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Abstract

The focus of this thesis is to improve the economic viability of wind energy and help integrate

wind into the electric system. Wind energy plays a key role in meeting the renewable energy

demands in the United States. Currently, wind farms experience a significant loss of power

production due to the interactions between wind turbines when their individual performance

is maximized. The main technical goal of this research is to develop techniques to obtain

simplified models that will be used to properly coordinate wind turbines for more efficient

operation of wind farms.
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Chapter 1

Introduction

In the United States, many states have a renewable portfolio standard or goal. For example,

Minnesota has a renewable portfolio standard target of 25% renewable energy by 2025 [1].

Wind energy will be a significant factor in achieving this goal. Wind farm control can

be used to increase wind energy efficiency by maximizing power in wind farms that are

already installed. It can also be used to mitigate structural loads to maximize the lifetime

of turbines and better integrate wind energy into the energy market.

Currently, turbines are controlled individually to maximize their own performance. Many

studies have shown that operating all turbines in a wind farm at their optimal operating

point leads to suboptimal performance of the overall wind farm [2–7]. Therefore, there is

the potential to increase total power and reduce structural loads by properly coordinating

the individual turbines in a wind farm [8]. An improved understanding of the aerodynamic

interactions between turbines can aid in the design of enhanced control strategies that

coordinate all turbines in a farm. Designing wind farm control strategies requires a model

of the wind farm that has a low computational cost, but retains the dominant dynamics.

A variety of wake models exist in literature that are useful for studying wind farm control.

The simplest model is the Park model [9]. The Park model is static and provides a quick

preliminary description of the wake interactions in a wind farm. Other approaches model

the wake using the Reynolds Averaged Navier-Stokes (RANS) with a mixing length model

(e.g. the eddy viscosity model [10]). Several high-fidelity computational fluid dynamics

(CFD) models, e.g. large eddy simulations (LES), have been developed as well [11, 12].

These high-fidelity models are more accurate tools and can be used for evaluating wind

farm controllers; however, they are computationally expensive. These low- and high-fidelity

models have been used to evaluate wind farm control strategies. The analysis provides

conflicting results based on the wake model chosen for control design. For example, control

1



strategies designed using simple static models may report significant improvements in wind

farm performance, but an analysis of such control strategies using high-fidelity simulations

can result in minimal to no improvements in wind farm performance. An example of a

comparison of control predictions between a high-fidelity and simplified model is given

in [13], where constant offsets of pitch and torque are used to change wake deficits. It is

shown that extensions to the Park model are needed to match the results of high-fidelity

models. Lastly, it is important to note that the variability of wind provides a challenge to

the output of wind farms. The ability of the wake models to provide prediction and control

capabilities is essential for improving the role of wind energy on the electric grid. Chapter 2

goes into detail on various wake models that are used in the wind farm controls literature.

Improving models for wind farm control requires a better understanding of the aerodynamic

interactions in a wind farm. Although many optimization studies have been performed using

static models and constant offsets of the operating point of the wind turbines, dynamic

wake modeling and control approaches have been proposed recently. Previously proposed

approaches use high-order first principle modeling by implementing the spatially filtered

Navier-Stokes equations, e.g. [14], to arrive at a dynamic wake model. This thesis focuses

on techniques to construct a reduced-order wake model for wind farm control from data

generated by simulations or experiments.

Chapter 3 focuses on experiments conducted in a wind tunnel that help highlight the limita-

tions of the static Park model and presents a dynamic Park model derived from experimen-

tal data. The Park model is compared to experiments that were done in the atmospheric

boundary layer wind tunnel at the Saint Anthony Falls Laboratory, at the University of

Minnesota, using a three turbine setup with model turbines, aligned in the wind direction.

The results from the comparison are presented with some suggestions on how to improve

the Park model to account for the flow dynamics.

Other techniques have been developed by the fluid dynamics and controls communities that

are relevant for reduced-order wake modeling. Several of these methods are summarized in

Chapter 4. These methods range from analytical reduced-order modeling, such as balanced

truncation [15], to data-driven reduced-order modeling such as system identification [16].

These techniques identify a low-dimensional system to describe the dynamics of a high-

dimensional system. Subspace techniques applied to balanced truncation can also perform

model reduction on nonlinear systems [17]. In the fluid dynamics literature, proper or-

thogonal decomposition (POD) is a standard method where the state is projected onto a

low-dimensional subspace of POD modes constructed using data from the high-order sys-

tem [18–20]. Dynamic mode decomposition (DMD) is another data-driven approach that

fits time-domain data with linear dynamics on a reduced-order subspace [21–23]. This ap-

proach has ties to the Koopman operator [24]. Both POD and DMD are, in their basic form,
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for autonomous (unforced) systems. An extension of DMD was developed by [25] known as

DMD with control (DMDc) to construct reduced-order models with control inputs. Specifi-

cally, this thesis develops a method that can handle many states (states > 105), can handle

inputs and outputs, does not require an adjoint, generates a model where the states have

physical meaning, and can be used for parameter varying systems.

The main contribution of this thesis is an extension of DMDc used to construct reduced-

order linear parameter varying (LPV) models that approximate a high-order nonlinear

model, described in Chapter 5. The nonlinear system is assumed to have a parameterized

collection of equilibrium operating points. For the wind farm example addressed in this

thesis, the freestream wind speed parameterizes the equilibrium condition in the wind farm.

The proposed approach involves two steps. First, POD and direct subspace identification

are combined to construct an input-output reduced-order model (IOROM) [26]. Specifically,

this extension of DMDc uses direct N4SID on a low-dimensional subspace, generated using

POD, to construct a reduced-order linear model at one operating condition. Second, the

reduced-order models constructed at fixed operating conditions are “stitched” together using

a parameter varying linearization. The key technical issue is that the states of the reduced-

order model must have a consistent meaning across all operating conditions. The approach

used in the chapter handles the issue by constructing a single reduced-order subspace that

is used at all operating conditions. This approach and the LPV linearization method are

demonstrated on a medium-fidelity wind farm control example in Chapter 6. Finally, this

approach can be extended to higher-fidelity models and simulations as is illustrated in

Chapter 7.
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Chapter 2

Wind Farm Background

2.1 Introduction

This chapter provides the background information for the wind farm control problem. In

particular, this chapter begins with single turbine control and single turbine modeling in

Section 2.2 and 2.3. The modeling of single turbine aerodynamics is critical to providing

realistic insights into wind farm fluid dynamics. Specifically, the aerodynamics of individual

wind turbines are reviewed in Section 2.4. Section 2.5 relates the single turbine modeling

and aerodynamics to the wind farm control problem.

An improved understanding of the aerodynamic interactions within a wind farm is needed to

develop dynamic models that can be used for wind farm control. A variety of wake models

are currently used in literature ranging from low-fidelity quasi-static models to high-fidelity

computational fluid dynamic models (Section 2.6). These tools are compared, in Section 2.7,

by evaluating the power, loads, and flow characteristics for the coordinated two-turbine

array. The results presented in this chapter highlight the advantages and disadvantages of

existing wake models for design and analysis of coordinated wind farm controllers.

2.2 Single Turbine Control

This section reviews the operation and control of a single turbine. The overall goal of a

utility-scale turbine is to maximize individual power production and/or mitigate structural

loads, depending on the wind speed. The University of Minnesota has a 2.5 MW Clipper

Research turbine, Figure 2.1, which is referenced throughout this thesis. Utility-scale tur-

bines typically have several inputs that can be controlled to increase the captured power

and reduce structural loads. These inputs include generator torque, τg, and blade pitch

angle, β to control the rotor speed, ω, of the turbine at varying wind speeds, U. In general,
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Figure 2.1: 2.5 MW Clipper research turbine located at UMore Park, Rosemount, MN.

the generator torque is varied at low wind speeds to maximize power captured [27]. At high

wind speeds, the blade pitch angle is used to maintain the rated rotor speed and torque.

This will aid in mitigating mechanical and electrical loads. The power captured by a single

turbine can be expressed by

P =
1

2
ρAU3CP (β, λ), (2.1)

where ρ [kg/m3] is the air density, A [m2] is the area swept by the rotor, U [m/s] is the wind

speed perpendicular to the rotor plane, λ is the tip-speed ratio (TSR), and CP is the power

coefficient. The tip-speed ratio is defined as ωR
U∞

, where R [m] is the radius, and U∞ [m/s]

is the freestream velocity. The power coefficient is the fraction of available power in the

wind captured by the turbine. CP is a function of β [rad] and nondimensional λ. Figure 2.2

is the normalized CP curve of the 2.5MW Clipper Turbine. The peak efficiency has been

normalized for proprietary reasons.

The standard turbine controller, with τg and β as inputs, can be split into 3 regions based

on the wind speed, see Figure 2.3. In Region 1, the turbine does not produce any power

because the wind speed is not sufficient to operate. Once the wind reaches the cut-in speed,

the turbine enters Region 2. In this region, the turbine keeps the blades fixed at the optimal

blade pitch angle, β∗, and maximizes the generator torque, τg, to maximize the power of

the turbine. Lastly, in Region 3, the generator torque reaches its rated torque and the

turbine is producing its rated power. In this region, the power is held constant by fixing

the generator torque, τg,rated and adjusting the blade pitch angle. The blades are pitched
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Figure 2.2: Three-dimensional (left) and two-dimensional (right) normalized CP curve of
the 2.5 MW Clipper Turbine at UMore Park, Minnesota.

Figure 2.3: Regions of wind turbine operation. The blue curve represents the power in the
wind and the green curve represents the power captured by the turbine.

to maintain the rated rotor speed and generator torque. This helps to minimize structural

loads. The remainder of this section will address the specifics of the controller operations

in each region.

In Region 2, the controller typically used is a generator torque controller. To develop this

controller, the dynamics of the turbine are often modeled as a single degree-of-freedom

rotational system:

ω̇ =
1

J
(τaero − τg) , (2.2)

where ω̇ [rad/s2] is the angular acceleration, J [kg/m2] is the rotor inertia, τaero [Nm] is the

aerodynamic torque. The power captured by a turbine can be expressed in terms of rotor

speed by

P = τaeroω. (2.3)
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Figure 2.4: Block diagram of a standard generator torque controller.

��,�����

Figure 2.5: Block diagram of a standard blade pitch controller.

Using this relationship, the aerodynamic torque can be rewritten as

τaero =
P

ω
=
ρAU3CP (β, λ)

2ω
. (2.4)

As mentioned previously, the objective of a generator torque controller is to maximize

power. This is done by maintaining an optimal blade pitch angle, β∗, and TSR, λ∗. The

blade pitch angle is held fixed at β∗, and the generator torque is controlled to achieve λ∗ in

varying wind conditions. The block diagram of this controller is shown in Figure 2.4. The

generator torque can be computed using the standard control law for wind turbines

τg = Kgω
2, (2.5)

where Kg =
CP∗ρAR5

2λ3∗N
and N is the gearbox ratio. If Kg is chosen properly, the power from

the turbine will converge to the optimal power in steady winds. In turbulent winds, the

turbine will cycle around the peak λ∗. Substituting τaero and τg into (2.2), it can be shown

that the turbine will converge toward the desired operating point, CP∗(β∗, λ∗).

In Region 3, the turbine controller holds the generator torque constant, at τg,rated and pitches

the blades to keep the rotor speed constant at its rated speed and helps minimize structural

loads (see Figure 2.5). It is common to use a proportional-integral or proportional-integral-

derivative controller for blade pitch control [27,28]

β(t) = Kpe(t) +Ki

∫ t

0
e(τ)dτ +Kdė(t) (2.6)

e(t) = ωrated(t)− ω(t), (2.7)
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where Kp, Ki, and Kd are constants that can be chosen based on the desired performance

of the turbine in this region and e is the difference between the rated rotor speed, ωrated,

and the actual rotor speed, ω. The blade pitch controller computes the blade pitch that

will minimize e. Additional details and references on single turbine operation can be found

in [27–29].

A single turbine can be simulated using the Fatigue, Aerodynamics, Structures, and Turbu-

lence (FAST) model developed by the National Renewable Energy Laboratory (NREL) [30].

FAST is a nonlinear simulation package that models the dominant structural modes for a

wind turbine, e.g., tower and blade bending modes. In addition, the aerodynamic forces

on the blade are modeled using blade element theory. FAST can determine the power pro-

duction and loading characteristics experienced by a single turbine for a given wind profile.

However, it does not include the capability to model the effect of the turbine on the airflow

including downstream wakes.

2.3 Turbine Modeling

Oftentimes, when modeling a wind farm, a turbine is represented as a porous actuator

disk having constant, radial, or variable loading. The advantage to using the actuator disk

is that the blades of the turbine do not have to be modeled, which reduces the overall

computation time. The maximum theoretical performance of a single turbine has been

derived by Fredrick Lanchester, Albert Betz, and Nikolai Joukowsky in the early 1900s

using an idealized actuator disk, i.e., independent of turbine design [31].

Consider a streamtube with an initial streamwise velocity, U1, and a velocity behind the

turbine, U2 (Figure 2.6). The turbine is represented by an actuator disk, S. If a turbine

extracted 100% of the power out of the wind, the velocity behind the turbine would be

0 m/s, effectively blocking any wind from flowing through the turbine. Therefore, the

velocity behind the turbine has to be nonzero for wind to flow through, but less than the

initial velocity. The streamtube expands due to conservation of mass.

Using conservation of mass and momentum, it has been shown that the maximum power

coefficient that a turbine can achieve is 0.593 or 59.3 % of the power in the wind can be

extracted by the turbine. See [29] for the full derivation. In practice, utility-scale turbines

usually have a power coefficient around 0.4 to 0.5.

When using an actuator disk to represent a turbine, the axial induction factor, a, provides

an input to describe the turbine operation. The induction factor is a measure of how much

the wind slows down due to the action of the turbine. In particular, the induction factor

for a single turbine is defined as a := 1 − U1
U∞

, where U1 denotes the average horizontal
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Figure 2.6: Streamtube Control Volume of a Turbine.

flow velocity across the rotor plane and U∞ denotes the freestream velocity. The induction

factor can be related to the power and thrust coefficient of a turbine. The axial thrust

force (perpendicular to the rotor plane) is given by T = 1
2ρAU2CT where CT is the thrust

coefficient. The power of the turbine is defined in (2.1). Specifically, CT and CP can be

written as a function of the axial induction factor, a [29]

CT (a) = 4a(1− a), (2.8)

CP (a) = 4a(1− a)2, (2.9)

As mentioned above, the maximum power coefficient is CP,max = 0.593 achieved at an

induction factor of a = 1
3 , see Figure 2.7. In practice, the induction factor can be related to

the blade pitch angle and the generator torque, which are standard inputs to a utility-scale

turbine [28,29]. The connection between the axial induction factor and the standard inputs

to a utility-scale turbine, i.e., blade pitch angle and generator torque will be made in the

next section.

The actuator line model is a second, more complex, turbine model [32]. This model takes

finite sections of the rotating blade and calculates the airfoil lift and drag forces as they act

on the flow (see Section 2.4 for more details). The lift and drag forces depend on the blade

airfoil geometry and flow conditions. Nondimensional lift and drag are typically stored

in look-up tables as a function of angle of attack between airflow and blade chord. This

model can take considerably more computing time. Both the actuator disk and actuator

line models can be used when modeling wind farms in computational fluid dynamic wake

models.

This thesis addresses both the actuator disk and the actuator line representations of turbines

when modeling wind farms. The next section will explore the connection between the
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Figure 2.7: CP vs. CT of an ideal turbine.

parameters of the actuator disk model, i.e., the axial induction factor, and the parameters

of the actuator line model, i.e., blade pitch angle and tip-speed ratio. Specifically, this

indicates that a model (or controller) for wind farms that has turbines modeled as actuator

disks can be compared to models (or controllers) for wind farms that have turbines modeled

as actuator lines.

2.4 Aerodynamics of Wind Turbines

This section briefly describes the aerodynamic forces acting on a wind turbine and the

resulting wind turbine characteristics. Further information regarding the aerodynamics of

wind turbines can be found in [29].

Horizontal axis wind turbines are designed such that the rotor is perpendicular to the

freestream wind, U∞. The velocity at the rotor, U is defined as U = U∞(1 − a) where

a is the axial induction factor. The presence of the rotor decelerates the freestream flow

as shown in Figure 2.6. The rotating blades contribute an additional tangential velocity

component, UT ,

UT = ωR. (2.10)

The effective local wind speed is then computed as

W =

√
(U∞(1− a))2 + U2

T . (2.11)

The angle between the tangential velocity, UT and U∞(1− a) is φ which is a combination

of the angle of attack, α, and blade pitch angle, β, seen in Figure 2.8. The angle of attack,

α can then be expressed as

α = φ− β. (2.12)
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Figure 2.8: Blade element momentum theory. The effective wind speed impacting the
turbine blades is a function of the freestream velocity, axial induction, and blade pitch
angle.

Figure 2.9: Blade element momentum theory. The lift and drag forces on the turbine blades
are shown in this diagram.

The angle of attack, α, is dependent on the freestream velocity, the rotational speed of the

turbine, and the blade pitch angle. Blade twist can be applied at particular blade sections

to ensure that the same angle of attack is maintained throughout the length of the blade.

Blade twist will not specifically be addressed in this section (technical details can be found

in [29]). The angle of attack determines the lift and drag forces on the blades. The power

and thrust coefficients of the turbine are determined by the lift and drag forces

δT = δLT cos(α+ β) + δDT cos(α+ β), (2.13)

where δT [N/m] is the local thrust force. The local power generated can be computed as

δP = ωr (δLT sin(α+ β)− δDT sin(α+ β)) . (2.14)
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The local lift force can be computed as: δLT = 1
2ρW

2cClδr where c is the chord length,

Cl is the lift coefficient, and r is the local radius. Similarly, the local drag force can be

computed as: δDT = 1
2ρW

2cCdδr where Cd is the drag coefficient. The total thrust and

total power can be computed by integrating the thrust and power over that entire length

of the blade for each blade. By using the power and thrust equations, an equation for the

axial induction factor can be derived in terms of the blade pitch angle, β, and the tip-speed

ratio, λ
a

1− a
=

σr

4 sin2(β + α)
(Cl cos(β + α) + Cd sin(β + α)), (2.15)

where σr is the blade solidity that can be defined as: Bcω
2πλrU∞

where B is the number of

blades and λr is the local tip-speed ratio. The lift coefficient and the drag coefficient can be

defined in terms of the angle of attack using thin airfoil theory [33]. Additional details on

the relationship between the axial induction factor and the blade pitch angle and tip-speed

ratio can be found in [29]. This section demonstrates that the axial induction factor used

in the actuator disk turbine model described in Section 2.3 can be compared to parameters

in the actuator line model or on a utility-scale turbine (i.e., blade pitch angle and tip-speed

ratio). Lastly, it is important to understand the impact of the inputs of a turbine on the

power and the thrust generated by an individual turbine as it has effects on the overall wake

dynamics within a wind farm.

2.5 Wind Farm Control

As wind turbines are placed together in a wind farm, the aerodynamic interactions between

wind turbines become important. This can be seen in Figure 2.10. This is a picture of

the Horns Rev wind farm off the coast of Denmark. Specifically, this picture indicates that

the wakes of the upstream turbines interfere with the performance of turbines operating

downstream. This section addresses these aerodynamic interactions and a potential strategy

for improving wind farm performance, i.e., maximizing power and mitigating structural

loads within a wind farm.

2.5.1 Wake Characteristics

Individual turbine control has a significant impact on the flow dynamics in the wake. The

wind turbine operation creates a trailing wake that is commonly divided into two regions

[34]: the near wake and the far wake (see Figure 2.11). The near wake is roughly defined

as the region directly downstream of the turbine where characteristics of the flow field

are determined by the turbine geometry, i.e., the rotor and hub height, the blades, and

the nacelle. The flow is driven by the incoming freestream velocity, a non-zero pressure

gradient, and significant turbulence associated with the tip and trailing vortices enhanced
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Figure 2.10: Aerodynamic interactions in the Horns Rev wind farm. Photo credits: Vat-
tenfall Wind Power, Denmark.

Near Wake Far Wake

Mixing/Entrainment

Figure 2.11: Distinction between different regions in the wake. Note that the red lines in
the dotted lines indicate the magnitude of the velocity in that region.

by the shear layer produced by the separation of the flow at the blade edges. The near

wake typically extends about 3 to 5 diameters downstream of the turbine. In the far wake,

the pressure gradient becomes less significant. The wake is less dependent on the turbine

geometry and more on topographic and thermal stability effects, in addition to any large-

scale in-homogeneity of the incoming flow. In flat terrain, this region is approximately

axisymmetric and self-similar making it easier to model [32]. The transition between the

near and the far wake may be dependent on turbine controls. For more details, see [35].

One important flow characteristic in the far wake is the turbulence intensity. The turbulence

generated in the wake can have a significant impact on the flow within a wind farm as it

dictates much of the evolution of the wake as it propagates downstream. The turbulence in

the wake is driven by the interaction between the ambient turbulence advected by the mean

wind and the turbulence generated by the turbine. As the wind passes through the leading

turbines, the flow separates from the blades and around the tower/nacelle and generates
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a complex three-dimensional flow structure with elevated turbulent kinetic energy. The

flow field also experiences a velocity deficit due to the thrust generated due to the power

extraction by the turbine. This momentum deficit defines the wake, and a shear layer

separates the wake from the freestream velocity. This shear layer contains vortices that

entrain high momentum fluid, i.e., transports fluid momentum from outside the wake to

inside the wake, causing the wake to expand and recover downstream of the turbine. On

average the turbulence intensity increases as it passes through the next turbine downstream

and the rate of entrainment increases the amount of turbulence and results in a faster

recovery rate [36].

Another important wake characteristic is wake meandering. This is characterized as cyclical

motions of the wake, particularly notable in the vertical and spanwise directions, which is

caused by the interactions of large-scale turbulent structures in the wake [37, 38]. Wake

meandering can have a significant impact on the structural loads of downstream turbines.

However, wake meandering can help recover the power loss that is expected of turbine

downstream in a wind farm by increasing mixing.

2.5.2 Two-Turbine Coordination

There is potential to increasing the performance of wind farms by better understanding the

aerodynamics in a wind farm. It has been suggested by many studies [2–8] that operating

turbines at their optimal operating point leads to suboptimal performance of the turbine.

Control strategies for wind farm control include wake redirection [39,40] and axial induction

control [13]. Both aim at increasing total power and reducing structural loads in a wind

farm. This thesis focuses on axial induction control.

Specifically, this section will formulate the axial induction control problem for a two-turbine

array, shown in Figure 2.12. Let P1 and P2 denote the power from the upstream turbine and

the downstream turbine, respectively. As described in Section 2.2, the power generated by

the first turbine depends on the inflow wind speed as well as the blade pitch, β1, and TSR,

λ1, for the turbine. The inflow speed for the first turbine is approximately equal to the

free-stream velocity, i.e. u = U∞, hence the power generated by the upstream turbine can

be expressed as P1(β1, λ1,U∞). The operation of the upstream turbine disturbs the flow

and this impacts the operation of the downstream turbine. In this way, the downstream

turbine depends on the blade pitch and TSR of the upstream turbine. Thus the averaged

power generated by the downstream turbine has a functional form of P2(β1, λ1, β2, λ2,U∞).

The precise relationship describing the aerodynamic coupling between the turbines depends

on the model used for the near/far wake. The total power generated by the two-turbine
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Figure 2.12: Two-turbine setup for evaluating axial induction control using various wake
models.

array is thus given by

Ptot(β, λ,U∞) = P1(β1, λ1,U∞) + P2(β, λ,U∞), (2.16)

where the vectors β := [β1, β2]T and λ := [λ1, λ2]T are defined to simplify the notation. The

main objective of axial induction control is to maximize the total average power output

max
β,λ

Ptot(β, λ,U∞). (2.17)

This problem formulation assumes a constant free-stream velocity, U∞, which is a steady-

state formulation. A low-level generator torque control law can be used to regulate the

turbine to the optimal TSR. A more realistic formulation treats the free-stream velocity as

unsteady and turbulent. In this case, the objective is to maximize the average power gen-

erated by the two-turbine array. Moreover, the unsteady flow causes significant structural

loads on the tower and blades of both turbines. Thus the formulation can be extended

to include constraints on the loads. Alternatively, additional terms can be included in the

objective function to trade off the power capture and loads.

The power maximization problem in (2.17) is difficult to solve as it involves complicated

models of the turbine operation and wake interactions. As a result, previous work on

turbine coordination [2–4] has focused on simplified models for the turbine operation. In

particular, the turbines are modeled by actuator disks with a control input of the axial

induction factor, a. As mentioned in Section 2.3, the power and thrust coefficient are

functions of a and hence impacts the velocity deficit. Suboptimal performance of the front

turbines is achieved by decreasing the power captured by the front turbine(s). This allows
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the downstream turbine(s) to capture more power.

It should be noted that increasing or decreasing the induction factor from the optimal

has different effects on the flow dynamics in the wake. For example, a decrease in the

induction factor is equivalent to moving left of the peak on the CP curve in Figure 2.7,

and corresponds to a decrease in CT . Decreasing the thrust generated by the turbine

leads to less turbulent kinetic energy in the wake directly behind the upstream turbine.

Alternatively, increasing the induction factor from the optimal, results in an increase in the

thrust coefficient. In general, this will increase the level of turbulence in the wake of the

upstream turbine, which will induce more mixing, and the velocity in the wake will recover

to freestream at a faster rate. The downstream turbine may see a higher incoming velocity

resulting in more available power, due to an increase in thrust. This increase in velocity is

dependent on the local conditions, such as ambient turbulence and atmospheric stability.

It is important to note that it is also possible, depending on the local conditions, that there

is a decrease in velocity at the downstream turbine due to the increase in thrust at the

upstream turbine [13]. More details on the impact of turbine operation on the flow within

a wind farm will be provided in Chapter 3.

The precise relationship between the downstream wake and the induction factor of the

upstream turbine, a1, depends on the wake model. Thus the power generated by a two-

turbine array can potentially be increased by the proper choice of the induction factors

a := [a1, a2]T . The power maximization problem formulated for this simplified turbine

(actuator disk) model is given by

max
a

Ptot(a,U∞). (2.18)

The connections between the simplified and more realistic power maximization problems

(2.17) and (2.18) are described further in Section 2.7.1. The power computed for a wind

farm is dependent on the model chosen to represent the fluid dynamics within a wind

farm. The next section details the existing wake models and the differences that arise when

computing this power maximization problem.

