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Abstract

This thesis proposes a uniform multi-input, multi-output (MIMO) control framework for

wind turbines using the robust linear parameter varying (LPV) design method. This frame-

work is built on an LPV model of the wind turbine, which has a parametric dependence on

the trim wind speed. It takes multiple objectives in different wind conditions into a system-

atic consideration. Therefore, existing results based on single-input, single-output (SISO)

linear control design can be integrated together with stability and performance guarantees.

The proposed design has a uniform structure that covers turbine operations in all wind con-

ditions and provides better load reduction performance than the baseline controller. This

MIMO control architecture can also be extended for active power control (APC) purposes.

Therefore, the wind turbine is capable of providing ancillary services to maintain reliability

of power grids.

The control design in this thesis takes a robust LPV approach. Specifically, this thesis pro-

poses a robust synthesis algorithm for LPV systems using the theory on integral quadratic

constraints (IQCs). This algorithm is a coordinate-wise descent similar to the well-known

DK iteration for µ synthesis. It alternates between an LPV synthesis step and an IQC

analysis step. Both steps can be efficiently solved as semidefinite programs. It is shown

that the proposed algorithm ensures that the robust performance is non-increasing at each

iteration step. Therefore, this algorithm is used in this thesis to synthesize a robust LPV

controller for wind turbines to provide APC. Robust performance of this controller has been

verified using high fidelity simulations. Applications of this method will be various and not

limited to wind turbines.
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Chapter 1

Introduction

Wind power is a promising renewable green energy for its zero fuel cost, zero emissions and

abundant sources. With advancements in technology, wind power is increasing very fast all

over the world. Figure 1.1 shows world installed capacity of wind from 1997 to 2012 [1].

Though it only met 3 % of the electricity demand globally in 2012, the penetration of wind

power is very high in some European countries [4]. In the United States, the amount of wind

power is expected to increase to about 20 % of the electricity supply by 2030 [5, 6]. Corre-

spondingly, most states of U.S. have renewable portfolio standards, with wind an important

part of it. According to National Renewable Energy Laboratory’s (NERL) research [7],

estimated U.S. electricity demand in 2050, under some assumptions and constraints, could

be met with 80 % generation from renewable energy (wind, solar and hydroelectric, etc.).

In that scenario, wind will be able to provide about 40% of overall generation.

Figure 1.1: World total installed capacity of wind [1].
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The rapid growth of wind power requires the wind industry to further minimize costs and

maximize profits in energy markets. These objectives bring several challenges to the control

system of a single utility scale wind turbine, as it has a significant effect on the turbine

performance. Therefore, this thesis is focused on the control design for wind turbines.

Traditionally, the wind turbine control system is designed to maximize the power genera-

tion from available energy in the wind and minimize structural loads of turbine components.

The trade-off between these two objectives is typically achieved by using a mode-dependent

controller which contains two independent control loops to achieve distinct objectives in

different wind speed regions. This baseline controller has been widely accepted by the in-

dustry. However, as the size of wind turbines grows and the structure becomes more flexible,

considerations on load reduction are more critical for larger wind turbines. Therefore, extra

control loops were proposed to improve the load reduction performance, such as individual

pitch control [8, 9], tower and drive train dampers [10–13]. Though these methods signifi-

cantly decreased the turbine loads, the control system structure became more complicated.

There are also other concerns, such as potential dynamic couplings between different control

loops that might affect system performance and stability.

The second challenge for turbine control systems comes from the dynamics variation and

uncertainties in the turbine model. Traditional control system design for wind turbines

usually takes a linear time invariant (LTI) approach since LTI control theory has been well

developed and design tools are simple and reliable for applications [14, 15]. Though some

other controllers such as individual pitch control are implemented in the form of linear time

varying systems, they are still designed in the framework of LTI systems [9, 16]. However,

the performance with an LTI design is difficult to guarantee as the capacity of utility

scaled turbines increase. Larger capacity of turbine usually indicates larger size and more

flexibility, which lead to larger variation of system dynamics in different wind conditions.

At the same time, there are also concerns on robustness in the control design. Though high

fidelity simulation environments like FAST [17] provide relatively accurate model of the

turbine for control design, the real dynamics of the turbine might be subject to different

uncertainties that will significantly degrade the control performance or even lead instability

of the system.

Another challenge for turbine control systems comes from the updated requirements of

power grids. Traditional turbine control systems attempt to maximize the power generation

from available energy in the wind. The power output of wind turbines is therefore variable

due to time-varying wind speeds and it may cause unreliable operation of the power grid.

This is not a significant issue when wind power is only a small portion of the total electricity

generated on the grid. However, to integrate higher levels of variable wind power into the

grid it is important for wind turbines to provide ancillary services to help maintain the
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reliability of power grids. Ancillary services require wind turbines to provide active power

control (APC) [4]. Therefore, it is important to improve the traditional turbine control

system for APC purposes.

1.1 Thesis Overview

To address all these issues as mentioned above, this thesis proposes a uniform multi-input,

multi-output (MIMO) control framework for wind turbines using the robust linear param-

eter varying (LPV) design method. The contents in each chapter of the thesis are briefly

introduced as follows.

Chapter 2 gives an overview of wind turbine modeling and controls. It covers the basics on

the Clipper Liberty C96 2.5 MW wind turbine, which is the research focus of this thesis. The

operations of wind turbine in different wind speeds and objectives for its control system

are also introduced here. The modeling of wind turbines starts from a brief review of a

simple nonlinear one state model that captures the aerodynamics and rotor dynamics of

the turbine. To cover the structural dynamics of the turbine, a high fidelity model is also

presented. This high fidelity model is integrated in the FAST simulation package [17] and

can be linearized for advanced control design purposes. This chapter also briefly reviews

the actuators and sensors used for control of wind turbines. In the end, a baseline controller

which has been widely accepted in industry is presented.

In Chapter 3, a uniform MIMO control architecture that covers all wind conditions will be

first proposed. This LPV controller is able to maximize the power generation in Region 2

and track the rated generator speed in Region 3. Considerations on load reduction will also

be parts of the design. The recently developed LPV toolbox in Matlab [18] will be used

to synthesize the LPV controller. This uniformly designed controller allows the turbine

to meet objectives in different wind conditions and ensures a smooth transition between

different wind speed regions. Performance of this LPV controller will be further verified by

high fidelity simulations in FAST and post analysis.

In Chapter 4, the theory of integral quadratic constraints (IQCs) [19] will be applied to

develop a robust synthesis algorithm for a class of uncertain LPV systems. The uncertain

system is described as an interconnection of a nominal (not-uncertain) gridding based LPV

system and a block structured uncertainty. The input/output behavior of the uncertainty

is described by IQCs. The robust synthesis problem leads to a non-convex optimization

and the proposed algorithm is a coordinate-wise descent which is similar to the well-known

DK iteration for µ synthesis and can be efficiently solved as semidefinite programs. The

effectiveness of the proposed method is demonstrated on a simple numerical example.
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In Chapter 5, the robust synthesis algorithm as proposed in Chapter 4 will be used to

design an LPV controller to provide APC. The proposed control system architecture can

be considered as an extension of the LPV controller in Chapter 3. The design procedure

is therefore significantly simplified since some of the tuning results in Chapter 3 can be

directly inherited here. In addition, a multiplicative uncertainty is considered in the blade

pitch input channel of the turbine model. The synthesized robust LPV controller shows

similar performance on APC as a nominal LPV controller designed without considerations

of uncertainty. However, the robust controller has much better performance when the worst

case uncertainty is added to the system dynamics.

Chapter 6 is the end of this thesis. Brief conclusions will be made to summarize all works

and contributions in this thesis and provide possible directions for future works.

