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Abstract

The increasing interest in making aircraft more fuel-efficient has led to lighter and inherently
flexible aircraft. The performance benefits of lighter and more flexible structures can result in
aeroservoelastic instabilities (flutter) that can cause catastrophic structural failure. Hence,
active flutter suppression is a key technology to avoid flutter across the entire flight envelope
while exploiting the performance benefits of flexible aircraft. In literature, accelerometers
and rate-gyros that measure structural responses are commonly used for flutter suppression.
Yet, a new paradigm that is known as ”aerodynamic observable” seeks out for methods to
sense the aerodynamic environment in real-time. The Senflex R© hot-film sensor developed
by Tao Systems has been shown to be effective at measuring the local lift coefficient (CL) in
real-time. Consequently, it is important to understand the potential tradeoffs of using the lift
coefficient as an available output for control synthesis. This thesis presents a framework for
addressing the potential use of CL-output feedback for suppressing the body-freedom flutter
(BFF) mode of a flexible flying-wing drone. Hence, 2 controllers are designed: one controller
uses the local vertical acceleration as the system output while the other uses the local CL.
Then, the performance and the robustness of both controllers are compared. To compare
both outputs, first, the thesis presents a framework procedure to augment the flight-dynamics
model so that it includes the local CL as an output. In order to obtain similar designs and to
ease the comparison, a ”classic” single-input and single-output control approach is used. The
performance of the controller is addressed by comparing the open-loop and the closed-loop
damping ratios of the BFF mode. The robustness is address by comparing the classic gain and
phase margins. Furthermore, a root-locus study is presented to select the most effective (at
suppressing the BFF mode) choice of sensor location and the control effector pair. Initially,
both controllers are integrated onto a flight-dynamics model that only considers the ”bare-
frame” of the flexible drone. Later, the model is augmented to include actuator dynamics,
sensor dynamics, and a computational time delay. This augmentation is done on a buildup
manner in order to understand how sensitive each controller is to the extra parasite dynamics
that are present in real aircraft.
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Chapter 1

Introduction

The main contributor to the total operating cost of an aircraft is fuel [10]. Hence,
the aviation industry has set goals to make next generation aircraft more fuel-efficient. For
instance, NASA is pursuing research to lower fuel consumption 60 percent by 2030-35 [4]. In
[27], the author derives the expression for the rate of fuel burn of an aircraft in quasi-steady
cruise, which can be expanded to match the form presented in Eq. 1.1.

dW

dt
= − W

(CL/CD)Isp
(1.1)

where W [lbs] is the aircraft’s gross weight, CL [unitless] is the total lift coefficient,

CD [unitless] is the total drag coefficient, and Isp

[
lbs

lbs/sec

]
is the engine specific impulse.

Note that the engine’s specific impulse is defined as the pounds of thrust produced per each
pound of fuel consumed per second, so, it is another measure of the engine’s efficiency. Eq. 1.1
shows that there are three ways to effectively reduce the rate of fuel burn: (1) increasing
the engine’s specific impulse; (2) reducing the aircraft’s total weight; and (3) decreasing the
total drag coefficient. Note that changes in the total lift coefficient are not considered, as
the lift coefficient is fixed by the total weight. Not surprisingly, points (1) and (2) can be
addressed by making engines more efficient and by using low-density composite materials for
the structural design respectively. If we recall that the drag coefficient equation is,

CD = CDo︸︷︷︸
Profile Drag

+
CL

2

πARe︸ ︷︷ ︸
Induced Drag

(1.2)

we see that the drag coefficient can be effectively reduced by decreasing the profile drag
or by increasing the wing’s aspect ratio. Since the profile drag is a function of the aircraft
geometry [9], one way to reduce it would be to use airfoils with lower thickness or to shrink
the fuselage diameter. The combination of everything has led to lighter, thinner, longer,
and more slender wings, which has resulted in inherently flexible aircraft.
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Traditionally, aircraft were assumed to be rigid, i.e. high-frequency structural
dynamics and low-frequency rigid-body modes. Hence, aerospace engineers treated the
study of aircraft stability and control in two different disciplines: flight mechanics and
aeroelasticity. The frequency separation between ”rigid-body” and ”aeroelastic” modes
allowed for claiming that the aeroelastic effects had a small influence on determining
the aircraft flight mechanics, i.e. the aircraft maneuverability and loads. Hence, many
flight-dynamics textbooks excluded aeroelastic effects when developing aircraft models
and real-time simulations [3, 6, 28]. In practice, there were some attempts to include
aircraft flexibility effects. For example, flexibility effects were included in the form of
transfer functions on top of the rigid-body dynamics. These attempts were limited in scope
and mainly captured changes in the overall aircraft stability [18]. Now, as the flexibility
increases, structural modes decrease in frequency and they begin to impact the frequency
range of ”rigid-body” modes. Indeed, in Ref. 8 the author demonstrates that for very
flexible aircraft the frequency separation between flight dynamic and aeroelastic modes can
disappear. As both disciplines are now coupled, the study of aircraft stability and control
needs to be treated as a unique aeroelastic discipline.

Aeroelasticity is the discipline that studies the interactions between aerodynamics,
structural dynamics, and the vehicle motion. Flutter is arguably the most important subject
in the study of aeroelasticity. Flutter occurs when aerodynamics and flexible deformations
interact in an unstable manner, allowing the structure to effectively extract energy from the
fluid stream. This unstable interaction can lead to a resonance-like behavior that can have
catastrophic consequences (e.g., structural failure). An example of unsuppressed flutter that
led to catastrophic structural failure is shown in Figure 1.1. The snapshots show the results
of open-loop flutter during a flight test conducted at the University of Minnesota on August
25th, 2015, in which the mini MUTT aircraft (see Chapter 3) was pushed to slightly above
its flutter speed of 30 m/s indicated airspeed. If looked carefully, both wing and fuselage
torsion can be appreciated from the second snapshot of Figure 1.1 while wing bending can
be appreciated from the third snapshot. This coupling between the aircraft’s short-period
mode with the combination of vehicle torsion and wing bending is known as body freedom
flutter. Nonetheless, flutter is not a unique phenomenon as it can take different forms

Figure 1.1: Example of Unsuppressed Flutter and Catastrophic Structural Failure [36]

depending on the pair of interacting modes. For instance, there can be fuselage twisting
and wing bending, coupled wing torsion and bending, or even control surface flutter.
With the increasing use and authority of high-bandwidth automatic flight control systems,
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modern aircraft can experience unstable interactions between the flight controller and
the aeroelastic modes. This interaction can also lead to a resonance-like behavior that
can result in the control surfaces fluttering. Subsequently, the field of aeroelasticity can
be augmented to include the study of the flight control system interactions as well. The
resulting discipline is typically denominated as aeroservoelasticity [43]. To ensure safety
and aircraft certification, all forms of flutter must be avoided across the entire flight envelope.

Traditionally, aeroservoelastic instabilities were assessed passively during the design
process by making changes to the vehicle configuration. Some of these changes included
stiffening the structures or adding moving masses to change the vehicle inertia. Both
changes resulted in added components, which increased the aircraft’s total weight and fixed
the flutter problem to the expense of overall performance (see Eq. 1.1). Therefore, flutter
analysis involved many hours of wind-tunnel testing and the production of aeroelastically
scaled models, adding to the design cost [35]. Furthermore, if the instabilities were to be
observed through flight testing or during the certification process, the cost to change the
vehicle design would be too high and impractical. Then, the aircraft commercialization
would be placed in jeopardy. Thus, the aeroservoelastic research community was triggered
to focus on flutter suppression methods using active controls, thereby fixing both problems
at once. Although active flutter suppression (AFS) has been extensively researched since
the mid-1960s, there has only been a few flight tests to demonstrate the technology in
actual flight [13]. The recent development of NASA’s re-configurable X-56 Multi-Utility
Technology Testbed (MUTT) has allowed for a suitable platform for development, testing,
and demonstration of AFS concepts [23]. Hand-in-hand with the control law is the choice
of the proper input-output pair. One of the main challenges of AFS is the development of
a required model that accurately captures the flutter dynamics. In Ref. 43, the authors
demonstrate the importance of modeling unsteady aerodynamic effects to accurately
characterize flutter. Modeling unsteady aerodynamics is very challenging and it is subject to
significant uncertainty. As a result, a new paradigm known as ”fly-by-feel” or ”aerodynamic
observable” seeks for methods to sense the aerodynamic environment in real-time as op-
posed to modeling it. Tao System’s Senflex R© hot-film sensor has shown that this paradigm
is possible [15]. Consequently, it has allowed for considering a new interesting research
field of AFS methods that use the sensed aerodynamic environment as load-output feedback.