2.6 Wake Models

Various wake models exist that range in fidelity and computational intensity. Each model

can help strengthen the understanding of wakes in a wind farm. The majority of this thesis

focuses on improving wind farm modeling for control design and analysis.
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Figure 2.13: Setup for deriving the Park model.

2.6.1 Static Park Model

The static wake model typically used in the literature for wind farm control is the Park

model [9]. The Park model has a low computational cost due to its simplicity. It is based

on the assumptions that there is a steady inflow, linear wake expansion, and the velocity in

the wake is uniform at a cross section downstream. The turbine is modeled as an actuator

disk with uniform axial loading in a steady uniform flow.

Consider the example of a turbine operating in a freestream velocity, U∞. The diameter

of the turbine rotor is denoted by D and the turbine is assumed to be operating at an

induction factor, a. A cylindrical coordinate system is placed at the rotor hub of the first

turbine with the streamwise and radial distances denoted by x and r, respectively. The

velocity profile at a location (x, r) as

u(x, r, a) = U∞(1− δu(x, r, a)), (2.19)

where the velocity deficit, δu is given by

δu =

 2a
(

D
D+2κx

)2
, if r ≤ D+2κx

2 .

0, else
(2.20)

In this model, the velocity, u, is defined in the axial (x) direction and the remaining ve-

locity components are neglected. The wake is parameterized by a tuneable nondimensional

wake decay constant, κ [41, 42]. Typical values of κ range from 0.01 to 0.5 depending on

the ambient turbulence, topographical effects, and turbine operation. For example, if the

ambient turbulence is high, then the wakes within the wind farm will recover faster due to

the mixing of the wake resulting in higher κ values.

The Park model can be used to compute the power production and velocity deficit of a
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turbine array. This is useful in determining operating conditions of a wind farm to maximize

power. However, the assumptions of the Park model are based on a steady inflow acting on

an actuator disk with uniform axial loading. Despite its limitations, the Park model can be

computed in seconds and can provide some insight of turbine interaction that can be used

to understand the results obtained from higher-fidelity models.

2.6.2 Dynamic Wake Meandering Model

The next model considered in this analysis is the medium-fidelity dynamic wake meandering

(DWM) model [43]. The University of Massachusetts and NREL developed an implementa-

tion of the DWM model that was originally developed at the Technical University of Den-

mark [44]. It couples FAST with models for the wake deficit, turbulence, and (stochastic)

meandering. The foundation of the wake deficit model used in the DWM model is the eddy

viscosity model [10]. The wake deficit model numerically solves simplified Navier-Stokes

equations based on the thin boundary-layer approximation and assumes a zero pressure

gradient. Again, let x and r denote the streamwise and radial distance from the turbine

rotor hub (Figure 2.12). In this model, the velocity components, u and v, are defined in the

axial (x) and radial (r) directions. The velocity components u and v satisfy the following

partial differential equation

u
∂u

∂x
+ v

∂u

∂r
= −1

r

∂(ru′v′)

∂r
. (2.21)

The right-hand side of (2.21) is modeled using mixing length theory [34] that can be de-

scribed in terms of turbulent viscosity, νT

− (u′v′) = −νT
∂u

∂r
, (2.22)

where u′ and v′ denote the fluctuation velocity components in the axial and radial directions

and u′v′ is a temporal average that represents a turbulent momentum flux that acts like

a stress, also known as a Reynolds stress. The turbulent viscosity, νT = k2b(U∞ − uc),

describes the shear stresses and eddy viscosity in the wake, where b is the wake half width,

uc is the center wake velocity, and k2 is an empirical constant of the flow field typically set

to 0.009 [10].

The DWM model uses Taylor’s hypothesis when modeling turbulence. This hypothesis

assumes that the turbulence has no effect on the wake advection, i.e. wake transport, from

upstream to downstream. A consequence of this hypothesis is that the wake advection

is only a function of the mean wind speed. The DWM model is interfaced with a FAST

turbine model as follows. The first turbine is simulated in FAST with a three-dimensional
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input wind field generated using TurbSim [45]. The DWM model is then used to calculate

the downstream wake based on the FAST simulation results for the upstream turbine.

The downstream wake is then linearly superimposed on the wind field to generate the

velocity conditions for the downstream turbine, i.e. the downstream turbine. Finally, a

FAST simulation is performed for the downstream turbine using this wake superimposed

wind profile.

The advantage of the DWM model over the Park model is that it gives a more realistic

representation of the far wake at a low computational cost. The DWM model can be used

to compute the power production, velocity deficit, and structural loads of a turbine array.

In addition, the DWM model can run in minutes on a desktop computer. The disadvantage

of the DWM model is that it is not suitable for feedback control design because it calculates

the wakes of a wind turbine array one at a time, i.e. it does not provide a continuous flow.

This complicates the use of this model for dynamic wind farm control.

2.6.3 Actuator Disk Model

Another wake model often used in literature is the actuator disk model that solves the

unsteady, axisymmetric Navier-Stokes equations by using the streamfunction (ψ) - vorticity

(Ω) formulation assuming the flow is incompressible and inviscid [46, 47]. Note that there

are two types of actuator disk models. The first type is described in Section 2.3 which

specifically refers to the turbine. Here, the actuator disk model in this section refers to the

flow field computed using the Navier-Stokes equations where the turbines in the wind farm

are represented as actuator disks. The remainder of this thesis will use the actuator disk

model to refer to the flow field calculations. Let (u, v) denote the axial and radial velocity

components and (x, r) denote the downstream and radial distances. Vorticity can be defined

as Ω = ∂v
∂x−

∂u
∂r and the streamfunction can be defined in terms of the axial and radial velocity

components: ∂ψ
∂x = rv and ∂ψ

∂r = −ru. Under some additional technical assumptions, the

Navier-Stokes equations are reformulated to the following governing equations

∂Ω

∂t
+
∂(uΩ)

∂x
+
∂vΩ

∂r
= −1

ρ

∂fx
∂r

(2.23)

∂2ψ

∂x2
− 1

r

∂ψ

∂r
+
∂2ψ

∂r2
= rΩ, (2.24)

where fx is the volume force of the actuator disk on the flow in the axial direction. In

(2.23), the vorticity transport and Poisson equation for the streamfunction are defined.

The velocity components (u, v) can be computed from (ψ,Ω). The turbines are modeled as

actuator disks with a specified volume force acting ont the flow. For example, an elliptical
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Figure 2.14: One turbine (left) and two turbine (right) mean streamwise velocity computed
using SOWFA.

force distribution is used in this analysis and is given by

fx(r) =
3

2
ρU2
∞CT

√
1−

( r

R

)2
, (2.25)

where CT is the thrust coefficient and R is the radius of the turbine. The equations are

solved using standard CFD methods [48].

There are limitations to this specific setup for the actuator disk model. Specifically, the

actuator disk model ignores viscous effects that are necessary for the velocity in the wake

to recover far downstream. However, the power production and velocity deficit of a turbine

array can be computed within minutes on a desktop computer.

2.6.4 Simulator fOr Wind Farm Applications

The last model investigated in this analysis is the Simulator fOr Wind Farm Applications

(SOWFA). SOWFA is a high-fidelity large-eddy simulation tool that was developed at the

National Renewable Energy Laboratory (NREL) for wind farm studies, see Figure 2.14.

SOWFA is a CFD solver based on OpenFOAM (OpenCFD Ltd., Bracknell, UK) coupled

with NREL’s FAST wind turbine simulator [11,30,49]. SOWFA has been used in previous

wind farm control studies (e.g. [39, 40,50]).

SOWFA uses an actuator line model coupled with FAST to study turbines in the atmo-

spheric boundary layer. Specifically, SOWFA solves the three-dimensional incompressible

Navier-Stokes equations and transport of potential temperature equations, which take into

account the thermal buoyancy and earth rotation (Coriolis) effects in the atmosphere.

SOWFA calculates the unsteady flow field to compute the time-varying power, velocity

20



deficits and loads at each turbine in a wind plant. This level of computation, with high-

fidelity accuracy, takes on the order of days to run on a supercomputer using a few hundred

to a few thousand processors, depending on the size of the wind plant. The simulations run

for this study were performed on NREL’s high-performance computer Peregrine [51] as well

as the supercomputer at the Minnesota Supercomputing Institute (MSI) at the University

of Minnesota.

Studies have been performed to validate SOWFA. For example, SOWFA has been compared

with the 48-turbine Lillgrund wind farm field data and shows good agreement through the

first five turbines in a row aligned with the wind direction [52]. In addition, SOWFA has

been tested to verify that it captures the inertial range in the turbulent energy spectra and

the log-layer in the mean flow, both of which characterize a realistic atmospheric boundary

layer [49]. Further validation studies are being conducted.

It should be noted that there are multiple large eddy simulation codes that have been

developed such as the Virtual Wind Simulator (VWiS) developed at the Saint Anthony

Falls Laboratory [12]. The analysis of wake models was done in collaboration with NREL

and thus uses SOWFA for comparing wake models [53].

2.7 Comparison of Wake Models

The wake characteristic of each model presented in this chapter were compared by simulating

a two-turbine setup (Figure 2.12) over 1000 s. The simulated turbines, based on the NREL

5MW reference turbine [54], have a 126 m diameter and a hub height of 90 m. The wind

speed in all simulations has a mean of 8 m/s with 6 % turbulence intensity.

Figure 2.15 compares the spatially-averaged streamwise velocity profile of the two-turbine

setup for each model. SOWFA is the highest fidelity model considered in this analysis

and has been validated against wind farm data. The Park and DWM model results match

SOWFA in the far wake at distances greater than approximately 3D downstream. In ad-

dition, the Park model wake decay constant, κ = 0.45, was tuned to obtain a best fit

agreement with SOWFA in the far wake. The velocity deficit compared from the actuator

disk model agrees with SOWFA at distances up to 3D downstream. The actuator disk

model is invalid in the far wake because it assumes inviscid flow. It is important to note

that the Park, DWM, and actuator disk model use an averaged actuator disk to represent

the turbine. Tip vortices in the wake are not resolved and nothing definitive can be said

about their accuracy in the near wake. SOWFA implements an actuator line turbine model

and is thought to give the closest representation of the near wake of the models presented

in this chapter. The wake models presented in the previous section will be compared to

SOWFA.
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Figure 2.15: (Left) Streamwise velocity component downstream of Turbine 1. (Right)
Comparison of the streamwise velocity of the upstream turbine wake using the Park model
and SOWFA.

Figure 2.16 compares power production, power variance, and average tower fore-aft bending

moments on the downstream turbine for each model. The results are presented for simu-

lations with the turbine spacing varying between x = 2D and x = 7D. The average power

results are consistent with the velocity profiles shown in Figure 2.15. At distances up to 3D

downstream, the actuator disk model results align with SOWFA. However, the power of the

actuator disk model remains constant far downstream because there is no wake recovery

in the model. The DWM model follows SOWFA at turbine spacings of 4D and greater.

These results correspond to cases where the downstream turbine is in the far wake of the

upstream turbine. The Park model follows the same trend, but overestimates the power of

the two-turbine array.

The middle subplot of Figure 2.16 shows the power variance, and these results reflect the

deviation in power over time. The Park model assumes steady flow and does not have a

time component in the model. Thus, the variance for this model is identically equal to zero

for all turbine spacings. The DWM and actuator disk models show an increase in power

variance as the turbine spacing increases. This does not match the qualitative trend of

the SOWFA results, which show that the power variance decreases as the turbine spacing

increases. The SOWFA results are more reasonable because turbulence decreases as the

turbine spacing increases.

Finally, the bottom subplot of Figure 2.16 shows the tower fore-aft bending moment the

results from the axial (x direction) force on the downstream turbine. The DWM model
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Figure 2.16: Comparison of power (top), power variance (middle), and tower loads (bottom)
generated from each wake model.

and SOWFA calculate this moment directly during the simulation. The Park model and

actuator disk model only model an overall axial thrust force on the turbine. The tower

fore-aft moment can be approximated by multiplying the axial thrust force by the hub

height of the turbine. The Park model, the DWM model, and SOWFA show an increase

in the bending moment as the turbine spacing increases. The actuator disk model shows

a relatively constant bending moment, which is caused by the lack of wake recovery in the

model. The limitations in the Park model and the actuator disk model can be seen since

both models can only provide a total axial force on a turbine. SOWFA and the DWM

model are coupled with FAST, hence they provide a more accurate description of the tower

loads.

2.7.1 Maximizing Power with Each Model

This subsection provides results for two-turbine open loop coordinated control on the Park,

DWM, and actuator disk models. Section 2.5 formulated the power maximization problems

with realistic (2.17) and simplified actuator disk (2.18) turbine models for a single turbine.

In both cases, the maximum power from the two-turbine array is obtained by operating the

rear turbine at its peak efficiency. Thus the optimization reduces to a determination of the

optimal derating for the lead turbine. The Park model uses a one-dimensional representation

to model the turbines with an induction factor control input. The Park model is relatively

simple, hence the optimal induction factor for the lead turbine, a1, can be determined

numerically as previously demonstrated in [8].
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When using the actuator disk model to characterize the flow, C∗T is chosen for the upstream

turbine that optimizes the power out of a two-turbine array. The optimal induction factor

for the actuator disk model can be computed from C∗T using (2.8).

The DWM model uses FAST to provide a more realistic turbine model and takes an input

of blade pitch angle, β, and TSR, λ. The standard generator torque control law can be

used to track the desired λ. After numerous open-loop runs at various (β, λ), the optimal

(β∗, λ∗) of the first turbine can be approximately determined. This (β∗, λ∗) can be mapped

to a C∗P value using the software package, WT Perf, developed at NREL [55]. This uses

blade element momentum theory (described in Section 2.4) to compute the power and thrust

coefficients for a turbine at specified operating points. The C∗P can be related to the optimal

induction factor using (2.9). Equations (2.8) and (2.9) are derived from simplistic models

and are generally not realistic. However, they are sufficient for axial induction factors to

be compared across wake models. This approach only provides a suboptimal solution to

the higher-fidelity power maximization problem. SOWFA also uses FAST to model the

individual turbine dynamics, hence the approach described for the DWM model could also

be used to generate control inputs for SOWFA.

Figure 2.17 shows the results of axial induction control with various wake models. The

Park model, with a tuned value of κ, shows a decrease in power gained as the turbine

spacing increases. The DWM model shows that there is an increase in power, but only for

cases where the turbine spacing is less than 4D. As the turbine spacing increases, there

is more time for wake recovery. After a certain distance downstream of the turbine, the

effects of axial induction control become less significant. The actuator disk model shows no

improvement in the power of a two-turbine array when using axial induction control. This

is due to the lack of wake recovery modeled using this approach.

Lastly, SOWFA also showed no improvements in the power of a two-turbine array when using

axial induction control. This was investigated further in the next section to understand the

discrepancies between SOWFA and the other wake models with the goal of understanding

the dominant characteristics that govern the flow within a wind farm.

2.7.2 Evaluation of Axial Induction Control using SOWFA

A two-turbine was analyzed to understand the effects of axial induction control. More results

can be found in [13]. Figure 2.18 (left) shows the simulation results of axial induction control

for the two-turbine setup spaced 5D apart at 8 m/s with 6 % turbulence intensity. The axial

induction is modified for the front turbine by offsetting the collective blade pitch angle from

the optimum setting (zero pitch offset for the NREL 5 MW turbine). The analysis shows that

the turbine-level power optimal setting also yields maximum power production for the total
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control with different wake models.

wind plant. Although decreasing the axial induction of the front turbine causes an increase

in power of the second turbine in the row, the power lost on the first turbine by offsetting

the pitch is not regained at the second turbine. Figure 2.18 (right) shows the results of

reducing the axial induction of the front turbine by modifying the generator torque. A

scaling factor, γ, is applied to the generator torque control law [54] of the front turbine, so

that the applied generator torque is τg = γKgω
2 with Kg = 0.0179 Nm/RPM2, resulting

in a deviation from the turbine-level optimal gain, Kg for maximum power production. A

reduction in TSR is needed to decrease CT and lower the rotor axial-induction factor. This

is achieved by increasing the generator torque (γ > 1). Note, the CT has a low sensitivity

to the TSR, and the possible increase of the generator torque is limited because the rotor

may stall when a temporary reduction of wind speed occurs. When increasing torque on the

upstream turbine, a small increase in power on the downstream turbine can be observed.

However, as in the pitch case, there is not enough power increase at the downstream turbine

to compensate for the power production loss on the front turbine from adjusting the torque,

and a decrease in total power production results.

To understand these results, an investigation was performed using the single-turbine setup.

In this simulation, a two-degree pitch offset was applied to the upstream turbine and com-

pared to the baseline case. For both simulations, the flow data was extracted at planes

perpendicular to the mean wind direction at several distances downstream of the rotor.
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Figure 2.18: SOWFA simulation results using the axial induction control concepts on a
two-turbine setup, using pitch (left) or generator torque (right) offsets on the front turbine
to affect the power on the downstream turbine.

The kinetic power density of the flow through the slice is calculated as

Pdensity = uaxial

(
1

2
ρ~u~uT

)
, (2.26)

where uaxial is the axial component of the velocity of the flow through a slice, and ~u is the

velocity vector. By subtracting the kinetic power density of the slices for the baseline case

from those of the offset case, the kinetic power added to the wake by pitching the turbine is

calculated. Figure 2.19 shows the difference in the kinetic power density of the wind flowing

through the cut-through slices. By visualizing the rotor plane of a “virtual” rotor of equal

size placed downstream aligned in the wind direction, Figure 2.19 shows that the kinetic

power conserved in the flow by using a pitch angle offset on the turbine is mostly going

outside of the downstream rotor plane, because the wake expands and meanders outside of

the rotor area; therefore, the pitch offset on the front turbine would cause a production loss
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Figure 2.19: Kinetic power added to the flow behind the turbine by introducing a 2◦ pitch
offset. The black circle visualizes the location of the second turbine rotor.

on the two-turbine setup, as it results in accelerating the flow surrounding the downstream

rotor rather than increasing the downstream turbine’s power production. A larger portion

of the energy is lost when the downstream turbine is placed farther downstream. (Note

that 6D to 8D are common distances in real wind farms.) A second cause for the limited

ability to improve production at the downstream turbine through pitch control offsets on

the upstream turbine is that a reduction in turbine thrust force can reduce turbulence in

the wake and thereby the wake recovery, which has a negative effect on the velocity at the

downstream turbine.

Based on the results shown in Figure 2.19, an energy balance was made, which is shown in

Figure 2.20. The balanced predicts the effect of the front turbine’s pitch offset on the power

of a downstream turbine placed at a range of distances. In the balance, ∆Pwind represents
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Figure 2.20: Energy balance based on the results shown in Figure 2.20: power lost on the
upstream turbine by introducing a 2o pitch offset, ∆PT1 (red line), compared to flow power
added in a virtual downstream rotor plane, ∆Pwind (black bar), and the maximum power
that can be recovered by the downstream turbine, CP,max∆Pwind (gray bar).

the total wind kinetic power increase in the area of a virtual downstream rotor. This

power increase is compared to the power lost on the upstream turbine by pitching, denoted

by ∆PT1. The comparison is made for a range of distances of the virtual downstream

rotor. Each of the power differences is normalized to the baseline power of the upstream

turbine. If we consider that the NREL 5MW turbine can operate at a maximum CP,max =

0.48 efficiency [54], it follows that the maximum energy gain on a downstream turbine is

CP,max∆PT1. Then the balance predicts that with the simulated turbine and flow conditions,

it is impossible to recover the energy lost through offsetting the pitch on the upstream

turbine, because CP,max∆Pwind < ∆PT1. Thus, it predicts that an increase in total power

cannot be achieved with the tested pitch offset when the downstream turbine is placed at

a realistic spacing (more than 1D).

2.8 Conclusions

There is potential for optimizing wind farm performance by coordinating turbine controllers.

However, the control settings that improve wind farm performance depend on atmospheric

conditions, wind farm configurations, and the turbine characteristics. High-fidelity simula-

tions suggest that there are circumstances in which the concept of total wind plant power

increase through axial induction control with pitch or torque offsets is infeasible.

In general, this chapter demonstrates that the coordinated control design requires accu-

rate wake models with low computational cost. Low-fidelity models can provide useful

insight into wake interactions, but lack the complexity to provide realistic wind farm re-
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sults. Medium- and high-fidelity models are necessary for constructing an advanced control

framework that can be used to optimize turbine placement and control design in a wind

farm.

The results seen with SOWFA differ significantly from the results obtained using the Park

model. This chapter shows one example of coordinated turbine control that highlight the

differences between using low-fidelity models and high-fidelity models. There still remains

the potential to improve wind farm performance by properly coordinating turbines. As

illustrated in this chapter, the modeling aspect of the wind farm problem is important to

developing these strategies. The remainder of this thesis investigates ways of improving the

modeling of wind farms such that results from low-dimensional, computationally efficient

dynamic models match the results of the higher fidelity models like SOWFA.
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Chapter 3

Data-Driven Modeling using Wind

Tunnel Experiments

3.1 Introduction

An improved understanding of the aerodynamic interactions between turbines can aid in

the design of enhanced control strategies that coordinate all turbines in a farm. There have

been some studies in the field and in wind tunnels looking at these aerodynamic interactions

[56–58]. This chapter focuses on constructing a dynamic control-oriented turbine model that

is derived from data of wind tunnel experiments. The experiments were conducted to better

understand the wake interactions and impact on power production in a three-turbine array.

The upstream turbine operating condition was modulated in time (using square waves) and

the dynamic impact on the downstream turbine was recorded through the voltage output

time signal. The flow dynamics observed in the experiments were used to improve a state

wake model, i.e., the Park model described in Section 2.6.1, often used in literature for wind

farm control. This model provides a fast, preliminary description of the wake interactions

in a wind farm, but neglects some key dynamics, such as effects due to large-scale turbulent

structures and wake meandering [44]. Some additional studies extended the Park model to

include additional dynamics [42,59–61].

These experiments were conducted in the atmospheric boundary layer wind tunnel at the

Saint Anthony Falls Laboratory (SAFL) at the University of Minnesota using particle image

velocimetry (PIV) for flow field analysis and turbine voltage modulation to capture the

physical evolution in addition to the dynamics of turbine wake interactions. The Park

model is compared to experiments that were done in the wind tunnel using a three-turbine

setup with model turbines, aligned in the wind direction, described in Section 3.3. The
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Figure 3.1: Block diagram of the dynamic Park model.

results from the comparison are presented in Section 3.4 along with some suggestions on

how to improve the Park model to account for the flow dynamics. Lastly, Section 3.4.3

describes how the experimental data are used to construct a dynamic model that can be

used for control of a three-turbine array.

3.2 Dynamic Park Model

The static Park model (Section 2.6.1) can be generalized to include turbine dynamics and the

effects of wake transport. This section describes a dynamic formulation of the Park model,

hereafter referred to as the dynamic Park model. The dynamic Park model includes models

for the upstream and downstream turbine dynamics as well as for the wake transport. A

block diagram of this dynamic Park model is shown in Figure 3.1. The following subsections

describe the models used for the turbine dynamics and wake transport. Then a complete

linearized model is derived for the dynamic Park model. This linearized dynamic model

can serve as a design model for the wind farm controller used in the wind tunnel.

3.2.1 Turbine Dynamics

Section 2.6.1 discussed a static turbine model with the axial induction factor, a, as the con-

trollable input. For this static model, the power coefficient, CP (a), has a cubic dependence

on induction (2.9). An actual utility-scale turbine has blade pitch β [rad], and generator

torque, τg [Nm], as controllable inputs. In the experiments the blade pitch, β, is held fixed.

Hence the model described in this section includes generator torque, τg as the only control-

lable input. Constant blade pitch, for a utility-scale turbine, corresponds to operation in

low wind speed (Region 2) conditions. If β is constant then the aerodynamic forces on the

turbine depend only on the nondimensional tip-speed ratio (TSR) defined as λ Recall that

TSR can be defined as λ := ωR
U∞

where ω [rad/s] is the rotor speed, R [m] is the radius, and

U∞ [m/s] is the freestream velocity. For this more realistic model, the power coefficient is

given by a function CP (λ). The captured power, Pc and aerodynamic torque τaero can then
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be expressed as Pc = 1
2ρAU3CP (λ) [W] and τaero := Pc

ω [Nm]. This leads to the following

simplified, single degree-of-freedom rotor dynamics for the turbine

ω̇ =
1

J
(τaero − τg) , (3.1)

where ω̇ [rad/sec2] is the angular acceleration of the rotor shaft and J [kgm2] is the rotational

inertia. Equation (3.1) is simply Newton’s second law for the rotational dynamics of the

rotor shaft. Many details of the actual turbine dynamics, e.g., tower/blade flexibility, have

been neglected in this one-state model. However, it is sufficient to capture the key dynamics,

such as wake meandering, at the wind farm scale.

The outputs for this simplified turbine model are the generated power Pg and the induction

factor, a. The generated power is given by Pg = τgω [W] and this represents the power

converted to useful electrical power. The generated and captured powers are the same in

steady state. However, they can differ in transient scenarios as some energy goes to the

acceleration/decelertion of the rotor shaft. The axial induction factor, a, of a turbine is the

result of the operating conditions of the turbine. Specifically, a depends only on the tip-

speed ratio, i.e., a(λ). Blade element momentum theory can be used to derive expressions

for CP (λ) and a(λ) in terms of the geometric and aerodynamic properties of the turbine

blades [29]. The lift to drag ratio of the turbine blades is a key parameter in these models.

More details are included in Section 2.4.

The simplified nonlinear turbine dynamics consist of the rotor dynamics (3.1) along with

the expressions for a, CP , λ, and τaero. Specifically, the model has one state (ω), one

controllable input (τg), one disturbance input (U), and two outputs (Pg and a). The state

derivative and outputs can be completely expressed terms of the state and inputs as follows:

ω̇ =
1

J

(
ρAU3CP

(
ωR
U

)
2ω

− τg

)
:= f(ω, τg,U) (3.2)[

Pg

a

]
=

[
τgω

a
(
ωR
U

) ] := h(ω, τg,U). (3.3)

This same dynamic model is used for both the upstream and downstream turbines. For the

upstream turbine, the wind speed across the rotor plane is given by the freestream velocity,

i.e. U = U∞. For the downstream turbine, the wind speed across the rotor plane, U = u2,

depends on the (time-dependent) velocity in the wake.
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3.2.2 Wake Transport

The turbine dynamics described in the previous section are used to compute the time-

varying axial induction for the upstream turbine, a1(t). In steady-state situations, the

(static) Park model (2.20) can be used to compute the downstream velocity deficit due to

the axial induction of the upstream turbine. In time-varying situations, the actions of the

upstream turbine are not instantaneously observed at the downstream turbine. The time

it takes for the wake to propagate downstream depends on the convection velocity and the

distance between the turbines.