1.2 Thesis Contributions

This thesis extends theories on robust control for LPV systems and provides a uniform

MIMO control architecture for wind turbines using the robust LPV approach. The contri-

butions of this thesis are listed as follows.

1. LPV Control Framework: This framework as proposed in Chapter 3 is built on

an LPV model of the wind turbine, which has a parametric dependence on the trim

wind speed. It takes multiple objectives in different wind conditions into a systematic

consideration, such that existing results based on single-input, single-output (SISO)

linear control design can be integrated together with stability and performance guar-

antees. Detailed simulations and post analysis show that this LPV controller achieves

similar performance of power capturing as the baseline controller in below rated wind

speed and much better performance of load reduction and generator speed tracking

in above rated wind speed. More importantly, the proposed framework is an open

structure and can be extended in the future to allow more feedback loops for further

load reductions and/or other operations of wind turbines, such as APC.

2. Robust LPV Synthesis: The nominal LPV design, as shown Chapter 3 does not

consider possible uncertainties in the plant. Therefore, the control performance might

be significantly degraded if the system dynamics is perturbed. However, robust syn-

thesis algorithms like µ-synthesis [20] are not directly available for LPV systems and

existing theories for robust LPV control are still incomplete. Chapter 4 proposes

a robust synthesis algorithm for LPV systems using the theories on IQCs. It is a

coordinate-wise descent similar to the well-known DK iteration for µ synthesis. Specif-

ically, the proposed algorithm alternates between an LPV synthesis step and an IQC
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analysis step. Both steps can be efficiently solved as semidefinite programs. It is shown

that the proposed algorithm ensures that the robust performance is non-increasing at

each iteration step. The effectiveness of the proposed method is demonstrated on a

simple numerical example. Applications of this method are various and not limited

to wind turbines.

3. Robust LPV Design for APC: Chapter 5 proposes an LPV controller to provide

APC using the robust LPV synthesis method presented in Chapter 4. This LPV

controller is developed from the design in Chapter 3 by adding a feedback loop for

the power reference tracking. To ensure robustness of the controller, a multiplica-

tive uncertainty in the blade pitch input channel is considered in the turbine model.

Simulation results show that the robust LPV controller provides fast responses to

the power reference commands and maintains performance even with existence of the

worst case uncertainty. Therefore, it is expected that wind turbines will be able to

participate in ancillary services of power grids by providing APC. This will greatly

improve the competitiveness of wind in the energy market.
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Chapter 2

Wind Turbine Modeling and

Control

2.1 Overview of Turbine Operation and Control

The history of extracting energy from wind dates back to the first windmills about 3000

years ago [8]. Windmills were used to take energy from wind for mechanical operations,

such as pumping water or grinding grains. As electricity became a major source of power for

modern industry, wind turbines were built by James Blyth in 1887 [21] and Charles Brush

in 1888 [22] respectively. These turbines consisted of a windmill and a generator to convert

the wind power into electricity. Another milestone in the history of wind power development

was the Smith Putnam wind turbine built in 1941 [23]. As the first wind turbine in history

with a capacity of 1.25 MW, it showed a potential for large scale turbines. Many different

turbine designs have been considered over the past 100 years [8, 24]. The capacity of a

single turbine has also increased from 12 KW to 10 MW [25]. In this thesis, the focus is

on 3-blades, variable speed, horizontal axis, on shore, upwind turbine. This is the most

popular one in wind industry. Commercialized utility scale turbines with this design have

been installed with capacity up to 7.5 MW (E-126 wind turbine designed by Enercon in

Germany [25], which has a hub height of 135 m and a rotor diameter of 126 m).

The specific model that will be studied in this thesis is the Clipper Liberty C96 2.5 MW

wind turbine which is located in UMore Park, Rosemount, MN, as shown in Figure 2.1.

This turbine is owned by EOLOS Wind Energy Research Consortium at University of

Minnesota [2] for research purposes. The author of this thesis therefore has access to the

high fidelity model, the baseline controller and real time operational data of this turbine.

Basics of the C96 turbine are shown in Table 2.1.
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Figure 2.1: Clipper Liberty C96 2.5 MW wind turbine in University of Minnesota [2].

Table 2.1: Basics of the C96 2.5 MW wind turbine.
Hub height 80.4 m

Rotor radius 48 m
Wind speed range for operation 4 ∼ 25 m/s

Rated rotor speed 15.49 RPM
Rated generator torque 23473 N ·m

Rated power 2.5 MW

Figure 2.2 shows the common structure and components of the above described type of wind

turbine [3]. As the wind flow passes through the rotor plane of the turbine, lift is generated

on blades and leads to the rotation of the low speed rotor shaft. The aerodynamic torque

generated on the low speed rotor shaft transmits to the high speed generator shaft through

the gearbox and the generator converts mechanical energy of the rotation into electrical

energy. The low speed shaft, gearbox, high speed shaft and generator are all installed

inside the nacelle, which is mounted on top of the turbine tower.

The control of wind turbines relies on some actuators. As shown in Figure 2.2, the yaw

motor is used in the upwind turbine to rotate the nacelle such that the rotor plane faces the

direction of the incoming wind flow for maximizing the power capturing. Other actuators

that are commonly used for turbine control are the blade pitch and generator torque. The

servo motor installed at the root of each blade is used to pitch the blade and change the

lift force generated on the blade. The generator torque is used to change the power output

and generator speed. Details on turbine actuators will be provided in Section 2.4.1.

Sensors are necessary for the turbine control and monitoring. For example, sensors on

the drive train (which includes the low speed rotor shaft, high speed generator shaft and

gearbox) are used to measure the rotor speed and/or generator speed for the closed loop
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Figure 2.2: Wind turbine structure and components [3].

feedback control of wind turbines. Another sensor that is widely used on wind turbines

is the anemometer (as shown in Figure 2.2), which usually sits on the top of the nacelle.

However, the wind speed measurement from the anemometer is corrupted by the rotation of

blades and it is therefore limited for control purposes. Modern wind turbines also have some

other sensors for monitoring states and loads of the turbine and improving the performance

of turbine control systems, which will be further discussed in Section 2.4.2.

The captured power of a wind turbine is given by

Pc =
1

2
Cp(β, λ)ρArv

3 (2.1)

where ρ is the air density [kg/m3], Ar := πR2 is the swept area of rotor blades perpendicular

to the wind flow [m2], R is the radius of the rotor area [m], and v is the wind speed

[m/s] [8,26]. The non-dimensional power coefficient Cp is the fraction of the available wind

power captured by the turbine. The power coefficient is a function of the (collective) blade

pitch angle β [deg] and the tip speed ratio λ [unitless]. The tip speed ratio is defined as

the ratio λ := Rω
v where ω is the rotor speed [rad/s]. In words, λ is defined as the blade

tip tangential velocity divided by the wind speed. Figure 2.3 shows the contour of Cp as

a function of β and λ (contours with values less than or equal to 0 have been removed

from the plot). It is generated for the above mentioned C96 2.5 MW wind turbine and Cp

achieves its maximal value at β∗ = 1.6 deg and λ∗ = 8.4. This maximum value Cp∗ might
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be varying from one turbine to another. However, there is a theoretical upper bound for

Cp∗ that is equal to 16/27. This upper bound is known as Betz limit after the German

aerodynamicist Albert Betz [8]. Here, the Cp∗ for the C96 turbine is also below the Betz

limit but the exact value is not provided for proprietary reasons.
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Figure 2.3: The contour of Cp for the C96 2.5 MW wind turbine.

The objectives of the wind turbine control are to maximize the power generation from avail-

able energy in the wind and minimize structural loads of turbine components. The trade-off

between these two objectives is typically achieved using a mode-dependent controller with

distinct objectives in different wind speed regions [8, 27, 28]. As shown in Figure 2.4, there

are essentially four operating regions for the turbine in the power versus wind speed curve.