This research introduces the active flutter suppression of a flexible drone using the
local lift coefficient as the system output. To do so, first, a flight-dynamics model of a
flexible flying-wing drone is augmented to include the local lift coefficient as a system
output. Then, 2 similar controllers are designed: one controller uses the local acceleration
(aZ(y)) as the system output while the other uses the local lift coefficient (CL(y)). After, the
performance and robustness of both controllers are compared. The goal of the comparison
is to detect potential tradeoffs of controllers using the Senflex R© hot-film sensor with respect
to controllers using accelerometers. Again, the scope of this research is limited to addressing
the potential tradeoffs through the comparison; therefore, this thesis does not consider the
study of new and/or more effective control strategies. The following chapter contains a
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background overview of the aerodynamic observable paradigm. Chapter 3 describes the
methodology and process that was used to obtain a flight-dynamics model of the flying-wing
drone, including the steps to augment the model so that it includes the local lift coefficient
as a system output. Chapter 4 contains the closed-loop control synthesis when considering
a perfect model, i.e. a model with perfect sensors, perfect actuators, and no time delays.
Chapter 5 studies the effects of augmenting the model to include actuator dynamics, sensor
dynamics, and a computational time delay on the total performance and robustness of each
controller. The last chapter serves as a conclusion and provides suggestions for future work.
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Chapter 2

Aerodynamic Observable

Modeling is an important part of control design. A good model for control design needs
to accurately replicate the dynamics of interest of the real system while remaining simple,
i.e., low-order. A typical ASE model that captures the coupled structural dynamics and
aerodynamics is presented in [43] and has the following form:

Aq̈ + (ρUoB + D) q̇ +
(
ρUo

2C + E
)

q = 0 (2.1)

where A is the structural inertia matrix, B is the aerodynamic damping matrix, C is the
aerodynamic stiffness matrix, D is the structural damping matrix, E is the structural stiffness
matrix, and q is the vector of generalized coordinates of interest (e.g., angle-of-attack, pitch
rate, etc). Also in [43], the authors show the importance of modeling unsteady aerodynamics
in order to accurately predict flutter speeds and capture flutter effects. Consequently, matri-
ces B and C are reduced frequency-dependent and need to be evaluated at the reduced fre-
quency of interest. Modeling unsteady aerodynamics is challenging. Unsteady aerodynamic
models are a function of both the aircraft kinematics (structural states) and the airflow wake.
Therefore, unsteady aerodynamic models such as Theodorsen’s lift coefficient model in [37],
require the inclusion of the wake and the motion history through frequency-dependent lag
states. This results in higher-dimension models that are usually more complex. In fact,
this is one of the main challenges of ASE modeling. Lag states are typically inferred from
the inertial states, resulting in higher propagated uncertainties. Consequently, the design
of robust flutter suppression control laws is subject to more conservative margins of safety
and is still a challenging active area of research. A new research direction seeks to sense the
spatio-temporal aerodynamic environment in real-time as opposed to modeling it [15]. Sens-
ing the aerodynamic environment in real-time, even in adverse conditions that are difficult
to model such as separated flows (e.g., stall), is expected to reduce modeling uncertainty
and make AFS methods more efficient. The block diagram of the events of an ASE vehicle
in flight is included in Fig. 2.1. Disturbances or control surfaces inputs have a direct effect
on the aerodynamic loading, which in turn changes the structural loading as well. Changes
in structural loading can produce deformations of the vehicle structure and/or vibrations
about the trimmed geometry. Inertial sensors (e.g., accelerometers) capture these structural
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dynamics. As a result, inertial measurements lag the real physics of the aircraft model.
Aerodynamic sensing in real-time would create a shortcut that would skip the structural
dynamics in the dashed red box of Fig. 2.1. In other words, control laws using aerodynamic
measurements would eliminate bandwidth-limiting inertial lag. Also, aerodynamic param-
eters used for modeling ASE vehicles are usually obtained using computational methods.
Later, aerodynamic parameters are further updated using flight-data and system identifi-
cation methods. Without the aerodynamic observable, aerodynamic loading and important
aerodynamic states (e.g., angle of attack) need to be inferred from the inertial states and
the vehicle kinematics [19]. This process usually results in higher propagated uncertainties.
Hence, aerodynamic observable would also improve parameter identification techniques, re-
sulting in aerodynamic parameters with smaller uncertainty bounds. Furthermore, Ref. 1
and Ref. 15 propose flutter suppression and aeroelastic control using an energy approach.
This approach consists of tracking the aerodynamic work in real-time and ensuring that it
remains strictly negative over the period of one harmonic oscillation. The aerodynamic work
is a function of both the aerodynamic loading and the inertial response, both measurable in
real-time. Hence, this method would not require the use of an ASE model, thereby, elimi-
nating modeling uncertainty.

Figure 2.1: ASE Model Event Flowchart

The aerodynamic environment, or the circulation around a wing, can be captured
by tracking critical aerodynamic flow feature indicators (CAFFIs). Examples of such
indicators might include the leading-edge stagnation point (LESP), the flow separation
point (FSP), the flow reattachment point, the laminar-to-turbulent transition point, etc.
The LESP is where the flow attaches to the wing, causing the local velocity of the flow
to be zero, while the FSP is where the flow detaches from the wing. An example of both
the LESP and the FSP in a two-dimensional airfoil in flight is illustrated in Fig. 2.2. The
effects of the aerodynamic topology (i.e., the location and movement of CAFFIs over an
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Figure 2.2: Example of Critical Aerodynamic Flow Feature Indicators (CAFFIs)

airfoil) on the total circulation for subsonic potential flows are described by L.C. Woods
in [42]. For fully-attached flows, the circulation around the airfoil can be determined by
the imposed Kutta-Joukowski condition, which enforces the rear stagnation point to be
located at the sharp trailing-edge [9]. Then, the location of the LESP is dependent on
the total circulation around the airfoil. For fully-attached flows, the location of the LESP
moves downstream (towards the trailing-edge) as the total circulation increases and vice
versa. Ref.31 shows that, under the assumption of fully-attached flows, the location of the
LESP is a monotonic function of the angle-of-attack (AoA). In fact, the LESP location
is shown to be just a scaled-multiple of the AoA. The location of the FSP is dependent
on the pressure gradient across the airfoil. When the airflow is unable to negotiate an
adverse pressure gradient, the flow separates, creating an FSP and causing the trailing-edge
stagnation point to move upstream (as shown in Fig. 2.2). This results in a loss of the
total circulation, which in turn causes the LESP to move upstream. Consequently, the
effects of both fully-attached and separated flows can be effectively captured by just
tracking the LESP location. Even though there are many aerodynamic books that include
this high-level analysis, references in the literature that include an analytic relationship
between the LESP location and circulation are scarce. In 2015, an unsteady aerodynamic
model was developed in [31] based on the LESP location and control surface deflection.
The derivation follows an approach similar to Theodorsen’s theory for oscillating airfoils.
In this model, the LESP location is defined as the angle (δ) between the free-stream
velocity and the point of zero local velocity in a conformally-mapped plane using the
Joukowski transformation. Then, this angle δ can be mapped back to the physical plane
as a linear distance (xδ) from the wing leading-edge. The LESP location in both the
comformally-mapped and the physical planes is depicted in Fig. 2.3. The main findings
included in [31] are: (1) both the lift coefficient and the AoA are monotonic functions of
δ, which depend only on the airfoil geometry; (2) the location of the flexural (or elastic)
axis does not appear in the final form of the equations, which is an important (and useful)
finding as the location of the elastic axis is usually difficult to estimate for complex wing
designs; (3) the relationship between unsteady lift coefficient and δ is observed to be memo-
ryless, i.e., the final form of the equation does not depend on lag states or the motion history.
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Figure 2.3: LESP Location in the Conformally-Mapped Plane

Traditionally, there have been different methods and sensors used to predict the
flow state and/or measure the topology of CAFFIs. Examples of such include the use
of pressure sensors, pressure transducers, pressure sensitive paint, accelerometers, strain
gauges, hot-film sensors, etc. Unfortunately, most of these sensors have major disadvantages
that make them unsuitable for measuring CAFFIs in real-time [16]. Pressure sensors can
be used to predict aerodynamic loading by direct integration of the pressure distribution
over the wing. However, they require significant set-up times and calibration as pressure
strongly depends on both temperature and/or density conditions, both which change often
in flight. Accelerometers and strain gauges can be used to predict aerodynamic loads
from the structural and inertial responses. This is a major problem as aerodynamics
lead structural responses; therefore, the inferred aerodynamic measurements are always
lagging the true CAFFI dynamics. Furthermore, the aerodynamic measurements inferred
from accelerometers and strain gauges are only as accurate as the models used to derive
them which, as mentioned earlier, are subject to high uncertainties. Hot-film sensors can
be used in thermal anemometry to obtain CAFFI topology by measuring the amount
of heat dissipated from the heated sensor to the airstream. This method effectively
measures the shear stress (i.e., the fluid viscosity), which by definition is tangential to the
flow. Also, the sensor does not involve mechanical or moving parts, thereby obtaining
measurements with relatively high frequency and minimal lag. Moreover, hot-film sensors
can be easily embedded with composite laminates without using adhesives, polymer films,
or major structural modifications, allowing for a simple non-intrusive design that can
be used even in harsh environments (see Fig. 2.5). However, not all forms of hot-film
thermal anemometry are suitable for real-time aerodynamic sensing. Conventional constant
current anemometry is limited by the large time-constants that are required. Constant
temperature anemometry is complex to set-up as it can create a potential sensor failure.
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If the temperature decreases, the sensor experiences an increase in current to keep the
temperature constant, which could lead to overcurrent failure if the temperature decreased
enough. Moreover, changes in atmospheric temperature affect the amount of heat that
is transferred from the heated sensor to the fluid, adding biases to the sensor readings.
Nonetheless, these limitations can be effectively mitigated by using an array of hot-film
sensors with constant voltage anemometry and a data acquisition and processing technique
called phase-reversal signatures (as patented by Siva M. Mangalam and Tao Systems in [17]).

