

the drive shaft and, if unchecked, will continually accelerate the drive shaft. There

are various turbine designs that regulate the rotational speed using blade pitch and

generator torque. Wind turbine blades can be designed as fixed or variable pitch and

the rotor can also be designed to operate at either a fixed or variable speed. Most

current machines that are rated for multi-MegaWatt power are variable-speed and

variable-pitch because this provides the most degrees of freedom for a controller [4].

2.3.1 Simplified Turbine Model

The simplest way to model a turbine is as a stiff rotating dynamic system.

Figure 2.4: Free body diagram of wind turbine rotor.

A simple dynamic model can be developed using the free body diagram in Figure 2.4.

Jω̇r = τaero − τgen (2.1)

Equation 2.1 is simply a torque balance equation assuming a rigid rotor where J is the

rotor inertia, τaero is the torque generated by the wind and τgen is the counteracting

generator torque that produces power. The power available in the wind is given by

Pwind =
1

2
ρAv3 (2.2)
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where ρ is the air density, A is the rotor swept area, and v is the wind speed into the

rotor plane. The aerodynamic power is given by

P = τaeroωr (2.3)

The relationship between the aerodynamic power and the power available in the wind

is given by the non dimensional power coefficient, Cp, which varies depending on the

rotor speed, wind speed and blade pitch angle.

Cp =
P

Pwind

(2.4)

The power coefficient is a steady-state value describing how much of the power avail-

able in the wind the turbine is able to capture. The theoretical optimum value of the

power coefficient is the Betz limit which is 16
27

[5]. This limit is based upon a actuator

disk, control volume analysis. Typical wind turbines achieve a maximum Cp value of

0.4 - 0.5 [5].

Using Equations 2.2, 2.3, and 2.4, 2.1 can be rewritten as

ω̇r =
1

J

(
1

2
ρAv3Cp

1

ωr

− τgen
)

(2.5)

Equation 2.5 is the simplified dynamic model of wind turbines used in control design.

2.3.2 High Fidelity Simulation Tools

While the simple model in Equation 2.5 is used for conventional turbine control

design, high fidelity simulation tools are needed to verify these designs. Two of

the more popular commercially available wind turbine simulation software packages

are Bladed from DNV GL [6] and FAST (Fatigue, Aerodynamics, Structures, and

Turbulence) from the National Renewable Energies Laboratory (NREL) [7].

FAST was used for all simulations in this thesis because it is freely available for

download. The flexibility and capabilities of the FAST software are convenient for

wind turbine controller design. It allows the user to activate up to 15 different blade

and tower structural bending modes. It also allows the user to input a custom wind

7



profile that can be time and/or spatially varying. Alternatively, it can generate

turbulent wind profiles based on user inputted turbulence statistics. Finally, FAST

can generate linearized wind turbine models around a given wind speed.

While complex turbine models like FAST are great tools for wind turbine design and

analysis, it is important to verify these models using real data. Differences between

the simulation environment and the real operating conditions of the turbine or from

turbine to turbine could include

• Differences in material properties

• Differences in manufacturing

• Differences between local soil or foundation characteristics

• Operational effects like icing of the blades or wear and tear on gears and actu-

ators

• Modeling assumptions or simplifications

Using real data can help identify a more accurate model for each wind turbine in

its operating environment. In particular, it is useful to verify the linearized models

because they can be used for advanced control design.

2.4 Turbine Control

The simple, one state model shown in Equation 2.5 is the basis on which current

control strategies are built. Wind turbine controllers are designed to maximize power

while minimizing the loads on the structure. The two control degrees of freedom are

the blade pitch angle, β, and the generator torque, τgen.

In typical controllers like the one on the Liberty C96, these two goals are accomplished

by dividing the turbine operating modes into distinct regions based on wind speed [4].

Figure 2.5 shows the operating regions for the Clipper Liberty C96. Below the cut-in

wind speed (3 m/s), the turbine is not generating any power because the power in

the wind is low relative to system losses. This is referred to as Region 1. In Region

2, between the cut-in and rated wind speeds (3-11 m/s), the controller’s goal is to
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Figure 2.5: Operating regions for Clipper Liberty C96.

maximize the power captured. Above the rated wind speed, the controller maintains

the rated power of the wind turbine. Finally, if the wind speed gets above 25 m/s,

the turbine does not run to avoid the high loads associated with those extreme wind

speeds. Certain proprietary techniques are used to blend these regions together so as

to avoid constantly switching control strategies.