The wake transport model used here consists of the (static) Park model to determine the

velocity deficit and a time delay τd to account for convection delay. Assume the downstream

turbine is fully operating in the wake of the upstream turbine and is located a distance x be-

hind the upstream turbine. The time-varying velocity at the rotor plane of the downstream

turbine is given by

ũ2(t) = u1(t)

(
1− 2a1(t)

(
D

D + 2κx

)2
)

(3.4)

u2(t) = ũ2(t− τd). (3.5)

These equations define the wake transport. Specifically, (3.4) accounts for the velocity

deficit while (3.5) accounts for the convection delay. In other words, the velocity at the

downstream turbine at time t− τd. The convection delay should depend on the velocity in

the wake. For simplicity, the convection delay is approximated using the freestream velocity,

τd = x
U∞

.

3.2.3 Linearized Model

A nonlinear model for many turbines operating in a line can be constructed by linking

together the models described previously for the turbine dynamics and wake transport.

This formulation provides insight into the aerodynamic coupling that occurs within a wind

farm. Section 3.4.2 compares the dynamic Park model with data obtained from wind

tunnel experiments. Specifically, a linearized model for the wind farm is used as a basis for

comparison. This subsection briefly describes the construction of the linearized dynamics

for two turbines. The derivation can easily be extended to three or more turbines.

The linearization is constructed about an equilibrium trim condition. This is a reasonable

approximation if the fluctuations about the mean baseflow are small. Specifically, assume

the generator torque and wind speed inputs to the upstream turbine are held constant

at τ̄g,1 and ū1 = U∞, respectively. The upstream turbine will reach an equilibrium rotor

speed, ω̄1, generated power P̄g,1, and axial induction ā1. The (static) Park model gives the
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downstream velocity in steady conditions as ū2 = ū1

(
1− 2ā1

(
D

D+2κx

)2
)

. Finally, if the

generator torque at the downstream turbine is held constant at τ̄g,2 then the downstream

rotor will reach an equilibrium state/output of (ω̄2, P̄g,2, ā2). This collection of constant

values (denoted by overbars) defines an equilibrium trim condition for the two-turbine array.

Deviations from the trim conditions are denoted using δ, e.g., δτg(t) = τg(t) − τ̄g. The

nonlinear turbine dynamics has only one state. Hence the linearized dynamics for the

upstream and downstream turbines have the following transfer function form[
δPg,i(s)

δai(s)

]
=

Ni

s+ pi

[
δτg,i(s)

δui(s)

]
with i = 1,2, (3.6)

where pi are scalars and Ni are 2 × 2 transfer-matrices for i = 1, 2 and s indicates the

Laplace transform, e.g. δui(s) is the Laplace transformed quantity of the velocity at turbine

i, i.e., δui(t). The wake transport consists of a nonlinear function and a pure time delay.

Hence the linearized wake transport contains no dynamics and can be represented in the

frequency domain by:

δu2(s) = e−sτdDPark

[
δa1(s)

δu1(s)

]
, (3.7)

where DPark is a 1×2 matrix gain. The linearized components can be combined to obtain a

linear model for the two turbine array. For example, the wind tunnel experiments roughly

corresponds to varying the upstream generator torque, τg1, and measuring the downstream

power, P2. The transfer function from δτg,1 to δP2 is then given by:

Gδτg,1→δP2(s) = Gδτg,1→δa1(s)Gδa1→δu2(s)Gδu2→δP2(s) (3.8)

=

(
(N2)12

s+ p2

)(
e(−sτd)(DPark)11

)((N2)21

s+ p1

)
.

Note that this linearized model corresponds to a second order system with a pure time

delay. The experimental results provided in Section 3.4.2 can be accurately fit with a model

of this form.

3.3 Experimental Setup

3.3.1 Wind Tunnel

The experiments used to address wind farm modeling were completed in a closed loop wind

tunnel at the Saint Anthony Falls Laboratory (SAFL) on the campus of the University of

Minnesota. A 150 kW fan drives the flow into the tunnel test section, which has a length

of 16 m and a cross-section of 1.7 m by 1.7 m. Coarse wire mesh and a honeycomb flow
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straightner condition the flow prior to entering a contraction with an area ratio of 6.6:1

upstream of the main test section. Immediately at the end of the contraction, a trip is

placed to promote boundary layer growth. The model turbines were placed roughly 13 m

downstream of the trip in the test section where a turbulent boundary layer thickness of

δ ≈ 0.6 m was measured under thermally neutral conditions. The neutral cases investigated

in this chapter set the air and floor temperature equal, and were held to within ±0.2◦C.

Mean and fluctuating flow statistics of the baseline turbulent boundary layer are provided

in [62].

3.3.2 Turbine Model

The turbine models tested in the tunnel are approximately 1:750 scale models of the Clipper

Liberty 2.5 MW utility-scale wind turbine, see Figure 3.2. The resulting dimensions for the

model are a three-blade rotor with a diameter of 0.128 m (GWS/EP-5030x3 rotor). While

the original design for this rotor was for use on model aircraft, the blades herein were

oriented such that the high pressure surface faced the inflow. In addition, the blade airfoil

profiles are nearly flat. The hub height is 0.104 m and remains within the lower 25 % of the

boundary layer, similar to the full-scale turbine. The TSR was controlled by selecting the

model turbine generator and is on the lower end of the TSR range for turbines used in the

field. This set of experiments use a specific hub velocity of approximately 4.5 m/s. It is in

the operating range of standard turbines and provides a detailed comparison to wind farm

experiments completed at the same velocity. The free-spinning TSR for the model turbine

in the undisturbed boundary layer is λ ≈ 4.5, while typical values for utility-scale turbines

range between λ ≈ 3.5 and 10.

The model turbines have a small DC generator in which a voltage output can be measured

or a voltage input can be applied to control the turbine operating condition. The DC

voltage input is restricted to lie within ±1.25 V. A zero voltage input corresponds to a free

spinning turbine. In this condition, the turbine operates at a high TSR. Applying a positive

voltage places a torque on the motor shaft causing the turbine to operate at a lower TSR. A

properly chosen voltage results in the turbine operating near its optimal TSR, λ = 3. Thus

the DC voltage input mimics the effect of the generator torque on the utility-scale turbine.

3.3.3 Three Turbine Setup

Operating Conditions

The model turbines were operated in two different states: (i) rated; (ii) derated, i.e., higher

thrust. In the rated state, a 1.25 V input was applied from a DC power supply or function

generator to the DC generator on the model turbine. This input applies a torque opposing
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Figure 3.2: Two turbine setup in the SAFL wind tunnel (left) and the 2.5 MW Clipper
turbine at UMore Park (right). Photo credit: Kevin Howard.

the aerodynamic torque and controls the TSR. In the derated state, the turbine was allowed

to operated under no load, i.e., a zero voltage input [63]. The rated case corresponds to a

turbine operating near the peak of the CP curve in Figure 2.7. The derated case corresponds

to a turbine operating on the right side of the CP curve which leads to a larger CT and

hence larger turbulence levels in the wake. In these experiments, the voltage generated by

each turbine is similar to the power generated by a utility-scale turbine. For more details

on turbine voltage production and analysis verification, the reader is directed to [63].

Experimental Conditions

These experiments consisted of three turbines placed in a row with a five diameter (5D)

spacing between the turbines, see Figure 3.3. Each experiment was run at a wind speed of

4.5 m/s under a neutral boundary layer with 1.5 % turbulence intensity for for 100 s. This

sample time was selected as it was the limit for the maximum number of samples for the

data acquisition system when sampling at 10 kHz. Wall parallel particle image velocimetry

(PIV) was used to capture the varying physical characteristics in the wake created by the

upstream and downstream turbines under rated and derated states with the overall goal of

using the results to improve the Park model. This provides some insight as to how specific

control actions of Turbine 1 affect the overall flow characteristics in the wake. The use

of wall parallel PIV simplified the problem by removing the extra factor of the boundary

layer from the wake development. PIV uses a pulsating laser sheet synchronized with high
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Figure 3.3: Three turbine setup aligned. Turbine 1 is the most upstream turbine, Turbine
2 is the middle turbine, and Turbine 3 is the most downstream turbine.

resolution cameras to capture the instantaneous movement of seeding particles in the flow.

Olive oil droplets on the order of 5 to 10 microns in diameter are injected into the wind

tunnel and tracked by taking snapshots in time and comparing the locations of individual

groups of particles to obtain the change in distance between the subsequent frames. The

time between snapshots is known and, therefore, the velocity vectors of the particles can

be computed using two-dimensional spatial cross correlation in the interrogation windows

in which the full image is subdivided (TSI PIV software). In this specific case, a fine

32×32 pixel2 interrogation window is used with a 50% overlap, providing a spatial resolution

of approximately 1.8 mm in the streamwise and spanwise directions. Each run consisted of

700 snapshots over 100 s.

Measuring the Dynamic Response

In addition to PIV, voltage tests were used to characterize the input/output behavior of

the three turbine setup with a goal of constructing a dynamic model of the input/output

behavior of the three-turbine array. Several experiments were run to examine the dynamic

response of Turbine 2 and Turbine 3 based on the inputs to Turbine 1. Square waves with

varying frequencies were applied to the upstream turbine and the voltage response of the

downstream turbines was recorded. Square waves were chosen as an input for convenience
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based on the function generator and power supplies available in the wind tunnel at the time

of the experiments. The square waves varied in frequency from 0.02 Hz to 10 Hz with a

50% duty cycle. Specifically, the square waves varied from 0 V (derated) to 1.25 V (rated),

i.e., the turbine was switching states at varying frequencies. By measuring the magnitude

and phase of the power at Turbine 2 and Turbine 3, a dynamic model can be constructed

that relates the input of Turbine 1 to the voltage output of Turbine 2 and Turbine 3 at

different frequencies. The result is a model that can be used for design and analysis for

coordinated turbine control in the wind tunnel.

Note that the frequencies in these experiments were chosen to inspect the ability of the model

turbines to respond to a given input. At high frequencies, the downstream turbine response

to an input at the upstream turbine is limited due to the internal electrical resistance,

and primarily, the rotational inertia of the rotor. The frequencies chosen for the wind

tunnel voltage experiments can be translated to relevant wind gust events for utility-scale

turbines. The model turbine rotor speed was measured using a tachometer and was observed

to be approximately 2400 RPM, or 40 Hz. Thus the voltage perturbation frequencies used

in the experiments are between 0.0005 to 0.25 of the model rotor turbine speed. The

Clipper turbine, in Figure 3.2, has a rotational frequency of around 0.2 Hz (one blade

revolution computed in s) while operating in the same region as the model turbine. The

voltage perturbations used in the experiments thus scale to frequencies between 0.0001 Hz

and 0.05 Hz (= 0.2[0.0005 0.25]) for the Clipper turbine. Qualitatively, these time scales

correspond to wind variations on the order of hours down to wind gusts, which can be on

the order of tens of seconds [64].

3.4 Results

The PIV results were used to better understand the characteristics of the flow including

mean wind speed, turbulent kinetic energy, and wake meandering. Voltage tests were used

to understand the dynamics of the system including the input/output behavior. A better

understanding of these characteristics can be used to develop a better model of a wind farm.

3.4.1 Wake Characteristics - PIV

The experimental data gathered using PIV was first used to compute the mean velocity

behind Turbine 1 to understand the overall effects of turbine control on the velocity behind

the turbine. Figure 3.4 shows the mean wind speeds behind Turbine 1 in the rated (left) and

derated (derated) cases. This shows that when the upstream turbine is operating under

higher thrust conditions (derated), the turbine blocks more of the flow, forcing the flow

around the turbine, resulting in a larger velocity deficit directly behind the turbine than in
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Figure 3.4: (Left) Rated mean streamwise velocity behind Turbine 1. (Right) Derated mean
streamwise velocity behind Turbine 1.
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Figure 3.5: (Left) Wake expansion behind Turbine 1 in the rated case. Note, the white dots
mark the outside of the wake. (Right) Wake expansion in the derated case.

the rated case. Figure 3.5 shows the growth of the turbine wake, as defined by the domain of

its large scale meandering motions [35]. The wake expansion in the y direction depends on

the turbine operating condition. The edges of the wake are tracked in Figure 3.5. The wake

in the derated case expands from 0.5D directly behind the rotor to 0.82D at 3D downstream.

In the rated case, the wake expands from 0.5D to 0.74D. This means that the wake expands

at an average of 6.1◦ in the derated case and 4.5◦ in the rated case. More details can be

found in [35]. The flow is normalized by the freestream velocity at hub height.

This wake depiction, in Figure 3.4, varies from the Park model described in Section 2.6.1.

Recall that the Park model assumed that the velocity in the wake was constant at a given

cross section downstream. Figure 3.6 shows the spanwise velocity deficit at 1D, 2D, 3D,

and 4D downstream in the wake from PIV compared to the Park model assumption. This

discrepancy can have a significant impact on control. Some studies have implemented

modifications to the Park model by introducing different zones of the wake that provide

a more accurate description of the wake [39]. An alternative approach may be to modify

the Park model to incorporate a Gaussian velocity profile that evolves as a function of the

downstream distance [34,65].

The mean velocity is also evaluated along the centerline, i.e., y = 0, to understand the

effects of turbine control on the rate of wake recovery. Figure 3.7 shows the centerline
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Figure 3.6: Time averaged spanwise velocity profile from PIV experiments compared to the
spanwise profile obtained from the Park model

Figure 3.7: Centerline velocity profile from Turbine 1 to Turbine 3. The vertical black line
indicates where the second turbine is located.

mean velocity from Turbine 1 to Turbine 3. PIV data captured behind Turbine 1 as well

as PIV data captured behind Turbine 2 are combined in Figure 3.7. The vertical black line

indicates where Turbine 2 is located. These results are compared to the Park model. In the

derated case, a κ value of 0.15 best describes the centerline velocity, while a κ values of 0.09

better describes the rated case. Recall (2.20), a single κ, or wake expansion coefficient, is

typically used to describe interactions in a wind farm across all operating conditions. The

results in Figure 3.7 suggest that a single κ value may not be able to capture the impact of

different operating conditions nor is it able to accurately capture the wake recovery behind

Turbine 2. This discrepancy has to do with the different turbulence levels and structures

present in the wake.

Figure 3.8 shows the turbulent kinetic energy (TKE) behind Turbine 1 in the rated and

derated case. Specifically, when the rated case is compared to the derated case, there is

noticeably more TKE in the case where the turbine is operating under derated conditions.

This is due to the increase in the induction factor that was described in Section 2.3. This
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Figure 3.8: Turbulent kinetic energy behind Turbine 1 under two operating conditions:
rated (left) and derated (right).

increase in turbulence leads to additional mixing in the wake, causing fluid outside the wake

to be entrained into the wake. This allows the wake to recover at a faster rate. As more

fluid is entrained the wake expands, as seen in Figure 3.4. This suggests that, in the Park

model, a single wake expansion coefficient, κ, does not fully describe the various operating

conditions in a wind farm. There has been a study done to investigate this effect [66].

The Park model can be modified to incorporate the change in turbulence due to varying

operating conditions. For example, the wake expansion coefficient, κ, can be thought of as a

function of the induction factor(s) of the upstream turbine(s) as is done in [13]. Specifically,

as the induction factor of the upstream turbine(s) changes, the wake expansion coefficient

would also change to accommodate the change in the turbulence level.

3.4.2 Propagation Dynamics - Voltage Measurements

A complimentary set of voltage input/output experiments was performed to understand the

dynamics of the turbine array and to highlight the temporal limitations of the static Park

model. Two different single-input-single-output models are considered in these experiments:

the input voltage at Turbine 1 to the output voltage at Turbine 2 and the input voltage at

Turbine 1 to the output voltage at Turbine 3. These models could be used to coordinate

turbines in the wind tunnel.

Figure 3.9 displays a few selected voltage inputs to Turbine 1 (top row) and the voltage

generated at Turbine 2 (middle row) and Turbine 3 (bottom row). The results shown are

ensemble averages over the total number of periods contained in each 100 s experiment.

Specifically, the results shown for 0.07 Hz, 0.2 Hz, and 2 Hz correspond to ensemble average

over 5, 20, and 200 periods, respectively. This is important to note because each plot

corresponds to an ensemble average over a different number of periods. Notice in Figure 3.9,

there is a 180◦ lag between the voltage input at Turbine 1 and the voltage output at Turbine

2 at low frequencies. When the signal on the upstream turbine is in a rated state, this

means that the turbine is operating at a higher efficiency, and is extracting more energy
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Turbine 1

Turbine 2

Turbine 3

Figure 3.9: Voltage time series at 0.07 Hz (first column), 0.2 Hz (second column), and 2 Hz
(third column). The voltages have been normalized by the voltage at Turbine 1. Note that
the signals for Turbine 2 (middle row) and Turbine 3 (bottom row) have been scaled by a
factor of 10 or 100 for visualization purposes.

out of the wind and overall wake recovery is slower than in the derated case. When the

upstream turbine is derated, the wake experiences a faster recovery rate due to the increased

thrust generated by the turbine on the flow. This increase in thrust increases mixing and

TKE resulting in a higher wind speed at the downstream turbine. It is important to note

that this was observed under a neutral boundary layer in the wind tunnel. It is possible

that increasing the ambient turbulence and operating under different atmospheric stability

conditions could decrease the significance of the changing TSR of the upstream turbine.

As the frequency increases, the voltage production of Turbine 2 and Turbine 3 experiences

a greater phase lag from the input at Turbine 1. For example, at 2 Hz (right column of

Figure 3.9), the downstream turbine voltage responses experience a greater phase lag than

in the 0.07 Hz case. Turbine 2 and Turbine 3 do not respond instantaneously to the effects
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Figure 3.10: Input/output dynamics in the three turbine setup compared to the dynamic
Park model.

of Turbine 1. This is due to the time it takes for the effects of the input at Turbine 1 to

propagate downstream and impact the performance of Turbine 2 and Turbine 3. At 2 Hz, the

input at Turbine 1 is changing nearly as fast as it takes for the previous input to propagate

downstream. This results in a phase lag greater than 360◦.

From the figures, note the amplitudes of Turbine 2 and Turbine 3 are scaled by a factor of

10 for 0.07 Hz and 0.2 Hz and scaled by a factor of 100 for 2 Hz. This allows for better

visual comparisons of the phase and magnitude between Turbines 1, 2, and 3. There is

a significant decrease in amplitude between Turbine 2 and Turbine 3. Turbine 3 is located

farther downstream from Turbine 1 (10D). The wake has more time to evolve from the

control actions of Turbine 1. Lastly, the model turbines have a certain amount of rotational

inertia that reduces the turbine response to high frequencies. For example, a utility-scale

turbine can respond to large gusts of wind, but due to its large rotational inertia, it cannot

respond to the microscales of turbulence.

Frequency domain techniques were used to construct dynamic models from an upstream

voltage input, u, to a downstream voltage output, y. For each experiment, the Fourier

Transform of the domain data samples {ui, yi}nsi=1 was computed, where ns is the number

of samples of (u,y). This data consists of complex number {Û(ωj), Ŷ (ωj)}nsj=1 that depend

on the frequency, ωj . The power spectrums (Û , Ŷ ) contain noise, e.g., due to 60 Hz electric

interference. To eliminate the effects of this noise the ratio Ĝ(jf) = Ŷ (jF )/Û(jf) was

computed only at the excitation frequency, f , of the square wave input. The magnitude and

phase of this complex number, Ĝ, computed for each experiment, is shown as a function

of frequency (green dots) in Figure 3.10. The magnitude is shown in units of decibels:

20 log10 |Ĝ|.
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The dynamic Park model, described in Section 3.1, can be used to construct a model that

agrees with the frequency response of the experimental data and can provide additional

physical insight into the system. In these experiments, the voltage input varied at Tur-

bine 1. This voltage input can be thought of as the signal, τg1, in the block diagram in

Figure 3.1. It is important to note that the DC motor on the scale model turbine (men-

tioned in Section 3.3.2) is not specifically modeled, so the relation between input voltage

on the scale turbine and generator torque on a utility-scale turbine is inexact. Similarly,

the voltage input to Turbine 2 and Turbine 3, is held constant. These inputs correspond

to τg2 and τg3. Also, the wind speed input in the wind tunnel, U∞, was held constant at

4.5 m/s. The measurements taken during these experiments include the voltage production,

Pg,2 and Pg,3 in Figure 3.1, at Turbine 2 and Turbine 3, respectively. In these experiments,

the connection between voltage output on the downstream turbines in roughly related to

the power produced on a utility-scale turbine. The frequency plot shown in Figure 3.10,

shows the frequency response of the experiments from the input, τg1, to the output, Pg,2,

and the input, τg1, to the output, Pg,3.

The parameters in the dynamic Park model (3.8) are estimated to fit the experimental data.

Specifically, the physics of the dynamic Park model imply that the transfer function from

Turbine 1 to Turbine 2 is parameterized by a DC (steady-state) gain, two real poles for the

rotor dynamics, and a time delay for the convection of the wake. The DC gain of 0.0079

was fit as the mean of the low frequency magnitude data. The two real poles were selected

as 2.5 rad/s to fit the roll-off in the magnitude data. Finally, a time delay of 0.22 s was

selected to match the phase data. These parameters yielded the following gray-box model

Ĝ1→2 =
−0.0497

s2 + 5s+ 6.25
e−0.22s. (3.9)

These parameters could be selected to optimally fit the experimental data, e.g. using

tfest in the MATLAB R© System Identification toolbox. However, this yielded second order

systems with non-physical complex poles. Taylor’s hypothesis of frozen turbulence can be

used to provide an alternative estimate for the time delay. This hypothesis assumes that the

turbulence is unchanged as it is advected downstream. i.e. transported by the wake from

upstream to downstream. A consequence of this hypothesis is that the wake advection is

only a function of the mean wind speed. For example, Turbine 1 and Turbine 2 are spaced

5D, or 64 cm, apart with an inflow velocity of 4.5 m/s. As a result, the time delay should

be approximately τd = 0.14 s. This is a conservative estimate as the wake will be moving

downstream at a reduced velocity, not the mean inflow velocity, due to the presence of the

upstream turbine. Hence the larger delay in (3.9) is reasonable as it represents the effect

of the slower velocity in the wake. A similar procedure was used to obtain the following fit
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Figure 3.11: PI control implemented using the dynamic Park model.

from Turbine 1 to Turbine 3

Ĝ1→3 =
−0.0439

s2 + 6s+ 8.75
e−0.57s. (3.10)

This second order model assumes that Turbine 2, which lies between Turbines 1 and 3, has

negligible impact on the dynamics from Turbine 1 to 3 (although it may impact the steady

state gain).

At low frequencies, Figure 3.10 shows that the model and experimental data are essentially

static. However, as the frequency increases, the magnitude of the system rolls off. At

frequencies greater than 0.5 Hz, the downstream turbine does not have a significant response

to inputs from Turbine 1. The turbines are unable to respond to higher frequencies due to

the rotational inertia of the turbine. In addition to the magnitude, the phase in Figure 3.10

contains the rotational dynamics of the turbine as well as information about the mean wake

velocity. Specifically, the phase information from the experiments can be used to determine

the approximate convection velocity in the wake. The amount of phase between the input

and output response reflects how long the signal took to propagate through the flow field to

the downstream turbine. Turbine 3 experiences a greater phase lag than Turbine 2 due to

the distance from Turbine 1 and the time it takes to propagate the effects from Turbine 1 to

Turbine 3. This shows how the wake is evolving in time based on the input/output response

of this three turbine array.

3.4.3 Example Model Application: Wind Farm Control

The dynamic Park model can be used to implement preliminary wind farm control strategies

in the wind tunnel. It is important to note that this controller is only implemented in

simulation. This section demonstrates the feasibility of designing a controller based on

the data-driven model constructed in this chapter. A simple proportional-integral (PI)

controller is implemented in simulation to demonstrate the potential applications of using
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Figure 3.12: Results of implementing a PI controller with the dynamic Park model. This
is compared to the results from the wind tunnel with no control. Note τg1 is in terms of
voltage applied.

the dynamic Park model for wind farm control in the wind tunnel. The PI controller has a

proportional gain of -5 and an integral gain of -15. For simplicity turbulence is neglected.

The dynamic Park model is used in the configuration seen in Figure 3.11. The goal of this

controller is to track the total power, or voltage in this case, produced by Turbine 2 and

Turbine 3. This would be similar to a wind farm tracking a power command provided by

the electric grid operators [67]. Due to limitations of the hardware, only the output voltages

of Turbines 2 and 3 are able to be measured. The wind tunnel/scaled models currently do

not allow for closed-loop control, and they can only operate between a TSR of 3 and 4. This

is a limiting factor in doing closed-loop control in the wind tunnel. Changes to the current

model turbines, such as redesigning the blades, could result in a larger operating region.

Figure 3.12 shows the result of using a PI controller with the dynamic Park model. The

top figure shows the simulated voltage input, τg1 to Turbine 1 and the bottom figure shows

the simulated closed-loop response, PTOT of Turbine 2 and 3 to the input at Turbine 1.

The green dotted-dashed line shows the baseline voltage output of Turbine 2 and Turbine

3 from the wind tunnel with no control from the experimental data.

Using a PI controller, the combined output voltage of Turbine 2 and 3 can follow a specific

reference signal. In addition, Figure 3.12 shows that the turbines are able to respond quickly
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and accurately to a command. This type of control is significant for wind farms as they

may be asked to follow specific energy dispatch signals as more wind is added to the electric

grid [67,68].

3.5 Conclusions

An experimental investigation was conducted to analyze the effect of individual turbine

control on wind farm dynamics and the results were incorporated to improve the existing

static Park model. Model improvements included the incorporation of turbine dynamics

that captured the input/output characteristics of a three-turbine array, which can be used

for wind farm control in the wind tunnel. Wall parallel PIV was used to identify physical

wake characteristics based on varying turbine operating conditions. Voltage tests were used

to characterize the frequency response of the system.