The diagram of Tao System’s constant voltage anemometer circuit is published in [34],
which can be slightly modified to include the hot-film sensor element as depicted in Fig. 2.4.
From the circuit, the voltage across the hot-film element VHF [Volts] can be represented as:

VHF =
R1

R2

V1 (2.2)

where R1 [Ohms] and R2 [Ohms] are fixed resistors, and V1 [Volts] is a variable voltage source.
Hence, the value of V1 can be chosen such that the hot-film element is heated to any desired

Figure 2.4: Circuit of CVA Hot-Film Element

temperature, due to Joule Heating. The desired temperature is chosen to be greater than
the atmospheric stagnation temperature to ensure convective heat transfer from the sensor
to the flow. The output voltage Vout [Volts] from the circuit in Fig. 2.4 can be represented
as:

Vout =

(
1 +

R3

R1

+
R3

RHF

)
VHF (2.3)

where R3 [Ohms] is another fixed resistor, RHF [Ohms] is the resistance value of the hot-film
sensor element, and VHF [Volts] is the voltage across the hot-film element as in Eq. 2.2.
The hot-film sensor element is made out of nickel, so, its resistance varies with the element
temperature. Nickel’s resistance increases as the temperature increases [12]. Also, as the
local convective heat transfer depends on the local airflow velocity [2], the sensor element’s
temperature depends on the local airspeed across it. As a result, the sensor element’s
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resistance (RHF ) depends directly on the magnitude of the airspeed across it. RHF decreases
as the flow velocity increases. Consequently, the output voltage in Eq. 2.3 increases as the
flow velocity increases. Recall that the LESP location corresponds to the point where the
local airflow velocity is zero. Hence, the flow accelerates as it moves away from the LESP
point. Consequently, the voltage output of the hot-film element that is located at the LESP
point is at a local minimum when compared to the readings of the hot-film elements on either
side of it. Also, signals from sensors located on the same side of the bifurcation are in-phase
while signals from sensors located across the flow bifurcation experience a phase-reversal.
All in all, the location and movement of CAFFI points can be determined by tracking the
location of minimum voltage signals and/or phase reversal between adjacent sensors. Notice
that this method does not depend on the actual magnitudes of the voltage readings but it
depends on the comparison between the readings of adjacent sensors. This is very suitable
for aerodynamic sensing in real-time as the method shows to be immune to changes in the
flow condition and shows to have high signal-to-noise ratio. For more detailed information,
refer to [17]. This technique is implemented on the Senflex R© multi-element surface hot-film
sensors developed by Tao of Systems, Inc.

Figure 2.5: Wing Section Equipped with the Senflex R© Hot-Film Sensor [31]

For simplicity, the Senflex R© sensor will be referred as the ”LESP sensor” moving for-
ward in this thesis. Texas A&M University, in collaboration with Tao Systems, has embedded
the LESP sensor to a wing section (see Fig. 2.5) and conducted wind tunnel experiments
to demonstrate the success on measuring the wing’s lift coefficient in real-time [31, 30]. In
Ref. 31, the author presents the wind tunnel results for both static and dynamic tests. The
static test consists of an angle-of-attack sweep from −8 to +8 degrees for three control surface
deflections: −5, 0, and +5 degrees. The dynamic test consists of a frequency sweep in the
trailing-edge control surface in which the wing section is only allowed to pitch. In both cases,
the lift coefficients inferred by measuring the LESP location is shown to be an almost perfect
match to the lift coefficients obtained by both the thin-airfoil theory and the wind-tunnel
load sensor. Hence, the LESP sensor is shown to work for sensing the local lift coefficient in
real-time. The next chapter includes the main steps on developing a flight-dynamics model
of the flexible flying-wing drone that includes local lift coefficient as a system output.
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Chapter 3

Mini-MUTT: The Flying-Wing UAV

As mentioned in [13], there have been only a handful of flight tests to prove AFS
methods in actual flight. If the controller test was to be unsuccessful, both the test-pilot
engineer’s life and the vehicle would be in critical danger. In fact, as compiled in Ref. 40, the
history of flutter is full of losses in both lives and vehicles. Thereby, the aviation industry
inclined towards avoiding flutter in the entire flight envelope. The use of unmanned aerial
systems (UAS), also known as drones, can be a solution to that problem. The market for
drones has been growing drastically over the recent years [21]. UAS are versatile and have
relatively low initial costs, as well as operation expenses. Hence, they serve as a suitable
platform for research and development of safety-critical technologies. Since there is no pilot
onboard a drone, the major risks of AFS testing may be accepted. The drone of interest
in this thesis is called “mini-MUTT” and it is depicted in Fig. 3.1 and Fig. 3.2. The mini-
MUTT was designed and constructed at the University of Minnesota (UMN). Its geometry
resembles Lockheed Martin’s Body-Freedom Fluter vehicle, designed to test AFS-methods
in flight. In fact, the mini-MUTT was built after Lockheed Martin donated their last BFF
vehicle to the UMN to help expand the aeroservoelastic research program. The mini-MUTT
is a remote-piloted flying wing that is designed to flutter at low speeds. It has a wingspan of
10 ft. (3 m) and a total gross weight of roughly 14.7 lbs. (6.7 Kg). As shown in Fig. 3.2, the
vehicle is composed of three major parts: the center-body and the pair of detachable wings.
The center-body is assumed to be rigid and contains all the major electronics. Attached
to the back of the center-body is an electric motor with a pusher propeller. The wings are
swept-back for longitudinal stability, contain winglets on the wingtips for lateral-directional
stability, and are assumed to be flexible. For control, the wing trailing-edge consists of eight
control surfaces, four on each side (see Fig. 3.3). The first control surface pair (L1 and R1)
is known as the body flaps. The next pair (L2 and R2) is known as the first mid-board flaps.
The following pair (L3 and R3) is known as the second mid-board flaps. Lastly, the last pair
(L4 and R4) is known as the outboard flaps. The next section describes the methodology
that was followed to obtain a flight-dynamics model of the mini-MUTT.
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Figure 3.1: Mini-MUTT Flying-Wing Drone [26]

Figure 3.2: Mini-MUTT Vehicle Parts

Figure 3.3: Mini-MUTT Control Surfaces
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3.1 Flight Dynamics Model

As mentioned in the Introduction, obtaining a model that mimics the dynamics of
interest is an important part of control design. A suitable model for AFS must capture
the structural dynamics, the “rigid-body” dynamics, and the interactions between the two.
In literature, it is possible to distinguish two major methodologies to model aeroelastic
vehicles. In Ref. 26, the author refers to these approaches as the “flutter” models and the
“flight-dynamics” models. The “flutter” models start by deriving an accurate structural
model with coupled aerodynamics, which is then augmented to include some rigid-body
degrees of freedom (DoFs). On the other hand, the “flight-dynamics” model starts by
modeling the vehicle as a rigid body, which is then augmented to include flexible DoFs. The
main difference between the two methodologies is in the coordinate frames that are used
to derive the equations of motion. “Flutter” models are typically defined in the inertial
reference frame while “flight-dynamics” models use a body-referenced frame. While both
methodologies have advantages of their own, the model used for this thesis followed a
“flight-dynamics” approach as both onboard sensors and aerodynamic responses are defined
in a body-fixed coordinate frame, making the model compatible with control design.

The methodology followed to derive the aeroservoelastic model of the mini-MUTT is
presented in [3] and depicted in the Fig. 3.4. The figure shows the main “blocks” and pieces

Figure 3.4: Aeroelastic Vehicle Modeling Methodology

that are required to obtain the dynamic model. In this approach, the body-referenced
coordinate frame that was used to derive the equations of motion was based on a mean-axes
description [38]. The origin of the mean-axes is attached to the instantaneous center of
mass of the vehicle, which, due to elastic deformations, is not constant with time. The
orientation of the mean-axes is defined such that both the relative translational and angular
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momentum of the entire aircraft, due to elastic deformations, are zero at every instant of
time. Hence, the mean-axes are said to move or “float” in phase with the motion and
deformation of the vehicle [43].

