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Abstract

The focus of this thesis is on the use of analytical redundancy to improve the reliability of

low-cost unmanned aerial vehicles (UAVs). Specifically, a model-based fault detection algo-

rithm is designed and tested for one critical UAV component: a servo-actuator. As the name

suggests, a key requirement to developing this type of fault detection algorithm on actuators is

the availability of an accurate actuator model. This is accomplished by developing a dedicated

Arduino based experimental test-bed to analyze servos. Using input-output data from these ex-

periments, a second/third-order dynamic model is identified for healthy actuators using system

identification methods in MATLAB software. Using the identified model, a fault detection filter

is designed based on polynomial basis vectors to generate a residual proportional to fault. The

performance of the fault detection algorithm is experimentally tested on both healthy and faulty

actuators and the detection thresholds are set. Finally, the actuator model and the fault detection

filter are validated using actuator commands from recent flight tests conducted at the University

of Minnesota.
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Chapter 1

Introduction

Unmanned Aircraft Systems (UAS) are evolving at a tremendous pace to become an integral

part of everyday operations. Commonly known as drones, these aircrafts have experienced a

worldwide boom in both the military and commercial sector. These vehicles serve a variety

of purposes such as search and rescue missions, precision agriculture, monitoring and surveys,

to name a few. According to the Association for Unmanned Vehicle Systems International

(AUVSI), UAS will create $82 billion in economic impact over the 10-year span from 2015 to

2025. Despite their emerging role, safe integration of Unmanned Aerial Vehicles (UAV) in the

National Airspace System (NAS) is a challenge for both the Federal Aviation administration

(FAA) and the aviation community.

The capability of UAV to “sense and avoid” is one major, as-yet undeveloped technology

which is a key factor to full NAS integration. UAVs are not developed to comply with existing

airworthiness standards and fail to exhibit technical capabilities analogous to manned aircraft.

The FAA’s roadmap [1] acknowledges these shortcomings and outlines the actions and con-

siderations needed to enable UAS integration into the NAS. Large or commercial aircrafts are

required to meet two main reliability requirements: 1) no more than one catastrophic failure

per 109 flight hours and 2) no single point of failure [2, 3]. Commercial aircraft manufacturers

achieve these reliability requirements primarily through the use of hardware redundancy. In

this approach, the main Guidance, Navigation and Control (GNC) system is made of several

parallel, functionally identical and independant GNC systems. If there is a failure in one of the

component then another identical component takes over. This tried and tested approach cannot

be used in small UAVs due to severe size, weight, cost and power constraints. As a result, civil
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UAS have reliabilities that are several orders of magnitude below the 10−9 failures per flight

standards. For instance, the UAV Research Group at the University of Minnesota (UMN) [4]

operates an Ultra Stick 120 aircraft with single-string, off-the-shelf components. A theoreti-

cal estimation of the failure rate using a comprehensive fault tree analysis yielded 2.2× 10−2

failures-per-flight-hour for this aircraft [5]. Note that this is only a theoretical estimate and no

aircraft has been lost to date.

An alternate approach is to introduce analytical redundancy in UAV. In analytical redundant

schemes, a residual signal is generated by a fault detection filter. This residual will be zero

during normal operation of the system for all control, disturbance and noise inputs. In the pres-

ence of a fault, the residual generates amplitudes proportional to the fault. Various approaches

for solving the fault detection and isolation filter design problem are available in the litera-

ture [6–8]. This design makes use of mathematical models of the monitored process and hence

is often referred to as the ‘model-based’ approach to fault diagnosis. Although this method is

widely used to increase safety and reliability requirements in small unmanned aircrafts, a lim-

ited degree of analytical redundancy has been applied to some commercial aircrafts such as the

Airbus A380 [9].

Analytical redundancy can be applied for small UAVs either at the system or component

level. The system level approach, e.g. [10–14], combines models of the aircraft dynamics with

inertial measurements. This approach is challenging as it requires accurate models of the flight

dynamics which may not be available for low-cost UAVs. Alternatively, fault detection algo-

rithms can be developed at the sensor or actuator level. For example, actuator faults can be

detected by using fault detection filters which propagate only the actuator input and output sig-

nals. This approach has recently been studied for hydraulic actuators on larger commercial

aircrafts [9, 15–17].

The subsequent chapters in this thesis are focused on a component level fault detection al-

gorithm for one specific UAV component which is a servo motor. The significance of designing

a dedicated fault detection filter for servos is detailed in the next chapter. This is followed by

the description of a dedicated laboratory experimental test-bed for UAV actuators developed by

the UMN UAV lab. Using this, a servo model has been identified and a fault detection filter

is designed. The design is experimentally validated by performing tests on healthy and broken

actuators using data from flight tests performed at the UMN UAV lab.



Chapter 2

Problem Formulation

A complex mechanical system such as an unmanned aircraft can fail in many ways. In case of

a failure of one/more of the hardware components in an aircraft, it is possible to still land the

aircraft safely by switching the control law. This has been demonstrated in [18] where advanced

control techniques were used to safely land a severely degraded aircraft However, this requires

the fault to be detected so that the controller can reconfigure. Fault detection and identification

is the precursor to control law reconfiguration.

[5] and [19] present the failure modes and effects analysis (FMEA) of the Ultrastick 120

aircraft which is a model aircraft used at the University of Minnesota UAV lab. This section pro-

vides a brief description of this aircraft and presents an overview of the fault detection approach

developed in this report to address some of the problems recognized in [5] and [19].

2.1 Flight Test Equipment

The experimental vehicle is called FASER, and is a commercial, off-the-shelf, radio-controlled

unmanned aircraft with the Ultra Stick 120 airframe, shown in Figure 2.1. The FASER platform

was obtained by University of Minnesota from NASA Langley Research Center. FASER has a

wingspan of 1.92m and a mass of about 7.4kg. The aircraft has a flight endurance of 30 minutes

and a cruise speed of 23m/sec. Additional details can be found in [20, 21]. NASA Langley

identified the aerodynamic coefficients for FASER from wind tunnel experiments [22, 23]. This

aerodynamic data provides the foundation for a high fidelity, six degree-of-freedom nonlinear

simulation model. This simulation model and all flight data are publicly available [4].
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Figure 2.1: Ultrastick 120 aircraft

FASER is retrofitted with UMN avionics hardware and software for real-time control, guid-

ance, navigation, and fault detection. The avionics include a flight computer, telemetry radio

and sensors. The aerodynamic control surfaces (flaps, ailerons, elevator and rudder) are actu-

ated by their own servo motor. The system has a throttle input and 4 servo inputs to deflect the

elevator, rudder, symmetric left/right aileron, and left/right flap.