Alternative techniques for developing reduced-order wake models using data from experi-

ments (as well as simulations) will be addressed in the following chapter. The data collected

from simulations and experiments can be used to extract the dominant characteristics of a

wind farm, which can be used for control design and analysis.
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Chapter 4

Reduced-Order Modeling

4.1 Introduction

This chapter describes a method to construct a reduced-order model for high-dimensional

systems. The work is motivated by the control of systems that involve fluid and/or structural

dynamics. One specific example that is addressed throughout this thesis is wind farm

control. As mentioned previously, the overall performance of a wind farm can be improved

through proper coordination of the turbines [8]. High-fidelity computational fluid dynamic

models have been developed for wind farms [11,12]. These high-fidelity models are accurate

but are not suitable for controller design due to their computational complexity. Simplified,

control-oriented models are needed.

A variety of reduced-order modeling techniques have been developed by the fluid dynamics

and controls communities. Several of these methods are summarized in Sections 4.3-4.7.

These methods range from analytical reduced-order modeling, such as balanced trunca-

tion [15], to data-driven reduced-order modeling such as system identification [16,69] where

a low-dimensional system is identified to describe the dynamics of a high-dimensional sys-

tem. Subspace techniques have been applied to balanced truncation to perform model

reduction on nonlinear systems [17]. In the fluid dynamics literature, proper orthogonal

decomposition (POD) is a standard method to describe the dominant characteristics of a

high-dimensional system where the state is projected onto a low-dimensional subspace of

POD modes constructed using data from the higher-order system [18–20]. Dynamic mode

decomposition (DMD) is a more recent approach that fits time-domain data with linear

dynamics on a reduced-order subspace [21–23]. DMD computes spatial modes of a system

at a single frequency. This approach has ties to the Koopman operator [24, 70]. In their

basic form, both approaches are for autonomous (unforced) systems. These modes have

been used to construct reduced-order models that can be used for control such as balanced

48



POD (BPOD) and DMD with control (DMDc) [17,25,71,72].

This chapter formulates an extension of DMDc to construct a reduced-order model from sim-

ulations or experiments. The details of this method are described in Section 4.8. The model

reduction approach has two main advantages. First, it relies on input/ouptut data from

a forced response and does not require the formulation/simulation of the system adjoint.

Second, the reduced-order model is constructed in a way that retains the physical meaning

of the states. This becomes useful for parameter varying systems, which will be discussed

in Chapter 5. In other words, the reduced-order state can be mapped back to approximate

the full-order state of the system. This method projects the states onto a reduced-order

subspace using the dominant modes of the system and then uses direct N4SID to define the

reduced-order dynamic model of the system. Lastly, this chapter will analyze the effects

of adding inputs to identify a reduced-order model. Specifically, Section 4.9 will address

the impact of noise on identifying a reduced-order model and Section 4.10 will analyze how

the DMD modes are affected by using a sparsity promoting approach similar to [73]. In

particular, it will be shown that the selection of DMD modes is dependent on the choice

of input (forcing). Similar to sparsity-promoting DMD, an optimization problem is formu-

lated using a regularization term and alternating direction method of multipliers. Finally,

this approach will be applied to the linear channel flow problem and will be compared with

standard DMD.

4.2 Criteria

There are a variety of methods in the controls and fluids literature that attempt to construct

low-order models to describe the dominant dynamics of a high-dimensional system. The

motivation of this chapter is to develop a method that can achieve the following:

• Handle > 105 states: The approach can be used to develop low-order representations

of fluid dynamic problems. Typical fluid dynamic problems can have more than a

million states.

• Handle inputs and outputs: The objective is to develop low-order models for control

design on systems with controllable inputs and measurable outputs.

• Adjoint free: Some existing methods require the use of a model adjoint [71, 72]. The

goal of this chapter is to avoid the use of such adjoints so that the proposed method

can be applied to either experimental data or to simulation models.

• Reduced-order states have physical meaning : The state of the reduced-order system

can be used to approximately reconstruct the full-order state and can assist in the

state consistency issue faced by parameter varying systems.
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• Can be used for parameter varying systems: This is important for nonlinear systems

where the dynamics change significantly over the entire operating range.

Sections 4.3-4.7 will address several existing methods as well as their advantages and limi-

tations with respect to the specific criteria defined above. These methods range from ana-

lytical approaches such as balanced truncation to data-driven approaches that construct a

low-dimensional representation of a high-dimensional system.

4.3 Balanced Truncation

Balanced truncation is a typical model reduction approach used in the controls community

[15]. Consider a continuous-time linear system:

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(4.1)

where (4.1) is a high-dimensional system with x ∈ Rnx as the states, u ∈ Rnu as the inputs,

and y ∈ Rny as the outputs. The state matrices (A,B,C,D) have dimensions that corre-

spond to (x, u, y). To perform balanced truncation on this system, the controllability and

observability Gramians need to be computed to understand the influence of the states on

the inputs and outputs of the system. Specifically, the controllability Gramian specifies the

minimum control energy required to reach any specific state. States that require less en-

ergy to reach are more controllable and hence have a greater influence on the input/output

dynamics. Similarly, the observability Gramian specifies the energy in the output mea-

surement when the system evolves from a given initial state (with zero input). States that

produce more energy in the output are more observable and hence have a greater influence

on the input/output dynamics. The Gramians can be computed by solving the Lyapunov

equations

AWc +WcA
∗ +BB∗ = 0

A∗Wo +WoA+ C∗C = 0,
(4.2)

where Wc is the controllability Gramian and Wo is the observability Gramian.

The Gramians are defined by specific coordinates. These coordinates define in which direc-

tions the strongest states are aligned. The controllability and observability Gramians can

have different coordinates. This makes it difficult to choose states to keep since a state may

be strongly observable, but not controllable and vice versa. A transformation can be applied

to align the properties of the controllability and observability Gramians, which allows you to

retain states that are strongly controllable and/or observable. A coordinate transformation
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T can be constructed to diagonalize both the controllability and observability Gramians

T−1Wc(T
−1)∗ = T ∗WoT = Σ = diag(σ1, ..., σn), (4.3)

where σ are the Hankel singular values that are independent of the coordinate transfor-

mation. Under this transformed system, the states that are significantly influenced by the

inputs are also states that have a significant impact on the outputs. With respect to the

overall objectives that are defined in Section 4.2, there are advantages and limitations to

using this approach.

• Advantages: Balanced truncation is adjoint-free and can handle inputs and outputs.

• Limitations: This method becomes intractable for large systems (states > 1000) as it

requires the solution of the two Lyapunov equations (4.2). In addition, the extension of

balanced truncation to parameter varying systems requires the solutions of generalized

Gramians via semidefinite programming optimizations [74, 75]. This optimization is

even more computationally intensive than solving Lyapunov equations.

4.4 System Identification

4.4.1 Numerical Algorithm for Subspace State Space System Identification

Another method that is popular in the controls community is system identification. Many

variation of system identification have been proposed. One approach this chapter will ad-

dress is the Numerical Algorithm for Subspace State Space System Identification (N4SID)

[16, 69, 76, 77]. System identification characterizes the input/output behavior of a system.

This is done by fitting a low-order ordinary differential equation that approximately de-

scribes the relationship between the input and the output. The general idea of N4SID

is to use input/output data to form a low-dimensional state-space representation of (4.1).

To construct a reduced-order model using N4SID, input and output data is recorded and

arranged in block Hankel matrices, Up, Uf , Yp, Yf , and an LQ decomposition is performed
Uf

Up

Yp

Yf

 =


Uk|2k−1

U0|k−1

Y0|k−1

Yk|2k−1



L11 0 0 0

L21 L22 0 0

L31 L32 L33 0

L41 L42 L43 L44



QT1
QT2
QT3
QT4

 . (4.4)

An oblique projection, ξ, of Yf (future outputs) is formed by projecting Yf onto past inputs

and outputs
[
Up Yp

]T
along Uf (future inputs). The technical details of computing the

oblique projection can be found in [69, 76]. The final equation for the oblique projection
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can be written in terms of the LQ decomposition in (4.4)

ξ =
[
L42 L43

] [ L22 0

L32 L33

]† [
Up Yp

]
. (4.5)

The singular value decomposition of the oblique projection ξ = UΣV T is used to estimate

the states

Xf = Σ
1
2V T . (4.6)

Once the states are estimated then the corresponding Â, B̂, Ĉ, and D̂ matrices can be

found by solving the regression equation using a least squares technique

[
Â B̂

Ĉ D̂

]
=

[ Xk+1

Yk

][
Xk

Uk

]T[ Xk+1

Yk

][
Xk

Uk

]T−1

, (4.7)

where Xk := [x(1), ..., x(N − 1)], Xk+1 := [x(2), ..., x(N)], Uk := [u(1), ..., u(N − 1)], and

Yk := [y(1), ..., y(N − 1)]. Note that the states x(k) are components from Xf . If the states

are known, then direct N4SID can be performed to estimate the state matrices. As with

balanced truncation, there are advantages and limitations to this approach.

• Advantages: This approach is focused on preserving the input-output relationship,

which means that it can provide a low-order representation of a high-dimensional

system (states > 105). In addition, this approach does not require an adjoint.

• Limitations: The states do not have physical meaning which would help provide

some physical intuition about the system. In addition, when addressing parameter

varying systems, there is a state consistency issue that stems from the lack of physical

meaning in the states.

4.4.2 Eigensystem Realization Algorithm

Lastly, a system identification technique, known as Eigensystem Realization Algorithm

(ERA), was developed by Juang [78]. Assuming the linear system in (4.1), the output

data is collected in response to an impulse. This data is used to construct a low-order

representation of the state space matrices. ERA collects outputs at every time step. Two

52



Hankel matrices, H and H
′
, are formed

H =


Y (t1) Y (t2) . . . Y (t1+p)

Y (t2)
. . . . . .

...
...

Y (t1+r) . . . Y (t1+r+p)

 (4.8)

H
′

=


Y (t2) Y (t3) . . . Y (t2+p)

Y (t3)
. . . . . .

...
...

Y (t2+r) . . . Y (t2+r+p)

 , (4.9)

where r and p are user defined. The SVD of H is computed H = UrΣrV
T
r where r is the

dimension of the identified model. The low-dimensional system matrices can be computed

such that

Ar = Σ
− 1

2
r UTr H

′
VrΣ

− 1
2

r (4.10)

Br = the first nu columns of Σ
1
2
r V

T
r (4.11)

Cr = the first ny rows of UTr Σ
1
2
r , (4.12)

where nu is the number of inputs, ny is the number of outputs. More technical details can

be found in [78]. ERA is a special case of system identification and has been shown to be

related to dynamic mode decomposition (see Section 4.7) in [23] and has been related to

balanced proper orthogonal decomposition in [79]. It is important to note that the model

generated by ERA is in balanced coordinates, which can be useful in identifying the most

observable and controllable states of the system. However, this is also a drawback in the

sense that these coordinates do not have physical meaning and are difficult to incorporate

into a scheduling/parameter varying model. In addition, ERA has been extended to include

non-impulse inputs using observer Kalman identification (OKID) [80]. Lastly, ERA has been

extended to a time-varying framework in [81–83].

• Advantages: Similar to N4SID, ERA is also able to provide a low-order represen-

tation of a system with many states (states > 105). ERA can also handle inputs and

outputs and is adjoint-free. The additional benefit is that, for linear systems, ERA

can compute the modes and eigenvalues of a system providing some physical intuition

about the system.

• Limitations: As noted above, ERA was developed for linear systems and has diffi-

culty identifying nonlinear systems. ERA cannot handle many inputs [23]. As with
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N4SID, there is still a state consistency issue when using ERA.

4.4.3 Linear Parameter Varying Subspace Identification

It should be noted that LPV subspace identification has been investigated recently [84–86].

LPV modeling has also been extended using ERA [87]. This takes care of the state con-

sistency issue exhibited in N4SID and ERA. However, significant amounts of input/output

data are required to characterize the response of the system. In addition, the states do

not have physical meaning. This method is a good alternative approach when state in-

formation is not known. However, in CFD simulations and certain experiments including

particle image velocimetry (PIV) [88], the high-dimensional states are known and the state

information combined with input/output data should be used to provide a more accurate

representation of the system.

4.5 Proper Orthogonal Decomposition

POD provides a low-order approximation of a fluid flow that is capable of capturing the

dominant structures in the flow. Specifically, POD can be used to extract dominant spatial

features from both simulation and experimental data that can be used to uncover the

structures in the flow field [18–20]. This can be done by projecting the velocity field onto a

set of orthogonal basis functions.

Consider a system modeled by the following continuous-time nonlinear dynamics

ẋ(t) = f(x(t), u(t)), (4.13)

where x ∈ Rn is the state vector and u ∈ p is the input vector. A projection matrix is

constructed to minimize the error between the full and reduced-order systems∫ Tmax

0
||x(t)− Prx(t)||2dt, (4.14)

where Pr is the projection space and r represents the reduced-order of the system. The

eigenfunctions of the flow field are shown to produce the optimal projection that minimizes

the total error between the full system and the reduced-order system [20].

Specifically, the POD modes of this system can be computed from the snapshots of the

nonlinear system. A data matrix of the snapshots is formed by

X0 =
[
x(t0) x(t1) ... x(tm)

]
, (4.15)

where m is the number of snapshots. The POD modes are then computed by taking the
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SVD of the data matrix

X0 = UΣV T . (4.16)

The POD modes are contained in the columns of U and the relative energy of each mode

is contained in the singular values in Σ. These modes provide the spatial component of the

flow with the first POD mode being the spatial mode that contains the most energy.

The computed POD modes can be used to reconstruct the flow using the Galerkin projection

[17,20]. This projection uses a separation of variables approach where the flow field variable

can be defined as

u(x, t) =

r∑
j=1

bj(t)ϕj(x), (4.17)

where b are the temporal coefficients and ϕ are the POD modes. In this way, the system

(4.13) can be rewritten as an ordinary differential equation

ḃk =
r∑
i=1

r∑
j=1

bibjQijk +
r∑
i=1

biKik + ck + f
′
x, (4.18)

where Q represents the nonlinear terms in the flow field, u, K represents the linear terms, c

represents the constant terms, and f
′
x represents the fluctuations in the forcing term in the

x direction. The matrices, Q and K, are made up of the POD modes which provide spatial

information about the system. Detailed expressions of these matrices can be found in [89].

In this way, a set of POD modes can be used to approximately describe the evaluation of

the flow field [17].

• Advantages: POD modes are good at representing specific data sets. Specifically, the

POD modes capture the energy of the system in an optimal way. The POD/Galerkin

approach has been used in the context of control [90]. This approach can handle

many states and is adjoint-free. Lastly, this approach has been extended to parameter

varying systems [91].

• Limitation: Despite the connection of POD/Galerkin to controls, there have been

many studies done that show that POD/Galerkin is sensitive to inputs and to the

data used [92]. Also, it can often produce unstable results near stable equilibria [93].

Lastly, POD modes mix multiple frequencies. This is important to note since low-

energy dynamics can be neglected, which may make POD modes difficult to use for

control.
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4.6 Balanced Proper Orthogonal Decomposition

For some systems, a more relevant objective is to compute a low-order model that captures

the most relevant flow dynamics that connect the input to the output. When applying

BPOD, the inputs of (4.1) have been set to zeros, such that ẋ = Ax. The initial conditions

of x are defined as the columns of B, i.e., an impulse response. One simulation needs to be

run for each column of B (i.e. each input). This system will be referred to as the forward

system.

In addition to computing the solution for the forward system, the solution to the adjoint

system needs to be computed and can be found by integrating the system

v̇(t) = AT v(t), (4.19)

with the initial conditions defined as the columns of CT and v is the adjoint variable. As with

the forward system, one simulation needs to be run for each output. There is an extension

to this method where there are many outputs. This requires an additional projection on

the outputs to limit the number of adjoint simulations [72]. Physically, the adjoint system

is used to evaluate the sensitivity of the system due to the small perturbations near the

output measurements of the system [94].

The BPOD modes can be computed by taking the snapshots from the forward and adjoint

systems

X = [x1(t0), ..., x1(tns), ..., xnu(t0), ..., xnu(tns)] (4.20)

Y = [v1(t0), ..., v1(tns), ..., vny(t0), ..., vny(tns)],

where ns is the number of snapshots, nu is the number inputs, ny is the number of outputs,

and xi(tj) denotes the state at time j caused by the input in the ith channel. The SVD of

Y TX is computed as

Y TX =
[
U1 U2

] [ Σ1 0

0 Σ2

][
V1

V2

]
, (4.21)

where Σ1 is an (r × r) matrix and r is the reduced-order of the system. Oftentimes, the

order r of the reduced-order model is chosen such that the modes capture 99% of the energy

of the system. The reduced-order system can be written as

ẋr(t) = SATx(t) + SBf (4.22)

y(t) = CTx(t), (4.23)
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where T = XV1Σ
− 1

2
1 and S = Σ

− 1
2

1 UT1 Y
T . The BPOD modes are contained in T .

Note that X and Y matrices are nx × ns matrices where n is the state dimension, which is

typically very large, i.e., tens of thousands or more, while ns is the number snapshots, which

is typically on the order of hundreds. The Lyapunov equations in (4.2) are of dimension

nx and directly solving these equations is prohibitive as solving a Lyapunov equation scales

with O(n3
x) [95]. The product of Y TX requires O(n2

snx) operations which scales linearly in

nx. The resulting matrix is only ns×ns and hence the singular value decomposition (SVD)

in (4.21) can be performed at a reasonable computational cost.

• Advantages: This approach can handle many states (states > 105). In addition, it

can handle inputs and outputs. It should be noted that BPOD has been compared

to ERA in [79]. Specifically, it has been shown that, under some circumstances, ERA

can produce the same balanced models as BPOD without the adjoint.

• Limitations: BPOD has not been extended to parameter varying systems and re-

quires an adjoint. In addition, a linearized simulation needs to be run for every input

and the adjoint system needs to be run by every output.

4.7 Dynamic Mode Decomposition

Another popular method in the fluids community is dynamic mode decomposition (DMD).

DMD extracts the dominant spatial and temporal information about the flow [21–23]. This

method attempts to fit a discrete-time linear system to a set of snapshots from simulation or

experiments. Consider a system modeled by the following discrete-time nonlinear dynamics

xk+1 = f(xk), (4.24)

where x ∈ Rnx is the state vector. A collection of snapshot measurements {xk}nsk=0 ∈ Rnx

is obtained for the system either via simulation or experiments where ns is the number of

snapshots.

The objective of DMD is to approximate the system by projecting the snapshots onto a

low-dimensional subspace. Assume there is a matrix A that relates the snapshots in time

by

xk+1 = Axk. (4.25)
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The snapshots of the system are defined as

X0 =
[
x0 x1 ... xns−1

]
∈ Rnx×(ns−1) (4.26)

X1 =
[
x1 x2 ... xns

]
∈ Rnx×(ns−1),

where xk are the snapshots. The full-order A matrix can be computed such that

A = X1X
†
0, (4.27)

where † indicates the pseudoinverse. The DMD method attempts to fit the snapshots in

time using a low rank matrix that captures the dynamics of the data set. This matrix can

be used to construct the DMD modes that correspond to specific temporal frequencies. A

low-order representation of xk can be written as zk = QTxk, where Q is the projection

subspace. The truncated, reduced-order model take the form

zk+1 = (QTAQ)zk := Fzk. (4.28)

The state matrix F := QTAQ ∈ Rr×r, describes the dynamics of the reduced-order sub-

space. Solutions to this reduced-order model can be used to construct the approximate

solutions to the full-order model.

The typical choice for the projection subspace, Q, is the POD modes of X0 (4.16), i.e. Q =

Ur, where r indicates the order of the reduced-order model. The optimal reduced-order

state matrix, F , for this choice is

F := UTr AUr = UTr X1(UTr X0)† = UTr X1VrΣ
−1
r , (4.29)

where the corresponding low rank approximation for the full-order state matrix is

A ≈ UrFUTr = UrU
T
r X1X

†
0. (4.30)

If an eigenvalue decomposition is done on F , then A is now

A ≈ (UrT )Λ(T−1UTr ), (4.31)

where UrT are defined as the DMD modes and the corresponding values of Λ provide the

specific temporal frequency for each DMD mode. DMD has been connected to the Koopman

operator that can be used to describe nonlinear systems [96, 97]. There are advantages to

using this approach.

• Advantages: This approach can handle many states (states > 105), is adjoint-free,
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and the states have a physical meaning. DMD has been extended to include inputs

and outputs, termed DMD with control (DMDc) in [25].

• Limitations: One limitation of this approach is that DMD has not been extended

to parameter varying systems. In addition, it is often not robust to noise (details

provided in 4.9).

4.8 Input-Output Reduced-Order Modeling

The main contribution of this chapter is provided in this formulation and analysis of input-

output reduced-order modeling. The approach will be summarized in this section for time-

invariant systems, but will be extended to include LPV models in Chapter 5. This section

addresses the use of this technique to develop an input-output model that does not require

adjoints and where the states have some physical meaning. The proposed approach combines

POD with system identification to produce an input-output reduced-order model (IOROM).

This term has been used in the flexible aircraft literature [26]. The proposed method closely

follows the procedure used in the formulation of DMDc [25].

Consider a discrete-time nonlinear system with inputs

xk+1 = f(xk, uk) (4.32)

yk = h(xk, uk), (4.33)

where x ∈ Rnx , u ∈ Rnu , and y ∈ Rny are the state, input, and output vectors.

A collection of snapshot measurements are obtained via simulation or experiments by ex-

citing the system. Snapshots are taken from the nonlinear system and the states, inputs,

and outputs are recorded as

X0 =
[
x0 x1 ... xns−1

]
∈ Rnx×(ns−1)

X1 =
[
x1 x2 ... xns

]
∈ Rnx×(ns−1)

U0 =
[
u0 u1 ... uns−1

]
∈ Rnu×(ns−1)

Y0 =
[
y0 y1 ... yns−1

]
∈ Rny×(ns−1).

(4.34)

This method attempts to fit the snapshot measurements at a particular operating point in

time by

xk+1 = Axk +Buk

yk = Cxk +Duk.
(4.35)
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The dimensions of the state matrices (A,B,C,D) are compatible to those of (x, u, y). This is

similar to direct N4SID [16]. However, this becomes intractable for large systems. Typical

fluid dynamic systems have on the order of millions of states. As a result, the state is

projected onto the low-dimensional subspace to make the computation tractable.

A truncated model can be expressed in terms of this reduced-order state, i.e., zk = QT δxk ∈
Rr where Q ∈ Rnx×r is a generic orthonormal basis that forms the projection subspace

zk+1 = (QTAQ)zk + (QTB)uk := Fzk +Guk (4.36)

yk = (CQ)zk +Duk := Hzk +Duk. (4.37)

The matrices in the reduced-order system have dimensions F ∈ Rr×r, G ∈ Rr×nu , and

H ∈ Rny×r. The form of (4.36) is equivalent to the following low rank approximations for

the full-order state matrices[
A B

C D

]
≈

[
QFQT QG

HQT D

]
=

[
Q 0

0 Iny

][
F G

H D

][
QT 0

0 Inu

]
. (4.38)

The optimal choice for the reduced-order state matrices (F,G,H,D) can be computed given

the subspace spanned by Q. This is a similar setup for standard DMD seen in [21–23].

The optimal (reduced-order) state matrices are obtained by minimizing the error of the

Frobenius norm using a least-squares approach

min[
F G

H D

]
∥∥∥∥∥
[
X1

Y1

]
−

[
Q 0

0 I

][
F G

H D

][
QT 0

0 I

][
X0

U0

]∥∥∥∥∥
2

F

. (4.39)

This is the direct N4SID subspace method for estimating state matrices given measurements

of the (reduced-order) state, input, and output. A sub-optimal, but useful, choice for the

projection space is given by the POD modes of X0 (4.16). The state of the linear system

can be approximated on a subspace defined by the first r POD modes of X0, i.e., Q := Ur.

The optimal reduced-order state matrices for this choice are given by[
F G

H D

]
opt

=

[
UTr X1

Y0

][
ΣrV

T
r

U0

]†
. (4.40)

This yields input-output information for the model. As with standard DMD, an eigenvalues

decomposition of Fopt can be used to construct these modes, which provide spatial modes

associated with a specific temporal frequency of the system. The F matrix describes the

dynamics of the system. The G, H, and D matrices obtained using this method are com-
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puted such that the input-to-output behavior of the reduced-order model is preserved from

the full-order system. This proposed method is a tractable implementation of the existing

direct N4SID (subspace) method that can be applied for very large systems. This is not

simply a black-box (input-output) approach because the state of the reduced-order system

zk can be used to approximately reconstruct the full-order state by

xk ≈ Urzk. (4.41)

Moreover, the approach requires input/output/state data from the system. Construction

and simulation of an adjoint system is not required. The next chapter will show how to

extend this approach to parameter varying systems.

One way to choose the order of the reduced-order model computed using this approach is to

analyze how much energy is captured by the number of modes chosen. The number of modes

retained in the system typically amounts to 99% of the energy of the system. However, for

a sufficient model that is suitable for control, the primary metric is the amount of model

error incurred from the selection of the number of modes. The model error can be computed

using the Frobenius norm ∥∥∥∥∥
[
X1

Y0

]
−

[
A B

C D

][
X0

U0

]∥∥∥∥∥
2

F

. (4.42)

Again, computation of this model error is intractable for systems with extremely large state

dimensions. However, the properties of the Frobenius norm can be used to equivalently

write this error in a more useful form∥∥∥∥∥
[
X1

Y0

]
−

[
A B

C D

][
X0

U0

]∥∥∥∥∥
2

F

=

∥∥∥∥∥
[
QTX1

Y1

]
−

[
F G

H D

][
QTX0

U0

]∥∥∥∥∥
2

F

+
(
‖X1‖2F −

∥∥QTX1

∥∥2

F

)
.

(4.43)

The first term represents the model error on the projected subspace. The second term

represents the energy lost in the snapshot data X1 by using the projection. The right hand

side of this equation is now tractable because the states are projected onto a subspace and

have dimension r. More importantly, only the reduced-order state matrices, (F,G,H,D),

are needed for the calculation rather than the full state matrices (A,B,C,D). In many fluid

dynamic examples, it is infeasible to compute A, which would have dimensions of 106×106.