First, the aeroelastic drone is assumed to be rigid, and the rigid-body equations of
motion are derived following any of the methods that are extensively found in the literature
[24, 27, 6, 3]. These methods are still consistent with the mean-axes description as, if the
vehicle is assumed to be rigid, both the location of the center of mass and the moments of
inertia are fixed with time. In this case, the origin of the mean-axes is fixed with respect to
the aircraft and its orientation can be chosen arbitrarily. Then, the mean-axis description is
observed to match either the body-fixed or stability axes used to derive stability and control
derivatives. The aerodynamic stability and control derivatives of the mini-MUTT were
obtained using a vortex-lattice method [11]. Second, the rigid-body model is augmented to
include the structural flexibility effects. Here, the drone vibration solution is obtained from
a finite beam-element model [26], which is updated and optimized using the results obtained
from ground vibration tests [7]. Then, the vibration solution is used to derive the aeroelastic
coefficients using quasi-steady or unsteady strip-theoretic techniques [47]. This method
is analogous to deriving the stability and control derivatives of a rigid aircraft. Hence,
the main advantage of this approach is that it results in a parametrized aeroservoelastic
model that is consistent with flight mechanics and flight-control theory. Furthermore,
another advantage of this method is that the parametrized model is obtained early in the
design cycle. Later, the model can be further updated using flight-test data and parameter
identification methods [20].

The current model considers only longitudinal dynamics for straight and level flight
under small elastic deformations from the trimmed geometry. The final form of the model
follows the standard linearized state-space formulation [41], included in Eqn. 3.1-3.2.

Ẋ = AX +Bu (3.1)

Ysensor = CX +Du (3.2)

The first four states correspond to the three rigid-body DoFs and are identical to those of
a rigid aircraft, namely the forward surge velocity urig [ft/s], the angle of attack αrig [rad],
the pitch angle θrig [rad], and the pitch rate qrig [rad/s] (see Fig. 3.5). These states describe
the motion of the body-fixed frame or mean axes. The last 2n states correspond to the n
elastic DoFs, described by the generalized displacements η [rad] and the generalized velocities
η̇ [rad/s]. Since the mini-MUTT is designed to exhibit two symmetric flutter conditions in
the longitudinal axis, only the first three symmetric modes are included in the model, i.e.,
the first two symmetric bending modes and the first symmetric torsion mode. The resulting
state-space dynamic system of Eq. 3.1 takes the form given in Eq. 3.3. Note that the system

14



is composed of rigid-body (subscript R) and elastic (subscript E) subsystems.

Ẋ =


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]
X +

[
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BE

]
u (3.3)

Here, the entries X, Z, M , of the rigid subsystem are dimensional aerodynamic, stability, or
control derivatives; Zη, Mη, and Ξη are aeroelastic derivatives; ωk and ζk for k = 1, 2, 3 are
the eigenfrequencies and damping ratios (respectively) of the kth structural mode; and g is
the gravitational acceleration constant. It is important to emphasize that the dimensional
derivatives of the dynamic model depend directly on the dynamic pressure, i.e., depend on the
flight condition defined by the altitude and airspeed (see Fig. 3.4). The system’s state vector

is X =
[
urig αrig θrig qrig η1 η̇1 η2 η̇2 η3 η̇3

]T
and the current system considers

four control inputs u =
[
δ1 δ2 δ3 δ4

]T
; here, the inputs δi consist of the symmetric

deflections of the ith pair of flaps (see Fig. 3.5). Note that neither unsteady aerodynamic lag
states nor actuator dynamics are considered for the linearized model included in Eq. 3.3.

Figure 3.5: Mini-MUTT Rigid States, Control Inputs, and System Outputs

In accordance with the dynamic model, the sensor-output model is also derived fol-
lowing the general state-space formulation (Eq. 3.2). As argued earlier in the introduction,
the research seeks to gain an understanding of flutter suppression using the LESP sensor.
Later, the performance of the controller using the LESP sensor is compared to the perfor-
mance of a benchmark design that uses an accelerometer. Also, as important as the choice
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of sensor-actuator pair, is the placement of the sensor itself. Here, placing the sensor any-
where along the wingspan is assumed to be possible. Hence, the two sensor-outputs that
need to be modeled are the local lift coefficient CL and the local vertical acceleration az
at any point along the wingspan, i.e., Ysensor =

[
CL(y) az(y)

]T
. To follow the general

state-space formulation, both CL and az must be modeled as linear functions of the system
states X and the control inputs u. In Ref. 24, the author derives a general relationship for
both az(x, y, z) and α(x, y, z) as functions of the rigid-body states and the elastic general-
ized displacements/velocities. Both relationships can be adapted to match the form in the
equations here:

az(y) = Uoα̇rig − Uoqrig + ∆xsensorq̇rig︸ ︷︷ ︸
rigid contribution

+ ω̇E(y)︸ ︷︷ ︸
elastic contribution

(3.4)

α(y) = αrig −
∆xsensorqrig

Uo︸ ︷︷ ︸
rigid contribution

+

(
θE(y) +

ωE(y)

Uo

)
︸ ︷︷ ︸

elastic contribution

(3.5)

where,

θE(y) =
3∑
i=1

ν ′Zi(y)ηi(y) ωE(y) =
3∑
i=1

νZi(y)η̇i(y)

Here, Uo [ft/s] is the pre-defined free-stream velocity and ∆xsensor [ft] is the distance from
the aircraft instantaneous center of gravity to the sensor in the x-axis. Note that all the
parameters in both equations have been previously defined except for νZi(y) and ν ′Zi(y).
These parameters depend on the mode shapes of the vehicle, which are available from the
beam-element model. The first three symmetric mode shapes are depicted in Fig. 3.6. Note
that Z is defined positive down and the wing-twist is defined positive leading-edge up (see
Fig. 3.5). In Fig. 3.6, it can be seen that νZi(y) [ft] is defined as the value of the plunge
(z-axis) displacement of the ith mode shape at the location of interest. Similarly, ν ′Zi(y) [rad]
is defined as the value of the torsional displacement of the ith mode shape at the location
of interest. Lastly, assuming fully-attached flow, the local lift coefficient can be computed
as a linear function of the local AoA, the local generalized displacements/velocities, and the
local control surface deflections:

CL(y) = CLα(y) α(y) + CLq qrig +
3∑
i=1

CLηi (y) ηi +
3∑
i=1

CLη̇i (y) η̇i +
4∑
j=1

CLδj (y) δj (3.6)

Here, CLδj (y) [1/rad] is defined to be the 2-D control surface effectiveness, as determined by

strip theory [9], if the y-location is within the range of the control surface yLj or yRj (see
Fig. 3.5). Otherwise, it is assumed to be zero:

CLδj (y) =

{
clδj if y ∈ yLj or y ∈ yRj
0 otherwise

for j = {1, 2, 3, 4} (3.7)
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Figure 3.6: Mini-MUTT Mode Shapes of Interest

Analogous to the aerodynamic and stability derivatives, CLηi (y) and CLη̇(y) represent the
changes in lift due to elastic deformations. Such coefficients are also defined in [24] as
included in Eq. 3.8 and Eq. 3.9. Note that, in order to evaluate the integrals, the algebraic
expressions of νZi(y) and ν ′Zi(y) are obtained by fitting a polynomial to the mode shapes in
Fig. 3.6.

CLηi (y) =
2

Sw

∫ bw
2

0

CLα(y) ν ′Zi(y) cw(y) dy (3.8)

CLη̇i (y) =
2

SwUo

∫ bw
2

0

CLα(y) νZi(y) cw(y) dy (3.9)

In Eq. 3.8-3.9, Sw [ft.2] is the total area of the wing, bw [ft.] is the total wingspan,
and cw(y) [ft.] is the local chord length of an infinitesimal wingspan element. Finally,
CLα(y) [1/rad] is the value of the lift-curve slope, as determined from the vehicle vortex-
lattice method [26], at the y-location of interest (see Fig. 3.7). The next section uses this
linearized dynamic model to study the presence and characteristics of flutter.

3.2 Open-Loop Flutter Analysis

The study of flutter is performed considering the eigenvalues and eigenvectors of the
aeroelastic dynamic model in Eq. 3.3. The top half of the airspeed root-locus showing
the system’s eigenvalue locations for three airspeeds (26, 30, and 33.5 m/s) is depicted in

17



Figure 3.7: Mini-MUTT Lift-Curve Slope Distribution [26]

Fig. 3.8. In Fig. 3.8, notice how the branch identified as “1st aeroelastic mode” moves
further to the right-half plane as the value of the airspeed increases. Eventually, this
branch crosses the imaginary axis, proving the presence of flutter at a flight velocity
slightly higher than 30 m/s. The mode branches are identified based on the most dominant
states involved, which can be determined by observing the eigenvectors of each mode.
For instance, the eigenvectors of the mode branch labeled as “elastic short period” at 30
m/s airspeed are shown in Fig. 3.9. Indeed, this mode is dominated by the rigid pitch
rate with virtually non-dependence on the surge velocity, which is very similar to the
short period mode of a rigid aircraft [24]. Yet, unlike the conventional short period, the
eigenvectors show also a strong co-dependency with the elastic deformation rate. The
eigenvectors of the “1st aeroelastic mode” at a flight velocity of 30 m/s are included in
Fig. 3.10. The main contributor to this mode is the first structural vibration rate or
the first symmetric bending rate. However, unlike a pure vibration mode, the second
largest contributor to the “1st aeroelastic mode” is the rigid pitch rate. These two
examples show that, as argued in the introduction, the aeroelastic drone does not have
pure rigid-body and elastic modes, but it has a coupled product of the two. This “1st
Aeroelastic” flutter condition that exhibits coupled symmetric bending and rigid-body short
period is known as the body-freedom flutter condition. Also, note that both the flutter
velocity and the flutter characteristics match the observations obtained from the open-loop
flutter flight test performed by the University of Minnesota on August 25, 2015 (see Fig. 1.1).