Results from FMEA and fault tree analysis (FTA) on the Ultrastick 120 aircraft are presented

in [5] and summarized in Table 2.1. The aircraft uses a single-string architecture and the FTA

predicted one failure per 50 flight hours. The components that were identified to have failures

with a high risk of catastrophic damage are: the fail-safe switch, R/C receiver, avionics battery,

battery eliminator circuit (BEC), the rudder and elevator servos. A fault in these components

was classified as ‘Type 1A’ and these faults led to an uncontrolled emergency landing with a

high risk of catastrophic damage. Among these, the effector servos were found to have the

highest failure rate. ‘Type 1B’ faults led to a controlled emergency landing with low risk of

catastrophic damage. The electronic speed control (ESC), motor battery, motor, aileron and

flap servos and the propeller exhibited this level of failure. The last category of faults were
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‘Type 2’ faults which led to a mission critical failure and subsequent loss of data. This type of

failure was exhibited by the GPS antenna, flight computer, GPS receiver and IMU.

Failure

type
Consequence

Failure rate

(failures/100 hours)

Component with highest

failure rate

Type 1A
Uncontrolled

emergency landing
2.17

Elevator/Rudder

servos

Type 1B
Controlled

emergency landing
2.14 Propeller

Type 2
Mission critical

failure
2.32 IMU

Table 2.1: Reliability analysis of the Ultrastick 120 UAV components

This type of reliability analysis gives us an idea about the most critical components of a low-

cost UAV. Specifically in the area of fault tolerant control, knowledge of the location and type

of actuator failure is vital for reconfiguration of the guidance and control laws of the aircraft to

prevent a loss of vehicle.

2.2 UAV Actuator Failure Modes

Servos are used to actuate the control surfaces in an aircraft and they are one of the most critical

components of a UAV. Figure 2.2 represents the outside and inside of one such servo commonly

used in UAVs today. These servos are an assembly of four parts: a DC motor, gear train, control

circuit and a position sensor (usually a potentiometer). The servo shown in the figure is small,

lightweight (26.93 g) and cheap (∼$20) with a high speed (0.14 sec/60o at 4.8V ) and high

torque (3.9 kg/cm at 4.8V).
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GEAR TRAINDC MOTOR

WIRES FROM 
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CONTROL 
CIRCUIT

Figure 2.2: The outside and inside of HITEC HS-225BB servo

Regardless of the cost or make, these servos tend to degrade over time and usage. Servo

failures can be categorized based on the cause and effect. Based on the cause, there are six

principal modes of effector servo failures that can occur in a UAV during flight. These faults

are recognized as: Bias, Stuck surface, Hardover, Floating surface, Oscillatory mode, Increased

deadband/stiction [19]. Classifying by effects according to the NASA standards for flight vehi-

cle FMEA, the fault modes can be catastrophic, critical, significant or minor.

In this thesis we deal with the following two modes of actuator failures encountered in

FASER flight tests:

• Stuck Fault: This is a catastrophic fault type. It occurs due to a damage in the servo drive

shaft, linkage or due to an unbalanced surface. This may lead to a loss of motion, loss of

control, and in severe cases, loss of vehicle. The damage in the servo driveshaft can be

detected by physical inspection of the servo by rotating the shaft. The exact type of the

fault can be confirmed by analyzing the output from the actuator.

• Increased Deadband/Stiction: This is a critical fault known to occur due to slippage of

gears, or damaged servo drive shaft. This may lead to a loss of motion. Upon physical

inspection of the servo, noticeable clicking sounds can be heard when the servo shaft is

rotated.
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2.3 Fault Detection Architecture

As stated before, analytical redundancy in control can be applied for small UAVs either at the

system level or component level. Here we use a model based fault detection scheme to detect

actuator faults as represented by Figure 2.3.

Figure 2.3: Fault monitoring setup

The model based fault diagnosis has been defined in [8] as ”the determination of faults

of a system from the comparison of available system measurements with a priori information

represented by the system’s mathematical model, through generation of residual quantities and

their analysis”. Hence the first step in actuator fault detection is to identify a robust actuator

model to provide this a priori information for the fault detection filter. For this purpose, a

dedicated bench top experimental testbed for actuators has been developed at the UAV lab of

the University of Minnesota. This is described in Chapter 3. The setup of the FASER system

allows us to record the data sent from the controller to the different actuators and also collect

the position outputs from the aircraft sensor. We have used this data in the simulation to excite

the actuator and test the model based fault detection filter. The residual filter generates signals

proportional to the level of fault which is used by the decision logic to raise a fault flag. This

is detailed in Chapter 4. Finally, the conclusion and scope for future work is presented in

Chapter 5.



Chapter 3

Actuator Modeling

Actuators used in UAVs such as the Ultrastick 120 are radio control hobby servos. Figure 3.1

represents the feedback mechanism in servo motors.

Figure 3.1: Block diagram of a closed-loop servo mechanism

The first step is to obtain a model of the actuator being used on the UAV. There are multiple

approaches to obtain a model for the servo actuator. Theoretically, a mathematical model can

be derived by coupling the linear dynamics of the DC motor with the nonlinear dynamics of

the gear train. But it is not easy to determine the motor speed and torque constants for low cost

UAV actuators. Instead, if we have input-output data from an actuator, we can do black box

system identification. The latter method is chosen for our purposes.

In this section we describe the experimental setup developed to obtain the input-output data

and the system identification procedure to obtain a model for a healthy actuator. The setup is

8
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such that the input-output data can be obtained quickly with less effort. The data can then be

processed in MATLAB to generate the transfer function of the actuator. Results of the model

validation are presented in both time and frequency domains.

3.1 Laboratory Experimental Setup

Figure 3.2 depicts the laboratory experimental setup used for actuator analysis. The objective

of the setup is to perform offline analysis of the servos used in flight for modeling and fault

diagnosis. The heart of the setup is an Arduino based microcontroller used to control the RC

servo. The board used is a Teensy 3.1 microcontroller which costs $19.8 [24] and uses a 72MHz

Cortex M4 processor. It has a 32 bit ARM, 64KB RAM and 2KB EEPROM, making it a good

choice to handle large amount of input and output data. Arduino 1.6.1 software is used to

program the microcontroller in the Arduino programming language.

Figure 3.2: Experimental setup

Servo motors have three wires: power (red wire), ground (black/brown wire) and signal

(yellow/orange/white wire). The power to the test servo is supplied by a regulated DC power
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supply along with a Castle creations battery eliminator circuit (CC BEC) as shown in Figure 3.2.