Increasing the number modes will generally decrease the total error. However, there is a

point when adding additional modes will not significantly improve the model error. In fact,

adding the modes beyond this point could result in a model that is trying to overfit the

nonlinearities in the system resulting in a degradation of the performance.
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4.9 Impact of Process Noise in Identifying Systems

The presence of noise in the snapshots has a significant impact in the ability for DMD or the

proposed IOROM approach to fit the snapshots to a matrix A that captures the dynamics

of the dataset. Some work has been done in analyzing the effects of noise with DMD [98,99].

There has been some additional work on computing the noise bias of least-squares solutions

[100]. This section will address the impacts of process noise on identifying the dynamics of

the system. This process noise could arise from disturbances in the system or nonlinearities.

In particular, this section will illustrate the effects of adding an external forcing to the system

(the IOROM approach) to aid in identifying the dominant characteristics of the system. For

this analysis, only the evolution equation will be considered.

Consider a system (4.35) that has process noise such that

xk+1 = Axk +Buk + nk, (4.44)

where nk ∈ Rnx is the process noise. For simplicity, it will be assumed that the noise is

Gaussian. Assume that snapshots of the noise can be recorded: N0 =
[
n0 . . . nns−1

]
.

The problem, using the state snapshot matrices X0 and X1 and the input snapshot matrix

U0, can be written as

X1 = AX0 +BU0 +N0. (4.45)

If there were no noise and assuming B is known, Admd = (X1 −BU0)X†0, where † indicates

the pseudo-inverse. In the presence of noise, there is an extra term that is contributed by

the noise such that

Atrue = Admd −N0X
†
0. (4.46)

To understand the effects of process noise on the error between the identified A matrix and

the true A matrix, the expected value of (4.46) can be computed as

E[Admd −Atrue] = E
[
N0X

†
0

]
. (4.47)

The snapshot matrix X0 has noise embedded in the snapshots. The snapshots in X0 can
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be written so that they are in terms of the initial condition, x0
xT0
xT1
...

xTns−1


︸ ︷︷ ︸

XT
0

=


In

A
...

Ans−1


︸ ︷︷ ︸

AT1

xT0 +


0 0 . . . 0

B 0 0
...

. . .
...

BAns−2 . . . B 0


︸ ︷︷ ︸

BT2


uT0
uT1
...

uTns−1


︸ ︷︷ ︸

UT0

+


0 0 . . . 0

I 0 0
...

. . .
...

Ans−2 . . . I 0


︸ ︷︷ ︸

BT1


nT0
nT1
...

nTns−1


︸ ︷︷ ︸

NT
0

.

The term N0X
†
0 can be written as a least-squares problem, i.e., N0X

T
0

(
X0X

T
0

)−1
where XT

0

can be substituted by the above equation. To simplify the analysis, an approximation can

be used when noise is considered to be small such that (M + P )−1 = M−1 −M−1PM−1

assuming M >> P . This is a linearization of the term (X0X
T
0 ) such that the contributions

of the noise to the error in identifying the A matrix can be analyzed. Only up to quadratic

terms in N0 are kept. To simplify notation, the non-noise are collected and expressed as

K = x0A1 + U0B2. The resulting expression of the expected value of Atrue - Admd can be

simplified to

E[Admd −Atrue] = E[N0X
†
0] (4.48)

= E
[
N0K

TM−1
]

+ E
[
N0K

TM−1KBT
1 M

−1
]

(4.49)

+ E
[
N0K

TM−1N0B1K
TM−1

]
+ E

[
N0B

T
1 N

T
0 M

−1
]

(4.50)

= σ2
n

(
tr
(
KTM−1KBT

1

)
Inx +M−1KB1K

T
)
M−1

where M = (KKT )−1 and σ2
n is the variance of the process noise. This indicates that if the

variance of the noise is small, the mean error between Admd and Atrue is small. Note that

if the input term (U0) is set to zero, then the result for standard DMD is recovered. The

error is influenced by the selection of the input. The influence becomes more apparent by

analyzing the squared error of the identified A matrix and the true A matrix. Again, noise

is assumed to be small and only up to the quadratic terms in N0 are kept

(Admd −Atrue)2 = (N0K
TM−1)2. (4.51)

After some algebraic manipulation, the expected value of the squared error can be computed
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as

E[(Admd −Atrue)
2] = σ2

ntr
(
M−1

)
. (4.52)

This indicates that the inputs, U0 and the initial condition are important in contributing to

this squared error term. It appears that the larger the amount of energy in the input and

the initial condition, the smaller the squared error between the identified A and the true

A matrix. The effects of the input and the initial condition can be seen when evaluating a

one-state system,

X1 = aX0 + bU0 +N0. (4.53)

The variance in identifying the atrue and the admd of this one-state system can be computed

as

E[(admd − atrue)
2] = σ2

a = σ2
ntr
((

(x0A1 + U0B2)(AT1 x0 +BT
2 U

T
0 )
)−1
)

(4.54)

=
σ2
n

x2
0 +

∑ns−1
k=1

(
akx0 +

∑k
m=1 a

k−mbum−1

)2 . (4.55)

The variance computed in this one state example using the IOROM approach is dependent

on the variance of the noise. When the variance of the noise increases, the variance of the

system, a, increases. In addition, if the energy in the initial condition, x0 increases, the

variance will decrease. The benefit of using this IOROM approach can be seen in the input

term, u. If an appropriate input is selected, then the variance of the system decreases. This

can be useful in identifying a low-dimensional model for a high-dimensional system. The

main drawback of this IOROM approach is that the system must be of the form where it

is easily excitable by a controllable input.

4.10 Analyzing the DMD modes

The DMD modes computed using the proposed IOROM approach are influenced by the

choice of the external forcing on the system. The next subsections will detail the influence

of the input on the selection of the DMD modes. This will follow the sparsity-promoting

framework for standard DMD presented in [73].
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4.10.1 Optimal Amplitudes of DMD modes

As is done in standard DMD, an eigenvalue decomposition of the F matrix, obtained using

the IOROM approach, can be used to construct DMD modes at a specific temporal frequency

F =
[
ψ1 . . . ψr

]
︸ ︷︷ ︸

Ψ


µ1

. . .

µr


︸ ︷︷ ︸

Dµ


ζT1
...

ζTr


︸ ︷︷ ︸

ZT

, (4.56)

where Ψ is a matrix that contains the left eigenvectors, Z is a matrix that contains the right

eigenvectors, and Dµ contains the associated eigenvalues. The solution to the reduced-order

system (4.36) is given by

zt = F tz0 +
t−1∑
m=0

F t−m−1Gum (4.57)

= (ΨDt
µZ

T )z0 +
t−1∑
m=0

(ΨDt−m−1
µ ZT )Gum. (4.58)

Equivalently, the modal contribution of the initial condition and the input to the state zt

is captured by

zt =
r∑
i=1

ψiµ
t
i ζ
T
i z0︸︷︷︸
αi

+
t−1∑
m=0

r∑
i=1

ψiµ
t−m−1
i ζTi G︸︷︷︸

βTi

um, (4.59)

where αi and βi determine the contribution of the ith mode to the response.

The DMD modes can be expressed as φi := Urψi where Ur contains the POD modes. The

state of the full-order system can be approximated by (4.41). Thus, the solution to the

full-order state can be written as

xt = Ur

(
r∑
i=1

ψiµ
t
iαi

)
+ Ur

(
t−1∑
m=0

r∑
i=1

ψiµ
t−m−1
i βTi um

)

=
r∑
i=1

φiµ
t
iαi +

t−1∑
m=0

r∑
i=1

φiµ
t−m−1
i βTi um.

By expressing the matrix of snapshots X0 as

X0 = Φ

r∑
i=1

[
µti

∑t−1
m=0 µ

t−m−1
i uTm

]
︸ ︷︷ ︸

qTi (t)

[
αi

βi

]
︸ ︷︷ ︸

ηi

. (4.60)
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The spectral coefficients αi and βi capture contribution of individual DMD modes. Note

that columns of the matrix Φ are determined by the DMD modes φi. Equivalently, in the

vector form 
x0

x1

...

xns−1


︸ ︷︷ ︸

Ψ̃

=


Ur
(∑r

i=1 ψiq
T
i (0)ηi

)
Ur
(∑r

i=1 ψiq
T
i (1)ηi

)
...

Ur
(∑r

i=1 ψiq
T
i (N − 1)ηi

)

 , (4.61)

or

X̃ = diag(Ur)Q η

where diag(Ur) is a block-diagonal matrix containing the matrix Ur on the main diagonal

and

Q =


ψ1q

T
1 (0) ψ2q

T
2 (0) . . . ψrq

T
r (0)

ψ1q
T
1 (1) ψ2q

T
2 (1) . . . ψrq

T
r (1)

...
. . .

...

ψ1q
T
1 (ns − 1) ψ2q

T
2 (ns − 1) . . . ψrq

T
r (ns − 1)


and

η =


η1

η2

...

ηr

 .

The vector of amplitudes of the DMD modes, η, can be found as the solution to the least-

squares problem

minimize
η

J(η) :=
∥∥∥X̃ − diag(Ur)Qη

∥∥∥2

2
(4.62)

and it is determined by

ηdmd =
(
QTQ

)−1QTdiag(UTr )X̃. (4.63)

4.10.2 Sparsity-Promoting DMD for Systems with Inputs

Next, the problem of identifying a subset of DMD modes that strikes an optimal balance

between fidelity to available data and model complexity is addressed. In contrast to POD

modes, DMD modes are not orthogonal, and there is no natural ordering. Dominant modes

can be identified by solving the regularized least-squares problem where the regularization

term is introduced as a proxy for inducing sparsity. This approach represents an extension

of the sparsity-promoting DMD algorithm [73] with the main difference being that it is

desired to promote block sparsity instead of elementwise sparsity [101].
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Consider the regularized optimization problem

minimize
η

J(η) + γ
r∑
i=1

‖ηi‖2 , (4.64)

where the Euclidean norm of the DMD amplitudes g(η) :=
∑

i ‖ηi‖2 is introduced to pro-

mote block sparsity. A similar approach is typically used in statistics literature to drive a

set of variables (in this case, coefficients αi and βi) jointly to zero.

Once this optimization problem is solved, a sparsity structure is fixed based on the non-zero

coefficients that determine the contribution of each DMD mode to a particular snapshot.

Specifically, the “polished” amplitudes are found by solving a constrained quadratic program

minimize
η

J(η)

subject to ET η = 0,
(4.65)

where E provides information about the sparsity structure of the coefficients contained in

η.

4.10.3 Alternating Direction Method of Multipliers Algorithm

The algorithm used to solve (4.64) is based on Alternating Direction Method of Multipliers

(ADMM) [102]. The objective function in optimization problem (4.64) can be rewritten as:

J(η) = ηTPη − q̃T η − ηT q̃, (4.66)

where P := QTQ and q̃ = QTdiag(UTr )X̃. This is a convex optimization problem that can

be solved using standard algorithms, such as ADMM. To bring the problem into a form

amenable to ADMM, an auxiliary optimization variable ε is introduced,

minimize
η,ε

J(η) + γ g(ε)

subject to η − ε = 0
(4.67)

and define the augmented Lagrangian

Lρ(η, ε, ρ) := J(η) + γg(ε)

+
1

2

(
λT (η − ε) + (η − ε)Tλ+ ρ‖η − ε‖22

)
.

(4.68)

Here, λ is a vector of Lagrange multipliers and ρ is a positive parameter. ADMM minimizes

the augmented Lagrangian separately with respect to x and z followed by a dual ascent

67



update of the Lagrange multiplier λ,

ηk+1 = argmin
η

Lρ(η, εk, λk)

εk+1 = argmin
ε

Lρ(ηk+1, ε, λk)

λk+1 = λk + ρ (ηk+1 − εk+1).

(4.69)

It can be shown that η and ε can be explicitly updated

ηk+1 = (P + (1/ρ)I)−1
(
q̃ + ρ

2

(
εk − 1

ρλ
k
))

εk+1 =

{ (
1− a

‖vk‖2

)
vk, ‖vk‖2 > a

0, ‖vk‖2 < a.

where a = γ/ρ and vk = ηk+1 + (1/ρ)λk.

4.11 Example: Linearized Channel Flow

This chapter uses the three-dimensional incompressible linearized Navier-Stokes equations

in a channel flow to illustrate these developments; see Fig. 4.1 for geometry. The application

of the Fourier Transform in the streamwise (x) and the spanwise (z) directions along with

the use of a pseudospectral method in the wall-normal direction yields the finite-dimensional

state-space representation

ẋ(kx, kz, t) = A(kx, kz)x(kx, kz, t) +B(kx, kz)u(kx, kz, t), (4.70)

where kx and kz are the wave numbers in the x and z direction, x is the state and u

is a spatially distributed and temporally varying body forcing. This system governs the

dynamics of infinitesimal flow fluctuations around the parabolic velocity profile U(y) =

1 − y2. In what follows, the Reynolds number is fixed to Re = 2000 and is confined to

a pair of horizontal wavenumbers (kx = 1, kz = 1). In the wall-normal direction, 200

collocation points are used, resulting in 400 total states. This system is advanced in time

and snapshots are recorded with ∆t = 1. A random initial condition that satisfies proper

boundary conditions in the wall-normal direction is used and all numerical computations are

performed in Matlab. For additional details about the linearized Navier-Stokes equations,

the reader is referred to [103].

4.11.1 DMD vs. DMD with Exogenous Inputs

First, a reduced-order model of the channel flow problem was constructed using standard

DMD and the IOROM approach to demonstrate the benefit of adding an exogenous input
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Figure 4.1: Depiction of the channel flow problem.

Figure 4.2: (Left) Eigenvalues obtained with standard DMD and the IOROM approach.
(Right) Eigenvalues in the presence of noise with variance 10−11.

to the system. For the IOROM approach, the system is excited for 100 seconds using a

streamwise body forcing that enters as a temporal chirp excitation in the middle of the

channel, i.e. y = 0. This results in 100 snapshots that are used as a basis for system

identification.

Figure 4.2 shows the eigenvalues of the full-order A operator, the A operator identified by

DMD, and the A operator identified by the IOROM approach. This approach can be used

to identify the eigenvalues of the system in the same way as standard DMD. The input

excitation provides additional energy to the system to aid in identifying the dynamics. In

particular, the IOROM approach can handle small amounts of process noise. Figure 4.2

compares the eigenvalues resulting from standard DMD and the IOROM approach for the

system subject to process noise with a variance of 10−11. The IOROM approach is more

robust than standard DMD. This is in concert with the results in system identification

literature [69], where it has been shown that the choice of input plays an important role in

the ability to characterize the dynamics of the system.

It should be noted that this particular example is sensitive to small amounts of noise. When
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Figure 4.3: This figure shows the sensitivity of the eigenvalues, δλ, using the DMD and
IOROM approaches for the channel flow problem. The values plotted are the upper bound.

evaluating the full-order A matrix, it can be seen that many of the eigenvalues are clustered

around zero. The sensitivity of the eigenvalues can be evaluated by their condition number

defined as

c =
1

|ζTψ|
(4.71)

where ζ and ψ are the left and right eigenvectors corresponding to the same eigenvalue,

respectively [104]. Large condition numbers of eigenvalues indicate that they are very

sensitive to small perturbations in the A matrix. The additional excitation signal provided

by the IOROM approach, on average, decreases the error between the full-order A operator

and the identified A operator. The sensitivity of the eigenvalues to small perturbations in

the A matrix can be bounded by

δλ ≤ ‖δA‖
|ζTψ|

, (4.72)

where δλ denote the variations in eigenvalues and δA denote the differences in the identified

A matrix (using DMD and the IOROM approach) and the true A matrix. Figure 4.3 shows

the upper bound of the variations in the eigenvalues. The A matrix identified by DMD

results in higher variations in the eigenvalues than the A matrix identified by the IOROM

approach. This is due to the presence of an excitation signal. It should be noted that

the IOROM approach still results in large variations; however, choosing the appropriate

excitation signal can decrease those variations significantly.

A number of simulations were run (between 10 and 100 simulations) and the A matrices

were identified using DMD and the IOROM approach. The resulting A matrices were

averaged and the eigenvalues were computed from the averaged A matrix. Figure 4.4 shows

that as the identified A matrix is averaged over more simulations, the eigenvalues identified

with DMD and the IOROM approach are moving toward the eigenvalues of the full-order

system, especially when the noise variance is small. Here the noise variance is 10−11.
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Figure 4.4: (Left) Average eigenvalues identified by DMD and the IOROM approach after
10 simulations. (Right) Average eigenvalues for 100 simulations.

Figure 4.5: (Left) This figure shows the average maximum error between entries in the
full-order A matrix and the A matrices identified by the DMD (blue) and the IOROM
approach (red). (Right) This figure shows the average maximum variance between entries
in the full-order A matrix and the A matrices identified by the DMD (blue) and the IOROM
approach (red).

However, there is still a bias in the error between the identified A matrix and the true A

matrix, see Figure 4.5 (left). Figure 4.5 (left) shows the mean maximum error between

entries in the full-order A matrix and the A matrices identified by DMD (blue) and the

IOROM approach (red). Similarly, the maximum variance between entries in the identified

A matrix and the full-order A matrix is shown in Figure 4.5 (right). This agrees with the

analysis in Section 4.9. The bias is reduced when an appropriate excitation signal is chosen.

4.11.2 Sparsity-Promoting DMD for Systems with Inputs

Next, the dominant DMD modes are identified using the sparsity-promoting DMD algorithm

for systems with inputs. For this setup, the rank of the snapshots matrix, X0, is r = 50. The
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Figure 4.6: (Left) Performance loss with respect to the number of DMD modes selected.
(Right) Eigenvalues the are omitted when using the sparsity promoting approach. This is
shown for Nz = 31.

sparsity-promoting algorithm eliminates the DMD modes that have a weak contribution to

the available data.

Figure 4.6 (left) shows the performance loss as the sparsity-promoting algorithm eliminates

DMD modes. The performance loss (PL) is computed by:

PL(%) := 100

√
J(η)

J(0)
. (4.73)

There is minimal loss in performance using only 35 DMD modes (< 1%). As the number of

DMD modes get smaller the performance loss increases. For example, reducing the number

of DMD modes to 25 introduces a 15% performance loss.

Figure 4.6 (right) shows the eigenvalues that are preserved with 31 DMD modes. This

number offers a performance loss of only 7%. The number of DMD modes retained is

determined by the number of non-zero ηi vectors where each ηi vector contains the spectral

coefficients associated with a particular mode. A vector, ηi is considered non-zero if at least

one of its entries is non-zero. In other words, all of the elements of the vector ηi have to

be zero for a DMD mode to be removed. These eigenvalues are associated with the DMD

modes that can capture the essential dynamics of the system.

The tradeoff between model performance and the number of DMD modes kept can be ana-

lyzed by changing the regularization parameter γ. As γ increases, more emphasis is placed

on sparsity rather than model performance. This is shown in Figure 4.7. In particular,

Figure 4.7 (left) demonstrates that as γ increases, the number of non-zero vectors ηi de-

creases. The number of non-zero vectors is associated with the number of DMD modes

retained. As the number of DMD modes decreases, it is expected that the performance
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Figure 4.7: (Left) Non-zero (Nz) xi vectors as γ increases. The number of non-zero vectors
correspond to the number of DMD modes retained. (Right) Performance loss as γ increases.

of the reduced-order model also decreases. Figure 4.7 (right) shows the performance loss

as γ increases. This indicates that increasing sparsity reduces quality of approximation of

available snapshots.

4.12 Conclusions

This chapter introduced an extension to DMDc that can construct an input-output reduced-

order model that can be used for high-dimensional systems. This approach takes advantage

of characterizing the dominant dynamics in the flow and provides a low-order approximation

of the flow. Using this low-order approximation, a reduced-order model can be constructed

that retains the input-output behavior seen in the full-order model. This reduced-order

model has a low computational cost and contains the necessary dynamics that are important

for problems such as wind farm control. This technique avoids computing the adjoint, as is

done in BPOD, and the states of the reduced-order model maintain some physical meaning.

In addition, this IOROM technique is able to maintain robustness to small amounts of

process noise.

Lastly, this chapter presented the sparsity-promoting DMD technique, which has been ex-

tended to include exogenous inputs to the system. This approach was demonstrated on the

linear channel flow example and was compared to the standard DMD approach. It can be

seen that the addition of an external input can improve the performance of the reduced-

order model with minimal loss in model performance. It was also shown that the addition

of an exogenous input to the system may impact the selection of DMD modes. The next

chapter will extend this IOROM technique to parameter varying systems which is necessary

for the wind farm problem.
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Chapter 5

Parameter Varying

Reduced-Order Modeling

5.1 Introduction

This chapter describes an extension of the IOROM approach, described in Section 4.8,

to construct reduced-order linear parameter varying (LPV) models that approximate high-

order nonlinear models. The nonlinear system is assumed to have a parameterized collection

of equilibrium operating points. For example, the free-stream wind speed and wind direction

parameterize the equilibrium condition in a wind farm. Related work on this particular

topic has been done looking at flexible aircraft [26, 105, 106]. Many studies use linear

methods such as Krylov methods [106, 107]. The proposed LPV approach involves two

steps. The first step, described in Section 4.8, uses POD [18–20] and direct subspace

identification [16] to construct an input-output reduced-order model (IOROM). This step

is similar to DMDc [25], which can be used to construct a reduced-order linear model at

one operating condition. Second, the reduced-order models constructed at fixed operating

conditions are “stitched” together using a parameter varying linearization (discussed in

Section 5.2). The key technical issue is that the states of the reduced-order model must

have a consistent meaning across all operating conditions as described in Section 5.3. This

state consistency issue has been addressed in other studies [108]. The difference in this

chapter is that the parameter is allowed to vary in time for a given simulation. The IOROM

approach handles this issue by constructing a single reduced-order subspace that is used at

all operating conditions. This approach and the LPV linearization method are demonstrated

on a nonlinear mass-spring-damper example with 200 states in Section 5.5.
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5.2 Linearization for Parameter Varying Systems

To introduce the parameter varying nature to the nonlinear system described in (4.32), a

time-varying parameter ρ is added, describing the operating condition, to the system such

that the system is now defined as

xk+1 = f(xk, uk, ρk)

yk = h(xk, uk, ρk).
(5.1)

The proposed approach in Chapter 4 can be extended to this case using a parameter varying

linearization similar to the one described in [109].

Assume there is a collection of equilibrium points (x̄(ρ), ū(ρ), ȳ(ρ)) such that

x̄(ρ) = f(x̄(ρ), ū(ρ), ρ)

ȳ(ρ) = h(x̄(ρ), ū(ρ), ρ).
(5.2)

If the state is initialized at x0 = x̄(ρ), the input is held fixed at uk = ū(ρ), and the

operating condition is frozen at ρk = ρ then the state and output will remain in equilibrium

at xk = x̄(ρ) and yk = ȳ(ρ) for k = 0, 1, . . .. Thus (x̄(ρ), ū(ρ), ȳ(ρ)) defines an equilibrium

condition for each fixed value of ρ.

The nonlinear dynamics can be linearized around the equilibrium points defined for each

fixed value of ρ. Define perturbations from the equilibrium condition as

δxk := xk − x̄(ρ), δuk := uk − ū(ρ), δyk := yk − ȳ(ρ). (5.3)

For a fixed operating condition (ρk = ρ for k = 0, 1, . . .), a standard linearization yields

δxk+1 = A(ρ)δxk +B(ρ)δuk

δyk = C(ρ)δxk +D(ρ)δuk,
(5.4)

where the linearized state matrices are defined by

A(ρ) :=
∂f

∂x

∣∣∣∣
(x̄(ρ),ū(ρ),ρ)

, B(ρ) :=
∂f

∂u

∣∣∣∣
(x̄(ρ),ū(ρ),ρ)

C(ρ) :=
∂h

∂x

∣∣∣∣
(x̄(ρ),ū(ρ),ρ)

, D(ρ) :=
∂h

∂u

∣∣∣∣
(x̄(ρ),ū(ρ),ρ)

.

(5.5)

Next consider the case where the operating condition, specified by the parameter ρk, varies

in time. In general, (xk, uk, yk) := (x̄(ρk), ū(ρk), ȳ(ρk)) is not a valid solution of the non-

linear system. In other words, the parameterized state/input/output values only define an
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equilibrium condition for fixed values of ρ. Despite this fact, it is still possible to construct

a time varying linearization around the parameterized values (x̄(ρ), ū(ρ), ȳ(ρ)). Re-define

perturbation variables as follows for the case where ρ varies in time

δxk := xk − x̄(ρk), δuk := uk − ū(ρk), δyk := yk − ȳ(ρk). (5.6)

A valid (time-varying) linearization can be obtained when ρk is time-varying as follows

δxk+1 = f(xk, uk, ρk)− x̄(ρk+1). (5.7)

A Taylor series expansion of f(xk, uk, ρk) yields

f(x̄k(ρk) + δxk, ūk(ρk) + δuk, ρk) ≈ x̄(ρk) +A(ρk)δxk +B(ρk)δuk. (5.8)

where A and B are as defined in (5.5). A similar Taylor series approximation can be

performed to linearize the output function h (5.1) in terms of the matrices C and D defined

in (5.5). Combining (5.7) and (5.8) leads to the following parameter varying linearization

δxk+1 = A(ρk)δxk +B(ρk)δuk + (x̄(ρk)− x̄(ρk+1))

δyk = C(ρk)δxk +D(ρk)δuk.
(5.9)

This differs from the standard linearization at a single fixed operating point in two respects.

First, ρk varies in time and hence this is a time-varying system. More precisely, the time

variations in the state matrices (A,B,C,D) arise due to ρk and hence this is called a linear

parameter varying (LPV) system. There are many tools in the controls literature that

address this class of systems [110–113]. Second, the equilibrium state varies in time due

to the changing operating condition. This effect is retained by the term x̄(ρk) − x̄(ρk+1)

which provides a forcing term for the dynamics. This model linearizes the dependence on

the state and the input. The linearization approximation is accurate as long as the state,

input, and output remain near the manifold of equilibrium points (x̄(ρk), ū(ρk), ȳ(ρk)). It

is important that the nonlinear dependence on the operating condition (specified by ρk) is

retained.

5.3 State Consistency Issue

Parameter varying linearizations can be constructed using data from steady operating con-

ditions specified by constant values of ρ. Specifically, the linearization only requires state

matrices (A(ρ), B(ρ), C(ρ), D(ρ)) and equilibrium conditions (x̄(ρ), ū(ρ), ȳ(ρ)) at each fixed

value of ρ. In principal, the proposed IOROM method or another model reduction method

can be used to identify reduced-order state matrices at each operating point, ρ. One key
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technical issue is state consistency.