2.4.1 Region 2

In order to maximize the power captured, wind turbines need to extract as much

power out of the wind as possible. From Equation 2.4, this is the same as operating

at the highest Cp value possible. The power coefficient is a function of the blade pitch

angle, β, and the tip-speed ratio, λ, which is a non dimensional value defined as the

blade tip’s speed divided by the wind speed:

λ =
ωrR

v
(2.6)

where R is the rotor radius. As stated earlier, Cp(λ, β) is a steady-state property of
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the wind turbine. By obtaining Cp values at various tip-speed ratio and blade pitch

angle combinations, a two-dimensional look-up table (3-D surface) is created. The

Cp values for the power curve can be computed by providing a steady wind input

to the FAST model, letting the simulation run to steady-state, and computing Cp

from Equation 2.4. An example of the three-dimensional power curve for the Clipper

Liberty C96 is shown in Figure 2.6.

Figure 2.6: Cp versus tip-speed ratio and pitch for Clipper Liberty C96. Cp values
have been normalized to [-1 1] for proprietary reasons.

As seen in Figure 2.6, the power coefficient does have a maximum value. In order to

maximize power captured, the controller will attempt to stay at this maximum Cp

value by maintaining the optimal tip-speed ratio and blade pitch angle. Typically,

this is accomplished by keeping the blade pitch constant at its optimal value and

adjusting the generator torque to track the optimal tip-speed ratio.

In order to stay near the peak power coefficient, turbines employ a nonlinear torque

control law

τgen = Kω2
r (2.7)

where K is a constant given by
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Figure 2.7: Cp versus tip-speed ratio at optimal blade pitch angle for Clipper Liberty
C96. Cp values have been normalized for proprietary reasons.

K =
1

2
ρAR3Cp,max

λ3
opt

(2.8)

Therefore, in Region 2, Equation 2.5 becomes

ω̇r =
1

2J
ρAR3ωr

(
Cp(λ, β)

λ3
− Cp,max

λ3
opt

)
(2.9)

It can be seen from Equation 2.9 that in steady-state the turbine will converge to the

optimal power capture (λ converges to λopt) [4].

This control law is simple and easily implemented, only needing a rotor speed sensor,

which is why it is popular in industrial turbines. However, it requires accurate knowl-

edge of the turbine’s optimal operating point (Cp,max and λopt), which is difficult to

verify in practice.

2.4.2 Region 3

In Region 3, the wind speed is high enough that the turbine can produce its rated

power. In this wind regime, the controller’s goal is to provide a constant, rated power
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to the grid. To do this, the generator torque is held constant at its rated value and the

blades are pitched (decreasing Cp) to maintain the rated rotor speed. From Equation

2.3, by maintaining constant torque and rotor speed at their rated values, the turbine

will produce its rated power.

The blade pitch controller typically uses PID or PI techniques to track the rated rotor

speed using the rotor speed sensor for feedback [4]. Some commercial wind turbines

allow each of the three blades to pitch independently for more control authority which

helps to take rotational dependencies into account, called individual pitch control

(IPC).

2.5 Power Coefficient Identification

Calculating K in Equation 2.8 requires accurate knowledge of the Cp versus λ curve

from Figure 2.7. As a first approach, solving Equation 2.5 for Cp as 2.10 seems like

it may give insight into the true nature of the Cp curve under relatively steady wind

conditions because all values are known or directly measured from the wind turbine

except for Cp.

Cp = (Jω̇r + τgen)
2ωr

ρv3A
(2.10)

Given that the rotor radius is 48 m, the rotor area is about 7240 m2. The air density is

measured on the turbine and was 1.257 kg
m3 . Data such as rotor speed, generator torque

and wind speed are collected at 20 Hz. For calculating Cp, the 20 Hz measured data

is averaged to 1 Hz data for rotor speed and generator torque. For wind speed, the

20 Hz data is outputted as a 60 second averaged time series. Finally, ω̇r is calculated

simply using a difference method ∆ωr

∆t
. The theoretical Cp curve from Figure 2.7 can

be used as a comparison. This theoretical table look-up is created using an NREL

software called WT PERF that is a companion software package to FAST. WT PERF

creates the theoretical look-up table of Cp values by running the turbine to steady

state at different tip-speed ratios and blade pitch angles and calculating Cp using 2.4.