Most RC servos require a DC input of 4.8V or 6V. The current drawn by these servos is in tens

of mA in idle state or a few hundreds of mA when operating on no load. A common ground

is established for the servo, the microcontroller and also the position sensor. The third (signal)

wire of the servo is connected to any one of the pulse width modulation (PWM) pins of the

Teensy board. This establishes the input circuitry for our setup.

The position output of the test servo is measured using a second servo modified to operate

as just a potentiometer. This is done by removing the gearset from a normal servo and wiring

the power and ground. The power to the potentiometer is supplied from the 3.3V pin of the

Teensy 3.1. The potentiometer measurements are calibrated to remove any DC offsets.

3.2 Data collection

In order to analyze the frequency domain and time domain responses of the servo, three tests

were conducted on the setup in Figure 3.2. This section gives a description of these tests.

3.2.1 Calibration test

Servo motors are controlled by PWM pulses. The microcontroller commands the servo to go

to a specific position by varying the width of these pulses. Hence the input commands sent by

the Teensy is in units of time in microseconds. A servo has a predefined neutral point which is

the position where the servo has exactly the same amount of potential rotation in the clockwise

direction as it does in the counter clockwise direction. This value is usually given as part of the

manufacturer specifications and for most servos it is around 1500 µ s. If the servo can perform

a full sweep of 180◦ then the neutral point corresponds to a position of 90◦. But the output from

the potentiometer is recorded by the Teensy in units of bits, the range of which depends on the

analog read resolution set by the programmer. Hence we need to calibrate the readings from the

potentiometer and find a mapping between the output in bits to shaft position in degrees.

Two methods were used to calibrate the potentiometer. The first method applies to servos

that exhibit the full range of sweep from 0◦ to 180◦. In this test, the servo shaft was manually

set to the extreme positions and the POT output was recorded. This gave us the bit to degree

mapping. For servos that don’t display a 180◦ sweep, a bit to microsecond mapping was found

by commanding the servo to two specific shaft positions.
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3.2.2 Step response

The second set of tests involved recording input-output data for step commands. This test is

useful in determining the time domain specifications, mainly the the rate limits of the servo. The

servo was commanded from a position corresponding to 1000 µs to a position corresponding

to 1800 µs. The software ran in real-time at 10kHz. The rate limit of a servo is the slope of

the output in the linear region. Figure 3.3 shows the input-output plot for one of HITEC’s high

speed digital servo, HITEC 5625MG for an operating voltage of 6V. The slope of the output in

the linear region is 456 deg/sec which is the rate limit for this servo.
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Figure 3.3: Step response of HITEC 5625MG digital servo

3.2.3 Chirp response

This test is used to determine the frequency domain specifications of the servo. The input-

output data can be used to perform system identification to determine the transfer function and

the bandwidth. The servo is commanded a chirp signal with a frequency sweep from 1Hz to

25Hz and amplitudes of ±4deg over a period of 120 seconds. The software is run at 100Hz.

Figure 3.4 shows the input-output data for frequency sweep commands sent to HITEC 5625MG.
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Figure 3.4: Chirp response of HITEC 5625MG digital servo

It is also necessary to perform all the above three tests at an optimal PWM update frequency.

This parameter affects the behavior of the servo, the quality of the logged data and the actuator

model itself. Most analog and digital servos have a maximum safe update rate of 50Hz. A 50Hz

update rate corresponds to seeing a pulse every 20ms. If the PWM update frequency is too high

then the servo can malfunction and miss incoming data. Some Futaba digital servos are known

to have much higher limits of 333Hz. Such servos also have greater shaft speeds. In our experi-

ments with PWM frequencies near the limits, we found the servo to exhibit uncontrolled motion

in the form of sudden jerks and a high current consumption with overheating. However, a high

PWM update rate within the safety limit yields a higher servo bandwidth, tighter deadband,

more holding power and less time to develop full torque.

The next section describes the process of identifying a system model using input-output

data from chirp tests.

3.3 System Identification

Frequency domain identification techniques are used in MATLAB to identify the actuator model.

Fast fourier transformations of the chirp input-output data are computed and used to obtain the
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empirical transfer function and frequency response Graw( jω) of the raw data. An additional

angle offset is added to the phase to account for factors of 360◦ that arise due to noise/low

coherence at low frequencies. The MATLAB spa function is used to obtain the smoothed fre-

quency response Gsm( jω) of the raw data. This function estimates a frequency response with

fixed frequency resolution using spectral analysis. An optimal width of the Hanning window is

chosen to minimize bias while still giving a smooth estimate.

In order to account for variations in the response from different actuators, even of the same

make and model, due to factors such as manufacturing defects and noise levels, the above exper-

iment and simulation is repeated on multiple healthy servos. An average of the magnitude and

the phase response is calculated and a nominal frequency response Gavg( jω) of the smoothed

data is used for model identification.

The nominal model consists of the average response on a frequency grid. The next step is to

fit this data with a transfer function. An optimal transfer function fit G f it( jω) is obtained using

the fitmagfrd function of the robust control toolbox. fitmagfrd fits frequency response

magnitude data with minimum-phase state-space model using log-Chebychev magnitude de-

sign. This provided better fits for data just beyond the bandwidth. Alternative functions that use

least squares, such as fitfrd, are very accurate at low frequencies but at the expense of poor

fits just above the bandwidth. Since fitmagfrd assumes a stable system with minimal phase,

a time delay is manually set in order to match the phase of the transfer function with that of the

smoothed frequency response.

For further clarity, analysis from system identification of HITEC HS-225BB servo is pre-

sented here. Figure 3.5 represents a linear third order model fit using experimental data from

three healthy HITEC HS-225BB servos. The blue line gives the averaged empirical frequency

response obtained from raw data Gavg,raw. The red line is the smoothed response Gavg,sm ob-

tained by using spa function. Finally, a servo model is obtained by fitting a third order model

using fitmagfrd function. A delay of 4 milliseconds is added for this servo model.
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Figure 3.5: HITEC HS-225BB: Frequency response of model fit computed from averaging the

frequency response of three healthy servos.

Equation (3.1) describes the transfer function fit for HITEC HS-225BB actuator:

G f it(s) = e−0.004s 122300
(s+24.84)(s2 +70.04s+4921)

(3.1)

3.4 Model Validation

This subsection presents time and frequency domain validation results to justify the identifica-

tion of the model for HITEC HS-225BB actuator. Figure 3.6 illustrates the frequency response

of the transfer function fit against the smoothed frequency response of all the tested servos. The
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dotted lines in Figure 3.6 show the smoothed data for three servos. i in Gsm,i denotes the indi-

vidual servos (here i∈[1,3]). The bandwidth of HITEC HS-225BB actuator is determined to be

4.5Hz.
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Figure 3.6: HITEC HS-225BB: Comparison of smoothed frequency response of individual

servos (Gsm,i( jω)) and the model fit G f it( jω).
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Figure 3.7: HITEC HS-225BB: The coherence plot between raw experimental data and model

fit.
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Figure 3.8 depicts the normalized magnitude error given by,

e( jω) =
|Gsm,i( jω)−G f it( jω)|

G f it( jω)
(3.2)
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Figure 3.8: HITEC HS-225BB: Normalized error of the fitted model with respect to the indi-

vidual servos.