To clarify this issue, consider an autonomous system without inputs and outputs. Let A(ρ)

denote the state matrix that appears in the parameter varying linearization. For example,

DMD can be used at each fixed value of ρ to identify a subspace spanned by Q(ρ) ∈ Rnx×r(ρ)

and a reduced-order matrix F (ρ) ∈ Rr(ρ)×r(ρ) such that A(ρ) ≈ Q(ρ)F (ρ)Q(ρ)T . The

reduced-order state at the operating point ρ is defined as z := Q(ρ)T δx ∈ Rr(ρ). This

reduced-order state, z, will lack consistency if the projection subspace Q(ρ) depends on

the parameter ρ. In other words, the meaning of z and dimension r(ρ) will depend on the

value of ρ. Hence the state, z, at ρ1 will not, in general, be consistent in either meaning or

dimension with the state z at ρ2 6= ρ1.

To circumvent this issue, a single consistent subspace Q ∈ Rnx×r should be used at all

operating conditions. The reduced-order state z := QT δx ∈ Rr then has a consistent

meaning for all parameter values. Moreover, a reduced-order matrix F (ρ) ∈ Rr×r can be

identified at each value of ρ such that A(ρ) ≈ QF (ρ)QT . This would lead to a reduced-order

parameter varying linearization of the form

zk+1 = F (ρk)zk + (z̄(ρk)− z̄(ρk+1)) , (5.10)

where z̄(ρ) := QT x̄(ρ) is the equilibrium state projected onto the reduced subspace. The

next section presents a method to address this state consistency issue.

5.4 Reduced-Order Parameter Varying Linearizations

The proposed parameter varying IOROM approach, shown in Algorithm 1, constructs a

reduced-order model for a discrete-time nonlinear system (5.1) in four steps. First, a collec-

tion of parameter values are selected (Line 1). Second, data is collected from the nonlinear

system at these selected parameter values (Lines 2-5). The collected data includes the

equilibrium conditions as well as state/input/output snapshots obtained by exciting the

nonlinear system. The algorithm, as written, assumes that the same number of snapshots

ns are obtained at each grid point. However, the number of snapshots can easily change with

each grid point. Third, a single r-dimensional subspace of the state space is constructed

(Lines 6-9). The subspace, defined by an orthogonal matrix Q ∈ Rnx×r, is constructed from

the POD modes of the snapshots obtained from all parameter values. Fourth, reduced-

order state matrices are computed at each parameter vector using the IOROM approach

described in Section 4.8 (Lines 10-11).

The outcome of Algorithm 1 is a single r-dimensional subspace Q as well as equilibrium

conditions and reduced-order state matrices computed at the selected grid points. This
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Algorithm 1 Reduced-Order Parameter Varying Linearization

1: Given: Collection of parameter grid points {pj}ngj=1.

2: Data Collection: At each grid point j = 1, . . . , ng do the following:
3: Equilibrium: Compute the equilibrium condition (x̄(pj), ū(pj), ȳ(pj)) at ρ = pj .
4: Experiment: Excite the nonlinear system (5.1) with fixed ρk = pj . The initial

condition x0 and input uk should be near the equilibrium condition (x̄(pj), ū(pj)).
5: Snapshots: Define the matrices of snapshot deviations from the equilibrium con-

ditions at pj :

X0(pj) := [x0 − x̄(pj), . . . , xns−1 − x̄(pj)] ∈ Rnx×ns (5.11)

X1(pj) := [x1 − x̄(pj), . . . , xns − x̄(pj)] ∈ Rnx×ns (5.12)

U0(pj) := [u0 − ū(pj), . . . , uns−1 − ū(pj)] ∈ Rnu×ns (5.13)

Y0(pj) := [y0 − ȳ(pj), . . . , yns−1 − ȳ(pj)] ∈ Rny×ns (5.14)

6: Construct Subspace for State Reduction:
7: Stack Data: Define matrix of all state data: X0 := [X0(p1), . . . , X0(png)] ∈

Rnx×(nsng).
8: POD Modes: Compute POD modes of X0.
9: Subspace: Choose r modes, denoted Q ∈ Rnx×r, to capture sufficient energy in
X0.

10: Reduced-Order State Matrices: At each grid point j = 1, . . . , ng do the following:
11: IOROM: Use snapshot data (X0(pj), X1(pj), U0(pj), Y0(pj)) and subspace Q to

compute state matrices (F (pj), G(pj), H(pj), D(pj)) via IOROM.

yields a reduced-order parameter varying linearization of the nonlinear system of the form

zk+1 = F (ρk)zk +G(ρk)δuk + (z̄(ρk)− z̄(ρk+1))

δyk = H(ρk)zk +D(ρk)δuk,
(5.15)

where z := QT δx ∈ Rr is the reduced-order state and z̄(ρ) := QT x̄(ρ) ∈ Rr is the reduced-

order equilibrium state. The single subspace defined by Q is used to construct state matrices

at all parameter values. Hence the reduced-order state z retains a consistent meaning

across the parameter domain. Note that Algorithm 1 only computes the state matrices and

equilibrium conditions on a grid of specified parameter values. Interpolation (e.g., linear,

spline, etc.) must be used to evaluate the state matrices and equilibrium conditions at any

parameter value not contained in this grid. It is assumed that the grid of parameter values

is sufficiently dense that this interpolation is accurate.

The parameter varying linearization can be used to approximate the response of the nonlin-

ear system for an initial condition x0, input uk, and parameter trajectory ρk. Specifically,
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Algorithm 2 Hybrid POD/Gram-Schmidt Approach to Construct Subspace

1: Given: Collection of parameter grid points {pj}ngj=1 and snapshots X0(pj) from each
grid point.

2: Initial Point: Use standard POD to compute r1 modes Q(p1) ∈ Rnx×r1 to capture
sufficient energy in X0(p1).

3: Iterative Processing: For j = 2, . . . , ng, iteratively compute additional modes at
each grid point. Given Q1 := [Q(p1), . . . Q(pj−1)], use iterative POD to compute rj
additional modes Q(pj) ∈ Rnx×rj to capture sufficient energy in X0(pj).

4: Subspace: Stack modes to form a single subspace defined by Q := [Q(p1), . . . , Q(png)].

the initial condition and input for the nonlinear system define a corresponding initial con-

dition z0 = QT (x0 − x̄(ρ0)) and input δuk = uk − ū(ρk) for the parameter varying system.

The reduced-order, parameter varying linearization (5.15) can be simulated to obtain the

state response zk and output δyk. These correspond to the state response xk = Qzk + x̄(ρk)

and output yk = δyk + ȳ(ρk) for the full-order nonlinear system.

The subspace construction step of Algorithm 1 (Lines 6-9) requires the SVD of the matrixX0

that contains the snapshot data from all the operating points. This matrix has nsng columns

and hence the SVD of X0 may be computationally intractable if there are many grid points.

A suboptimal, but more computationally efficient approach, is to iteratively process the

snapshot data from each grid point. The basic idea is to determine a set of modes Q(p1) that

capture the energy in the snapshots at the first grid point. Next, additional modes Q(p2) are

computed so that the combined set [Q(p1), Q(p2)] captures the energy in the snapshots at the

second grid point. The procedure continues iteratively computing new modes Q2 := Q(pj)

to combine with previously computed modes Q1 := [Q(p1), . . . , Q(pj−1)]. The benefit is that

only snapshots obtained from one grid point are required for the calculations. This method

can be thought of as a hybrid POD/Gram-Schmidt approach. Also, it is assumed that the

snapshots from one simulation or experiment have comparable amounts of energy, which

makes this approach reasonable. This iterative procedure requires a method to compute

the optimal (new) modes Q2 that should be added to some given modes Q1. Theorem 1 in

the appendix provides a POD-type result to perform this iterative calculation. Algorithm 2

gives the detailed steps for the iterative subspace construction. This iterative method can

replace the single-step method described in Lines 6-9 of Algorithm 1. The remaining steps

of Algorithm 1 are unchanged even when combined with the iterative subspace calculation.

There are several benefits of the proposed reduced-order LPV models. The main benefit is

that the models can be used for standard, gain-scheduled control. In addition, more formal

control analysis and synthesis tools have been developed for LPV systems [110–112]. This

LPV modeling approach can yield models that are accurate over a wide range of operating

conditions for a nonlinear system. This is in contrast to the existing reduced-order modeling
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approaches described in Chapter 4 which, for the most part, are used to construct a single

linear model. In addition, the proposed method relies on input/output data from a forced

response and does not require linearization of the system or the construction/simulation

of the system adjoint as in balanced POD. Finally, the reduced-order model involves a

projection onto a well-defined reduced-order subspace. This retains a physical meaning in

the reduced-order states. In other words, the reduced-order state can be used to approxi-

mate the full-order state of the system. This provides insight into the key spatial modes of

fluid/structure systems and is not simply a black-box identification technique, often seen

in subspace identification. The remainder this chapter emphasizes this application of this

method to develop LPV models for nonlinear systems.

5.5 Example: Nonlinear Mass-Spring-Damper

This section demonstrates the proposed parameter varying IOROM approach on a nonlinear

mass-spring-damper example. The purpose of this model is to show how this method is

implemented in detail as well as the feasibility of this method. A more complex example is

implemented in Chapter 6.

5.5.1 Model Formulation: 1-Block

A simple nonlinear mass-spring-damper example is presented to illustrate the parameter

varying linearization method described in Section 5.2. A single mass, shown in Figure 5.1,

is connected to a wall by a linear damper and nonlinear spring. Two forces, F and u, are

applied to the block. Newton’s second law yields the following continuous-time, nonlinear

model

d

dt

[
p

v

]
=

[
v

1
m (F + u− bv− ks(p)p)

]
. (5.16)

where p is the position of the block (units of m), v is the velocity (m/s), b is the (linear)

damping constant (in N/(m/s)), and ks(p) is a nonlinear spring constant (in N/m). The

spring constant has the form ks(p) = k1 + k2p2 and is assumed to be a stiffening spring

k2 > 0. The corresponding values for these system constants are given in Figure 5.1. Finally,

the block has two forces: an exogenous (disturbance) force F [N] and a controllable input

force u [N].

A continuous-time parameter varying linearization can be performed. Instead, the model

is discretized to align with the discrete-time development used in this chapter. A simple
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Parameter Value Unit

m 1 kg
k1 0.5 N/m
k2 1 N/m3

b 1 N/(m/s)

Figure 5.1: Nonlinear mass-spring-damper (Left) and system constants (Right).

Euler approximation with sample time ∆t yields a two-state discrete-time model

xk+1 = f(xk, uk, Fk) (5.17)

where x := [p, v]T is the state and the discretized dynamics are given by:

f(xk, uk,Fk) := xk + ∆t

[
vk

1
m (Fk + uk − bvk − ks(pk)pk)

]
. (5.18)

For simplicity, the outputs for this model will be the full state, i.e. y := x. The disturbance

force Fk is treated as the varying parameter in the dynamics: ρk := Fk . If u ≡ 0 and the

disturbance force is held constant at F ≡ ρ then the mass moves to an equilibrium position

p̄(ρ). This equilibrium position can be determined by solving the cubic equation ρ = ks (p̄) p̄

for p̄. Thus a parameterized collection of equilibrium conditions for the mass-spring-damper

system is

(x̄(ρ), ū(ρ)) :=
([

p̄(ρ)
0

]
, 0
)
. (5.19)

The parameter varying linearization around this collection of equilibrium points is given by

δxk+1 = A(ρk)δxk +B(ρk)δuk + (x̄(ρk)− x̄(ρk+1)) , (5.20)

where: A(ρ) := I2 +∆t
[

0 1

−
ks,lin(ρ)

m
− b

m

]
and B(ρ) := ∆t

[
0
1
m

]
. The linearized spring constant

at the operating condition ρ is ks,lin(ρ) := k1+3k2p̄(ρ)2. The spring stiffens as it is stretched

and, as a result, the dynamics of the system change when the exogenous disturbance force

F is applied.

Figure 5.2 shows responses of the nonlinear system and the corresponding parameter varying

(LPV) linearization. The parameter varying linearization is in discrete-time with a sample

time of ∆t = 0.01 s. The external force is ρk := Fk = 0.8 cos(0.1ks∆t) N. The initial

condition is x(0) = [p̄(ρ0), 0]T = [0.751, 0]T which corresponds to δx0 = 0. The controllable
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Figure 5.2: System response vs. time (left) and vs. parameter (right)

input is set to δuk = 0 for the entire simulation. Thus the only forcing arises due to the

changing external disturbance force. This appears as a forcing term in the parameter varying

linearization (5.20) due to the varying equilibrium term. The left subplot of Figure 5.2 shows

the position and velocity vs. time. The parameter varying linearization agrees closely with

the true nonlinear response. There are some small discrepancies between the two velocity

trajectories. The parameter varying linearization is accurate even though the exogenous

disturbance force, position, and velocity all vary over a large range. The right subplot

shows the position and velocity vs. exogenous force. This subplot also shows the equilibrium

(trim) relation x̄(ρ) given in (5.19). The key point is that the position and velocity stay near

this equilibrium manifold throughout the simulation. As a consequence, (δxk, δuk) remain

small and the Taylor series approximation is accurate. If the frequency of ρk is increased

then the trajectories will deviate more significantly from the equilibrium manifold. As a

consequence, faster changes in the exogenous force lead to larger linearization errors.

5.5.2 Model Formulation: M-Blocks

This nonlinear mass-spring-damper is extended to consist of M blocks. Each block has mass

m and is connected to its neighboring block by a linear damper and nonlinear spring. In

addition, each block is connected to “ground” (fixed wall) by a linear damper and nonlinear

spring. All dampers have constant b and all springs are given by ks(p) = k1 +k2p2. Finally,

the M th block has an exogenous (disturbance) force F and a controllable input force u.

Let (pi, vi) denote the position and velocity of block i. The continuous-time dynamics for

this M -block mass-spring-damper system are described by

mv̇i = −Fi − Fi,i−1 − Fi,i+1 (i = 1, . . . ,M − 1)

mv̇M = F + u− FM − FM,M−1,
(5.21)
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where Fi denotes the force due to a spring and damper connecting block i to the fixed

wall. Fi,j denotes the force due to a spring and damper connecting blocks i and j. These

forces are defined as Fi := bvi + ks(pi)pi and Fi,j := b(vi − vj) + ks(pi − pj) (pi − pj). The

convention for the first block is F1,0 ≡ 0. The position of the M th block is the output for

the system, i.e. y = pM . All mass, spring, and damping constants are the same as those

given in Figure 5.1. The result is a nonlinear system with state x := [pT , vT ]T ∈ R2M , a

single controllable input u and single output y. The exogenous force F is again considered

as a parameter in this model (ρ := F). All results are given for M = 100 blocks. This is

small enough that the reduced- and full-order models can be directly compared to assess

the feasibility of the method.

5.5.3 IOROM Method: Single Operating Point

The IOROM method described in Section 4.8 is used to construct a single time-invariant

model with the exogenous force held constant at ρ ≡ 1 N. The system is simulated with

ρ ≡ 1 and u = 0 to determine the equilibrium point x̄(ρ) for this parameter value. Next, the

nonlinear system is excited for Tf = 20 s with a chirp excitation input u(t) = 0.1 sin(ω(t)t).

The chirp frequency is ω(t) = 0.1 (20)t/Tf which excites the nonlinear system with frequen-

cies from 0.1 to 2 rad/s. The nonlinear system is simulated with a time step of 0.01 s and

snapshots of the state/output are collected every ∆t = 0.1 s. This yields 200 snapshots over

the Tf = 20 s simulation.

The left subplot of Figure 5.3 shows the POD and least-squares fitting errors obtained by

the IOROM procedure. The horizontal axis is the number of POD modes selected from the

snapshots X0. The POD error is the relative energy lost in X0 by selecting the specified

number of POD modes. The model relative fitting error is obtained by evaluating the

IOROM least-squares cost with the optimal fit and dividing by
∥∥∥[X1

Y0

]∥∥∥
F

. Both relative

errors decrease rapidly with increasing number of POD modes. The fitting error levels off

around 4 modes hence this was selected for the model fit. The relative fit error does not

go to zero because the discrete-time linear system cannot perfectly fit the snapshots from

the nonlinear system. The right subplot shows a Bode plot for the four-state, reduced-

order, discrete time model. The plot also shows a 200-state, full-order, continuous time

linearization. The reduced-order model agrees quite closely with the full-order model in

the frequency band of input excitation. The mismatch between the two models at high

frequencies can be reduced by reducing the snapshot sampling time ∆t and increasing the

chirp excitation frequency.

A time-domain step response was used as another validation of the reduced-order model.

Specifically, the left subplot of Figure 5.4 shows the output of the discrete-time, reduced-
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Figure 5.3: IOROM Results: POD/Fit Relative Errors (left) and Bode Plot (right). Note
that the last block, x(100), also corresponds to the output of the system.

order four-state model with a step input δuk = 0.1. The exogenous force remains constant

at F = ρ = 1. The vertical axis shows the position of the M th block relative to the trim

position. The plot also shows the response of the full-order, nonlinear system. The nonlinear

system is initialized at the trim condition x(0) = x̄(ρ). The response of the reduced-order

model is in close agreement with the nonlinear model. Moreover, the states of the reduced-

order model zk retain a physical significance. These can be “lifted” to estimate the response

of the full-order system using the chosen POD modes (δxk ≈ Qzk). The right subplot of

Figure 5.4 compares a subset of these state estimates (position of blocks 98-100) for the

reduced-order system with the true response of the nonlinear system. Again there is close

agreement although some discrepancies appear in the response for block 98. This error is

due to the lack of input excitation. Specifically, the input force u is applied to block 100 and

the chosen chirp amplitude provides less excitation for blocks located further from block

100.

Finally, it is important to note that the quality of the reduced-order model degrades if too

many POD modes (i.e., much more than 4) are selected for the fit. This is due to overfitting

a linear model to a nonlinear response. Inverse modeling techniques may be used to select

the number of modes to accurately represent the system without overfitting [114]. The POD

and model fit errors shown in Figure 5.3 provide useful criteria to avoid such overfitting.

5.5.4 Parameter Varying IOROM Method

Next, the parameter varying IOROM method described in Section 5.4 is used to construct

parameter varying reduced-order models. A grid of eleven parameter values was selected

for the exogenous forces as {0, 0.2, . . . , 2}. At each fixed value of ρ = pj in this grid (j =

1, . . . 11) the system was simulated with u = 0 to determine the corresponding equilibrium
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Figure 5.4: IOROM Results: Output vs. Time (left) and States vs. Time (right)

point x̄(pj). Next, the nonlinear system is excited for Tf = 20 s at each pj with a chirp

excitation input u(t) = 0.1 sin(ω(t)t). The exogenous force F = ρ stretches the springs and

this increases the system speed of response due to the spring stiffening. Thus the chirp

frequency was chosen to depend on the parameter value as ω(t) = 0.1 (10 + 10ρ)t/Tf . This

excites the nonlinear system with frequencies from 0.1 to (1 + ρ) rad/sec. The nonlinear

system is simulated with a time step of 0.01 s and snapshots of the state/output are collected

every ∆t = 0.1 s. This yields 200 snapshots over the Tf = 20 s simulation for each parameter

grid point.

The basic single-step procedure (Algorithm 1) is used to construct the subspace modes

Q. This example is sufficiently small such that it was possible to compute the SVD on

snapshots obtained at all grid points. Five modes were selected and reduced-order models

were constructed at each grid point using the IOROM procedure. The model relative fitting

error was less than 0.05 at each grid point. This indicates that the reduced-order models at

each “fixed” grid point accurately match the recorded snapshot data. The iterative method

(Algorithm 2) was also implemented. This also yielded a five-state subspace Q although

with slightly larger fitting errors. The single-step and iterative approach gave similar results

and hence the remainder of the example focuses on the single-step algorithm.

Figure 5.5 compares a time-domain step response of the full-order nonlinear system and the

reduced-order LPV model. The exogenous disturbance varies as F(t) = ρ(t) = − cos(0.5t)+

1. The controllable input is a step u(t) = 0 for t < 25 s and u(t) = 0.1 for t ≥ 25 s.

The nonlinear system was simulated and the reduced-order parameter varying model was

simulated in discrete time. Linear interpolation was used to compute the state matrices

and equilibrium point appearing in the LPV model for parameter values not contained in

the eleven point grid. The left subplot of Figure 5.5 shows the position of the M th block.

This is obtained from the parameter varying model as yk = ȳ(ρk) + δyk. The response of
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Figure 5.5: LPV IOROM Results: Output vs. Time (left) and States vs. Time (right).
Again, note that the last block, x(100), also corresponds to the output of the system.

the reduced-order model is in close agreement with the nonlinear model. The effect of the

step input u is apparent after t = 25 s. Again, the states of the reduced-order model zk can

be “lifted” to estimate the response of the full-order system using the chosen POD modes

as xk = x̄(ρk) + δxk ≈ x̄(ρk) + Qzk. The right subplot of Figure 5.5 compares a subset of

these state estimates (position of blocks 98-100) for the reduced-order system with the true

response of the nonlinear system. Again, there is close agreement.

5.6 Conclusion

This chapter described a data-driven method to construct reduced-order models for high-

dimensional nonlinear systems. It is assumed that the nonlinear system has a collection

of equilibrium operating points. The method has two main components. First, a reduced-

order linear system is constructed at each equilibrium point using input/output/state data.

Second, a parameter varying linearization is used to connect these linear models. A non-

linear mass-spring-damper example was used to demonstrate this method. The following

chapters will illustrate the use of this method on more complex models related to wind farm

control.

5.7 Appendix

Theorem 1. Let Q1 ∈ Rnx×r1 be a given matrix with QT1 Q1 = Ir1. Let X ∈ Rnx×ns be given

snapshot data. Define the SVD of the projected snapshot matrix (Inx −Q1Q
T
1 )X = UΣV T .

Let r2 be any non-negative integer such that r2 ≤ rank((Inx −Q1Q
T
1 )X) and σr2 > σr2+1.

Then
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min
Q2∈Rnx×r2 , QT2 Q2=Ir2

C1∈Rr1×ns
C2∈Rr2×ns

‖X −Q1C1 −Q2C2‖2F =

rank(X)∑
k=r2+1

σ2
k (5.22)

An optimal solution is given by C1,opt = QT1 X, Q2,opt = Ur, and C2,opt = ΣrV
T
r where Σr,

Ur, and Vr are associated with the first r singular values and vectors of (Inx −Q1Q
T
1 )X.

Proof. Use Gram-Schmidt orthogonalization to construct a matrix Q1,⊥ ∈ Rnx×(nx−r1) such

that
[
Q1 Q1,⊥

]
is orthogonal. The orthogonal invariance of the Frobenius norm thus

implies

‖X −Q1C1 −Q2C2‖2F =
∥∥∥[ QT1

QT1,⊥

]
(X −Q1C1 −Q2C2)

∥∥∥2

F
=
∥∥∥[QT1 X−C1−QT1 Q2C2

QT1,⊥X−Q
T
1,⊥Q2C2

]∥∥∥2

F

(5.23)

The second equality follows from QT1 Q1 = Ir1 and QT1,⊥Q1 = 0(nx−r1)×r1 . The error can be

split as:

‖X −Q1C1 −Q2C2‖2F = ‖QT1 X − C1 −QT1 Q2C2‖2F + ‖QT1,⊥X −QT1,⊥Q2C2‖2F (5.24)

The second term is unaffected by the choice of C1. Moreover, for any (Q2, C2) the first

term can be made equal to zero by the choice C1,opt = QT1 X −QT1 Q2C2. In fact, QT1 Q2 = 0

may be assumed without loss of generality. Specifically, the choice of Q2 only affects the

second term of Equation (5.24) (assuming the optimal choice for C1 just specified). Perform

a change of variables Q2 =
[
Q1 Q1,⊥

] [
Q̃2

Q̂2

]
. This change of variables from Q2 to

[
Q̃2

Q̂2

]
is invertible since

[
Q1 Q1,⊥

]
is orthogonal. Substitute this change of variables into the

second error term to obtain ‖QT1,⊥X − QT1,⊥Q2C2‖2F = ‖QT1,⊥X − Q̂2C2‖2F . Thus Q̃2 has

no effect on the second term and may be set to zero. Q2 can be selected to have the

form Q1,⊥Q̂2 and hence QT1 Q2 = 0. In this case, the optimal choice for C1 simplifies to

C1,opt = QT1 X.

Retaining the assumption that QT1 Q2 = 0 as well as C1,opt = QT1 X, the total error is given

by:

‖X −Q1C1 −Q2C2‖2F = ‖(Inx −Q1Q
T
1 )X −Q2C2‖2F (5.25)

By the standard POD result this cost is minimized by the choice Q2,opt = Ur, and C2,opt =

ΣrV
T
r where Σr, Ur, and Vr are associated with the first r singular values and vectors of

(Inx−Q1Q
T
1 )X. It can be shown that this construction satisfies the assumption QT1 Q2,opt =

0.
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Chapter 6

Wind Farm Application:

Actuator Disk Model

6.1 Introduction

This chapter uses a medium-fidelity actuator disk model to highlight some of the advantages

of the parameter varying IOROM approach developed in Chapter 5. This example provides

a more complex example that illustrates the usefulness of the IOROM approach on high-

dimensional fluid dynamic systems. In particular, this approach is shown to generate input-

output reduced-order models that can be used for control design and analysis.

The actuator disk model presented in this chapter has been used to represent the flow

within a wind farm. This particular implementation is a low Reynolds number actuator disk

example that has been used in wind farm literature [46,47]. This example has approximately

20,000 grid points/states and exhibits highly nonlinear behavior.