As seen in Figure 2.8, this approach for calculating the Cp values using real data

does not produce meaningful results. Although the tip-speed ratio remains relatively

constant as it should in Region 2, the Cp values do not match well with the theoretical

power coefficients.
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Figure 2.8: Using data taken from Liberty C96 to solve Equation 2.5 for Cp. Data was
taken for 35 minutes with mean wind speed of 8.42 m/s and 3% turbulence intensity.
Cp values have been normalized.

Equation 2.5 is highly dependent upon the wind speed. On the Clipper Liberty C96,

as on most commercial wind turbines, the anemometer is measuring the wind speed

behind the rotor plane (Figure 2.2) where the flow has been disturbed by the blades

resulting in an inaccurate measurement. In addition, the anemometer is measuring

the wind speed at one location, but the wind turbine is driven by wind speeds across

a large rotor diameter. Therefore, using a point measurement may not be the best

way to calculate a Cp curve. Finally, Equation 2.5 does not take any bending modes

into account, which could be another source of inaccuracies.

In order to narrow down the source of error, FAST was used to simulate the turbine

with no bending modes activated and a spatially uniform wind profile.

Figure 2.9 is much improved over the results from Figure 2.8. This shows the im-

portance of knowing the true wind speed and having a stiff turbine. Although these

simulation results are improved, there are still sources of error even in an ideal sim-

ulation environment. Therefore, it seems that using a steady state Cp value does

not accurately capture the wind turbine dynamics. For model verification, it may

be better to perform more of a black box system identification approach rather than

fitting parameters to a given model.

13



Figure 2.9: Using simulated FAST data to solve Equation 2.5 for Cp. Data was
simulated using the wind speed measured at the turbine from Figure 2.8 for the
FAST wind speed input. Cp values have been normalized.
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Chapter 3

System Identification

Wind turbines present several unique challenges to conventional system identification

techniques such as those described in [8]. First, wind turbines cannot be operated in

open-loop due to the risk of instability and excessive loads. Second, there is no control

over the primary system input, wind. This makes it impossible to set up a proper

open-loop test. There have been many approaches to performing system identification

on wind turbines including [9], [10], [11], [12], [13]. In order to address the previously

stated issues, this thesis will focus on the closed-loop multi-variable output error

state space (CLMOESP) system identification algorithm. This algorithm was chosen

because it takes the closed-loop operation of the turbine into account. Next, it is a

subspace identification technique meaning it takes time series data as inputs, which

is the form of the data available from Eolos. It also has the advantage of identifying

multi-input multi-output (MIMO) systems, which is what the wind turbine is. Finally,

this algorithm is available for MATLAB from [14] and gave better results compared

to other closed-loop subspace identification methods.

3.1 Brief Description of CLMOESP Algorithm

The following discrete-time, state-space system is considered:

xk+1 = Axk +Buk + wk

yk = Cxk +Duk + vk
(3.1)
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with A ∈ Rn×n, B ∈ Rn×nu , C ∈ Rny×n, and D ∈ Rny×nu . The vectors xk ∈ Rn,

uk ∈ Rnu , and yk ∈ Rny form the state, input, and output vectors respectively. The

signals wk ∈ Rn and vk ∈ Rny are the process and measurement noise respectively

and are uncorrelated, zero-mean, and white Gaussian. Equation 3.1 can be rewritten

in the one-step-ahead predictor form

xk+1 = Ãxk + B̃uk +Kyk

yk = Cxk +Duk + ek
(3.2)

where K ∈ Rn×ny is a Kalman gain, ek ∈ Rny is the innovation sequence, Ã = A−KC
and B̃ = B −KD.

A data sequence, yk, can be written in block Hankel form:

Yi,s,N =


yi yi+1 · · · yi+N−1

yi+1 yi+2 · · · yi+N

...
...

. . .
...

yi+s−1 yi+s · · · yi+N+s−2

 (3.3)

When s = 1, it shall be denoted as Yi,N .