Since the servo excitation starts at 6 rad/sec, the coherence between input and output data

is found to be good (> 0.8) from frequencies starting at 10 rad/sec as shown in Figure 3.7.

In general, the coherence describes how well the input/output data is fit with a linear model

as a function of frequency. The coherence of the input and output data gets unsatisfactory

at frequencies greater than 100 rad/sec for this servo as high frequency noise and rate limits

influence the output. This is the range in which the model adequately reflects the measured

data, which is also marked in Figure 3.8.

At frequencies greater than 150 rad/sec, there is a surge in e( jω) indicating noise influ-

ences at high frequency. The window of frequencies from 10-100 rad/sec depicts the region of

best coherence between input and output. The normalized error for the different servos in this

window varies from 0.01-0.37.

Figure 3.9 represents time domain validation results performed using flight test data. Actu-

ator commands to the right aileron of the FASER aircraft are logged during a test flight. These

commands are used as an input to the servo in the bench-top experiment at a sampling rate of

100Hz. The blue line in Figure 3.9 shows the logged command. The output obtained from the

actuator on the bench-top experimental setup for the given flight command input is denoted in

green. The simulated output obtained from the actuator model identified in Equation (3.1) for

the same command input is denoted in red. The simulated output replicates the actual response
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with an adequate accuracy. The standard deviation of the error between the simulated and true

actuator output in Figure 3.9 is 0.2o . Note that the actuator in the bench-top experiment is

unloaded. This is a significant difference from the flight tests where the actuator experiences

the effects of the aerodynamic loads on the controllable surfaces. A modification of the experi-

mental setup to replicate the aerodynamic loads experienced by the UAV would be beneficial in

developing more accurate models and simulations.
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Figure 3.9: Servo true output and simulated output for FASER flight commands

Once the actuator model has been verified, the simulated output can be taken as the true/

expected output of the actuator. Hence if an actuator is broken, then the experimental output

(from flight tests/ bench top experiments) will reflect the fault and the simulated output becomes

the reference/true output.

Figure 3.10 in the next page summarizes the analysis and results of system identification

performed on several low-cost servos used in UAVs. The chirp signal data used to identify

these actuator models vary from a frequency of 1-25 Hz which correspond to a maximum of

157 rad/sec. Hence the bandwidth of the model fit is within this chirp frequency. We can also
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notice from the figure that some of the more expensive servos can be approximated to a first-

order model if desired. Since our application is for fault detection, using a second order model

over a first order fit helps us to reduce modeling errors. Cheap servos such as the HITEC HS-

225BB and Futaba S3151 have poles that are oscillatory in nature. This is due to poor-grade

gears in these servos. Plastic gears such as those used in such cheap servos tend to have loose

gear coupling and hence exhibit an oscillatory response. On the other hand, the HITEC 9360TH

is a high speed titanium gear servo known to be one of the robust servos available in the market.

Also, as stated earlier in this thesis, the Futaba servos such as the S9254 and S9256 models have

high PWM update rate limits of upto 333Hz which can also be observed in the high rate limits.

The safe PWM frequency for the HITEC 9360TH and HS-225BB models is only 50Hz. The

time delay represented in the figure is the delay that was recognized while performing system

identification. This delay corresponds to delay in servo response due to electronics of the setup

which includes the internals of the servo and the Teensyduino board.
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SERVO 
TYPE

PRICE TRANSFER FUNCTION
BANDWIDTH

(RAD/SEC)
POLES

RATE LIMIT
(DEG/SEC)

TIME DELAY
(SEC)

Futaba
S9254

$120
6.475x105

s2 + 5202s + 6.475x105
127.2

127.6,
5074

1000 0.01

Futaba 
S9256

$60
5.165x104

s2 + 579.3s + 5.165x104
104.5

110.1,
469.2

1263 0.01

Futaba 
S3151

$30
654.1

s2 + 17.27s + 654.1
5.8 -8.63 ±24.74i 265 0.01

HITEC 
9360TH

$180
1.091x105

s2 + 3455s + 1.091x105
31.73

31.87,
3423

605 0.015

HITEC 
HS-225BB

$18
1.856x105

s3 + 135.8s2 + 9253s + 1.856x105
30.8

-30.85,
-52.4 ±57.11i

370 0.004

Figure 3.10: Actuator models identified for the different servos used in UMN UAV laboratory



Chapter 4

Fault Detection

This section presents the methodology for implementing a residual filter using the model from

Section 3, for the fault diagnosis approach to detect actuator faults. The model-based fault

diagnosis is defined in [8] as “the determination of faults of a system from the comparison of

available system measurements with a priori information represented by the system’s mathemat-

ical model, through generation of residual quantities and their analysis”. The actuator model

identified in Chapter 3 provides this a priori information, while the input and the output signals

are the available system measurements. The fault detection filter is based on this derived model

and uses the system measurements as inputs to generate a residual which is only prone to faults.

4.1 Fault Detector Design

The fault detection filter (diagnostic observer) design problem for the servo is to generate a filter

which:

(a) decouples the input from the output

(b) couples the fault to the residual and

(c) is stable and proper.

Various approaches to solve this problem based on parity space calculation, nullspace calcu-

lation or observer based approaches are available in literature. The contribution [25] explains in

detail, that if the design problem is directly solvable, all of these approaches are able to generate

20
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the same fault detection filter. The design problem is directly solvable as there are no unknown

inputs that need to be decoupled from the system.

The approach used in this paper to solve the residual filter design problem for the linear

actuator model is based on simple nullspace computations as presented in [26]. This approach

only involves basic algebraic operations and also provides the designer with the freedom to

directly select the poles of the filter.