6.2 Nonlinear Governing Equations

The actuator disk model is considered in this section [46, 47]. The model was modified

(from the description in Chapter 2) to incorporate viscosity. This model solves the two-

dimensional unsteady, incompressible Navier-Stokes equations. The typical operating wind

speeds in a wind farm do not exceed 25 m/s. This is low relative to the speed of sound at

sea level (300 m/s) and hence it is sufficient to assume incompressibility [65]. Let (u, v)

denote the streamwise and spanwise velocity components and (x, y) denote the downstream

and spanwise distances. Under these assumptions, the dynamics for (u, v) are governed by
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the following partial differential equations

∂u

∂x
+
∂v

∂y
= 0

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂P

∂x
+

1

Re

(
∂2u

∂x2
+
∂2u

∂y2

)
+ fx,i

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −∂P

∂y
+

1

Re

(
∂2v

∂x2
+
∂2v

∂y2

)
+ fy,i,

(6.1)

where P is the pressure in the flow, Re is the Reynolds number, and fx,i and fy,i are the

nondimensionalized forcing components of turbine i in the x and y direction. Re is defined

as the ratio of inertial forces to viscous forces: U∞D/ν where U∞ is the freestream velocity

[m/s], D is the diameter of the turbine [m], and ν is the kinematic viscosity [m2/s].

The loading of each turbine is defined linearly. Assume that all spatial units have been

nondimenionalized by the turbine diameter D. If the hub of the upstream turbine i is

placed at x = xi and y = yi then the rotor plane lies within yi − 1
2 ≤ y ≤ yi + 1

2 . The

forcing term introduced by the turbines is then given by

fx,i(x, y, t) :=

{
ρkTx,iCT,i(t)(y− yi), if x = xi & |y− yi| ≤ 0.5;

0, else.
(6.2)

fy,i(x, y, t) :=

{
ρkTy,iCT,i(t)(1− |x− xi|), if y = yi & |x− xi| ≤ 0.1;

0, else.
(6.3)

where i indicates the number of turbines. Note that fx is defined such that it will introduce

an asymmetry to the flow that will induce wake meandering. The constant kTx := Uin,i,

where Uin is the average nondimensionalized velocity across the rotor and kTy := Vin,i is

the average nondimensionalized velocity across the rotor, and CT,i is the thrust coefficient of

the turbine i, which is a function of the turbine operation, i.e. the axial induction factor, a.

According to actuator disk theory (described in Chapter 2), the thrust coefficient for each

turbine is a function of the axial induction factor and is defined as CT,i(t) = 4ai(t)(1−ai(t))
where ai(t) is the time varying single input to the turbine i. The optimal operating point

is ai = 1
3 . The loading magnitude, as specified by the input ai(t), can be changed on a real

turbine via blade pitch or changing the tip speed ratio via generator torque control [29].

These equations are solved using standard CFD methods [48]. Specifically, a central differ-

encing scheme was used for the two-dimensional actuator disk model. The grid is defined by

Nx points in the streamwise (x) direction and Ny points in the spanwise (y) direction. For

this actuator disk model, the typical spacing between grid points is dx = 0.1 and dy = 0.1

with a typical time step of dt = 0.01. Figure 6.1 shows an example of a 2×3 wind farm

where mean streamwise and spanwise velocity are computed for the actuator disk model.
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Figure 6.1: (Left) Mean streamwise velocity computed using the actuator disk model for
a 2 × 3 wind farm with 4D spacing in the y direction and 4D spacing in the x direction.
(Right) Mean spanwise velocity computed using the actuator disk model for a 2 × 3 wind
farm with 4D spacing in the y direction and 4D spacing in the x direction.

In these figures, the turbines are separated by 3D in the spanwise (y) direction and 4D in

the streamwise (x) direction. The velocities are normalized by U∞. The inflow boundary

conditions of this model are

u(x = 0, y, t) = U∞ (6.4)

v(x = 0, y, t) = 0,

and the outflow boundary conditions at x = L are

∂u

∂t
+ U∞

∂u

∂x
= 0 (6.5)

∂v

∂t
+ U∞

∂v

∂x
= 0,

where L is the total streamwise distance. In this example, L = 16D, the spanwise distance

is 12D, Nx = 121, Ny = 161, and the Reynolds number is 50. Note that the code is

nondimensionalized by U∞. This would amount to approximately 40,000 states for this

particular example by having 2 states, (u, v) per grid point. More realistic, higher fidelity

codes will have even larger state dimensions. Note that the Reynolds number is significantly

lower than the typical Reynolds number, which is approximately 106. However, for the

purposes of this chapter, the flow is restricted to a low Reynolds number to demonstrate the

feasibility of the reduced-order modeling approach proposed in Chapters 4 and 5. Chapter 7

will include simulations of wind farms with the appropriate Reynolds number.

Lastly, note the turbine are modeled as actuator disks. The wakes directly behind real

turbines are dominated by tip vortices that are generated based on the blade geometry. The
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blades are not modeled in this simulation and as a result, this model cannot accurately depict

this near wake region. However, this model captures the effects of the flow far downstream,

greater than 3D, where the flow is less dependent on turbine geometry. Therefore, this

model can be useful for studying the far wake of a turbine in steady and unsteady flows.

6.3 Linearized Equations

Typically, the first step in producing a model suitable for controls is to linearize the equations

of the actuator disk model. For the purposes of this chapter, the actuator disk equations

will be linearized around a base flow of U = (U(x, y),V(x, y)) where U(x, y) and V(x, y)

define the baseflow that corresponds to all turbines operating at their peak efficiency.

The linearized governing equations about the baseflow, after some algebraic manipulation,

can be rewritten as
d

dt

[
u′

v′

]
= A

[
u′

v′

]
+Ba(t), (6.6)

where u
′ ∈ R(NxNy)×1 denotes the fluctuations from the baseflow in the streamwise di-

rection, v
′ ∈ R(NxNy)×1 denotes the fluctuations from the baseflow in the spanwise direc-

tion, A ∈ R(2NxNy)×(2NxNy) contains the spatial discretization information of the flow field,

B ∈ R(2NxNy)×Nturb contains the location of the turbines, and a(t) ∈ RNturb×1 is the input

to the turbines with Nturb denoting the number of inputs, which in this case is the number

of turbines.

6.3.1 Linear Outputs

One possible output measurement of a wind farm model would be the wind speeds within

the wind farm. By knowing the wind speed in the wind farm, a turbine could be operated

in a more optimal way. For example, control strategies are being developed with the use

of LiDAR (Light Detection and Ranging), which measures the wind speed in front of the

turbine to improve the performance of an individual turbine [115,116]. This would amount

to measuring the states, or velocity fluctuations, at specific locations within the domain,

i.e. setting the output to

y(t) = Cx(t), (6.7)

where C contains the location of the measurement points within the wind farm, x is the

velocities, y is the output wind speed.
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6.3.2 Nonlinear Outputs

Another wind farm output is the vector of all power produced by all turbines denotes

P ∈ RNturb . Recall that the power, Pi, produced by turbine i is Pi = 1
2ρAU3

iCP,i given

in (2.1). Linearizing (2.1) for each turbine, about the optimal power output, yields the

following measurement equation for power fluctuations

P ′ =
[
C 0

] [u′

v′

]
+Da(t), (6.8)

where C ∈ RNturb×(2NxNy) contains the location of the measurements with Nturb number

outputs, and D ∈ RNturb×Nturb contains information about turbine efficiency.

With either output representation, the linearized system can now be given by a dynamic

system of the form

ẋ(t) = Ax(t) +Bu(t) (6.9)

y(t) = Cx(t) +Du(t), (6.10)

where x :=

[
u
′

v
′

]
, u is the input axial induction factor, and y are the specified outputs. This

linearized model contains 2NxNy states and is not suitable for control design and analysis.

Despite being able to linearize these equations, the state matrices are too large for classical

model reduction techniques such as balanced truncation [15]. The next section uses the

proposed IOROM technique to generate a low-order representation of the system that is

suitable for control.

6.4 Example: Two Turbine Array

6.4.1 Setup

To demonstrate the feasibility of the reduced-order modeling approaches presented in Chap-

ter 4 and 5, the actuator disk model is used for a two turbine example. Specifically, the two

turbines are spaced 5D apart in the streamwise direction. There is a point 3D downstream

of the second turbine where the wind speed is measured (indicated by the white triangle in

6.2). Each turbine has an input axial induction factor, ai. In this particular example, a2

is the single input to this system, i.e. a1 is fixed at the optimal operating point and a2 is

allowed to vary about the optimal operating point. It is thought that a2 has the highest

impact on the measurement point 3D downstream. The loading magnitude can be changed

by the thrust coefficient. Recall CT = 4a(1− a), i.e. the loading the turbine can be varied

by changing the induction factor. On utility-scale turbines, this would be equivalent to
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Figure 6.2: Two-turbine setup (left) and the corresponding baseflow (right) for the low Re
flow specified. It should be noted that the flow is depicted as if you are looking at the
two-turbine array from above.

changing the blade pitch angle or generator torque [29]. For this actuator disk model, the

spacing between grid points is δx = 0.1 and δy = 0.1 with a typical time step of δt = 0.01.

Again, for simplicity, it is assumed that only the second turbine can be used to control the

wind speed at this point. As a result, the system that will be identified will be a single-

input-single-output system where the input is the axial induction factor of the downstream

turbine, a2, and the output is the spanwise velocity fluctuations, v′, at the white triangle in

Figure 6.2. In addition, the domain in the streamwise direction was set to 20D with 201 grid

points and in the spanwise direction was set to 5D with 51 grid points. This would amount

to 20,000 states for this particular example by having 2 velocity components per grid point.

More realistic, higher fidelity codes for wind farms will have even larger dimensions [11,12].

6.4.2 IOROM Method: Single Operating Point

First, the IOROM method discussed in Section 4.8 will be implemented for the actuator

disk problem at one particular operating point, i.e., a single Re. The actuator disk example

is defined in terms of Re. Re is used as a proxy for wind speed. Algorithm 1 is used for

this example, but as examples become larger than this, i.e. large eddy simulations where

the states are on the order of millions rather than tens of thousands, algorithm 2 will have

to be implemented. One way to do is to use the technique used for large streaming data

sets in [105].

Similar to the mass-spring-damper example in Chapter 5, the IOROM method is used to

construct a single time-invariant model with Re held constant. The system is simulated with

Re = 50 and u = a2 = 1/3, i.e. the optimal operating point, to determine the equilibrium

point x̄(Re) for this parameter value. Next, the nonlinear system (6.1) is excited in discrete

time for Tf = 100 s (recall the time step for this simulation is 0.01 s). This system is excited

at the second turbine with a chirp excitation input u(t) = 0.25 + 0.25 sin(ω(t)t), where

ω(t) = 0.0628(50)
t
Tf . This will vary the thrust coefficient, CT from 0 to 1 and excites the
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Figure 6.3: Model fitting error computed for the actuator disk example

nonlinear system with frequencies from 0.01 to 0.25 Hz. The nonlinear system is simulated

and snapshots of the state/input/output are collected every 0.5 s. This yields 200 snapshots

over the 100 s simulation.

Using the IOROM approach, a reduced-order model with 20 states could be constructed.

This was selected by examining the model fitting error. Because the state dimension is large,

the model fitting error cannot be computed directly. Instead, a way to compute model error

was addressed in Chapter 4, where (4.43) was used to compute the model fitting error. The

results are shown in Figure 6.3. In particular, the error in the model decreases and starts

to level off at approximately 20 modes. At this point, there are no additional benefits to

increasing the order of the model. As stated previously, it is possible that the performance

of the model will degrade as the model order increases because the model will be overfitting

to the nonlinearities of the system.

The reduced-order model was validated using a square wave as an input to the second

turbine. The results can be seen in Figure 6.4. One of the main advantages to this method

is that the full state can be reconstructed from the reduced-order state. Figure 6.4 shows

the results of the reduced-order model as compared to the full-order model. The top plot

shows the reconstructed flow field from the 20 state model identified from the IOROM

approach. The middle plot shows the full-order actuator disk model. Visually, the top plot

and the middle plot show good agreement. The bottom plot shows the output; i.e., the

velocity measured 3D downstream of the second turbine. The output of the reduced-order
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Figure 6.4: IOROM Results of the actuator disk example. The top plot shows the flow field
reconstructed using 20 modes. The middle plot shows the full-order nonlinear flow. The
bottom plot shows the output (indicated by the triangle in the top and middle plot) of the
reduced-order model compared to the full-order model.

model closely matches the output of the full-order model.

The IOROM technique that was used to identify a low-order model for the actuator disk

example was compared to another existing technique, ERA (discussed in Section 4.4), that

is capable of constructing an input/output model. A separate simulation was run to obtain

the impulse response data necessary for ERA using an impulse as an input. Figure 6.5

shows the results of the input/output relationship obtained using ERA and the IOROM

approach on the actuator disk example. In Figure 6.5, the input to the system is shown

on the top, where u(t) = 0.25 + 0.25 sin(0.5t). The output of the reduced-order models are

shown on the bottom plot. The bottom plot shows that ERA has a difficult time identifying

the system at this particular operating point. This is in part due to the excitation signal.

With the IOROM technique, a chirp signal was used, which excites the dynamics at a

range of frequencies. With ERA, an impulse is used and is unable to capture the essential

dynamics of the system. This IOROM technique has a much larger excitation energy than

the impulse used by ERA. This allows the IOROM to capture a better input/output model.

However, to use this IOROM approach, the system must be of the form where it is easily

excitable by a controllable input. It should be noted that ERA has been extended to

include non-impulse inputs using observer Kalman identification (OKID) [80]. This ERA-

OKID approach was applied to the actuator disk problem and no performance benefit was
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Figure 6.5: This plot shows the output of the reduced-order models constructed using ERA
and the IOROM approach proposed in this thesis. The output for this particular example
is the velocity fluctuations at the measurement point 3D downstream of the second turbine.

observed in comparison with ERA. This is likely due to the strong nonlinearities present

in this particular example. This indicates that the additional state information used with

the input/output data for the IOROM approach can help identify a low-dimensional model

for the actuator disk example. Lastly, it should be noted that ERA has been extended to

a time-varying framework in [81–83]. If the states cannot be directly recorded, using this

time-varying ERA approach may be a reasonable alternative.

6.4.2.1 Model-Based Controller Design Example

Once a sufficient reduced-order model that captures the appropriate input/output behavior

is obtained, a controller can be designed to achieve a particular objective. In this example,

the objective of the controller is to minimize wake meandering, and thereby minimize veloc-

ity fluctuations at a specified downstream location. To do this, a linear quadratic gaussian

(LQG) controller was designed [117]. Other types controllers could be implemented to track

a specific power command or to minimize specific structural loads on the turbine. For ex-

ample, a specific power may be tracked to provide reliability to the grid [67,68]. Additional

controller designs, such as linear quadratic regulators (LQR) and H∞ [117], can be used

with the models obtained through this IOROM approach. In addition to model-based con-

trollers, PI/PID controllers can be designed with these IOROMs with the idea that these
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IOROMs run in seconds and make it easier to do iterative control design rather than using

the nonlinear model, which for this actuator disk model, can take minutes to hours for one

simulation depending on the number of turbines, size of the domain, etc. This section is

intended to demonstrate one example of controller design that can be used for the wind

farm control problem.

As mentioned previously, there is one input, which is the axial induction factor, a2, that

generates the thrust force at the last turbine (through the axial induction factor), and there

is one output which is the spanwise velocity measurement. Again, the objective of the LQG

controller is to minimize the output fluctuations. In addition, the LQG controller is able to

handle disturbances and make corrections at the input to account for these disturbances.

Figure 6.6: Time domain output of the actuator disk flow with and without the LQG
controller designed using the IOROM.

This thesis will not go into detail about the implementation of an LQG controller. The

details of implementing an LQG controller can be found in [117]. At a high level, an LQG

controller tries to minimize a quadratic cost function that penalizes the transients in the

state and the control effort. The contribution of the states and the control inputs to the

cost function are defined by separate weights, Qc and Rc. For this example, the weights

for the state are set to Qc = 100Ir and Rc = 0. This indicates that there is a penalty on

the state transients and no penalty on the control effort. Note that when designing a wind

farm controller, it may be more desirable to limit the control effort, which means that Rc

would be set to a nonzero value. In addition to the cost function, an LQG controller also
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includes a Kalman filter that is used to handle disturbances. To implement the Kalman

filter, information about the process and measurement noise should be known. However,

for the wind farm control problem, this information is not always known. As a result, the

information about noise, i.e., the covariances, are estimated. In this case, the covariance of

the process noise is set to Qk = 5Ir and the covariance of the measurement noise is set to

Rk = 0.00001Iny . These weighting matrices are used in the standard LQG implementation.

The results of implementing this controller can be seen in Figure 6.6. A random distur-

bance has been added to the inflow. The top plot shows the full-order system with the

controller implemented. The middle plot shows a snapshot of the nonlinear simulation

with no controller implemented. Lastly, the bottom plot shows the time domain data of

the measurement point downstream (indicated by the white triangle). This bottom plot

indicates that by controlling the thrust of the downstream turbine, the wake meandering

or velocity fluctuations at the downstream turbine can be reduced significantly. This figure

shows that the controller designed with the IOROM model is able to achieve the control

objective of decreasing the spanwise velocity fluctuations at a point downstream of the tur-

bines. Other controllers can be designed to track specific power reference signals for grid

reliability, minimize structural loading on the turbines, maximize power within a wind farm,

etc.

6.4.3 IOROM Parameter Varying Method

The parameter varying method described in Section 5.4 is used to construct parameter

varying reduced-order models. A grid of five parameter values was selected, Rej = {10 : 10 :

50}. At each fixed value of Re in this grid, the system was simulated with u = 0 to determine

the corresponding equilibrium point, x̄(Rej). Next, the nonlinear system is excited for Tf =

100 s at each Rej with a chirp excitation input u(t) = 0.25 + 0.25 sin(ω(t)t), where ω(t) =

0.0628(50)
t
Tf . The Re changes the effective wind speed of the simulation which changes the

dynamics within the system. For example, wake meandering is an oscillation that happens

in this particular flow due to the instabilities in the wake. Wake meandering instabilities

increase as the Re increases in this particular example. The chirp signal frequencies were

chosen to capture the wake meandering frequency. Specifically, the chirp signal excites the

nonlinear system at frequencies between 0.01 Hz to 0.5 Hz. The nonlinear discrete-time

system is simulated and snapshots of the state/input/output are collected every 0.5 s. This

yields 200 snapshots over the Tf = 100 s simulation for each parameter grid point.

The basic single step procedure (Algorithm 1) is used to construct the subspace modes

Q. This example is small enough that it was possible to compute the SVD on snapshots

obtained at all grid points. In addition, a MapReduce technique introduced in [118] can be
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Figure 6.7: Time domain signal of the Reynolds number, input, and output. The output of
the reduced-order LPV model is compared to the full-order nonlinear simulation.

used to compute the SVD of large, tall-skinny matrices. Twenty modes were selected and

reduced-order models were constructed at each grid point using the IOROM procedure.

Figure 6.7 compares a time-domain step response of the full-order nonlinear system and the

reduced-order LPV model. The Re varies as Re(t) = 25 − 10 sin(0.1t). The controllable

input was set to u(t) = 0.25 + 0.25square(0.5t). The nonlinear system was simulated in

discrete time with a time step of 0.01 s and the reduced-order parameter varying model

was simulated in discrete time with a time step of 0.5 s. Linear interpolation was used

to compute the state matrices and equilibrium points appearing in the LPV model for

parameter values not contained in the five point grid. The input/output relationship of

the reduced-order LPV model is in close agreement with the full-order nonlinear system.

In addition to the input-output behavior, Figure 6.7 shows the flow field of the nonlinear

system (right) in comparison to the reconstructed flow field from the reduced-order LPV
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model (left) at different instances in time. Visually, the reduced-order model shows good

agreement. These results indicate that this reduced-order LPV model can be used for

predictive purposes and/or control design.

6.5 Conclusions

The parameter varying IOROM approach proposed in this thesis have been applied to

high-dimensional systems. These techniques are useful in identifying a model that can be

used for control design and analysis. Specifically, the example presented in this chapter

indicates that these techniques can be useful for designing controllers for wind farms that

can manipulate the the flow dynamics.

The flow within a wind farm is highly nonlinear and parameter varying, i.e. wind speed

and wind direction changes frequently. This chapter only addressed changing wind speeds.

However, changing wind directions can be treated in a similar way. The parameter varying

IOROM approach is able to construct an LPV model that represents the changing dynamics

in a wind farm represented by the actuator disk model. The IOROM technique has also

been successfully applied to a more realistic wind farm model using a large eddy simulation

with 3.6 million states. In addition, this approach has been used on data from wind tunnel

experiments. Both applications, at a single operating point, are discussed in more detail in

the next chapter.
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Figure 6.8: Flow Visualization at 5 different snapshots in the flow for the LPV formulation.
These snapshots correspond to the same example in Figure 6.7. Note: the white lines
at the turbine locations indicate the different thrust values on the turbines. As noted
previously, the formulation of the actuator disk example introduces an asymmetric forcing
on the turbine to induce wake meandering.
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Chapter 7

Extension to

Large Eddy Simulations and

Wind Tunnel Experiments

7.1 Introduction

This chapter uses the IOROM approach, described in Chapter 4, to construct reduced-

order models of wind farm simulations and experiments. In contrast to Chapter 6, this

chapter addresses higher-fidelity simulations that are computationally expensive to run.

Therefore, this chapter only addresses single operating points consisting of one wind speed

and wind direction. A similar approach to the one discussed in Chapter 6 can be applied

to these simulations to get a collection of reduced-order models at various operating points.

Section 7.2 describes how to handle process noise, model uncertainty, and measurement noise

when using a Kalman filter with a low-dimensional model constructed from simulations or

experiments. This chapter also demonstrates that data collected during experiments can

be used in the same way as simulations to obtain reduced-order models that capture the

dominant characteristics and the input/output dynamics.

7.2 Input-Output Reduced-Order Model with a Kalman Filter

To apply this IOROM approach to higher fidelity simulations or experiments, this section

introduces a way to handle the error between the reduced-order model and the nonlinear

simulation/experiment. Note that the IOROM identified, using the technique described in

Section 4.8, is the best fit model for the available data. For example, one issue that arises in

high-dimensional systems is the influence of turbulence. This is a disturbance in the system

102



that cannot exactly be quantified in a linear, time invariant model. The IOROM method

is useful in identifying the dominant dynamics and maintaining the approximate input-

output behavior. To improve the performance of the model, it is recommended that a state

estimator be used along with the IOROM to handle the influence of disturbances, such as

turbulence. For this study, a Kalman filter will be used with the identified IOROM [119,120].

This is standard practice in the controls/system literature. A similar approach was proposed

in [99] where a model was constructed using DMD and embedded in a Kalman filter. The

Kalman filter is the best linear filter for a system even if the noise is not Gaussian [120].

Any improvements over the Kalman filter would require a nonlinear filter. The Kalman

filter is able to provide a computationally efficient algorithm for estimating the state based

on measured outputs. It should also be reiterated that the purpose of this Kalman filter

is to aid the IOROM in predicting the dominant characteristics rather than the turbulent

characteristics of the flow. The IOROM embedded in the Kalman filter is briefly described

in this section.

Consider the reduced-order model of the system

zk+1 = Fzk +Guk + wk

yk = Hzk +Duk + vk,
(7.1)

where wk ∈ Rr is the process noise, vk ∈ Rny is the measurement noise, zk ∈ Rr, uk ∈
Rnu , and y ∈ Rny are the reduced-order states, inputs, and outputs respectively. The

reduced-order state matrices (F,G,H,D) have the dimensions of (z, u, y). For the wind

farm example, zk are the POD modes of the system, uk are the inputs such as blade pitch

angle and generator torque, and yk are the measurements such as the power at each turbine,

wind speed, or structural loads.

The standard Kalman filter can be implemented with the IOROM using the approach

outlined in [119]. The Kalman filter uses measurements to update the estimate of the state

at a particular time step. To implement the Kalman filter, the properties of the process

noise wk and measurement noise vk should be known or estimated. Typically, the covariance

matrices of the process noise, Qk, and measurement noise, Rk, can be determined by Qk =

E(wkw
T
k ) and Rk = E(vkv

T
k ). This indicates that the process noise and measurement noise

are independent. However, in the wind farm application the information about the noise

is not known. Hence Qk and Rk are instead tuned to estimate the noise. Especially for

wind farm simulations, Rk is expected to be small since exact measurements can be taken

from the simulations. Qk is tuned such that all of the modes of the reduced-order model are

weighted equally. Another approach to defining Qk could be to weight the modes differently,
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e.g. assign higher weights to the less dominant modes. The Kalman filter is initialized by

x̂+
0 = E(x0)

P+
0 = E[(x0 − x̂+

0 )(x0 − x̂+
0 )T ]

where x+
0 is the initial state estimate and P+

0 is the covariance on the state error. For these

wind farm examples addressed in this chapter, the initial covariance, P+
0 , is set to be Ir.

The remainder of the Kalman filter is evaluated as

Covariance: P−k = FP+
k−1F

T +Qk−1

Kalman Gain: Kk = P−k H
T (HP−k H

T +Rk)
−1

State Estimate: x̂−k = Fx̂+
k−1 +Guk−1

Measurement Update: x̂+
k = x̂−1

k +Kk(yk −Hx̂−k −Duk−1)

Covariance Update: P+
k = (I −KkH)P−k

where “−” indicates the settings of the filter before the measurement update and “+” in-

dicates after the measurement update. This approach shows good performance when used

with the identified IOROM. Note that the performance of the Kalman filter is dependent

on the model identified by the IOROM approach. Specifically, if the selected model has

too many modes, the IOROM is essentially overfitting the data. Although this may pro-

vide a good performance with the data the model originated from, the model shows poor

performance even with a Kalman filter implemented. In this case, the Kalman filter has to

compensate significantly to fit a different data set of the same properties. An example of

this is shown in the results section.

The next sections will provide some useful examples for applying this IOROM approach to

high-dimensional systems. The goal of this study is to construct reduced-order models that

can be used for control design. Specifically, it will be shown that the reduced-order model

constructed using this IOROM approach maintains the dominant dynamics of the system

as well as maintain the appropriate input-output behavior. In particular, the next section

will demonstrate the feasibility of this IOROM approach on large eddy simulations as well

as wind tunnel experiments using particle image velocimetry (PIV).

7.3 Large Eddy Simulations

The IOROM method was used to obtain a reduced-order model from the Simulator fOr

Wind Farm Applications (SOWFA) simulations [11]. SOWFA is a high-fidelity large eddy

simulation tool that was developed at the National Renewable Energy Laboratory (NREL)

for wind farm studies. SOWFA is a CFD solver based on OpenFOAM and is coupled with
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NREL’s FAST modeling tool [30]. SOWFA has been used in previous wind farm control

studies [40,50]

SOWFA uses an actuator line model coupled with FAST to study turbines in the atmo-

spheric boundary layer. Specifically, SOWFA solves the three-dimensional incompressible

Navier-Stokes equations and transport of potential temperature equations, which take into

account the thermal buoyancy and Earth rotation (Coriolis) effects in the atmosphere. The

inflow conditions for this simulation are generated using a periodic atmospheric boundary

layer precursor with no turbines. Additional details can be found in [40].