The goal of the CLMOESP algorithm is to identify the A, B, C, D, and K matrices

given input/output data sequences uk and yk. The first step in the CLMOESP algo-

rithm is solving for the innovation sequence, ek. Using the block Hankel notation for

p past data points, the output equation from 3.2 can be written as

Yp,N−p = CK(p)Z0,p,N−p +DUp,N−p + Ep,N−p (3.4)

assuming p is chosen large enough that Ãp ≈ 0. In 3.4, K(p) is an extended control-

lability matrix and is defined as

K(p) =
[
Ãp−1B̄, Ãp−2B̄, · · · , B̄

]
(3.5)
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where B̄ =
[
B̃ K

]
and the block Hankel matrix Z0,p,Np formed from the data se-

quence

zk =
[
u>k y>k

]>
(3.6)

The innovation sequence is then solved for from the minimization problem

min
CK(p),D

∥∥∥∥∥Yp,Np −
[
CK(p) D

] [Z0,p,Np

Up,Np

]∥∥∥∥∥
2

F

(3.7)

Once the innovation sequence has been determined, the algorithm follows the ordi-

nary MOESP identification scheme [15]. First, an extended observability matrix is

estimated using an orthogonal projection matrix on a block Hankel version of the

innovation representation of the data equation. From this extended observability ma-

trix, the state matrices A and C can be obtained. Finally, the state matrices B, D,

and K can be calculated by solving a least squares problem. For more details on the

CLMOESP and MOESP algorithms see [15], [16], [17], [18].

3.2 Simplifications and Approach

The CLMOESP algorithm was used in [11] for identification of wind turbine models

using the aerodynamic torque and force as inputs calculated from Equation 2.5. This

assumes that the Cp curve is known. The reason it was done that way was to avoid

the nonlinearities of the wind turbine model and perform the identification algorithm

on an arbitrary data sequence. Otherwise, it would be necessary to perform the al-

gorithm on a data set that remains close to a given operating point for the system to

maintain approximately linear behavior. Because the Eolos wind station is continu-

ously collecting data, it is not hard to find adequately long sets of data that exhibits

relatively consistent behavior. The algorithm used to find these appropriate data

sequences within the Eolos database can be found in Appendix A.1. Additionally,

the purpose of identifying dynamic models is to design advanced controllers, which

require linear models, so the model will have to be linearized anyway. For these rea-

sons, the CLMOESP algorithm was used as more of a black box technique with wind

speed, blade pitch angle, and generator torque as inputs and rotor speed and tower
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acceleration as outputs. In this way, the CLMOESP algorithm will be performed

at each wind speed to obtain a series of linear models valid across a range of wind

speeds.

(a) System to be identified in [11]. (b) System to be identified without assump-
tions on Cp.

Figure 3.1: Block diagrams showing the difference in model to be identified.

The difference between the approaches can be better visualized in 3.1. The algorithm

from [11] has the advantage that it can be used on an arbitrary data series and

then linear models can be obtained by linearizing the nonlinear aerodynamic force

and torque equations about the operating point. However, it assumes knowledge of

the Cp curve. The approach presented in this thesis has the disadvantage that an

appropriate data series where the wind turbine is operating close to some operating

point must be found. Although not always possible, it is not hard to find such data

series with the Eolos database, and the advantage is that no assumptions about the

turbine dynamics must be made.

Another advantage of identifying the whole nonlinear system about an operating point

is that it can be further simplified by restricting the operating point of the turbine to

either Region 2 or Region 3 operation. This is advantageous because, for example, in

Region 2, blade pitch is not used and the control law for generator torque, Equation

2.8, is easily linearizable as δτaero = 2Kδωr so that the open-loop system can be

determined from identifying the closed-loop system. This further simplification of

Region 2 operation finally brought the identified system to that seen in Figure 3.2.
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Figure 3.2: Closed-loop system to be identified for Region 2 operation.

3.3 Results

3.3.1 Uniform Inflow

To prove the viability of this approach, FAST was used to generate simulated data

with the first fore-aft tower bending degree of freedom and the first flapwise blade

degree of freedom activated resulting in a 10 state linearized model. In this way, the

identified linear model could be compared to the FAST linearized model. The wind

speed input to FAST was uniform across the rotor plane with a turbulence intensity of

5% and a mean wind speed of 7.75 m/s. This ensured that the turbine would operate

in Region 2 for the duration of the simulation and provided enough excitement to

identify the structural modes of the turbine.