Below the cut-in speed (Region 1), the turbine is kept in a parked, non-rotating state as

there is insufficient energy available from the wind. Above the cut-out speed (Region 4),

the turbine is shut down to prevent structural damages. Between the cut-in and rated

wind speeds (Region 2), the main objective is to maximize the captured power. Between

the rated and cut-out wind speeds (Region 3), the main objective is to maintain the rated

power while minimizing structural loads on the turbine. The transition between Regions 2

and 3 is referred to as Region 2.5. Region 2.5 is introduced because the rated rotor speed

is usually reached before the Region 2 control law reaches the rated torque.

The design of wind turbine controllers requires dynamic models of the wind turbine plant,

actuators and sensors. Details on the modeling and baseline controller design are provided

in following sections. In Section 2.2, a low fidelity, one-state, nonlinear turbine model will be
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Figure 2.4: Operation regions for the C96 2.5 MW wind turbine.

introduced that captures the rotor dynamics. In Section 2.3, a high fidelity nonlinear wind

turbine model from FAST [17] will be explained. This high fidelity model includes more

detailed structural dynamics of the turbine and it is therefore suitable for advanced control

design and simulation purposes. Linearization of the FAST model and post-processing of the

linearized model will also be explained in this section. Section 2.4 will discuss actuator and

sensor dynamics. In Section 2.5, a baseline controller for wind turbines will be presented.

2.2 Low Fidelity Model

This section provides a one-state, nonlinear model of a wind turbine that captures the

steady state aerodynamics and the rigid body rotor dynamics [29]. This low fidelity mod-

el does not contain structural dynamics of the turbine, such as vibrations of tower and

blades. Therefore, it is usually used when loads on the tower and blades are not considered.

However, this simplified model is helpful for understanding basic principles of the turbine

operation.

Figure 2.5 shows a diagram of this one-state model. The lift force generated on blades leads

to the aerodynamic torque τa on the low speed rotor shaft. It is balanced by the generator

torque τg on the other side of the drive train. Considering all rotating parts of the turbine

as a rigid body, which includes the blades, hub and drive train, the rotor dynamics can be

expressed as comprehensive effects of τa and τg:

Jω̇ = τa −Nτg (2.2)

where τa and τg [N ·m] are aerodynamic and generator torques on the drive train. J [kg ·m2]

is the inertia of all rotating parts, including the blades, hub and drive train. ω [rad/s] is the
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speed of the rotor shaft. N [unitless] is the gearbox ratio.

Figure 2.5: One state model of wind turbine.

The aerodynamic torque can be expressed in terms of the captured power and rotor speed

as

τa =
Pc
ω

=
Cp(β, λ)ρπR2v3

2ω
(2.3)

Plugging Equation 2.3 into Equation 2.2 leads to the one-state model given by:

ω̇ =
Cp(β, λ)ρπR2v3

2Jω
− N

J
τg (2.4)

In this one-state model, rotor speed ω is the state, wind speed v is the input, collective

blade pitch angle β and generator torque τg are two control inputs to the system. As shown

in Section 2.5, this model can be used to design a baseline controller for the turbine.

2.3 High Fidelity Model

2.3.1 Model Description

In this thesis, the FAST wind turbine simulation package [17] will be used to model turbine

dynamics and interact with Matlab/Simulink for turbine control system simulations. FAST,

which stands for Fatigue, Aerodynamics, Structures and Turbulence, is a publicly available

nonlinear aeroelastic turbine simulation tool developed by the National Renewable Energy

Laboratory (NREL). It captures structural dynamics of the turbine drive train, tower and

blades that were ignored by the one-state nonlinear rotor model in Section 2.2. FAST

has been evaluated against Germanischer Lloyd turbine simulation codes [30]. It has been

certified by Germanischer Lloyd that it is suitable for turbine manufacturers to use FAST
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simulations for wind turbine performance certifications.

In FAST, the drive train, tower and blades are treated as flexible structures. The drive train

torsional flexibility is modeled as a linear inertia-spring-damper system. Deformations of the

tower and blades are approximated with the assumed modes method [31,32]. To apply this

method, the tower and blades are treated as cantilever beams with properties varying along

their length. These properties are specified at desired points on the tower and blades. Linear

interpolation is used between these points. For example, airfoil properties and the mass

distribution of the blade can be specified along the blade length. Deformations of the tower

and blades are approximated by superposition of basis functions known as mode shapes.

Each mode shape corresponds to a particular deformation shape and is defined as one

degree of freedom. Though there are couplings between all structure modes, it is assumed

in this method that the effect of couping is small and does not affect the model response.

Therefore, each mode shape of the tower and blades can be calculated independently based

on properties of structures.

The FAST simulation package can model dynamics of 3-blades onshore wind turbines with

up to 18 degrees of freedom (DOFs). These DOFs are described as follows. There are 4

DOFs for first and second tower bending modes in fore-aft and side-to-side directions. For

each blade, there are 2 DOFs for first and second blade flapwise bending modes and 1 DOF

for the first blade edgewise bending mode. For the drive train, there are 2 DOFs for the

torsion and generator speed. There is 1 DOF for the nacelle yaw motion. 2 more DOFs

account for the rotor and tail furl. There are extra 6 DOFs available for modeling platform

motions of offshore wind turbines. That is up to 24 DOFs.

To simulate the operation of wind turbines and calculate deformations of turbine structures

in FAST, information of the incoming wind flow in front of the turbine rotor and calculation

of aerodynamic loads generated on turbine models are necessary. An accurate model of the

incoming wind flow can be solved by computational fluid dynamics (CFD) codes. However,

due to time and computational costs of CFD codes, it is much simpler to use TurbSim [33] to

generate wind flow profiles. TurbSim is a stochastic, turbulent wind simulator developed by

NREL. It is able to generate wind trajectories with various spatial and temporal correlation

models. Some common turbulence models that are defined in IEC-61400-1 standards [34] for

wind turbine testing are also included. Inputs of TurbSim are various turbulence properties.

Its output is a description of the turbulent wind field as a function of time on the turbine

rotor. There are two options of fidelity for wind field descriptions. In the first option which is

called the hub-height wind profile, it is assumed that turbulence properties are the same all

over the rotor by averaging the wind data on the hub height. The wind profile is described

by 7 parameters as functions of time. This option is suitable for the linearization of turbine

models and control oriented analysis and design. In the second option which is called the
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full-field wind profile, the turbulence has spatial variations over the rotor. Therefore the

wind profile is described by detailed wind speed data in three directions as function of

time on a raster grid over the rotor. It provides a more realistic modeling of the wind

field by capturing spatial variations of the wind field. It is therefore suitable for simulation

purposes. These pre-calculated wind trajectories can be used by FAST for calculations of

aerodynamic loads. This is achieved in FAST by integrating with the AeroDyn code [35],

which is also developed by NREL. AeroDyn uses blade element momentum theory [36] to

calculate aerodynamic forces and moments. FAST, AeroDyn and TurbSim codes are of

sufficient fidelity for control design and simulation purposes. Therefore, they are adopted

in this thesis.

The dynamics of wind turbines are essentially nonlinear. This nonlinear wind turbine model

in FAST can be expressed as

q̈ = f(q̇, q, d, u, t)

y = g(q̇, q, d, u, t)
(2.5)

where q ∈ Rnq and q̇ ∈ Rnq are the turbine states. As described above, there are up to 24

DOFs available in FAST. Therefore the maximum value for nq is 24. For simplicity, however,

it is common to disable some DOFs in FAST to obtain a lower order nonlinear or linear

model for simulations or control design. u ∈ R5 is the control input vector which includes

the generator torque, individual pitch angles for three blades and yaw angle. y ∈ Rny

is the measurement vector and its dimension depends on chosen outputs. A full list of

available outputs in FAST can be found in [17]. d ∈ R7 is the wind disturbance input

which consists of the hub-height average wind speed, horizontal wind direction, vertical

wind speed, horizontal wind shear, vertical power law wind shear, linear vertical wind shear

and horizontal hub-height wind gust. This is the simplified wind field description in FAST.