Modeling the actuator fault as an additive input, the input-output form is given by

y(s) = G f it(s)(u(s)+ f(s)) (4.1)

where y(s), u(s) and f(s) are the Laplace-transformed quantities of the servo position y(t),

the commanded input u(t) and the fault input f (t), respectively. To solve the fault detection

problem for the system in Equation (4.1) a residual filter of the form

r(s) = Q(s)

[
y(s)
u(s)

]
(4.2)

shall be generated, which uses the available command input signal u and the measured servo

position y of the actuator to generate a residual r. In Equation (4.2), r(s) is the Laplace-

transformed quantity of the residual signal r(t). The idea of the nullspace methodology be-

comes clear when inserting Equation (4.1) into the residual filter of Equation (4.2), resulting

in

r(s) = Q(s)

[
G f it(s)

1

]
u(s)+Q(s)

[
G f it(s)

0

]
f(s) (4.3)

The residual r shall be zero in any fault free situation and non-zero if a fault occurs. Also, the

residual shall be zero in case of no fault ( f = 0) only if it is decoupled from the input u. Thus,

the residual filter Q(s) must guarantee

Q(s)

[
G f it(s)

1

]
= 0 (4.4)

implying that Q(s) belongs to the left nullspace of G f it(s). Note that the most intuitive solution

of the filter problem considering the design constraints (a)-(c) for the actuator dynamics, is the

filter

Q(s) =
[

1 −G f it(s)
]

(4.5)
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This filter generates the residual as a difference of the measured servo position y and its estimate

ŷ = G f itu. Equation (4.6) is obtained by substituting Equation (4.5) in Equation (4.3). As

desired, the influence of the input u gets decoupled from the residual r leaving only f

r(s) = G f it(s)f(s) (4.6)

allowing the detection of the fault. The drawback of this result is that the fault-to-residual

transfer behavior is equal to the underlying system behavior G f it(s). This might be undesirable

sometimes, such as when the designer wishes to decrease the detection time by making the

fault-to-residual transfer behavior faster. Note that any unmodelled servo dynamics or noise

in the output will be transferred to the residual through the transfer function. Thus, to filter

out these effects it could also make sense to decrease the dynamics. At this point, instead of

directly changing the filter we present a general design approach which can also be used for

more complex systems.

A filter design via the calculation of polynomial basis vectors for the required nullspace

is presented in [26]. This approach provides the designer with maximum degree of design

freedom. This process is summarized below for the no disturbance case and then applied to the

servo fault detection problem.

In case of no disturbances the solution is based on a matrix fractional decomposition of

the known input to the measurement matrix: G(s) = D−1(s)N(s). The transfer function matrix

B(s) = [D(s) −N(s)] contains row vectors forming the nullspace basis of G(s). Thus every

row and every linear combination of the rows of B(s) is a potential residual filter, solving (a)

of the design problem. The second step is to shape the fault-to-residual transfer behavior, thus

solving (b) and (c) of the design process. To fulfill (b) any parametric linear combination of the

rows of B(s), which couples the fault to the residual can be selected, by choosing a (polynomial)

matrix φ(s) of suitable dimension [26]. Finally, as B(s) is a polynomial basis, its rows are not

proper. To fulfill the design constraint (c) φ(s)N(s) can be further parametrized with a diagonal

polynomial matrix M(s) containing the desired poles of the filter to make it (strictly) proper,

defining the desired transfer behavior. Hence, the filter Q(s) is given by

Q(s) = M−1(s)φ(s)B(s) (4.7)

Thus, the only constraint limiting the design freedom is given by the row degree of M(s) that is

needed to make the residual filter strictly proper.
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Applying the presented approach to the actuator model requires the decomposition of the

actuator model from Equation (3.1) into

G f it(s) = d−1(s)n (4.8)

with
n = 122300

d(s) = (s+24.84) (s2 +70.04s+4921)
(4.9)

resulting in the basis B(s) = [d(s) −n(s)]. As the basis in the case of a single transfer function

consists of only one vector, no further parameterization with φ(s) is required.

The last step is to define M(s), which is a single transfer function in our case. To provide

a fast detection of the fault and still filter out the sensor induced noise, M(s) is selected as

k(0.02s+1)4. k denotes the dc-gain for the fault-to-residual transfer and needs to be selected.

Choosing k = n ensures a fault to residual dc-gain of 1. Thus, the resulting strictly proper filter

is given by

Q(s) =
1

n(0.02s+1)4

[
d(s) −n(s)

]
(4.10)

The fault-to residual transfer behavior can be derived by inserting the filter Equation (4.10) and

the model Equation (4.1) into Equation (4.2), resulting in:

r(s) =
1

(0.02s+1)4 f(s) (4.11)

The decision logic for the detection of a fault involves comparing the generated residual

to an upper and lower constant threshold ±τ . The decision variable i is defined as a boolean

variable

i =

0 if |r|< τ

1 otherwise
(4.12)

indicating the presence of a fault in the system (i = 1) or its absence (i = 0).

4.2 Results

The selection of threshold is based on residuals generated by healthy actuator data. Note that

the analysis and results presented in this section are all based on testing of HITEC HS-225BB

actuators using the laboratory experimental setup. Figure 4.1 shows the residuals generated by
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a healthy actuator for logged flight data run on the bench-top experiment (with no aerodynamic

loads). The commands correspond to aileron and elevator FASER commands involving 180

deg turns of the aircraft in a rectangular pattern. The fault detection filter receives this flight

command inputs as well as the measured actuator output of the experimental setup. We observe

from Figure 4.1 that for the test signal, the residual stays well between±1.5 units. Hence,±1.5

units appears to be a reasonable threshold level.

Time (sec)

0 5 10 15 20

R
e
s
id

u
a
l

-3

-1.5

0

1.5

3

Lower threshold

Upper threshold

Figure 4.1: A collection of residuals generated for FASER flight commands sent through a

healthy HITEC HS-225BB servo. The threshold for fault declaration is decided based on these

residuals.

To further validate our choice of threshold, the residuals from healthy and faulty actuators

are compared against the selected threshold. Figure 4.2 shows a comparison of residual gener-

ated by a healthy servo and a servo with a critical fault type (increased deadband). The ±1.5

units threshold level is successful in differentiating between the two actuator performances. A

fault is declared in the first instance of the residual crossing the set threshold limit. Note that

the magnitude of the residual and the time taken to sense the fault depends on the fault level and

the input command amplitude.
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Figure 4.2: Residuals generated for a healthy and unhealthy HITEC HS-225BB servo for FASER

flight commands.
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Figure 4.3: Residual generated by a healthy HITEC HS-225BB for a chirp command. The

thresholds for fault detection are represented by black dotted lines.

Figure 4.3 depicts the actuator fault detection filter run on a fully functional or healthy
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actuator. The ’Command’ or the input is a chirp signal. The ‘Simulation’ signal is the output

generated by the SIMULINK actuator model or the expected output. The ’Output’ signal is

the true output obtained from experiments. For a frequency sweep command, the generated

residual has a mean 0.00 and variance 0.02 units. Hence the residual is well within the set

threshold limit. Next we will see the variation of the residual for the same input command on

broken actuators.