For this simple simulated example, a 10 state system was identified because that is the

number of states in the FAST linearized model allowing for easy comparison between

the two. The algorithm was able to replicate the time series data with a 95.4% fit

of the rotor speed data shown in Figure 3.3 (a) and a 80.4% fit of the acceleration

data. The identified system also matched well in the frequency domain for both

the rotor speed and acceleration seen in Figure 3.3 (b). The algorithm was able to

accurately identify the modes but does not match well at low frequencies because

the FAST linearized model is not accurate at low frequencies. Because FAST creates
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(a) Rotor speed verification. (b) Bode plot of wind speed, v (m/s), to nac-
celle fore-aft acceleration, ax (m/s2).

Figure 3.3: Uniform inflow wind speed results.

the linear model by numerically linearizing the FAST model about a steady state

operating point, it’s linearized model has a pole very close to zero when it should be

exactly zero [19]. This slight numerical issue causes the FAST linearized model to be

inaccurate at low frequencies. Therefore, the algorithm is able to identify the linear

turbine model accurately in the time and frequency domains for a spatially uniform

wind speed input.

3.3.2 Spatially Varying Inflow

In order to make the simulation more realistic, the next step was to make the wind

input vary across the rotor plane to mimic real operating conditions. The mean hub

height wind speed was kept at 7.75 m/s, but the wind speed varied stochastically

horizontally across the rotor plane and followed the wind shear log law vertically

across the rotor plane. Using these specifications, the wind speed was defined on an

evenly spaced 11 × 11 grid. For the identification algorithm, the hub height wind

speed was used as the input because this is where the anemometer on the real wind

turbine would measure the wind speed.

With the addition of the spatially varying wind input, the algorithm is no longer

able to accurately identify the wind turbine model with only a 19.1% match of the

rotor speed time series data seen in Figure 3.4 (a) and a 0.7% match of the tower

acceleration time series data. Likewise, the frequency domain data did not match

as seen in Figure 3.4 (b). This result indicates that an appropriate wind speed
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(a) Rotor speed verification. (b) Bode plot of wind speed, v (m/s), to nac-
celle fore-aft acceleration, ax (m/s2).

Figure 3.4: Spatially varying inflow wind speed results.

measurement is the key to successful identification of the wind turbine model. When

the wind speed at all points is known as in Figure 3.3, the algorithm accurately

identifies the model. However, when the wind speed varies at all points in the rotor

plane but only one wind speed is used as an input as in Figure 3.4 and in the real

system, the algorithm is no longer able to identify an accurate model. This begs the

question of what the appropriate wind speed measurement should be for successful

system identification when the wind speed varies at every point across the rotor plane.
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Chapter 4

Effective Wind Speed

In [20], the term ”effective wind speed” is coined to describe the ideal wind speed

to measure defined in [5] as ”the spatial average of the wind field over the rotor

plane with the wind stream being unaffected by the wind turbine, i.e. as if the

wind turbine was not there”. While impossible to measure in practice, there have

been many attempts to estimate the effective wind speed. For example, [20] uses a

two step process to estimate the angular velocity and aerodynamic torque and, from

the aerodynamic torque estimate, calculate an effective wind speed by inverting the

aerodynamic model, Equation 2.3. Another approach presented in [21] is based on a

continuous-discrete extended Kalman filter where the wind speed is a state modeled

by turbulent and mean components. Yet another approach seen in [22] uses unknown

input observer techniques to simultaneously estimate the effective wind speed and the

power coefficient. There have been many other similar approaches to those presented

here including [23], [24], [25], and [26]. However, what all of these approaches have

in common is that they assume knowledge of the turbine dynamics. In order to

construct the Kalman filters and unknown input observers, there must be a dynamic

model of the wind turbine. Therefore, these approaches to calculating the effective

wind speed are not of interest when trying to perform system identification. This

section will explore measurement techniques that could be used to get the effective

wind speed. In other words, if the wind speed could be measured at any point(s),

where should it be measured and how could these point measurements be combined

to get an effective wind speed that results in successful system identification.
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4.1 Approach

By viewing effective wind speed as the wind speed that allows for the best model

identification results, it makes sense to use the CLMOESP algorithm in calculating

the effective wind speed. Therefore, the same CLMOESP algorithm used in 3 is used

in estimating an effective wind speed. The difference is that, instead of using the hub

height wind speed as the input, the full grid of wind speeds across the rotor plane

are used as inputs. Therefore, there will be ny × nz inputs where ny is the number of

grid points in the y (horizontal) direction and nz is the number of grid points in the

z (vertical) direction. The slight difference in how the CLMOESP algorithm is used

is visualized in 4.1.