The 7 disturbance inputs in this simplified description correspond to the 7 parameters in

the hub height wind profile generated by TurbSim. In contrast, the more complex full-field

wind description in TurbSim is not suitable for control oriented linearizations in FAST, as

there are much more inputs required to match parameters of the full-field wind profile.

2.3.2 Model Linearization

To apply well established linear control techniques, the FAST simulation package provides

an option to generate linear system approximations of nonlinear wind turbine dynamics.

The linearization in FAST is started by first simulating the nonlinear turbine model under

steady wind conditions until it reaches a trim operating trajectory q̄(t). Therefore, the wind

disturbance input and control inputs are held constant at trim values d̄ and ū specified by

users in the simulation. The resulting trim trajectory q̄(t) is periodic with the trim rotor
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rotation period T , i.e. q̄(t) = q̄(t+ T ), and satisfies

¨̄q = f( ˙̄q, q̄, d̄, ū, t)

ȳ = g( ˙̄q, q̄, d̄, ū, t)
(2.6)

The nonlinear model in Equation 2.5 is linearized around q̄(t) through numerical perturba-

tions [17] and a periodic linear time varying (PLTV) model is generated with state space

equations as

δ̇x = A(q̄(t))δx +Bd(q̄(t))δd +Bu(q̄(t))δu

δy = C(q̄(t))δx +Dd(q̄(t))δd +Du(q̄(t))δu
(2.7)

Where

δx(t) :=

[
δq(t)

δ̇q(t)

]
=

[
q(t)− q̄(t)
q̇(t)− ˙̄q(t)

]
δd(t) := d(t)− d̄

δu(t) := u(t)− ū

δy(t) := y(t)− ȳ(t)

(2.8)

The dimensions of δx(t), δd(t), δu(t) and δy(t) directly follow from the state, input and

output signal dimensions in Equation 2.6. Since the trim trajectory q̄(t) is periodic with

the rotor rotation period T , the state space equations of the model in Equation 2.7 are also

periodic with the same period.

As control techniques for linear time invariant (LTI) systems are mature and common in

theory and practice, it is desirable to approximate the PLTV model in Equation 2.7 by an

LTI one. There are several approaches available to generate the approximated LTI mod-

el. The simplest methods are to evaluate the PLTV model at a fixed rotor position or to

average state space matrices of the PLTV model over one rotor period. However, these

methods ignore periodic properties of the system and typically do not provide an approxi-

mated LTI model with sufficient accuracy. Another approach is developed based on Floquet

theory [37,38]. It converts a PLTV system into a system with a constant state “A” matrix

by using a time varying coordinate transformation. The Floquet transformation retains pe-

riodic properties of the system but loses the physical intuition on system states. The most

common approach in the wind turbine industry is to use the multi-blade coordinate (MBC)

transformation [39–41] to generate a weakly PLTV system from the original one. An LTI

model is therefore approximated by averaging the weakly PLTV system without losing too

many periodic properties. This approach is adopted in this thesis for model based control

design of wind turbines. Details on the MBC transformation will be given in Section 2.3.3.
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2.3.3 Multi-Blades Coordinate Transformation

The nonlinear and linear wind turbine models (Equation 2.5 and 2.7) presented in Section-

s 2.3.1 and 2.3.2 are defined in various coordinate systems. Details on these coordinate

systems can be found in [17]. Specifically, the tower, drive train and generator DOFs are

defined in an earth fixed coordinate system while DOFs associated with turbine blades are

defined in a system that rotates with the rotor. As mentioned in Section 2.3.2, the LTI

model approximated by averaging the PLTV model defined in the mixed coordinate system

(both rotating and non-rotating) is not sufficiently accurate as the averaging ignores period-

ic properties of the model. For instance, dynamics of tower motion coupled by blade modes

will be removed in this approach. Therefore, it is desirable to use the MBC transformation

to transform states, inputs and outputs of the model from the mixed coordinate system to

a purely non-rotating coordinate system.

Ideally, the MBC transformation converts the PLTV system into an LTI system. In practice,

however, the transformed system is still “weakly” periodic, i.e. it is periodic but with

significantly less time variation compared to the original PLTV system. An LTI system can

be approximated by averaging state space matrices of the weakly PLTV system over one

rotor period. This approximation LTI model is of sufficient accuracy for control oriented

design purposes.

The MBC transformation is defined by a transformation matrix M : R→ R3×3 as a function

of the rotor position ψ:

M(ψ) =

1 sin(ψ) cos(ψ)

1 sin(ψ + 2π
3 ) cos(ψ + 2π

3 )

1 sin(ψ + 4π
3 ) cos(ψ + 4π

3 )

 (2.9)

For a given rotor position ψ, M(ψ) transforms variables associated with 3 blades from

the non-rotating frame to the rotating frame. Conversely, the inverse of M(ψ) transforms

variables from the rotating frame to the non-rotating frame:

M−1(ψ) =
2

3


1
2

1
2

1
2

sin(ψ) sin(ψ + 2π
3 ) sin(ψ + 4π

3 )

cos(ψ) cos(ψ + 2π
3 ) cos(ψ + 4π

3 )

 (2.10)

The MBC transformation has a very straight forward physical interpretation in the appli-

cation of wind turbines. As shown in Figure 2.6, consider a force Fi acting on the tip of

the i-th blade in the direction that is perpendicular to the rotor plane. Assuming that the

rotor position ψ is defined as the azimuth angle of the 1-st blade, ψ+ (i− 1)2π
3 is therefore

the azimuth angle for the i-th blade. Applying the inverse MBC transformation to the force
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F = [ F1 F2 F3 ]T results in the force in the non-rotating frame as Fnr = [ Fnravg Fnryaw Fnrtilt ]T .

The superscript nr denotes variables defined in the non-rotating frame. After the transfor-

mation, these variables have meanings in terms of rotor motion instead of individual blades.

Fnravg is the averaged force of F that causes the rotor to bend as a cone. Fnryaw and Fnrtilt are

the forces resulting in rotor yaw and tilt, respectively [42].

Figure 2.6: Effects of blade tip forces in the non-rotating frame.

The MBC transformation converts the original PLTV model into a “weakly” PLTV model.

This is due to the fact that periodic dynamics of blades usually have a phase shift of 2π
3

between each blade. Specifically, assume the force Fi mentioned above is sinusoid Fi =

F0 sin(ψ + (i− 1)2π
3 + θ) while θ is an initial phase shift. As the azimuth angle for the i-th

blade is ψ + (i− 1)2π
3 , Fi has the same value for the i-th blade at the same azimuth angle.

Performing the MBC transformation on the force

F = F0

 sin(ψ + θ)

sin(ψ + 2π
3 + θ)

sin(ψ + 4π
3 + θ)

 (2.11)

results in the force in the non-rotating frame as Fnr = F0 [ 0 cos(θ) sin(θ) ]T which is constant

instead of periodic. In a more general setting, assume qi is the state of the i-th blade that

has the same period as the rotor motion and Fourier series of qi can be expressed as

qi =

∞∑
n=0

an sin(n(ψ + (i− 1)
2π

3
) + θn) (2.12)

After the MBC transformation, the n-th order harmonic term (which is usually called the
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np term while p stands for the periodic motion of the rotor)

q(n) = an

 sin(nψ + θn)

sin(n(ψ + 2π
3 ) + θn)

sin(n(ψ + 4π
3 ) + θn)

 (2.13)

will be converted in the non-rotating frame as qnr(n) = [ qnr(n)avg q
nr(n)
yaw q

nr(n)
tilt

]T . The detailed

value of each entry in qnr(n) depends on the order n and can be generalized as shown in

Table 2.2.