4.2.1 Critical fault type: Increased deadband/stiction

As stated in Section 2.2 this failure is caused by slippage of gears or damaged servo driveshaft.

Note that a UAV can still fly with an increased deadband type of actuator fault but with reduced

maneuverability leading to loss of motion. Hence this is a critical fault type. Figure 4.4 shows

its response for a chirp command. The movement of the servo shaft is constrained and the servo

appears to be stuck at certain shaft positions. It is also accompanied by an increased current

intake and higher servo noise levels. As seen in the lower plot of Figure 4.4, the residual is

outside the threshold limits.
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Figure 4.4: The response and residual of a HITEC HS-225BB servo with an increased deadband

fault for chirp input.
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Figure 4.5 represents the response and residual for the same fault for FASER commands.

The fault is sensed by the filter at 8.05 seconds after the first large scale dynamic maneuver

performed at 7.98 seconds.
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Figure 4.5: The response and residual of a HITEC HS-225BB servo with an increased deadband

fault for FASER flight commands.

4.2.2 Catastrophic fault type: Stuck fault

This failure is caused due to a damage in the servo drive shaft, linkage or an unbalanced surface.

It is a catastrophic fault which can lead to loss of motion and loss of control and in severe cases,

a loss of vehicle. This fault can also be interpreted as an extreme case of the increased deadband

fault. Figure 4.6 represents the response of the actuator model and the fault detection filter for

a sinusoidal input. Here the servo is stuck/immovable at all positions irrespective of the initial

shaft position. The current intake is observed to be higher than the normal levels (specified by

the manufacturer).

Figure 4.7 shows the response of the same actuator for flight commands. In this test, the

first flight command to maneuver the UAV was sent after 2.97 seconds. As soon as the UAV is

maneuvered, the fault detection filter immediately senses an actuator fault and raises a flag at
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3.05 seconds.
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Figure 4.6: The response and residue of a HITEC HS-225BB actuator with a stuck fault for

chirp input commands.

It must be noted that the fault detection algorithm proposed here is only one aspect of a

complete fault tolerant approach. As soon as the fault detection filter raises a flag, the identified

actuator needs to be isolated from the GNC system and a fault tolerant controller must take over

to safely land the aircraft [18]. Hence a UAV can be made reliable by designing a fault detection

filter followed by fault isolation and control system reconfiguration.
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Figure 4.7: The response and residue of a HITEC HS-225BB actuator with a stuck fault for

FASER flight commands.



Chapter 5

Conclusion

This purpose of this study was to improve safety and reliability of low-cost Unmanned Aerial

Vehicles using model based fault diagnosis. The test vehicle used is FASER with the Ultrastick

120 airframe owned by the UAV laboratory of the University of Minnesota. From FMEA and

FTA conducted on this aircraft it was evident that the rudder and elevator servos have the sever-

est and highest failure rate of 2.17 failures for every 100 hours. Hence this thesis focused on

modeling of servo actuators and design of fault detection filters for servos. In this process, an

Arduino based experimental testbed was designed to perform offline analysis of servos used on

UAVs. Various types of data were collected using this testbed which was used to model actua-

tors using frequency domain system identification techniques in MATLAB. A robust second or

third order model fits were obtained for five actuators (manufactured by HITEC or Futaba) used

in low-cost UAVs. The bandwidth, rate limit and time delay were also determined for these

servos.

Using the identified actuator model, a linear fault detection filter was designed based on

polynomial basis vectors [26] to generate a residual proportional to fault. A threshold of ±1.5

units was set for fault declaration. If the residual is within ±1.5 at all times then the perfor-

mance of the servo is said to be normal/healthy. The fault detection algorithm was tested on

actuators with two types of faults: increased deadband/stiction (critical fault) and stuck fault

(catastrophic fault). These tests were conducted on the actuator experimental testbed using

flight data obtained from FASER flight tests. For both fault types, the filter was able to raise a

flag indicating occurrence of actuator fault within 0.08 seconds of the first dynamic maneuver.
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Hence the results from model based fault detection filter are satisfactory and confirm the ade-

quate modeling of the underlying system, an adequate design of the fault detection filter, and

the possibility to detect faults during flight, while trying to minimize the probability of false

alarms.

A more comprehensive analysis of actuator fault detection can be accomplished by upgrad-

ing the laboratory experimental testbed. Currently, the testbed is being expanded to replicate

aerodynamic loads experienced in flight to conduct load tests on actuators. Also there is scope

for a better actuator calibration based on precise angular measurements which can aid in map-

ping unhealthy actuators. Besides, monitoring the servo current intake will help in achieving

a more accurate actuator model. The fault detection algorithm can also be modified to include

adaptive thresholds. The fault detection technique put forward in this thesis based on analytical

redundancy can be further validated and supported by conducting a probabilistic analysis such

as probability of false alarms and missed detections. Finally, all of this can be implemented and

tested in real-time by conducting flight tests on low-cost UAVs.
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Appendix A

System Identification in MATLAB

%% ServoAnalysis
% This file constructs a second order model for the Futaba S9254 servo.
% The model is constructed via frequency-domain identification techniques
% using a chirp input signal. Validation is performed in the frequency
% domain using a second set of data with an input chirp at a higher
% voltage. Finally, step response data is used to estimate the rate
% limit and to provide a time-domain validation for the model.
%
% History:
% Initial Coding: I. Lakshminarayan and P. Seiler 5/29/2015
%

%% Load time domain data and convert to degs
% 'u': Input command, degs
% 'y' : Output position, degs

% Sample time and frequency
dt = 1e-2; % Sample time, sec
Fs = 1/dt; % Sample frequency, samples/sec

% Chirp input data for creating transfer function fit
fname = 'HITEC_225BB_Bandwidth_4_8V';
[u,y,t,cmd,pos] = load_Hitec_225BB(fname,dt);
u = u-mean(u);
y = y-mean(y);
Nt = length(t);

% Plot time domain response of input/output signals
figure(1)
plot(t,u,'b',t,y,'r--');
xlabel('Time (sec)');
ylabel('u and y');
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legend('u','y');

% Make thick line types, etc for nice plots
if exist('garyfyFigure','file')

garyfyFigure
end

%% Compute FFTs of input and output
NFFT = 2ˆnextpow2(Nt); % Next power of 2 from length of y
f = Fs/2*linspace(0,1,NFFT/2+1)'; % Frequency vector, Hz
w = f*2*pi; % Frequency vector, rad/sec
Y = fft(y,NFFT)/Nt;
U = fft(u,NFFT)/Nt;