Figure 4.1: Closed-loop system to be identified for Region 2 operation using 2-D wind
speed grid. n is the number of grid points (ny × nz)

Because the Hankel matrices given in 3.3 grow quickly with the number of inputs and

outputs, the biggest grid that the CLMOESP algorithm could handle was 11× 11, so

that was the grid size used for testing the algorithm to get the finest grid and most

detailed information. Using a 11 × 11 wind speed grid made the input, u, to the

identified system a 121× 1 vector at each time step. Therefore, the transfer function

matrix, G(s), that is identified from the input/output data will contain information

about how much each wind speed location is weighted for the system dynamics. This

transfer function matrix is 1 × 121 and can be evaluated at various frequencies. In
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order to quantify this weight, a singular value decomposition can be performed at

each frequency on the identified transfer function matrix, G(jω).

G(jω) = U(jω)Σ(jω)V (jω)∗ (4.1)

The matrix of singular values, Σ, is a 1 × 121 vector and the (1, 1) entry is nonzero

while the remaining entries are zero. By decomposing the G(s) matrix in this way,

the weights at each grid point can be evaluated by looking at the first column of the

V (jω) matrix at various frequencies. An effective wind speed can be calculated as

veff (jω) = ν1(jω)T


v1(jω)

v2(jω)
...

vn(jω)

 (4.2)

where ν1 is the first column of the V matrix in Equation 4.1 corresponding to the only

real singular value of G(s). The values of ν1 show how the wind speeds at different

grid points are weighted to combine to form an effective wind speed. These weights

indicate where it is most important to measure the wind speed if you could measure it

anywhere across the rotor plane. Because G(s) is decomposed at various frequencies,

ν1 is different at every frequency. Studying these weights across frequencies can give

better insight into how the effective wind speed depends on frequency.

4.2 Results

In order to test this approach on a simple example, a full 11 × 11 wind field was

created and given to the CLMOESP algorithm as the inputs. However, only the

hub height grid point was given as an input to the FAST simulation so that FAST

used the hub height wind speed as a uniform wind speed across the rotor plane. For

this simple example, the algorithm should not only be able to identify a system that

matches the input/output data but also identify that the hub height wind speed is

the effective wind speed.

Figure 4.2 shows that this approach of using the full wind speed grid as inputs and

using a singular value decomposition on the identified G(s) matrix to determine the
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(a) Rotor speed from identified model matches
well with measured rotor speed.

(b) Effective wind speed from 4.2 matches with
wind speed input.

Figure 4.2: Identification and effective wind speed results using spatially uniform
wind input to FAST.

effective wind speed works for the simple example. The algorithm is able to correctly

match the rotor speed output in the time domain with a 98.59% fit (Figure 4.2 (a))

and the effective wind speed is the hub height wind speed as it should be (Figure 4.2

(b)).

(a) Weights at 0.01 rad/s. (b) Weights at 60 rad/s.

Figure 4.3: Weights, ν1, across the rotor plane at low and high frequency for spatially
uniform wind input to FAST.

Finally, the weights from ν1 show that the hub height wind speed is weighted by

far the most as expected (Figure 4.3) and that the weighting does not vary with

frequency.
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The next step was to perform the same identification algorithm, but with the full

11 × 11 wind field used as the input for the FAST simulation. An additional step

had to be taken in order to analyze the data from the full wind field simulation. For

processing full field wind inputs, FAST uses software called TurbSim to simulate the

flow field around the turbine. TurbSim initializes at a delayed time so that the wind

is fully defined around the turbine before starting the simulation. This time delay

is equal to the grid width divided by the mean wind speed [27]. Because of this, all

of the FAST outputs are delayed by a time constant compared to the uniform hub

height wind speed simulation. However, the time constants for the wind speed, rotor

speed and nacelle acceleration are different. These different time delays had to be

accounted for when running the algorithm so that the data aligned and the model

could be identified.