Table 2.2: Mapping of np terms from the rotating frame by MBC.

n q
nr(n)
avg q

nr(n)
yaw q

nr(n)
tilt

0 a0 sin θ0 0 0
1 0 a1 cos θ1 a1 sin θ1

2 0 −a2 cos(3ψ + θ2) a2 sin(3ψ + θ2)
... ... ... ...

3k + 0 an sin(3kψ + θn) 0 0
3k + 1 0 an cos(3kψ + θn) an sin(3kψ + θn)
3k + 2 0 −an cos

(
3(k + 1)ψ + θn

)
an sin

(
3(k + 1)ψ + θn

)
It can be concluded from Table 2.2 that 0p and 1p terms which are usually dominating

parts in qi will be mapped to constant values in the non-rotating frame. Higher order

harmonic terms in the rotating frame will be mapped to harmonic terms whose orders are

multiples of 3p in the non-rotating frame and result in the “weakly” periodic property due

to insignificant weightings {an}∞n=2 on these terms.

The complete MBC transformation for PLTV systems contains a collection of state, input,

and output transformations which can be derived using results in [39] and the manual

for NREL Matlab utilities that implement the MBC transformation [41]. Applying these

transformations to the PLTV model in Equation 2.7 leads to a weakly PLTV model with

significantly less periodic variation in state space matrices. Averaging the weakly PLTV

system over one rotor period gives an LTI model with sufficient accuracy [40].

The application of the MBC transformation will be shown in the following example. In this

simplified example, consider the C96 wind turbine model with 10 DOFs that include rotor

position, drive train torsion, first tower fore-aft and side-to-side bending modes, and first

flapwise and edgewise bending modes for each blade. The turbine is simulated at a trim

point as shown in Table 2.3.

For simplicity, trim values for wind disturbance inputs d and yaw angle u5 as defined in 2.3.1

are set to 0 except for the hub-height average wind speed d̄1 = 16 m/s. This is a typical

operation condition in Region 3 as the wind speed is above the rated and the turbine is
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Table 2.3: Trim conditions of the C96 2.5 MW wind turbine for linearization.
Trim variables Values

Hub-height average wind speed 16 m/s
Rotor speed 15.49 RPM

Generator torque 23473 N ·m
Blade pitch angles 14.36 deg

Yaw angle 0 deg

operating at the rated rotor speed and generator torque.

Here, the interest is focused on open loop dynamics from the disturbance input of hub-height

averaged wind speed δd1 to the output of tower side-to-side bending moment δy [kN ·m].

Therefore, all 5 control inputs of δu and the remaining 6 wind disturbance inputs of δd

are disabled. A linearization of the nonlinear FAST model with the interested input and

output yields a SISO (single input single output) PLTV model Gψ as expressed by state

space matrices
[
A(ψ) B(ψ)
C(ψ) D(ψ)

]
. Applying the MBC transformation to Gψ results in the PLTV

model Gnrψ with all states in the non-rotating coordinate frame. Define the state space

matrices for Gnrψ as
[
Anr(ψ) Bnr(ψ)
Cnr(ψ) Dnr(ψ)

]
. Figure 2.7 shows entry values in the 1-st column of

A(ψ) and Anr(ψ) as functions of ψ in two subplots respectively. It should be noted that

there are 20 entries for each column and some entries overlap with each other in the subplots

as their values are very close. It is seen that some entries in the first column of A(ψ) have

significant variations within one period of ψ while all entries in the 1-st column of Anr(ψ)

have much smaller variations with ψ. Checking entries in other columns or rows of state

space matrices leads to similar comparison results. It is therefore valid to conclude that

Gnrψ is a “weakly” PLTV system.

In the next step, state space matrices of Gψ and Gnrψ are averaged over one rotor period

to generate LTI models G(s) and Gnr(s) respectively. Bode magnitude plots of G(s) and

Gnr(s) are shown in Figure 2.8. As a reference, the grey plot is generated by identifying the

C96 model with the same 10 DOFs enabled in FAST, denoted as Gid(s). This identification

is started by first simulating the model in trim conditions as specified in Table 2.3. The

simulation lasts for 400 s and the output is recorded as ȳ. In the second simulation, a 400 s

chirp signal with small magnitude (±0.5 m/s) is added to the channel of hub-height wind

speed as disturbance δd1 . The frequency of the chirp signal linearly varies from 0.1 rad/s

to 100 rad/s and therefore can be expressed as ω(t) = 0.1 + 100−0.1
400 t. Subtracting ȳ from

the output y in the second simulation gives δy. By taking Fourier transforms of δd1 and δy,

the dynamic response of the model in the frequency domain can be identified as Gid(jω) =
∆y(jω)
∆d1

(jω) . Figure 2.8 shows that Gnr(s) has a much closer frequency response to the identified

model Gid(s). Especially, Gnr(s) and Gid(s) have similar peak magnitudes at 2rad/s, which

corresponds to the 1-st tower side-to-side bending mode. In addition, Gnr(s) and Gid(s)

18



0 100 200 300
−5

0

5

10

15

20

ψ [deg]

va
lu

e

1-st column of A(ψ)

0 100 200 300
−5

0

5

10

15

20

ψ [deg]

va
lu

e

1-st column of Anr(ψ)

Figure 2.7: Entry values in the 1-st column of A(ψ) and Anr(ψ).

both have 2 more peaks at 4.93 rad/s and 8.24 rad/s. These 2 peaks correspond to 2 pairs

of conjugate poles −0.05± 4.93 j and −0.05± 8.24 j introduced by blade edgewise bending

modes in the non-rotating frame. However, this coupling to tower structural dynamics is

lost in G(s) by directly averaging state space matrices of Gψ. Comparisons in Figure 2.7

and 2.8 indicate that the MBC transformation is a necessary step to get an LTI model

with sufficient accuracy for control design purposes.

2.4 Actuators and Sensors

2.4.1 Actuators

As described in Sections 2.1 and 2.3, there are mainly 5 control inputs available for the

control of wind turbines: the generator torque, 3 blade pitch angles and turbine yaw angle.

However, the use of yaw motor is limited to a very low rate (usually less than 1 deg/s)

for avoiding dangerous gyroscopic forces [43]. Due to the slow dynamics of yaw motion,

research on yaw control is not of great interest. In this thesis, the yaw actuator model

will not be considered in the design and the yaw angle is held constant to the direction of

incoming wind flow in simulations.

The dynamics of generator torque actuation is also ignored in this thesis. This is because
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Figure 2.8: Bode magnitude plots of the identified model Gid(s), averaged LTI models G(s)
(before MBC) and Gnr(s) (after MBC).

the power electronics on modern utility scale wind turbines has very small time constant

and the dynamics of generator torque actuation is much faster than the turbine dynamics

of interest [43]. It is reasonable to assume that the generator torque command can be

responded almost immediately for the desired bandwidth. Generator torque is therefore an

effective control input for maximizing the captured power [29] and minimizing the load of

torsion in the drive train [11].

Blade pitch actuators have restrictive bandwidths for wind turbine control systems. The

dynamics of pitch actuators can be modeled as first or second order LTI systems [24].

In addition, there are usually hard bounds on pitch actuation rates. Therefore, these

constraints are considered in cases that the control bandwidth is close to the actuation

limit or the wind turbulence level is high. It should also be noted that the three blade pitch

angles can be controlled collectively or individually, as there is one actuator for each blade.