The next chapter uses the linearized state-space model to design a controller that
effectively suppresses the body-freedom flutter in closed-loop.
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Figure 3.8: Airspeed Root Locus of Mini-MUTT Flight-Dynamics Model

Figure 3.9: Illustration of ”Elastic Short-Period Mode” Eigenvector

Figure 3.10: Illustration of ”1st Aeroelastic Mode” Eigenvector
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Chapter 4

Active Flutter Suppression

Since the focus of the aeroservoelastic community moved to AFS methods, there
have been a large number of theoretical studies presented in literature. These studies
consider both ”classical” single-input and single-output (SISO) control approaches and
more ”modern” multivariable synthesis methods. Examples of SISO methods include the
so-called collocated feedback (e.g., [22, 39]) and Identically Located Acceleration and Force
(ILAF) (e.g., [44, 45, 25]). SISO methods are more easily designed using a root-locus
analysis and do not require precise knowledge of the vehicle mode shapes. This offers
favorable robustness properties as mode shapes are difficult to predict accurately. Yet, both
collocated feedback and ILAF methods require the actuator and sensor pair to be placed
at exactly the same location. This geometrical constraint may not be strictly satisfied in
all aircraft. Examples of multivariable synthesis methods include LQG controllers (e.g.,
[14, 23]), LQR controllers (e.g., [46, 5]), and H∞ controllers (e.g., [36, 48]. These methods
offer great robustness properties, which are desired in highly uncertain ASE systems. Yet,
these methods often yield higher-order and more complex controllers. As noted in Ref. 25,
these methods lack the transparency about the ”cause-and-effect relationships between
components in the control laws and the physics of the aircraft”. Also, note that all the
literature examples listed above used accelerometers as the available sensors. Examples of
AFS methods that use aerodynamic observable methods include the CL-tracker controllers
in [32, 33]. The use of the LESP sensor in this ”aerodynamic observable” paradigm is a
relatively recent concept that is currently under investigation.

In this thesis, the controller method was chosen to be a SISO, ILAF-like approach.
As mentioned, the main goal of this research is to understand the use of CL-output for
AFS through the comparison to a benchmark design that uses an accelerometer. Hence, a
”classic” SISO method offers for a simpler controller architecture that is more transparent
and easier to compare. Also, recall that the sensors were assumed to be placeable anywhere
along the wingspan (see Chapter 3), allowing for the ILAF-like study. As a result, the control
architecture of both controllers was chosen to be that of a simple proportional controller, as
depicted in Fig. 4.1.
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Table 4.1: Open-Loop Eigenvalues, Damping Ratios, and Natural Frequencies of the mini-
MUTT Aircraft at 33.5 [m/s]

Eigenvalue Damping Ratio (ζ) Natural Frequency (ωn[rad/s]) Mode Branch

0.00378 ± 0.348i -0.00109 0.348 Phugoid

-16.9 ± 15.9i 0.729 23.2 Elastic Short Period

0.735 ± 29.5i -0.0249 29.5 BFF

-1.38 ± 67.8i 0.0204 67.8 2nd Aeroelastic Mode

-5.71 ± 122i 0.0466 123 3rd Aeroelastic Mode

Figure 4.1: Block Diagram of AFS Loop

In Fig. 4.1, δ̂i [rad] represents the symmetric deflection of one of the four available
control input flaps as commanded by the flight controller. Similarly, δicom [rad] represents
the symmetric deflection of one of the four available control input flaps as commanded by
the pilot. Note that the same control input is used in both controllers. Also, both the
accelerometer (measuring az(y)) and the LESP sensor (measuring CL(y)) are placed in the
same exact y-location along the wingspan. The output qCG represents the elastic pitch rate as
measured at the aircraft’s center of gravity. The common pitch rate output of both controllers
is used to allow for a more direct comparison. The dotted filter block indicates that a filter
may or may not be added to the loop. If a filter is added, it is added to both controllers to
allow for a similar comparison. The control input gains Kaz and KCL are chosen such that
the same amount of damping on the BFF flutter mode is obtained. Hence, the magnitudes
of the gains may not be the same. Then, the two controllers are compared in terms of
their resulting performance and robustness. The performance is measured by comparing the
percentage increase in damping of the remaining two aeroelastic modes. The robustness is
measured using the classic gain margin (GM) and phase margin (PM). The aircraft model
that is used for control design is linearized at 33.5 [m/s]. The eigenvalues, damping ratios,
and natural frequencies of the open-loop system at such airspeed are included in Table 4.1.
The next section includes the root-locus methodology used to compare the different input-
output combinations and select the most suitable control effector and sensor location pair.
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4.1 Control Effector and Sensor Location

The choice of control effector and sensor location pair is arguably an important part
of control design. A different choice of the input-output pair may yield significantly dif-
ferent results on the closed-loop performance. In this thesis, the effects of different sensor
placements and control actuator choices are studied qualitatively and through logic rather
than using mathematical algorithms. The effects are studied by comparing the root locus
of the control loops in Fig. 4.1. In this model, three sensor locations are considered: 20,
40, and 57.5 inches from the center of gravity. For simplicity, only the body flaps (δ1) and
the outboard flaps (δ4) are considered for control design. The reason for that is to give full
authority of the mid-board flaps (δ2 and δ3) to the pilot. Then, a total of six root locus are
considered and compared for each sensor, resulting in twelve root locus overall. In Fig. 4.2,
the control input is set to be the body flap (δ1) and the effects of moving the accelerometer
further along the wingspan are compared. Here, the airspeed is 33.5 [m/s], slightly beyond
the flutter speed at which the BFF mode becomes unstable.

Figure 4.2: Root Locus Comparison: Effect of Increasing y-Location of Accelerometer

Note that placing the accelerometer at 20 inches allows for greater damping of the first
and third aeroelastic modes than placing the accelerometer at 57.5 inches. It is important
to mention that true ILAF is not possible in this system. A deflection of the flaps creates
a distributed load and moment about the control surface area of the wing, as opposed to a
point force or torque. Hence, both sensor locations can potentially increase damping of all
aerolastic modes. Yet, placing the sensor closer to the actuator yields better results, since
the sensor is closer (or within) the area where the distributed aerodynamic load is most
observable. Similar results are observed in Fig. 4.3, in which the LESP sensor is used in
place of the accelerometer.
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Figure 4.3: Root Locus Comparison: Effect of Increasing y-Location of LESP Sensor

For convenience, the main findings of all twelve root locus plots are summarized in
Table 4.2. The values in Table 4.2 represent the maximum closed-loop damping ratio that
can be achieved using each sensor, sensor location, and actuator pair combination. The value
of the open-loop damping ratio at 33.5 [m/s] is displayed in parenthesis at each mode branch
row. The maximum closed-loop damping ratio of the first aeroelastic mode, or BFF mode, is
defined as the value of damping that can be achieved before one of the other two aeroelastic
modes becomes unstable or the ”elastic short period” (ESP) mode becomes over-damped.
Then, the maximum percentage damping of both the second and third aeroelastic modes
correspond to the values that are obtained as a consequence of damping the BFF mode.
This is the reason why the closed-loop damping of either the second or the third aeroelastic
modes may be worsened.
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Table 4.2: Root Locus Summary: Effects of Sensor Placement and Actuator Pair on Closed-
Loop Damping Ratios (Tailored to damp the BFF mode)

In Table 4.2, the underlined values represent the y-locations that offer the greatest
percentage damping increase for each sensor choice and control input pair. Referring back
to the ILAF-like system discussion, note how the percentage damping tends to decrease as
the sensor is placed further from the actuator. Note that the third aeroelastic mode and
the outboard flap input does not seem to follow the trend. In fact, any sensor location is
observed to have a similar effect on the third mode damping. Looking at the mode shapes of
the third mode in Fig. 3.6, it can be noticed that the outboard flaps are located close to two
nodes. Hence, this control input is not very effective at damping the third aeroelastic mode
and does not follow the ILAF theory that requires the input-output pair to be located away
from a structural node. Moreover, the poor performance of both controllers at damping the
second aeroelastic mode can also be deduced by looking at the mode shapes in Fig. 3.6.
The main contributor to the second aeroelastic mode is the wing’s torsion, which is not very
observable by measuring linear acceleration. The chosen control strategy was tailored to
damp the BFF mode. All in all, note how the designs that achieve the greatest damping
of the BFF mode, and the most similar to one another, involve the sensors to be placed at
20 inches and the use of the body flaps. Hence, this sensor placement and actuator effector
pair is chosen for control synthesis, i.e. the loop of Fig. 4.1 is closed with y = 20 inches and
i = 1. If the filter block is not included, the root locus of the resulting controller loops are
included in Fig. 4.4. In the next section, the root locus in Fig. 4.4 are used to select the
gains, and the performances of both controllers are compared.
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Figure 4.4: Root Locus Comparison: Accelerometer vs. LESP Sensor

4.2 Closed-Loop Performance

As mentioned in the previous section, the values of the controller gains are chosen such
that the damping of the BFF mode is the same in both controllers. In addition, the values
of the closed-loop elastic short period damping (ζESP) should not vary significantly from
the open-loop value. Hence, ζESP was ensured to be within the range in Eq. 4.1, allowing
a percentage difference of about 18% from the optimal value of 0.71 that has traditionally
been observed to offer balance between disturbance rejection and controllability [29].