(a) Wind speed offset between hub height
wind speed and full field wind speed FAST
inputs.

(b) Rotor speed offset between hub height
wind speed and full field wind speed FAST
inputs.

Figure 4.4: Comparing FAST outputs when it is given hub height and full field wind
speed inputs.

The different delays seen in the wind speed and rotor speed are illustrated in Figure

4.4. The plots seen in Figure 4.4 compare the FAST outputs for when a uniform,

hub height wind file is input to FAST and when a spatially uniform, gridded wind

file is input to FAST. Both data sequences have had the same time delay taken out
GridWidth

AvgWindSpeed
, which is about 6.5 seconds. Removing this delay aligns the wind speed

data series, but not the rotor speed series. The delays are different by about 0.4

seconds, and this had to be removed before performing system identification using

the full gridded wind field as inputs. The nacelle acceleration and rotor speed were

both delayed by the same amount. Determining the physical reason for this delay is
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an area of future work.

After removing this time delay, the CLMOESP algorithm was run using an 11 × 11

wind field as input and the FAST outputs from using that wind field as the input to

the simulation.

(a) Rotor speed from identified model matches
well with measured rotor speed.

(b) Effective wind speed from 4.2 at 0.01 rad/s
compared with hub height wind speed measure-
ment.

Figure 4.5: Effective wind speed results from spatially varying wind speed.

Figure 4.5 (a) shows that this approach was successful at matching the rotor speed

measured in FAST with a 98.55% fit. Figure 4.5 (b) shows that the calculation of

effective wind speed from 4.2 using the singular value decomposition at 0.01 rad/s

gives nonsensical results. The effective wind speed calculation produced similar results

regardless of the frequency.

Figure 4.6 offers insight into what wind speeds affect the turbine dynamics. At low

frequency, the grid points weighted heaviest are all of those inside the rotor disk.

This makes sense because the definition of effective wind speed is the average wind

speed across the rotor plane. The wind outside of the rotor disk does not interact

with the blades and so cannot affect the turbine dynamics. Furthermore, the hub

grid point and grid points near the blade tips are weighted less. The lower weight at

the hub grid point makes sense because no lift is generated at the hub/blade roots.

The blade tips may be weighted less due to tip losses. However, at higher frequencies,

this organized weighting begins to break down. At about 5 rad/s (Figure 4.6 (e)),

the weights start to take on more of a random pattern and by 60 rad/s, (Figure 4.6

(h)), the weighting is completely random. This may be because the higher frequency
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(a) Weights at 0.01 rad/s. (b) Weights at 0.1 rad/s.

(c) Weights at 0.5 rad/s. (d) Weights at 1 rad/s.

(e) Weights at 5 rad/s. (f) Weights at 10 rad/s.
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(g) Weights at 30 rad/s. (h) Weights at 60 rad/s.

Figure 4.6: Weights, ν1, across the rotor plane at various frequencies for spatially
varying wind input to FAST.

content of the wind varies rapidly and the large size of the turbine makes it slow to

respond. Therefore, the high frequency content of the wind will have little to no effect

on the turbine dynamics. The inability to identify a meaningful weight structure at

higher frequencies may be what leads to inaccurate effective wind speed calculations

seen in 4.5.

In order to obtain a more meaningful weight distribution across frequencies that

could characterize the turbine’s behavior, the rotational nature of the wind turbine

was considered. As the blades rotate about the hub, they are affected by the local

wind characteristics only. In other words, at a given time step, the whole wind field

is not acting on the turbine, only the grid points along the blade length. To take

this fact into account, the wind field was rotated with the rotor as it rotated about

the hub. However, this approach produced an identified model that was worse at

matching the rotor speed and nacelle acceleration and did not produce a meaningful

weight distribution.