In this thesis, the collective pitch control is considered.

2.4.2 Sensors

Traditionally, there are two types of sensors that have been used on utility scale wind

turbines. As introduced in Section 2.1, the sensors for rotor speed and/or generator speed

measurements are widely used for the closed loop control of wind turbines. It will be seen
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in Section 2.5 that the rotor speed measurement is the most important feedback signal for

the baseline controller.

The anemometer is another sensor that wind turbines usually have for wind speed mea-

surements. It is commonly used for supervisory control of wind turbines, e.g. to determine

if the wind speed is sufficient to start the turbine [43]. However, due to the interaction

between the rotor and the wind, anemometers usually can not provide accurate wind speed

measurements. They are therefore limited for applications on the closed loop feedback

control.

Instead, advanced wind speed measurement technology, such as LIDAR, [44, 45] has been

investigated by researchers for improving performance of turbine control systems. Here,

LIDAR stands for light detection and ranging systems. It is capable of measuring the speed

of incoming wind flow before it interacts with the turbine rotor. Advantages of LIDAR

on improving turbine performance have been validated by high fidelity simulations and/or

experiments [46–50]. The use of LIDAR in wind industry is promising as the cost for

installation decreases and the corresponding control system becomes mature. The LIDAR

model can be implemented with the FAST Simulink model by reading turbulent wind files

generated by TurbSim before simulations. In this thesis, the wind speed measurement is

assumed to be available from LIDAR for robust LPV control design.

Other advanced sensors that could be used for monitoring and/or control purposes provide

measurements of turbine states and loads such as power genearation, tower top accelerations,

tower base bending moments and blade root bending moments, etc [27,51].

2.5 Baseline Control of Wind Turbines

As discussed in Section 2.1, the control of modern variable speed wind turbines is mainly

focused on the wind speed range of Regions 2 and 3, since the turbine will be shut down

in Regions 1 (below the cut-in wind speed) and 4 (above the cut-out wind speed). This

section reviews the baseline controller for Regions 2 and 3. The structure of this simple

control system is the starting point for many advanced designs. Explorations on the baseline

controller are therefore helpful to better understand the principle of turbine operations and

objectives in the control design.

Between the cut-in and rated wind speeds (Region 2), the control objective is to maximize

the power output. As shown in Figure 2.3, the power coefficient attains its optimal value

when λ∗ = 8.4 and β∗ = 1.6 deg. Thus the captured power is maximized by holding

blade pitch angles constant at β∗ and commanding the generator torque τg such that the

turbine operates at λ∗. As λ = ωR
v , the turbine needs to operate at an optimal rotor
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speed of ω∗ = λ∗v
R . This corresponds to an equilibrium point of the nonlinear one state

model (Equation 2.4) described in Section 2.2. It can be shown that the standard control

law [28,29] achieves this goal in steady winds:

τg = Kgω
2 (2.14)

βi = β∗ (i = 1, 2, 3) (2.15)

where the gain is chosen as Kg =
Cp∗ρπR5

2λ3∗N
and βi is the pitch command for the i-th blade.

In Equation 2.4, the generator torque τg is in the direction that decelerates the rotor speed.

The standard control law in Equation 2.14 therefore forms a stable closed loop system by

taking the sensor measurement of the rotor speed. Specifically, the rotor speed is accelerated

due to the difference between aerodynamic and generator torques as wind speed changes.

Commanding generator torque according to Equation 2.14 adjusts the rotor speed so that

the equilibrium point ω∗ is achieved in constant wind conditions.

Between the rated and cut-out wind speeds (Region 3), the objective is to maintain the

rated power while minimizing the structural loads on the turbine. To maintain the rated

power output, the generator torque is held constant at its rated value τg rated in Region 3.

The blade pitch angles are collectively controlled to maintain rotor speed at its rated value

ωrated. Therefore, the baseline controller in Region 3 can be expressed as:

τg = τg rated (2.16)

δβi(s) = Kb(s)δω(s) (i = 1, 2, 3) (2.17)

where δβi = βi − β0 and δω = ω − ωrated. Here β0 is a constant, trim blade pitch angle. A

classical PI or PID controller Kb(s) [28,29] can be designed based on the linearized model of

the wind turbine at the trim condition of (ωrated, τg rated, β0). It should be noted that the

same pitch command is used for all three blades. This is called “collective” pitch control.

The transition between Regions 2 and 3 is commonly referred to as Region 2.5. Region 2.5

is introduced because the rated rotor speed is usually reached before the Region 2 control

law reaches the rated torque. A linear torque vs. rotor speed relation is typically used to

ramp from the standard τg = Kgω
2 to the rated torque [8] as the wind speed approaches

the rated value. This kind of blending ensures a smooth transition between Region 2 and

Region 3 control objectives.
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Chapter 3

LPV Control for Traditional

Operations

3.1 Motivation

Modern utility scale, variable speed wind turbines are essentially nonlinear MIMO systems

with distinct objectives in different wind conditions, as described in Chapter 2. The aerody-

namics and structure dynamics of wind turbines also vary with the wind speed. Therefore,

the baseline controller in Section 2.5 uses two independent control loops to achieve specific

objectives in different regions of wind speed and ensure a smooth transition when the wind

condition changes. This baseline controller has been widely accepted by the industry as

an effective design. However, as the size of wind turbines grows and the structural dy-

namics become more flexible, considerations on load reduction are more critical for larger

wind turbines [10, 27]. Therefore, extra control loops were proposed to improve the load

reduction performance, such as individual pitch control [9,42,52] and tower and drive train

dampers [10–13]. These methods significantly decreased the turbine loads but the control

structure also became more complicated. There are also other concerns, such as potential

dynamic couplings between different control loops. An alternative approach is to consider

multiple control objectives in a systematic MIMO design [53]. This approach has been

adopted in some papers and shown as a better solution than the design with multiple SISO

loops [23,54,55]. Therefore, this chapter will consider a MIMO design for traditional opera-

tions of the C96 2.5 MW turbine using linear parameter varying (LPV) control techniques.

Here, traditional operations refer to objectives of maximizing power generation in low wind

speeds and tracking the rated power in high wind speeds as described in Section 2.1. They

are in contrast to the mode of active power control (APC), which will be introduced in

Chapter 5.
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Theories on LPV systems and control have been developed since more than 2 decades

ago [56–58]. The control design for LPV systems has been verified in various applications,

either by high fidelity simulations or experiments [59]. It is promising to apply LPV control

techniques on wind turbines, as it is essentially developed for MIMO control purposes.

Therefore, existing results based on SISO linear control design as discussed above can

be integrated into a uniform structure. Moreover, comparing to the classical LTI control

method, LPV control takes dynamics variations of the system into considerations. In the

application to wind turbines, it will be capable of achieving multiple objectives in different

wind conditions and ensuring uniform performance and smooth transitions when the system

dynamics changes with the wind speed. For these reasons, LPV control is an interesting

topic in the field of wind energy [12,23,55,60–64]. Existing results on this topic can be first

categorized by their specific objectives. For instance, LPV control is used in [12] to cover

the wind speed range of Region 3 for better generator speed tracking. The complete control

system also contains additional loops for tower loads mitigation using theH∞ design. In [55],

an LPV controller is synthesized to improve the load reduction performance in Region 3

and an extra anti-windup LPV design in Region 2.5 is used to ensure bumpless transfer

to Region 2. In [23] and [61], a uniform LPV design is proposed that covers all operation

regions of the wind speed. Parameter varying weighting functions are included in the design

for multi-objectives in different wind conditions. LPV control has also been investigated

for fault tolerant control of wind turbines [65]. Other related research directions in this

field include LPV model reductions [66] and integrated designs for structural and control

improvements [67].