0.6 ≤ ζESP ≤ 0.85 (4.1)

Then, the performance of both controllers at damping the rest of the aeroelastic modes and
the values of the classical gain and phase margins are compared. Again, the controllers in
this thesis are design such that the following requirements are satisfied:

1. The damping ratio of the elastic short period is within the threshold in Eq. 4.1.

2. The closed-loop damping ratio of the BFF mode is the same for both controllers.

3. None of the remaining mode branches becomes unstable in closed-loop.

First, the filter block (see Fig. 4.1) is not considered, i.e. the filter block is defined as
unity. The value of damping of the BFF mode (ζBFF) that can be achieved by both controllers
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under these conditions is ζBFF = 0.0886. This damping value is limited by ζESP of the aZ-
Controller reaching the upper bound in Eq. 4.1. At the same ESP damping ratio value, the
CL-Controller could reach a BFF mode damping of ζBFF = 0.140, which is a 58% higher than
the value of the aZ-Controller. The open-loop and the resulting closed-loop damping ratios
of all the aeroelastic mode branches are included in Table 4.3. The aZ-Controller is shown
to result in a greater second aeroelastic mode damping without significantly modifying the
third aeroelastic mode while the CL-Controller is shown to result in the opposite. The classic
robustness parameters (GM, PM, and the gain-crossover frequency) of both controllers are
compared in Table 4.4.

Table 4.3: Comparison of Open-Loop and Closed-Loop Damping Ratios for System in Fig. 4.1
with ζBFFaZ

= 0.6 and ζBFFCL
= 0.64

Table 4.4: Comparison of Robustness Parameters for System in Fig. 4.1 with ζBFF = 0.0886
(Both Controllers)

In Table 4.4, the CL-Controller is shown to have higher gain and phase margins than
the aZ-Controller. The underlined values, or shadowed cells, in both Table 4.3 and Table 4.4
represent the controller values that are considered to have a better performance. Given these
definitions, the CL-Controller with the LESP sensor is observed to be more suitable for sup-
pressing the BFF mode. In addition, the bode diagram of the disturbance sensitivity transfer
function is included in Fig. 4.5. The disturbance sensitivity transfer function is defined from
the input δ1com to the common pitch rate output qCG (see Fig. 4.1). More specifically, if the
aircraft block in Fig. 4.1 is defined as a transfer function G(s), the disturbance sensitivity
transfer function is defined as:

qCG

δ1com

= G(s)S(s) (4.2)
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In Eq. 4.2, S(s) represents the input sensitivity transfer function, which in the SISO system
can be written as:

S(s) = (1 +KpG(s))−1 (4.3)

where Kp represents the controller gain.

Figure 4.5: Bode Diagram of Disturbance Sensitivity Beyond Flutter Speed

In Fig. 4.5, the effects of the controllers on the ”rigid-body” modes are more apparent.
The closed-loop phugoid mode of both controllers is observed to change in frequency and
slightly in damping as well, which is not desirable to maintain the handling-qualities of the
aircraft unchanged. Other than that, the BFF resonant peak is shown to be reduced in
magnitude, i.e. more damped.

In order to prevent the controller from altering the phugoid ”rigid-body” dynamics, a
washout filter is added to the controllers in Fig. 4.1. The washout filter is designed to have
a cutoff frequency of 27 [rad/s], which is in between the ESP and the BFF modes. Thus,
decreasing the controller action on the lower-frequency ”rigid-body” dynamics. The form of
the washout filter is included in Eq.4.4.

HFWO(s) =
s

s+ 27
(4.4)

For completeness, the root locus of the two controllers that include the washout filter are
included in Fig. 4.6.
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Figure 4.6: Root Locus Comparison of Controllers in Fig. 4.1 Including a Washout Filter

In Fig. 4.6, the filter is shown to change the behavior of the ESP mode (see Fig. 4.4
for comparison). Adding the filter tends to destabilize the ESP mode. The maximum
amount of damping that can be achieved by both controllers including the washout filter
is ζBFF = 0.20. This damping value is also limited by ζESP of the aZ-Controller, this time
reaching the lower bound in Eq. 4.1. At the same ESP damping ratio value, the CL-Controller
could reach a BFF mode damping of ζBFF = 0.242, which is a 21% higher than the value
of the aZ-Controller. The open-loop and the resulting closed-loop damping ratios of all the
mode branches are included in Table 4.5. The aZ-Controller is again shown to result in a
greater second aeroelastic mode damping. However, the total percentage damping of the
second aeroelastic mode has decreased when compared to the controller that did not include
the filter. The CL-Controller is again shown to result in a greater damping of the third
aeroelastic mode, which in this case it is greater than the total damping obtained by the
controller that did not include the filter. Furthermore, the resulting losses in damping of
the second aeroelastic mode by the CL-Controller are less significant, which is a desired
improvement. The classic robustness parameters gain and phase margins of both controllers
are compared in Table 4.6.
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Table 4.5: Comparison of Open-Loop and Closed-Loop Damping Ratios for Controllers in
Fig. 4.1 Including a Washout Filter with ζBFFaZ

= 0.6 and ζBFFCL
= 0.64

Table 4.6: Comparison of Robustness Parameters for Controllers in Fig. 4.1 Including a
Washout Filter with ζBFF = 0.20 (Both Controllers)

In Table 4.4, the CL-Controller is again shown to have higher gain and phase margins
than the aZ-Controller. The gain margins do not seem affected by the inclusion of the
washout filter, which is to be expected since the filter dynamics lie in a range below the
crossover frequency of both controllers. Nonetheless, the phase margins in Table 4.6 show
more robust values, within the traditionally accepted range from 30 to 60 degrees. All in all,
the CL-Controller with the LESP sensor is still observed to be more suitable for suppressing
the BFF mode. In addition, the bode diagram comparing the new disturbance sensitivity
transfer functions is included in Fig. 4.7. Adding the washout filter is shown to not only
increase the total damping of the BFF mode, but it is also shown to essentially maintain the
lower-frequency dynamics unchanged.
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Figure 4.7: Bode Diagram of Disturbance Sensitivity Beyond Flutter Speed for Controller
in Fig. 4.1 Including a Washout Filter

To assess the changes in attitude response of the augmented vehicle, the open-loop
and closed-loop responses to a one-degree step input of the mid-board flap (δ3) at both be-
yond the flutter speed (33.5 [m/s]) and below the flutter speed (26 [m/s]) are compared in
Fig. 4.8. Note that, for a remotely-piloted aircraft, the pilot usually controls the aircraft
based on the observed pitch attitude. Hence, it is important to keep the closed-loop pitch
attitude response as unaffected as possible. Also, to maintain the same handling qualities,
the aircraft’s immediate response to pilot inputs must remain unaffected as well. Lastly, it is
highly desirable to check that the aircraft’s responses are not affected by the controller when
the aircraft is flying below the flutter speed. In Fig. 4.8, both controllers are observed to
have practically the same time response both beyond and below the flutter speed. When the
aircraft is beyond the flutter speed, both controllers are observed to damp the unstable oscil-
lations while keeping both the pitch attitude and the transient responses unaffected. Indeed,
when the aircraft is below the flutter speed, the closed-loop responses of both controllers are
observed to be practically identical to the open-loop response. Moreover, the control effort
of both controllers to the step input in Fig. 4.8 are compared in Fig. 4.9. In Fig. 4.9, the
CL-Controller is shown to require a higher controller deflection than the aZ-Controller. Yet,
the both controllers require a modest deflection of less than 1 degree. Also, the control effort
after the system has been stabilized is shown to damp down to zero as oppose to tracking the
sensed quantity. This effect is obtained thanks to the inclusion of the washout filter. Note
that the phugoid mode of the augmented vehicle remains unstable using either controller.
Yet, this unstable mode is of no concern as its frequency is so low that it can be easily
stabilized by either the pilot’s or autopilot’s pitch-attitude control loop. In the next chapter,
extra dynamics (e.g., actuator dynamics, sensor dynamics, and computational delays) are
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added to the ”perfect” system to check how the controllers behave in a model augmented to
include parasite dynamics.

Figure 4.8: Time Response Comparison to a L3R3 (δ3) Step Input

Figure 4.9: L1R1 (δ1) Control Effort to the L3R3 (δ3) Step Input in Fig. 4.8

31



Chapter 5

Robustness Analysis

In the previous chapter, the controllers were compared on their performance and ro-
bustness at stabilizing (and damping) the BFF mode of the mini-MUTT dynamic model
with perfect sensors and actuators. In this chapter, the performance and robustness of both
controllers are compared when including extra parasite dynamics that are present in most
real systems. This chapter separates the study of parasite dynamics into three sections.
Each section focuses on the study of one kind of parasite dynamic, which is augmented
onto the previous model. The goal is to observe how sensitive the controllers are to each
dynamic in order to gain a better understanding of the sources that may be most limiting
to implementing the LESP sensor on a real system.