SOWFA calculates the unsteady flow field to compute the time-varying power, velocity

deficits, and loads at each turbine in a wind farm. This level of computation, with high-

fidelity accuracy, takes a number of days to run on a supercomputer using a few hundred

to a few thousand processors, depending on the size of the wind farm. The simulations run

for this study were performed on NREL’s high-performance computer Peregrine.

7.3.1 Two-Turbine Setup

A high-fidelity simulation of a two-turbine scenario was performed with SOWFA to provide

the data for the IOROM. The two-turbine setup is shown in Figure 7.1 (left). The turbines

were aligned with the dominant wind direction with a spacing of 5 diameters (5D). The

simulated turbines are NREL 5 MW baseline turbines [54], which have a rotor diameter

of D = 126 m. The conditions simulated in SOWFA are based on the study reported

in [40, 50]. They consist of a neutral atmospheric boundary layer with a low aerodynamic

surface roughness value of 0.001 m, which is typical for offshore conditions. The generated

inflow, coming from the southwest (300◦), has a horizontally averaged wind speed of 8 m/s

and a turbulence intensity of 10 % at the turbine hub height. A simulation time of 1800 s is

used to let the wakes develop through the domain. The spatial discretization for the CFD

solver is refined in two steps with the smallest cells containing the turbine rotors, the axial

induction zones of the rotor, and a large part of the wake. Farther from the turbines, the

mesh is coarser to reduce computation time.

7.3.2 IOROM with SOWFA

The IOROM method can be used to construct a reduced-order model of the two-turbine

setup. For this particular example, there are four inputs: the blade pitch angle (β1) and

the generator torque (τg1) of the upstream turbine and the blade pitch angle (β2) and the

generator torque (τg2) of the downstream turbine. In this example, the generator torque is

modulated by changing a scaling constant associated with the standard generator torque

control law for Region 2 operation of a utility-scale turbine [29]. Specifically, the scaling
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Figure 7.1: (Left) Setup for the two-turbine array in SOWFA. (Right) Forced input used
for the two-turbine array.

factor, γ, is applied to the generator torque control law of the upstream turbine, so that

the applied generator torque is τg = γKgω
2 with Kg = 0.0179 Nm/RPM2 and ω is the rotor

speed [RPM], resulting in a deviation from the turbine-level optimal gain Kg for maximum

power production. The outputs of interest are the power generated by the upstream (P1)

and downstream turbine (P2). Overall, the goal is to generate a reduced-order model of

this form:

zk+1 = Fzk +Guk

yk = Hzk +Duk
(7.2)

where u := [β1, γ1, β2, γ2] and y := [P1, P2].

To generate an IOROM of this example, forced inputs were applied to the upstream turbine

by changing the collective blade pitch angle from 0◦ to 4◦ using a pseudo-random binary

sequence (PRBS), see the top plot in Figure 7.1 (right). In addition, the generator torque

constant, γ1, was modulated between 1 and 1.4 using a different PRBS, see the middle

plot in Figure 7.1 (right). The blade pitch angle and generator torque constant of the

downstream turbine were held at constant at their optimal values, i.e. β2 = 0 and γ2 = 1,

see the bottom plot in Figure 7.1 (right). This indicates how the forcing inputs at the

upstream turbine affect the power output of both the upstream and downstream turbines.

By changing the blade pitch angle and generator torque constant at varying frequencies,
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Figure 7.2: Frequency content of the flow velocity field at 4D downstream of the upstream
turbine. Specifically, this shows the -20dB bandwidth of the fast Fourier transform of the
velocity signal for sample points at 4D downstream. Note that the velocity signal was
sampled at 1Hz. The pure yellow may indicate that the frequency at these points exceeds
0.5Hz.

various dynamics of the system are excited.

The data from the simulations were sampled by recording complete 3 dimensional snapshots

of the flow field at 1 s intervals. The sampling time was determined by doing a frequency

analysis of the flow in a two-turbine array. In particular, Figure 7.2 shows that a majority

of the frequency content in the rotor swept area (63 m around the origin) of the wake is of

lower frequency, i.e. less than 0.5 Hz. There is higher frequency at the edges of the wake due

to the presence of a shear layer. For this analysis, it should be noted that the Fast Fourier

Transform in Figure 7.2 is based on 1 Hz data. The Nyquist frequency is thus 0.5 Hz. Much

of the information in the wake has a lower frequency than 0.5 Hz. It should also be noted

that nothing definitive can be said about higher frequencies with this analysis. However, to

capture the dominant characteristics of the system, i.e. the dynamics with lower frequencies,

it appears that a 1 Hz sampling rate is sufficient for the construction of the IOROM based

on SOWFA simulations.

The time step of the SOWFA simulation is 0.01 s. To collect data for 1800 s, this would

amount to 180,000 snapshots of data with 1.2 million sampled grid points for each velocity

component. This is impractical to store and analyze. As a result, only one snapshot of the

flow is taken per 100 simulation time steps. The resulting IOROM will be a discrete time

model with a time step of 1 s.
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Figure 7.3: POD modes 1, 2, 10, 20, 50, and 100 of the SOWFA simulation.

7.3.3 Results

The results shown in this section were obtained using the IOROM constructed from data

from the simulation scenario described in the previous sections. Note that the resulting

flow field plots have been rotated in this section so that the flow is shown moving from left

to right. The upstream and downstream turbines are indicated by black lines in the flow

field figures in this section.

To construct the IOROM, the flow in the two-turbine array was sampled at 1.2 million grid

points in the SOWFA simulations. Specifically, the three velocity components were recorded

at each grid point resulting in 3.6 million states. The velocities are stacked into a single

vector and collected in a snapshot matrix, X0 (4.34). Similarly, the inputs (β1, γ1, β2, γ2)

and outputs (P1, P2) are recorded at each IOROM time step. The POD modes of the

snapshot matrix, X0 (4.16), were computed using the MapReduce approach presented in

[118] and summarized in the appendix (Section 7.6). The IOROM was constructed with

1000 snapshots at 1 s intervals for a total time of 1000 s. This indicates that the lowest

frequency that this IOROM could capture is on the order of 10−3. Figure 7.3 shows the

POD modes 1, 2, 10, 20, 50, and 100 of the streamwise velocity component at hub height

(90 m). The POD modes are used to project the system onto a low-dimensional subspace
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such that direct N4SID can be used to identify a low-order model of the wind farm. It

should be noted that these modes were computed after subtracting out the baseflow. As

a result, the IOROM can be thought of as a linear model that represents the fluctuations

about an equilibrium point, or mean flow. The first mode contains low-frequency spatial

information and is the most energetic mode of the system. Mode 100 has high-frequency

spatial information and represents a small amount of energy in the system. Figure 7.4

(left) shows the relative energy contained in each mode of the system. For this example,

150 modes were chosen. The order r of this model was selected based on the model fit

error (4.43) plotted in Figure 7.4 (right). If the order of the model was chosen based on

retaining 99% of the energy in the POD modes, almost all of the modes would have been

used to construct the IOROM. Instead, the order of the model was chosen based on the

model fit error, which indicates that the model performance does not get significantly better

after 150 modes. In fact, by including more modes, the IOROM may be overfitting to the

nonlinearities of the system which may degrade the performance of the model.

Figure 7.4: (Left) Percent energy of each mode in the SOWFA simulation. (Right) Model
error computed based on the number of modes used to identify a model of the system.

The results of the IOROM can be seen in Figure 7.5. Specifically, the full flow field is

computed from the results of the reduced-order model using (4.41). The full flow field is

shown to demonstrate the capability of the reduced-order model to capture the dominant

structures of the flow field, see the top plot in Figure 7.5. By only selecting 150 modes, this

reduced-order model will not be able to capture the high frequency spatial turbulence. In

addition to the reconstruction, the input-output behavior was examined. Specifically, the

bottom plot of Figure 7.5 shows the output of the 150 state IOROM and it can be seen

that the input-output behavior of the system is retained.

Lastly, the IOROM was applied to a set of validation data to verify that the identified

model would work under similar wind conditions but with a different forced input. The

same inflow fields were used in both cases. In addition, the same IOROM that was used in
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Figure 7.5: Flow reconstructed using the reduced-order model (top) and compared to
SOWFA (second plot). The third and fourth plot show the inputs at the upstream tur-
bine. Lastly, the bottom plot shows the output of the reduced-order model compared to
the output of SOWFA.

Figure 7.5 is used with the validation data. Although the same inflow conditions are used,

the turbulence generated by the upstream turbine will be different due to the different input.

The inputs to the upstream turbine can be seen in the third and fourth plots in Figure 7.6.

A Kalman filter (as described in Section 7.2) is implemented to handle the influence of this

change in turbulence. Specifically, the filter parameters were set to P+
0 = Ir, Qk = Ir, and

Rk = 0.001Iny . These matrices were obtained by tuning them to the data set. Figure 7.6

shows that this IOROM is able to similarly reconstruct the dominant characteristics of the

flow provided in the validation case. The results in Figure 7.6 indicate that this reduced-

order model can be used as a predictive model for another similar data set. The power

output was also examined to ensure that the input-output behavior is retained with this

reduced-order model. The bottom plot of Figure 7.6 shows the output of the full-order

SOWFA simulation and the reduced-order model. Again, the reduced-order model shows

good agreement with the full-order simulation. This indicates that this reduced-order model
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Figure 7.6: The model was validated using a different data set. The corresponding results
are shown here. Flow reconstructed using the reduced-order model (top) and compared
to SOWFA (second plot). The third and fourth plot show the inputs at the upstream
turbine. Lastly, the bottom plot shows the output of the reduced-order model compared to
the output of SOWFA.

is capable of predicting the output in similar scenarios which makes this model useful for

control.

As mentioned previously, it is important to carefully choose the order of the model. If the

IOROM is overfit to the data, the IOROM with the Kalman filter will not be able to predict

other data sets, i.e., the Kalman gain of the Kalman filter will be large in an attempt to

fit the estimated states with the measured outputs. Figure 7.7 shows the implications of

selecting a 300 mode model. Although the input-output behavior is maintained (bottom

plot), it can be seen that the reduced-order states (represented in the top plot) no longer

represent the dominant dynamics of the system.
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Figure 7.7: This figure shows an example of a IOROM that was overfit to the original data.
The model used in this example had 300 states. When trying to use this IOROM (along
with a Kalman filter) with a different data set, the input-output relationship is retained
(bottom plot) but the reduced-order states are no longer able to represent the full-order
spatial dynamics of the simulation.

7.4 Wind Tunnel Experiments

As a second example, data from wind tunnel experiments was used to construct an IOROM

using the IOROM method. The experiments were completed in a closed loop wind tunnel at

the Saint Anthony Falls Laboratory (SAFL) on the campus of the University of Minnesota.

A 150 kW fan drives the flow into the tunnel test section, which has a length of 16 m and

a cross-section of 1.7 m by 1.7 m. Coarse wire mesh and a honeycomb flow straightener

condition the flow prior to entering a contraction with an area ratio of 6.6:1 upstream

of the main test section. Immediately at the end of the contraction, a trip is placed to

promote boundary layer growth. The model turbines were placed roughly 13 m downstream

of the trip in the test section where a turbulent boundary layer thickness of δ ≈ 0.6 m was

measured under thermally neutral conditions. The neutral cases investigated herein set the

air and floor temperature equal, and were held to within ±0.2◦C. Mean and fluctuating flow
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statistics of the baseline turbulent boundary layer are provided in [62].

The turbine models tested in the tunnel are approximately 1:750 scale models of the Clipper

Liberty 2.5 MW utility-scale wind turbine. The resulting dimensions for the model are a

three-blade rotor with a diameter of 0.128 m (GWS/EP-5030x3 rotor). While the original

design for this rotor was for use on a model aircraft, the blades were oriented such that

the high pressure surface faced the inflow. In addition, the blade airfoil profiles are nearly

flat. The hub height is 0.104 m and remains within the lower 25 % of the boundary layer,

similar to the full-scale turbine. The tip-speed ratio (TSR), λ, was controlled by selecting

the model turbine generator and is on the lower end of the λ operating range of standard

turbines and provides a detailed comparison to wind farm experiments completed at the

same velocity. The TSR can be defined as λ := ωR
U∞

, where ω is the rotor speed [rad/s],

R is the radius [m], and U∞ is the freestream velocity [m/s]. The free-spinning TSR for

the model turbine in the undisturbed boundary layer is λ ≈ 4.5, while typical values for

utility-scale wind turbines range between λ ≈ 3.5 and 10.

The model turbines have a small DC generator in which a voltage output can be measured

or a voltage input can be applied to control the turbine operating condition. The DC

voltage input is restricted to lie within ±1.25 V. A zero voltage input corresponds to a free-

spinning turbine. In this condition, the turbine operates at a high TSR. Applying a positive

voltage places a torque on the motor shaft causing the turbine to operate at a lower TSR. A

properly chosen voltage results in the turbine operating near its optimal TSR, λ = 3. Thus

the DC voltage input mimics the effect of the generator torque on a utility-scale turbine.

7.4.1 Setup

Similar to the simulation example, the experiments in the wind tunnel used a two-turbine

array, see Figure 7.8 (left). The upstream turbine was operated in two different states:

(i) rated; (ii) derated. In the rated state, a 1.25 V input was applied from a DC power

supply or function generator to the DC generator on the model turbine. This input applies

a torque opposing the aerodynamic torque and controls the TSR. In the derated state, the

turbine was allowed to operate under no load, i.e. a zero voltage input [63]. The rated

case corresponds to a turbine operating at the optimal operating point. The derated case

corresponds to a turbine operating at a suboptimal operating point. In these experiments,

the voltage generated by each turbine is similar to the power generated by a utility-scale

turbine. For more details on turbine voltage production and analysis verification, the reader

is directed to [63].

The two turbines were placed in a row with a 5D spacing between the turbines, see Figure 7.8

(left). The experiments were fun at a wind speed of 4.5 m/s under a neutral boundary layer
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Figure 7.8: (Left) PIV setup in the wind tunnel. (Right) Forced input and corresponding
output (streamwise velocity 3D downstream).

with 1.5 % turbulence intensity for 100 s. This sample time was selected as it was the limit

for the maximum number of samples for the data acquisition system when sampling at

10000 Hz. Wall parallel PIV was used to capture the varying physical characteristics in the

wake created by the upstream turbine under rated and derated states with the overall goal of

using the results to construct a reduced-order model that captures the dominant dynamics

of the system and retains the appropriate input-output behavior. Specifically, the goal of

the reduced-order model is to understand the impact of the upstream turbine control on

the downstream wake. The use of wall parallel PIV simplified the problem by removing the

extra factor of the boundary layer from the wake development. PIV uses a pulsating laser

sheet synchronized with high resolution cameras to capture the instantaneous movement of

seeding particles in the flow. Olive oil droplets on the order of 5 to 10 microns in diameter

are injected into the wind tunnel and tracked by taking snapshots in time and comparing

the locations of individual groups of particles to obtain the change in distance between

the subsequent frames. The time between snapshots is known and therefore, the velocity

vectors of the particles can be computed using two-dimensional spatial cross correlation

in the interrogation windows in which the full image is subdivided (TSI PIV software).

In this specific case, a fine 32×32 pixel2 interrogation window is used with a 50% overlap,

providing a spatial resolution of approximately 1.8 mm in the streamwise and spanwise

directions. Each run consisted of 700 snapshots over 100 s.
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7.4.2 IOROM with the Wind Tunnel

The PIV results were able to provide measurements of the state, or velocity component at

ever pixel. The voltage input applied to the upstream turbine was recorded as the input.

The output was the stream velocity at a point downstream. The output was computed from

the PIV data. In contrast to the power output in the SOWFA simulations, this output will

be linear in the state. Specifically, a square wave with a 0.05 Hz frequency was applied to

the upstream turbine and the streamwise velocity at 3D downstream pont was recorded. A

square wave was chosen an an input for convenience based on the function generator and

power supplies available in the wind tunnel at the time of the experiments.

Figure 7.8 (right) shows the forced input and the corresponding output. Note that the

streamwise velocity has been filtered. This is reasonable since a turbine acts as a low pass

filter due to the rotor inertia. Therefore, high frequency content in the wind speed can

be filtered. An IOROM can be obtained using this input-output data along with the PIV

data that measures the velocities (states). One snapshot of the flow field was captured

every 0.14 s (7 Hz). The resulting IOROM will have a time step of 0.14 s. As with the

IOROM obtained from simulations, this IOROM can be used to examine the flow field and

approximate the input-output behavior.

7.4.3 Results

The results shown in this section were obtained using the IOROM constructed from ex-

perimental data from the wind tunnel. Similar to the simulation results, an IOROM is

constructed in the form of (7.2). For these experiments, there is one input, the applied

voltage at the upstream turbine u := V1, and one output, the streamwise velocity 3D down-

stream y := U3D. It should be noted that only the wake of the upstream turbine was

captured by the PIV results. In other words, the upstream turbine is approximately at

the inflow boundary and the downstream turbine is approximately located at the outflow

boundary in the figures in this section. This setup is shown in Figure 7.8 (left).

For this particular example, there are approximately 26,000 grid points and two velocity

components for each grid point resulting in approximately 52,000 states. The IOROM was

generated using 350 snapshots for a total time of 50 s to compute the POD modes of the

system. Figure 7.9 shows the POD modes 1, 2, 10, 20, 50, and 100 of the streamwise

velocity component. Figure 7.10 shows the percent of energy contained in the POD modes.

The IOROM constructed for these experiments uses 300 modes. The number of modes was

chosen based on the model error metric (4.43) as was done in the simulation example.

The full flow field can be reconstructed from the reduced-order model shown in Figure 7.11.
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Figure 7.9: POD modes of the PIV wind tunnel experiments.

The output, i.e. the wind speed at 3D downstream, computed by the reduced-order shows

good agreement with the PIV data (bottom plot of Figure 7.11). This IOROM model was

validated with an additional experimental data set with the same input frequency. Similar

to the simulation example, a Kalman filter was implemented to handle the influence of the

turbulent characteristics of the flow that the IOROM does not capture. The parameters

of the Kalman filter were set to P+
0 = Ir, Qk = 20Ir, and Rk = 0.1Iny . The wind speed

is subject to ambient turbulence and wake meandering (an oscillating effect of the wake),

which makes it more difficult to predict. However, by implementing the Kalman filter,

the results show good agreement with the PIV experiments. Specifically, the results of

the reconstructed flow field and full experimental PIV data are shown in Figure 7.12. In

addition, the output of the reduced-order model is compared to the experimental data. As

with the simulation example, this indicates that the reduced-order model produces a good

representation of the full-order system and can be used for control design in the wind tunnel.
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Figure 7.10: Energy of each POD mode from the wind tunnel data.

7.5 Conclusions

The IOROM method was applied to a high-fidelity wake model and wind tunnel experi-

ments. Again, this approach takes advantage of characterizing the dominant dynamics in

the flow and provides a low-order approximation of the flow. Using this low-order approx-

imation, a reduced-order model can be constructed that retains the input-output behavior

seen in the full-order model. In addition, this reduced-order model has a low computational

cost and contains the necessary dynamics that are important for problems such as wind farm

control. In both the simulation and experimental case, the IOROMs constructed were used

on different data sets to demonstrate their predictive capabilities, which could be useful for

control design and analysis in wind farms.

7.6 Appendix:Tall-Skinny QR Factorization

When using the IOROM method, described in Section 4.8, it is necessary to compute a

singular value decomposition of the snapshot matrix, X0. This matrix is a tall-skinny

matrix where the dimensions are (nx × ns). For the SOWFA example in Section 7.3,

nx = 3.6 million and ns = 1000. This becomes difficult to do on a desktop computer.

However, the MapReduce technique introduced in [118] can be implemented to compute

the SVD for tall-skinny matrices. For the SOWFA example, 100 GB of data can be handled

to compute the SVD of the snapshot matrix in approximately 1 hour. This process was

computed in a serial manner and can be parallelized to speed up the process. The algorithm

is briefly summarized below.

Consider X0 ∈ Rnx×ns such that nx >> ns. The X0 matrix can be divided into block
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Figure 7.11: Flow reconstructed using the reduced-order model (top) and compared to the
PIV results (second plot). The third plot shows the input voltage at the upstream turbine
and the bottom plot shows the wind speed output of the reduced-order model compared to
the PIV results.

matrices

X0 =


X̄1

X̄2

...

X̄nd

 (7.3)

where X̄i ∈ R(nx/nd)×ns and nd is the number of divisions of the tall-skinny matrix X0. A

QR factorization is done for each X̄i matrix and arranged as follows:

X0 =


X̄1

X̄2

...

X̄nd

 =


Q1 0 . . . 0

0 Q2
...

...
. . .

0 . . . Qnd


︸ ︷︷ ︸

Q̄∈Rnx×nsnd


R1

R2

...

Rnd


︸ ︷︷ ︸
R∈Rndns×ns

(7.4)
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Figure 7.12: The model was validated using a different data set. The corresponding re-
sults are shown on the right. Flow reconstructed using the reduced-order model (top) and
compared to the PIV results (second plot). The third plot shows the input voltage at the
upstream turbine and the bottom plot shows the wind speed output of the reduced-order
model compared to the PIV results.

The next step is to take the QR factorization of the R matrix:
R1

R2

...

Rnd

 = Q̃R̃. (7.5)

where R̃ ∈ Rns×ns . Now, there is a R̃ matrix that has dimensions (ns × ns) rather than

(nx × ns). The SVD is taken of R̃

R̃ = UR̃ΣR̃V
T
R̃
, (7.6)

where ΣR̃ contains the singular values of X0. The POD modes, i.e. the U matrix of X0
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(4.16), can be computed by

U = Q̄UR̃. (7.7)

To avoid explicitly forming Q̄, the POD modes can be computed as:

U =


Q1UR̃
Q2UR̃

...

QndUR̃

 . (7.8)

This is the equivalent to computing the economy SVD of X0 in Matlab.
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Chapter 8

Conclusions

This thesis demonstrates that the coordinated control design problem to improve the per-

formance of wind farms requires accurate wake models with a low computational cost.

Low-fidelity models can provide useful insight into wake interactions, but lack the complex-

ity to provide realistic wind farm results. Medium- and high-fidelity models are necessary

for constructing an advanced control framework that can be used to optimize turbine place-

ment and control design in a wind farm. In particular, the results seen in high-fidelity

models differ significantly from the results obtained using low-fidelity models. The model-

ing aspect of the wind farm problem is important for developing viable wind farm control

strategies. An experimental investigation was conducted to analyze the effect of individual

turbine control on wind farm dynamics and the results were used to improve the existing

static Park model. Model improvements included the incorporation of turbine dynamics

that captured the input/output characteristics of a three-turbine array, which can be used

for wind farm control in the wind tunnel. Wall-parallel PIV was used to identify physical

wake characteristics based on varying turbine operating conditions. Voltage tests were used

to characterize the frequency response of the system.

Alternative techniques for developing reduced-order wake models using data from exper-

iments, as well as simulations, were addressed. Specifically, the data collected from sim-

ulations and experiments can be used to extract the dominant characteristics of a wind

farm, which can be used for control design and analysis. The main reduced-order modeling

technique introduced in this thesis was an extension to DMDc that can construct an input-

output reduced-order model (IOROM) that can be used for high-dimensional systems. This

IOROM approach takes advantage of characterizing the dominant dynamics in the flow and

provides a low-order approximation of the flow. Specifically, this method combines POD

with system identification to produce reduced-order models. This type of model reduction
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has two main advantages. First, it relies on input-output data from a forced response and

does not require adjoints. Second, the reduced-order model is constructed in a way that

retains the physical meaning of the states. In addition, this IOROM approach is able to

maintain robustness to small amounts of process noise. This IOROM has a low computa-

tional cost and contains the necessary dynamics that are important for problems such as

wind farm control.

The IOROM method was then extended to construct reduced-order models for high-dimensional

nonlinear systems and parameter varying systems. It was assumed that the nonlinear sys-

tem has a collection of equilibrium operating points. This method has two main compo-

nents. First, a reduced-order linear system is constructed at each equilibrium point using

input/output/state data. Second, a parameter varying linearization is used to connect these

linear models. This parameter varying IOROM approach was applied to a medium-fidelity

actuator disk example to illustrate how this method is implemented. Lastly, this IOROM

method was applied to a large eddy simulation and wind tunnel experiments at a single

operating point to further demonstrate the feasibility of this method with large data sets.

Overall, this thesis shows that dominant characteristics of the flow dynamics within the

wind farm can be extracted from data sets generated from simulations or experiments.

This information can be used to construct useful low-order models that capture the essential

dynamics of the system as well as the input/output behavior. These models can be used to

design real-time controllers that can improve the overall performance of wind farms.

Additional work in this area of research can be done in future studies. Specifically related

to the IOROM approach developed in this thesis, a better understanding of the optimal

excitation signal and the sampling time of the data recorded is necessary to identify a model

that most accurately captures the dominant dynamics of the system and the input-output

behavior. Similar research has been done in the system identification literature and can

be extended to this approach. One main source of error in the identified model and the

high-dimensional system is due to the pressence of process noise and measurement noise.

Chapter 4 briefly addresses one way to analyze the impact of process noise. Additional

insight is needed to quantify the uncertainty in the identified model.

In addition to modeling, this work shows preliminary applications to controls in Chapter 6.

More sophisticated control designs can be done with models generated with this IOROM

approach. Uncertainty quantification can be used to design robust controllers for wind

farms. The examples used in this thesis for wind farms involve two-turbine arrays. The

IOROM approach can generated models for systems with many inputs and many outputs,

i.e., wind farms with many turbines. These reduced-order models of larger wind farms

can also be used for control design. Lastly, this thesis addresses wind farms as parameter
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varying systems and uses wind speed as the varying parameter. Wind direction is also an

important parameter to consider when controlling a wind farm. The parameter varying

IOROM approach can be used to include wind direction , as well as wind speed. These

additional areas of research will aid in producing better representations of high-dimensional

systems, which allow for better control designs especially in the area of wind farm control.
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