Existing results on LPV control of wind turbines can be further categorized by modeling

and design methods. There are traditionally two ways for modeling LPV systems. In

the first way, state space matrices of the model have a rational dependence on scheduling

parameters [56, 68]. Models with rational parametric dependence are called LFT (linear

fractional transformation) based LPV systems, as they can be expressed as a feedback

interconnection of an LTI system and a diagonal block of scheduling parameters. LFT based

LPV systems are usually derived by approximating a rational dependence of existing LTI

models at different trim conditions. The control synthesis for LFT based LPV system has

been developed in [56, 69] and lead to finite dimensional linear matrix inequalities (LMIs).

Related designs for wind turbines can be found in [12, 60]. Another group of LPV systems

are called gridding based LPV systems [57, 58]. State space matrices of gridding based

LPV systems have an arbitrary dependence on scheduling parameters. They are usually

derived by linearization of nonlinear models and are more general in applications due to the

assumption of the arbitrary dependence. However, the control synthesis for gridding based

LPV systems leads to infinite LMIs [57, 58]. A remedy to this problem is to approximate

the LPV system with LTI models on a finite gridding set of scheduling parameters. Wind
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turbine control designs using this approach can be found in [55,60–62].

In this chapter, a uniform LPV control design that covers all wind conditions will be pro-

posed. A gridding based LPV model of the turbine will be constructed from linearizations

of the FAST turbine model at different wind speeds. The scheduling parameter is therefore

naturally chosen as the trim wind speed. The proposed LPV controller is able to maxi-

mize the power generation in Region 2 and track the rated generator speed in Region 3.

Considerations on load reduction will also be parts of the design. The recently developed

LPV toolbox in Matlab [18] will be used to synthesize the LPV controller. The stabili-

ty and performance are therefore guaranteed when the system dynamics changes with the

scheduling wind speed. To overcome the conservativeness in the design, parameter varying

rates will be considered. Consequently, parameter dependent Lyapunov functions will be

used to solve the LMIs with extra computational and time consumptions. The synthe-

sized controller will be compared with a baseline controller which is similar to the design

in Section 2.3. Simulations and analysis show that the proposed LPV controller meets all

performance objectives in different wind conditions and has better load reduction effects

than the baseline controller.

The contents in this chapter are organized as follows. In Section 3.2, a brief review will

be presented on modeling and control for gridding based LPV systems. Section 3.3 will

provide an overview of the proposed LPV controller. Details on the modeling and design

of the LPV controller will be shown in Section 3.4. Simulations and load analysis will be

provided in Section 3.5.

3.2 Induced L2 Control of LPV Systems

Linear parameter varying (LPV) systems are a class of systems whose state-space matri-

ces depend on a time-varying parameter vector ρ : R+ → Rnρ . The parameter vector

is assumed to be a continuously differentiable function of time. In addition, admissible

trajectories are restricted, based on physical considerations, to lie in a known compact sub-

set P ⊂ Rnρ at each point in time. In many cases, the bounds on the parameters take

the simple form of a hyperrectangle, i.e. P := {ρ ∈ Rnρ | ρ
i
≤ ρi ≤ ρ̄i, i = 1, . . . , nρ}.

The set of admissible trajectories is defined as T := {ρ : R+ → Rnρ : ρ(t) ∈ P ∀t ≥
0 and ρ(t) is continuously differentiable}. In some applications, the parameter rates of vari-

ation ρ̇ are assumed to be bounded. However, only the rate unbounded case is listed here

for simplicity. Full results with the rate bounded case can be found in [57,58].

The state-space matrices of an LPV system are continuous functions of the parameters:

A : P → RnG×nG , B : P → RnG×nd , C : P → Rne×nG and D : P → Rne×nd . An nth
G order
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LPV system, Gρ, is defined by[
ẋ(t)

e(t)

]
=

[
A(ρ(t)) B(ρ(t))

C(ρ(t)) D(ρ(t))

][
x(t)

d(t)

]
(3.1)

The state matrices at time t depend on the parameter vector at time t. Hence, LPV systems

represent a special class of time-varying systems. Throughout the remainder of the thesis the

explicit dependence on t is occasionally suppressed to shorten the notation. Moreover, it is

important to emphasize that the state matrices are allowed to have an arbitrary dependence

on the parameters. This is in contrast to the LFT based LPV systems in [56, 68], where

the state matrices are assumed to be rational functions of ρ. The performance of an LPV

system Gρ can be specified in terms of its induced L2 gain from input d to output e assuming

the initial condition x(0) = 0, i.e. it is defined as

‖Gρ‖ := sup
06=d∈L2, ρ∈T

‖e‖
‖d‖

. (3.2)

In words, this is the largest input/output gain over all possible inputs d ∈ L2 and allowable

trajectories ρ ∈ T . The notation ρ ∈ T refers to the entire (admissible) trajectory as a

function of time. The analysis and synthesis theorems summarized below involve conditions

on the parameters at a single point in time, i.e. ρ(t). The parametric description ρ ∈ P
is introduced to emphasize that such conditions only depend on the (finite-dimensional)

set P. A generalization of the Bounded Real Lemma is stated in [58] which provides a

sufficient condition to upper bound the induced L2 gain of an LPV system. The sufficient

condition uses a quadratic, parameter-dependent storage function. The next theorem states

the condition provided in [57,58] but simplified for the special case of rate unbounded LPV

systems.

Theorem 1 ( [57,58]). Let P be a given compact set and Gρ an LPV system (Equation 3.1).

Gρ is exponentially stable and ‖Gρ‖ ≤ γ if there exists a matrix P = P T ≥ 0 such that

∀ρ ∈ P [
PA(ρ) +A(ρ)TP PB(ρ)

BT (ρ)P −I

]
+

1

γ2

[
C(ρ)T

D(ρ)T

] [
C(ρ) D(ρ)

]
< 0 (3.3)

Proof. The proof is based on a dissipation inequality satisfied by the storage function V (x) =

xTPx. The proof is sketched as similar arguments are used throughout the thesis. Let

d ∈ L2 be an arbitrary input and ρ ∈ T be any admissible parameter trajectory. Let x and

e denote the state and output responses of Gρ for the input d and trajectory ρ assuming

26



x(0) = 0. Multiplying Equation 3.3 on the the left/right by [xT , dT ] and [xT , dT ]T gives

V̇ (t) ≤ d(t)Td(t)− γ−2e(t)T e(t) (3.4)

Integrating this dissipation inequality yields the conclusion ‖Gρ‖ ≤ γ. The proof of expo-

nential stability is similar.

This analysis theorem forms the basis for the induced L2 norm controller synthesis in [57,58].

The results in [57,58] are briefly summarized for the rate unbounded case. Consider an open

loop LPV system Gρ defined asẋe
y

 =

A(ρ) Bd(ρ) Bu(ρ)

Ce(ρ) Ded(ρ) Deu(ρ)

Cy(ρ) Dyd(ρ) Dyu(ρ)


xd
u

 (3.5)

where x ∈ RnG , d ∈ Rnd , e ∈ Rne , u ∈ Rnu and y ∈ Rny . The goal is to synthesize an LPV

controller Kρ of the form: [
ẋK

u

]
=

[
AK(ρ) BK(ρ)

CK(ρ) DK(ρ)

][
xK

y

]
. (3.6)

The controller generates the control input u. It has a linear dependence on the measurement

y but an arbitrary dependence on the (measurable) parameter vector ρ. The closed-loop

interconnection of Gρ and Kρ is given by a lower linear fractional transformation (LFT)

and is denoted Fl(Gρ,Kρ). The objective is to synthesize a controller Kρ of the specified

form to minimize the closed-loop induced L2 gain from disturbances d to errors e:

min
Kρ
‖Fl(Gρ,Kρ)‖ . (3.7)

The notation for the synthesis result below is greatly simplified by assuming the feedthrough

matrices satisfy Ded(ρ) = 0, Dyu(ρ) = 0 and Deu(ρ)T = [0, Inu ], Dyd(ρ) = [0, Iny ].