By using the CLMOESP algorithm with a full wind field as the inputs, the algorithm

was able to identify a turbine model capable of matching the measured results in the

time domain. By performing a singular value decomposition on the G(s) matrix, the

notion of an effective wind speed was explored. This approach successfully identified

the effective wind speed for a uniform flow field. Under spatially varying wind speed

conditions, no meaningful way of calculating an effective wind speed could be identi-
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fied, which makes sense because the blades are constantly rotating in space and being

affected by different wind speeds. A direction of future work could include techniques

for identifying a single effective wind speed and consistent weighting across frequen-

cies. In addition, the weights indicated in 4.6 cannot realistically be measured so

other future work could involve techniques for identifying smaller number of heavily

weighted grid points. Alternatively, if a single effective wind speed cannot be found,

a method for measuring multiple effective wind speeds should be investigated.
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Chapter 5

Conclusion

System identification of wind turbines has the potential to open the doors for using

more advanced control techniques to maximize power and minimize the loads on a

wind turbine. This could lead to cutting turbine costs and helping maintain the rapid

growth of wind energy worldwide.

There are many challenges associated with identification of wind turbines that were

discussed in the previous sections. The primary source of these challenges are the

spatial and temporal variation of the wind speed. The temporal variation causes the

simple dynamic model to fail because the power coefficient is a steady-state notion

that does not hold up in turbulent wind. Spatial wind variation complicates the

identification process because there is not a single point at which the wind speed

input can be measured to accurately identify a model.

The fact that the wind turbine must operate in closed-loop while collecting data

for identification is an additional challenge. However, this and the temporal wind

speed variation are accounted for by using more of a black box system identification

algorithm called the CLMOESP. This algorithm allows the system to operate in

closed-loop and makes no assumptions on the form of the system, doing away with

the notion of a power coefficient.

Using the CLMOESP algorithm, a linear wind turbine model could be identified at

various wind speeds as long as the wind speed was known (constant across the rotor

plane). For more realistic operating conditions, the CLMOESP was used where the

inputs were the wind speeds at many grid points across the rotor plane. Performing a
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singular value decomposition of the identified G(s) matrix showed which grid points

were weighted the most to see where measurements should be taken for an effective

wind speed. Although the algorithm was able to identify a model that matched the

outputs in the time domain, a single effective wind speed did not materialize.

5.1 Future Work

There is large potential for future work using the results presented. First of which

would be to investigate the notion of one effective wind speed. In practice, the wind

speed across the rotor plane cannot be measured. Therefore, it would be useful to

find a smaller number of effective wind speeds that might be able to be measured in

practice.

Using the location of this effective wind speed or wind speeds, a LIDAR could be

used with the Eolos Wind Energy Research Station to measure the wind speeds at

the identified points in the rotor plane. The CLMOESP algorithm could then be

used to perform system identification at a wide range of operating conditions to fully

model the Clipper Liberty C96 research wind turbine.

Finally, the ultimate goal of this research is to use the identified system to perform

advanced control design on the Clipper Liberty C96 wind turbine. Ideally, this ad-

vanced controller could be implemented on the C96 wind turbine. The identified

model could then be verified by measuring expected versus actual performance.

The work presented here, combined with future work using data from a real wind

turbine, can improve the capabilities of system identification of wind turbines and

help continue the advancement of wind energy.
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Appendix A

Appendices

A.1 Eolos Database Search Algorithm

The algorithm below was used to discover extended time periods during which the

Clipper Liberty C96 was in the desired operating conditions. In the code below, the

algorithm is searching for any data set from 2013 where blade pitch is less than 1.05,

wind direction is between 350 and 10 degrees (from the North), and the turbine state

is equal to 8, meaning it is operating under normal conditions. This example will

output any data series that meets these criteria and is longer than 1200 seconds (20

minutes).

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

; WITH BadRecords AS

(

SELECT

ROW_NUMBER() OVER(ORDER BY Record) AS RN,

HubSpd,

Timestamp

FROM

eolos.scada.Status

WHERE

Timestamp BETWEEN ’2013-01-01 00:00:00.000’ AND ’2013-12-31 23:59:59.000’

AND (PitchPos1 > 1.05 OR WindDir > 10 OR WindDir < 350 OR TurbineState != 8)

),
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Differences AS

(

SELECT

a.Timestamp,

ABS(DATEDIFF(second, a.Timestamp, b.Timestamp)) AS Diff

FROM

BadRecords a

INNER JOIN BadRecords b

ON a.RN = (b.RN+1)

)

SELECT

DATEADD(second, -Diff, Timestamp) AS StartTime,

Timestamp AS EndTime,

Diff

FROM

Differences

WHERE

Diff > 1200

ORDER BY

Diff
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