% Single-sided amplitudes
idx = 1:NFFT/2+1;
Ymag = 2*abs(Y(idx));
Umag = 2*abs(U(idx));

% Plot single-sided amplitude spectrum for input and output
figure(2);
semilogx(w,Umag,'b',w,Ymag,'r--');
xlim([1 20]*2*pi);
title('Single-Sided Amplitude Spectrum')
xlabel('Frequency (rad/sec)')
ylabel('|U(w)| and |Y(w)|')
legend('U','Y');

% Make thick line types, etc for nice plots
if exist('garyfyFigure','file')

garyfyFigure
end

%% Compute empirical transfer functions (raw / smooth) and fit

% Raw frequency response from FFTs of input and output
% An additional angle offset is added to Graw_ph to account for factors
% of 360degs that arise due to noise / low coherence at low frequencies.
Graw = Y(idx)./U(idx);
Graw_mag = 20*log10(abs(Graw));
Graw_ph = unwrap(angle(Graw))*180/pi+720;

% Smoothed (windowed) frequency response
% This uses the function SPA but ETFE could also be used here.
% Nwin is the window width. Smaller values give a more smooth estimate
% (lower variance) of the frequency response but with higher bias.
% The value was selected to be as large as possible (to minimize bias)
% while still giving a smooth estimate.
yudat = iddata(y,u,dt);
Nwin = 100;
Gwin = spa(yudat,Nwin,w);
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[Gwin_mag,Gwin_ph] = bode(Gwin);
Gwin_mag = 20*log10(Gwin_mag(:));
Gwin_ph = Gwin_ph(:);

% Coherence
Cuy = mscohere(u,y,[],[],NFFT);

% Optimal transfer function fit:
% Use FITMAGFRD to fit the magnitude data. FITMAGFRD
% tries to minimize the peak error (in DB). This seems to provide
% better fits for data just beyond the bandwidth. Alternative
% fits using least squares (FITFRD) provide very accurate fits
% at low frequencies at the expense of poor fits just above the
% bandwidth. The drawback with FITMAGFRD, in general, is that it
% assumes the system is stable, minimum phase. That is fine for the
% servo actuator except that the time delay needs to be fit by hand
% in order to get the phase to match between the fit and experiment.
% The time delay is chosen mainly to fit the phase. However, it was
% also tweaked slightly to improve the fit with the time-domain, step
% repsonse data below (at the expense of less accurate fit to the phase
% in the frequency domain).
wfit = [1 20]*2*pi; % Frequency band used for fit, rad/sec
iodel = 0.03;
Gfr = freqresp(Gwin);
widx = w>=wfit(1) & w<=wfit(2);
Gfr = frd(Gfr(widx),w(widx));
Gfit = fitmagfrd(Gfr,2,2);
Gfit.InputDelay = iodel;
tf(Gfit)

[Gfit_mag,Gfit_ph] = bode(Gfit,w);
Gfit_mag = 20*log10(Gfit_mag(:));
Gfit_ph = Gfit_ph(:);

%% Plot empirical transfer function and fit
figure(3);
subplot(311);
semilogx(w,Graw_mag,'b',w,Gwin_mag,'r',w,Gfit_mag,'g--');
xlim(wfit);
ylabel('|G(jw)| in dB')
title('Experimental Data and Fit')

subplot(312);
semilogx(w,Graw_ph,'b',w,Gwin_ph,'r',w,Gfit_ph,'g--');
xlim(wfit);
ylabel('\angle G(jw) in degs')
legend('Graw','Gwin','Gfit','Location','Best');

subplot(313)
semilogx(w,Cuy,'b');
xlim(wfit);
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ylabel('Coherence');
xlabel('Frequency (rad/sec)')
set(3,'Pos',[680 115 560 863]);

% Make thick line types, etc for nice plots
if exist('garyfyFigure','file')

garyfyFigure
end

%% Frequency-Domain Validation

% Chirp input data for validating transfer function fit
fname = 'HITEC_225BB_Bandwidth_6V';
[u,y,t,cmd,pos] = load_Hitec_225BB(fname,dt);
u = u-mean(u);
y = y-mean(y);
Nt = length(t);

% Smoothed (windowed) frequency response
yudat = iddata(y,u,dt);
Nwin = 100;
Gwin = spa(yudat,Nwin,w);
[Gwin_mag,Gwin_ph] = bode(Gwin);
Gwin_mag = 20*log10(Gwin_mag(:));
Gwin_ph = Gwin_ph(:);

% Coherence
Cuy = mscohere(u,y,[],[],NFFT);

% Plot fit and validation data
figure(4);
subplot(311);
semilogx(w,Gwin_mag,'r',w,Gfit_mag,'g--');
xlim(wfit);
ylabel('|G(jw)| in dB')
title('Validation Data and Fit')

subplot(312);
semilogx(w,Gwin_ph,'r',w,Gfit_ph,'g--');
xlim(wfit);
ylabel('\angle G(jw) in degs')
legend('Gwin','Gfit','Location','Best');

subplot(313)
semilogx(w,Cuy,'b');
xlim(wfit);
ylabel('Coherence');
xlabel('Frequency (rad/sec)')
set(4,'Pos',[680 115 560 863]);

% Make thick line types, etc for nice plots
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if exist('garyfyFigure','file')
garyfyFigure

end

%% Time-Domain Validation

% Load step-response data
fname = 'HITEC_225BB_Rate_4_8V';
%fname = 'Futaba_S9254_Rate_6V';
[u,y,t,cmd,pos] = load_Hitec_225BB(fname);

% Extract coefficients from transfer function fit.
% Note: The coefficient of the fit is tweaked to give a unity DC gain,
% i.e. a0 = b0. This unity DC gain matches the step response data.
% However, all the units conversions, etc that appear from input to
% output must be recalibrated when the servo is installed on the a/c.
[a,b]=tfdata(Gfit);
b1 = b{1}(2);
b0 = b{1}(3);

a0 = a{1}(3);
a0 = b0; % Enforce unity DC gain

% Set Rate and Position Limits
RateLimit = 332; % Rate Limit at 4.8 V
%RateLimit = 417; % Rate Limit at 6V
PositionLimit = inf;

% Simulate step response
ydot0 = 0; % Initial velocity, deg/sec
y0 = y(1); % Initial position, degs
uin = [t(:) u(:)];
sim('ServoModel',[0 t(end)]);

% Plot results
figure(5);
plot(t,u,'b',t,y,'r',tsim,ysim,'g--');
xlabel('Time, sec');
ylabel('Postion, degs');
legend('Ref','Exper','Sim','Location','Best')