5.1 Actuator Dynamics

Up to this point, the actuator deflections were assumed to happen instantaneously.
Obviously, this is not the case on a real system. Once the controller or flight computer
sends a required deflection command, the servo-actuator starts deflecting continuously until
it reaches such commanded deflection. These dynamics take an extra time, which can add
a small lag to the system. Furthermore, real actuators have a finite bandwidth which may
create a phase-loss and limited effect at higher frequencies. Consequently, the closed-loop
block diagram in Fig. 4.1 is augmented to include the augmented actuator dynamics, as
shown in Fig. 5.1.
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Figure 5.1: Block Diagram of Controllers Including Flap Actuator Dynamics

In Fig. 5.1, HFLAP(s) represents the transfer function of the servo-actuator used to
deflect the control flaps. The actuator used on the mini-MUTT is a Futaba S9254 servo.
In [36], a second-order model of the servo-actuators is included to have the form in Eq. 5.1.
This second order-model is obtained via frequency-domain system identification techniques
and validated using the physical actuator.

HFLAP(s) =
96710

s2 + 840s+ 96710
(5.1)

Also, note the low-pass characteristics of the servo-actuator model in Eq. 5.1. At high
frequencies, the transfer function in Eq. 5.1 is essentially zero, showing the loss of effective-
ness. The root locus of the two updated controllers of this section are included in Fig. 5.2.
The addition of the actuator dynamics causes a loss in effectiveness in damping the third
aeroelastic mode. In fact, the aZ-Controller now tends to destabilize the third aeroelastic
mode as opposed to stabilize it (see Fig. 4.6 for comparison). Another key observation is
that the CL-Controller could now destabilize the BFF mode for very large controller gains.
Lastly, the second aeroelasitc mode branch of the aZ-Controller is shown to have a small
improvement when compared to the root locus in Fig. 4.6

Figure 5.2: Root Locus Comparison of Controllers in Fig. 5.1
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Following the same criteria than Chapter 4, the maximum amount of damping that
can be achieved by both controllers in the current model is ζBFF = 0.188. This maximum
damping is also limited by the ESP mode of Controller reaching the lower bound in Eq. 4.1.
At the same ESP damping ratio value, the CL-Controller could achieve a maximum BFF
mode damping of ζBFF = 0.22. This damping ratio value would be 17% higher than the
maximum damping ratio that can be achieved by the aZ-Controller. The performance of both
controllers at damping the remaining modes is included in Table 5.1. The key observations to
notice are how the damping of the third aeroelastic mode have been considerably reduced due
to the limited bandwidth of the actuator at higher frequencies. The robustness characteristics
of both controllers are included in Table 5.2. In Table 5.2, both controllers are shown to
experience a loss of 10 degrees in PM as a consequence of including the actuator dynamics
while the GMs and the gain-crossover frequencies remain more or less unchanged. Note
that the gain margin of the aZ-Controller has actually increased. Yet, the phase-crossover
frequency has decreased from virtually infinity to 121 [rad/s], which corresponds to the third
aeroelastic mode branch.

Table 5.1: Comparison of Open-Loop and Closed-Loop Damping Ratios for Controllers in
Fig. 5.1 with ζBFFaZ

= 0.6 and ζBFFCL
= 0.63

Table 5.2: Comparison of Robustness Parameters for Controllers in Fig. 5.1 with ζBFF =
0.188 (Both Controllers)

The bode diagram of the disturbance sensitivity for the system in Fig. 5.1 is depicted
in Fig. 5.3. Although the comparison between the open-loop and the closed-loop frequency-
response looks qualitatively very similar to the bode diagram in Fig. 4.7, notice the loss of
phase at high frequencies. Similarly, the attitude responses to a mid-board flap step input
beyond and below the flutter speed are depicted in Fig. 5.4. The attitude responses Fig. 5.4
resemble almost exactly the attitude responses in chapter 4. In the same way, the control
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effort of the model including the actuator dynamics resemble almost exactly the response
shown in the previous chapter (Fig. 4.9). For this reason, it was not included in this section.
In the next section, the effects of including sensor dynamics are considered.

Figure 5.3: Bode Diagram of Disturbance Sensitivity Beyond Flutter Speed for Controllers
in Fig. 5.1

Figure 5.4: Time Response Comparison to a L3R3 (δ3) Step Input for the System in Fig. 5.1
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5.2 Sensor Dynamics

Analogous to the actuator dynamics, the same is true for the sensors. Many commercial
sensors include low-pass filters in order to better reject high-frequency noise. Hence, the block
diagram of both controllers are augmented to include the dynamics of the sensors, yielding
the block diagrams depicted in Fig. 5.5. To simplify the comparison, note that both the
accelerometer and the LESP sensor are assumed to have the same sensor dynamics. Adding
the sensor dynamics is shown to have a low-pass effect.

Figure 5.5: Block Diagram of Controllers Including Both Actuator and Sensor Dynamics

Here, HSENS(s) represents the transfer function with the low-pass filter characteristics
of the sensors. As the accelerometer in the mini-MUTT aircraft is filtered by a low-pass with
a bandwidth of 35 Hz [36], the sensor transfer function is constructed as:

HSENS(s) =
2π35

s+ 2π35
(5.2)

The root locus of the updated controllers of this section are included in Fig. 5.6. A key
observation of the new controllers is the noticeable decrease in effectiveness on damping the
BFF mode. Furthermore, the aZ-Controller can eventually make the BFF mode go unstable
at higher controller gains. Now, the third aeroelastic mode branch of the aZ-Controller
remains stable for all gains. Yet, the performance on damping the third aeroelastic mode
has also been noticeably reduced. Lastly, the small improvement on the second aeroelastic
mode damping that was noticed by the aZ-Controller on the previous section is observed to
be lost again.
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Figure 5.6: Root Locus Comparison of Controllers in Fig. 5.5

Following the same criteria than before, the maximum amount of damping on the BFF
mode that can be achieved by both controllers is ζBFF = 0.164, resulting on a 13% decrease
from the design included on the previous section. Now, this damping value is limited by the
short period mode of the aZ-Controller, which seems to be more sensitive to the augmented
dynamics. At the same ESP damping ratio value, the CL-Controller could reach a BFF
mode damping of ζBFF = 0.182. This damping ratio value would be an 11% higher than the
maximum damping ratio that can be achieved by the aZ-Controller and only a 3% lower than
the the damping ratio of the design on the previous section. The closed-loop performance of
both controllers are included in Table. 5.3. As shown in Table 5.3, the percentage increase
in most aeroelastic modes has decreased. The one exception is the percentage damping of
the third aeroelastic mode by the aZ-Controller, which is less negatively affected. Yet, both
controllers follow the same trend. The aZ-Controller achieves more damping on the second
aeroelastic mode while achieving worse damping on the third aeroelastic mode, and the CL-
Controller does vice versa. The robustness parameters (GM and PM) of both controllers are
included in Table 5.4.

Table 5.3: Comparison of Open-Loop and Closed-Loop Damping Ratios for Controllers in
Fig. 5.5 with ζBFFaZ

= 0.6 and ζBFFCL
= 0.62
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Table 5.4: Comparison of Robustness Parameters for Controllers in Fig. 5.5 with ζBFF =
0.164 (Both Controllers)

Surprisingly, the GM of the aZ-Controller is shown to have increased slightly. However,
it remains lower (less robust) than when compared to the CL-Controller. Again, both
controllers are shown to experience a loss of about 10 degrees in PM as a consequence of
including the sensor dynamics. Up to this point, the phase seems to a more limiting factor
to damping the aeroelastic modes. The comparison between the open-loop and closed-loop
attitude responses both controllers are omitted in this section because all the responses do
not seem to be greatly affected by the addition of the sensor dynamics. In other words,
the attitude response plots seem almost identical to the plots in Fig. 5.4, so including them
would be redundant.

5.3 Time Delays

Up to this point, the system was assumed to gather the data and produce a desired
actuator command instantaneously. Yet, real systems have micro-controllers and processing
computers that require a computational time. This computational time results in a small
time delay introduced to the system. In this section, the processing time is modeled as a
unique time delay added to the system as shown in Fig. 5.7.

Figure 5.7: Block Diagram of Controllers Including Actuator Dynamics, Sensor Dynamics,
and Time-Delay

In Fig. 5.7, HDELAY(s) represents a transfer function that models the total delay. In
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this case, the time-delay transfer function yields the following form:

HDELAY(s) = e−τms s (5.3)

where τms is the value of the time delay in milliseconds. Now, the robustness of both
controllers is directly affected by the addition of the time delay. Adding time delay causes
a direct loss in phase that can eventually make the system go unstable. The relationship
between time delay and the phase (in degrees) at a particular frequency of interest can be
expressed as:

Phase(ω) = τms ω
180

π
(5.4)

where ω [rad/s] is the particular frequency of interest.