% Make thick line types, etc for nice plots
if exist('garyfyFigure','file')

garyfyFigure
end



Appendix B

Fault detection filter in MATLAB

function [Qvecs,info] = getbasicQ(sys,p)
%% [QVECS,INFO] = getbasicQ(SYS,P) generates an FD filter system Qvecs
% assuming input faults on all inputs of sys.
% Each row of the output Qvecs is a potential FD filter and generates a
% residual:
% [ y ]
% r_i = QVECS(i,:) [ u ]
% using the system command inputs u and measurements y to generate the
% resiudal r_i. The filter decouples the system inuts from the residual
% while it couples the faults. The order of Qvecs is n+1, where n is the
% order of the common denumerator of sys. This ensures strictly proper TFs
% from faults to resiudals. In general the filter will have n+1 stable
% poles at P.In case of a single input system the algorithm tries to
% remove (stable) zeros from fault to residual channels.The multiplicity
% of each pole p in the channel i is n+1-m_i, where m_i is the number
% zeros to beremoved in channel i. The output info contains the command
% input to resiudal and fault toresiudal systems as well as its dc gains.
%------------ Version Information --------------------------------------%
% V0.1. - D. Ossmann, UMN, 17.9.2015: Basic input decoupling (runs w/o
% robust control TB (no coprime factorization function used)
%%----------------------------------------------------------------------%

if p>=0
warning('For a stable filter second input (pole) has been'...
'multiplied by -1')

end
if strcmp(class(sys),'ss')

sys = tf(sys);
end

%% Gernating raw filter
[out,in] = size(sys);
[num, den] = tfdata(sys);
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ord = order(sys(1,1));

DL = eye(out)*tf(den{1,1},1);
NL = tf(num,1);
Q = [DL -NL];

%% Filter processing
% try cancelling zeros from the f->r transfer function input faults if
% SI-system
if in==1

M(out,out)=tf(0,1); %init
for i =1:out

z = zero(NL(i));
if ~isempty(z)

iz = find(z<0); % stable zeros
z = z(iz);
Mtemp = zpk([],z,prod(z)); %filter to cancel stable zeros
dord = order(Mtemp);
M(i,i) = Mtemp *(zpk([],-abs(p),-abs(p)))ˆ(ord+1-dord);

else
M(i,i) = (zpk([],-abs(p),-abs(p)))ˆ(ord+1);

end
end

else
M = eye(out)*(zpk([],-abs(p),-abs(p)))ˆ(ord+1);

end

% get System from control input to filter output
rusys = Q*[sys;eye(in)];

dcgain(Q*[sys;eye(in)]);
% get System from fault input to filter output (assuming additive
% input faults)
rfsys = minreal(M*Q*[sys;zeros(in,in)]);

% Scale to a dcgain of at least +1 for the smallest residual in each
% row of the filter
if in>1 && out>1

DCmin = dcgain(rfsys);
% daignoal matrix with invers dcgains
Mdc = diag(min(abs(DCmin')).ˆ-1);
% get correct sign for dcgain of +1
indx = diag(min(abs(DCmin')))*ones(out,in)== abs(DCmin);
Mdcsign = diag(sum(sign(indx .* DCmin)'));

else
% vector operation in case of single input OR single output
if in == 1

Mdc = diag(dcgain(rfsys).ˆ-1);
Mdcsign = 1;

else
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DCmin = dcgain(rfsys);
Mdc = min(abs(DCmin)).ˆ-1;
indx = min(abs(DCmin))==abs(DCmin);
Mdcsign = sum(sign(indx .* DCmin));

end
end

% Get filter together
Qvecs = Mdcsign*Mdc*M*Q;

% Generate faults to residals system
rfsys = minreal(Mdcsign*Mdc*rfsys);

%% Additional Outputs
info.rusys = rusys;
info.dc_rusys = dcgain(Mdcsign*Mdc*M*rusys);
info.rfsys = rfsys;
info.dc_rfsys = dcgain(rfsys);



Appendix C

Actuator testing in Arduino

// Taylor, Brian R
// brtaylor@umn.edu
//
// 20150109
// This code is for conducting servo rate limit tests. A step command is
// sent to the servo and the position is measured via a potentiometer and
// an analog input pin. Additionally, the pwm command is fed back with an
// analog input pin and stored along with the output command. The program
// runs at 10 kHz and outputs the data in tab seperated formated over the
// serial monitor following completion of the test.
//
// Updated by Inchara Lakshminarayan on Nov 29, 2015
//
// The code was modified to run tests at varying PWM update frequencies.

int servo=5; //Pin no. of the microcontroller connected to the servo
int PotPin = 17; // analog pin that I'm reading
int pwmPin = 22; // analog pin for the pwm input

int meas[3000] = {0}; // value of the analog signal
int cmd[3000] = {0}; // value of the command
int pw[3000] = {0}; // value of the measured pwm
// position to command to the servo, 60 degrees (FUTABA S9251)
float poscmd[3000] = {0};

// timing variables to stabilize the frame
unsigned long start_frame;
unsigned long stop_frame;
unsigned long delta_frame;
float pwmFreq= 300.0; //Set pwm frequency
unsigned long pwmTime=(1/pwmFreq)*1000000;
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int k = 0; // used to stop the loop after one run

void setup()
{

Serial.begin(115200); // setup serial
analogReadRes(16); // set A/D converter to 16 bit
delay(1000);
analogWriteResolution(16);
analogWriteFrequency(servo,pwmFreq);

}

void loop()
{

delay(1000); // wait before starting the test
if (k < 1) { // only run the test once, then we'll set k = 1

for (int i = 0; i < 3000; i++) {
if (i < 1000) {
poscmd[i] = 500; //60 deg for Futaba S9254

}
else {
poscmd[i] = 900; //120 deg for Futaba S9254

}
start_frame = micros(); // get the start of the frame
analogWrite(servo,poscmd[i]/pwmTime*65535.0);
meas[i] = analogRead(PotPin); // read the input pin
pw[i] = analogRead(pwmPin); // read the pwm signal
stop_frame = micros(); // get the end of the frame
delta_frame = stop_frame - start_frame;
if (delta_frame < 1000) {
// sleeping to stabilize the frame at 1 kHz
delayMicroseconds(1000 - delta_frame);

}
}
// switch flag so we don't run this again
k = 1;
delay(1000); // wait to get the serial monitor open
// printing out the stored data so we can import to MATLAB
for (int j = 0; j < 3000; j++) {
Serial.print(meas[j]);
Serial.print("\t");
Serial.print(pw[j]);
Serial.print("\t");
Serial.println(poscmd[j]);

}
}

}
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