Using the expression in Eq. 5.4 and the design of the previous section (gains and
robustness values as shown in Table 5.4), it is possible to solve for the maximum value of
time delay that can be handled before each controller goes unstable. The main time-delay
and phase results of both controllers are included in Table 5.5. The aZ-Controller can
tolerate a maximum time delay of 13.6ms while the CL-Controller can tolerate a maximum
time delay of 21ms. In [36], the time required to run each component for a similar aircraft
structure is included, adding up to a total time delay of 13.2ms. With such time delay,
the aZ-Controller would be marginally stable with less than 1 degree of phase margin. On
the other hand, the CL-Controller would remain stable with 16 degrees of phase margin.
Nonetheless, the author in [36] also includes a 1.5 safety factor to anticipate zero-order
hold delays, resulting on a total time delay of 20ms. This time delay is beyond the
maximum delay that the aZ-Controller can tolerate. On the other hand, the CL-Controller
would remain stable with 1.45 degrees of phase margin left. Yet, this phase margin
may not be robust enough to tolerate extra uncertainty that is not included in the cur-
rent model, making both controllers unsuitable for stabilizing the BFF mode with such gains.

Table 5.5: Time Delay and Corresponding Phase Results for Controllers in Fig. 5.7 with
Kaz = 0.00183 and KCL = 0.668

Nonetheless, a root-locus study can be used to find the maximum damping ratio (ζBFF)
that can be achieved by each controller, as well as the amount of time delay that would keep
the BFF mode of each controller unstable for any proportional gain. The root-locus study
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is conducted using the Classical Control Design toolbox in MATLAB using a second-order
Padé approximation to account for the time delay of choice. The performance metrics of
both controllers including the time delays of interest are included in Table 5.6. Note that
a hypothetical time delay of 10ms is also included in the study in order to compare the
performance of both controllers for a time-delay value that is further from the maximum
limit of the aZ-Controller.

Table 5.6: Comparison of Open-Loop and Closed-Loop Damping Ratios for System in Fig. 5.7

In Table 5.6, it is shown that the gain margin of the CL-Controller can be moderately
increased to 5 degrees by lowering the controller gain. Yet, the 20ms delay causes a
major drop in performance as the BFF mode damping ratio goes from ζBFF = 0.164 to
ζBFF = 0.0125. All in all, the key observations of Table 5.6 are: (1) the performance of
both controllers is shown to be greatly affected by the addition of time delays; (2) the
CL-Controller is shown to be more robust against time delays. Also, an example of the
root-locus plots for τms = 13.2 [ms] is depicted in Fig. 5.8. As argued using Table 5.6,
Fig. 5.8 also shows that the CL-Controller can achieve a greater damping of the BFF mode.
Although it is not clearly shown in Fig. 5.8, the third aeroelastic mode branch becomes
unstable at higher gains earlier than the second aeroelastic mode branch. Hence, the GM
performance of the CL-Controller is limited by the third aeroelastic mode. On the other
hand, the BFF mode branch of the aZ-Controller is shown to become unstable at higher
gains earlier than the ESP mode branch. Hence, the GM performance of the aZ-Controller
is limited by the BFF mode. By observing root-locus plots similar to Fig. 5.8 at increasing
τms values, it is possible to estimate the amount of time delay at which each controller will
be unable to stabilize the BFF mode for any controller gain. The maximum amount of time
delay that can be tolerated by the aZ-Controller is τms = 14 [ms] while the CL-Controller
can handle up to τms = 20.4 [ms].
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Figure 5.8: Root Locus Comparison of Controllers in Fig. 5.7 with τms = 13.2 [ms]

Up to this point, the performance and robustness of the aZ-Controller and the
CL-Controller have been compared for designs including the washout filter and actuator
dynamics, sensor dynamics, and time delays in a buildup manner. The robustness com-
parisons of all designs (Table 4.6, Table 5.2, and Table 5.4, and the new design including
τms = 13.2 [ms]) are summarized in Table 5.7. Again, it is important to emphasize that
all data in Table 5.7 is obtained under the condition that both controllers have the same
closed-loop values of ζBFF and the closed-loop values of ζESP are within the range in Eq. 4.1.
Note that the closed-loop values of ζESP may be different as long as both are withing the
accepted range. In Table 5.7, there are a few key observations: (1) the robustness metrics
of the CL-Controller all are higher than the robustness metrics of the aZ-Controller, for
designs that achieve the same closed-loop value of ζBFF; (2) adding the parasite dynamics
tends to negatively affect the GM of the CL-Controller more than it affects the GM of
the aZ-Controller; (3) the addition of actuator dynamics and sensor dynamics results in a
common loss of about 10 degrees of PM (for each parasite dynamic) on both controllers; and
(3) the parasite dynamic that is most limiting to the overall robustness of both controllers is
the time-delay associated with the computational time of each step in the flight controller.

Also, it is important to recall that all designs were observed to be limited by the aZ-
Controller reaching the ζESP boundary first. In other words, the CL-Controller could attain
a higher ζBFF and still satisfy the condition in Eq. 4.1. In Table 5.8, the maximum values of
closed-loop damping ratios that can be achieved by each controller and their corresponding
robustness are included. Again, all the data in Table 5.8 is obtained under the condition that
both controllers have the same closed-loop values of ζESP. In Table 5.8, the CL-Controller is
not only shown to offer greater ζBFF values but it is also shown to offer more robust margins.
On the other hand, the aZ-Controller is shown to offer designs that are less prone to worsen
the damping ratio of the second aeroelastic mode. A symmetric deflection of the centerbody
flaps is the control input that has the largest effect on the lift coefficient (i.e., has the largest
CLδ1 ) and the lowest effect on rigid-body dynamics (i.e., has the lowest CMδ1

). Hence, it would
make sense that CL-Controller, which can directly control the measured quantity, may have
more advantages. On the other hand, aZ-Controller measures the structural acceleration and
controls the lift coefficient which, in turn, causes a structural response. Hence, it may make
sense that this controller has a bit of more lag, which is represented as a worse robustness.
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Table 5.7: Robustness Parameters of All the Augmented Systems Designed to Have the Same
Closed-Loop Value of ζBFF

Now, it is important to emphasize that the current flight-dynamics model does not account
for unsteady aerodynamic effects. Yet, it was shown in [31] that the transfer function from
the movement of the LESP position to the lift coefficient does not require lag states.

Table 5.8: Performance of All the Augmented Systems Designed to Have the Same Closed-
Loop Value of ζESP
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Chapter 6

Conclusion

Flexible aircraft are a consequence of the aviation industry’s pursuit to make air flight
more efficient. The most challenging phenomenon of flexible aircraft is the presence of
flutter. Hence, active flutter suppression is a key technology to avoid flutter across the
entire flight envelope while still exploiting the performance benefits of flexible aircraft. The
Senflex R© hot-film sensor has shown it possible to measure the local lift coefficient in real
time. This thesis compares the performance and the robustness of 2 similar controllers.
One controller uses the lift coefficient output while the other uses the acceleration. Both
controllers are designed to suppress the first aeroelastic (or BFF) mode of a flexible
flying-wing UAV. The goal of this study is to study is to gain further understanding in the
use of CL-output for flutter suppression. Then, identify possible tradeoffs of future control
systems that may integrate the Senflex R© sensor. To ease the comparison, the control
architecture of both controllers was chosen to be simple: a single-input and single-output
proportional controller. The performance metric used for the comparison is the closed-loop
damping ratio of the BFF mode. Yet, the closed-loop damping ratios of the remaining two
aeroelastic modes were also observed for completeness. The robustness metrics used for the
comparison were the classic gain and phase margins. First, both controllers are integrated
onto a flight-dynamics model that includes only the ”bare airframe”. Later, this model
is augmented to include actuator dynamics, sensor dynamics, and a computational time
delay. The augmentation is done on a buildup manner to observe the effects that each
parasite dynamic has on the total performance and robustness. All in all, the controller
that used the CL-output was shown to achieve greater damping on the BFF mode with
greater robustness as well.

The key contributions of this thesis are: (1) a framework to include the local lift
coefficient at anywhere across the wingspan as a system output; (2) the application of lift
coefficient output for flutter suppression on a flight-dynamics model of a flexible drone;
and (3) the performance and robustness comparison between lift coefficient output and
acceleration output. By including the comparison, it may be easier for designers to consider
the potential of the Senflex R© sensor as the accelerometer sensor is well understood and has
been widely used in many flutter suppression studies. The use of lift coefficient output for
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flutter suppression has been recently studied. However, the present studies were integrated
onto a pitch-and-plunge wing section and did not include the accelerometer comparison.

Future work includes considering the effects of modeling uncertainty that may be present
in practice (e.g., mode shape uncertainty), testing the current findings on a wind-tunnel
environment, and considering other control strategies. Examples of possible control strategies
that could be considered include more ”modern” control designs (e.g., H∞, LQR, etc) or
a controller that integrates both accelerometer and lift coefficient measurements together.
Again, it is important to emphasize that the current flight-dynamics model did not account
for unsteady aerodynamics, which could have some effects on the flutter characteristics.
Hence, future work would also include augmenting the flight-dynamics model to include
unsteady aerodynamic effects.
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