Under some technical rank assumptions, this normalized form can be achieved through

a combination of loop-shifting and scaling [57, 70]. The input matrix is partitioned as

Bd(ρ) :=
[
Bd1(ρ) Bd2(ρ)

]
compatibly with the normalized form of Dyd. Similarly, the

output matrix is partitioned as CTe (ρ) :=
[
CTe1(ρ) CTe2(ρ)

]
compatibly with Deu. Given

these simplifying assumptions, the solution to the induced L2 control synthesis problem is

stated in the next theorem.

Theorem 2 ( [57,58]). Let P be a given compact set and Gρ an LPV system (Equation 3.5)
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that satisfies the normalizing assumptions above. There exists a controller Kρ as in Equation

3.6 such that ‖Fl(Gρ,Kρ)‖ ≤ γ if there exist matrices X = XT > 0 and Y = Y T > 0 such

that ∀ρ ∈ P [
X Inx

Inx Y

]
≥ 0 (3.8)Y Â(ρ)T + Â(ρ)Y − γBu(ρ)Bu(ρ)T Y Ce1(ρ)T Bd(ρ)

Ce1(ρ)TY −γIne1 0

Bd(ρ)T 0 −γInd

 < 0 (3.9)

Ã(ρ)TX +XÃ(ρ)− Cy(ρ)TCy(ρ) XBd1(ρ) Ce(ρ)T

Bd1(ρ)TX −γInd1 0

Ce(ρ) 0 −γIne

 < 0 (3.10)

where Â(ρ) := A(ρ)−Bu(ρ)Ce2(ρ) and Ã(ρ) := A(ρ)−Bd2(ρ)Cy(ρ).

Proof. The proof uses a matrix elimination argument similar to that used in the LMI

approach to H∞ synthesis for linear time invariant (LTI) systems [15].

If the conditions in Theorem 2 are satisfied then an LPV controller with the state space

form of (AK(ρ), BK(ρ), CK(ρ), DK(ρ)) can be constructed from the open loop plant matrices

and the feasible values of X, Y , and γ. The controller reconstruction procedure is given

in [57, 58]. Moreover, a storage function matrix P ≥ 0 can be constructed from X and Y

such that the closed loop satisfies the nominal performance LMI condition (Equation 3.3)

in Theorem 1. Finally, the closed-loop performance (upper bound) can be optimized by

minimizing γ subject to the LMI constraints in Theorem 2. This yields a semidefinite

programming formulation for the LPV synthesis problem.

It should be noted that both Theorem 1 and Theorem 2 lead to infinite collection of LMI

constraints due to their arbitrary dependence on parameter ρ ∈ P. A remedy to this

problem, which works in many practical examples, is to approximate the set P by a finite set

Pgrid ∈ P that represents a gridding over P. This gridding based approach with insufficient

gridding points might lead to performance degradation using the controller synthesized.

Increasing the density of gridding will alleviate the risk. However, it comes with more

computation time. Therefore, a compromise in practice is to use a sparse gridding set for

synthesis and verify the performance afterwards using a denser gridding set, since it is faster

to solve the analysis problem. If there is no significant degradation, the synthesis on the

sparse gridding set can be adopted for control design. Otherwise, a denser gridding set is

required for further synthesis. This gridding based approach will also be used in following

chapters of this thesis.
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3.3 Structure of The Proposed LPV Control System

Wind turbines are traditionally operated to maximize the generator power in below rated

wind speed and to track the rated generator speed in above rated wind speed. These two

main objectives can be achieved by using the baseline controller as described in Section 2.5.

The baseline controller uses two SISO control loops for operating the turbine in both Region

2 and Region 3. Transition between the two control loops is required when the wind

condition changes. To satisfy the performance requirements for load reduction, model based

control designs can be embedded into the control system as extra SISO loops. An alternative

approach is to design a MIMO controller to operate the turbine in all regions and satisfy

performance objectives. This section provides an overview of the proposed LPV controller

using this approach.

As shown by the block diagram in Figure 3.1, this LPV controller takes the error between the

generator speed command ωg cmd and measurement ωg as input. Outputs of this controller

are generator torque τg and collective pitch angle β. This LPV controller has a dependence

on the scheduling parameter ρ, which is the trim wind speed vtrim. It is assumed that an

accurate and real time measurement of the wind speed is available. As shown in this figure,

an estimate of the wind speed v̂ could be obtained from a LIDAR [71]. Alternatively, an

estimate of the effective wind speed could be constructed [72]. In either case, the wind

speed fluctuates due to turbulence and hence low-pass filtering, denoted LPF in the figure,

is used to smooth out these fluctuations and generate the trim wind speed vtrim from the

measurement v̂.

sat(.)

K(ρ)
G

βtrim(ρ)

τg trim(ρ)

LPF LIDARN
λ∗
R

sat(.)

ωg cmd
δβ

LPV controller

β

δτg τg

vv̂vtrim

+

+

ρ

M

ωg
−

Figure 3.1: Structure of the LPV controller for traditional operations.

This controller can be designed to operate the turbine in different wind conditions according

to measurement of the scheduling parameter ρ. Specifically, in below rated wind speed,

the controller tracks a time varying generator speed command ωg cmd to maximize the

power generation. This command ωg cmd is calculated based on the trim wind speed as
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ωg cmd = N λ∗
R vtrim such that the TSR is expected to stay at the optimal value λ∗. In this

case, generator torque τg will be the main control actuation to the wind turbine while the

blade pitch needs to be suppressed such that the pitch angle β will be close to the optimal

value β∗. This objective can be achieved in the design by penalizing less on the generator

torque and more on the blade pitch angle in low wind speed. It can be concluded from

the contour plot of power coefficient Cp in Figure 2.3, that the partial derivative of Cp to

β is close to 0 when Cp is close to its optimal value Cp∗. If the optimal TSR λ∗ can be

well tracked through the control of generator torque, it is expected that the blade pitch

actuation would have minor contributions to the power generation. Therefore the power

generation will not be affected too much by the blade pitch actuation.

It is noted that this control strategy for maximizing the power generation is different from

the nonlinear control law used in the baseline controller (Equations 2.14 and 2.15), which

takes only the generator speed measurement for calculation of the generator torque. Howev-

er, it provides a consistent structure of the feedback control loop for operating the turbine in

above rated wind condition. As shown in Figure 3.1, the generator speed command ωg cmd

will be saturated at the rated value ωg rated when the wind speed goes above rated. In this

case, the control system looks similar to the baseline controller in Region 3 for the constant

generator speed tracking (Equations 2.16 and 2.17). However, both the generator torque τg

and blade pitch β will be used here to control the turbine. The blade pitch will be the main

control input to the turbine for maintaining the rated power when wind speed goes high.

The generator torque will serve as a complementary control input for alleviating the usage

of blade pitching and damping out vibrations on the tower and rotor shaft. This objective

can be achieved in the design by penalizing more on the generator torque and less on the

blade pitch angle in high wind speed.

The use of this MIMO LPV control architecture allows the turbine to meet objectives in

different wind conditions. This uniformly designed controller naturally ensures stability

and performance for a smooth transition between different wind speed regions. Inside each

region, the performance is also expected to be uniform by taking the parameter varying

dynamics into account. Moreover, the MIMO structure of the controller takes other per-

formance objectives, such as load reduction, into a systematic consideration. The design

procedure is therefore simplified and potential side effects due to the dynamics coupling

between multiple SISO control loops can be avoided. For simplicity, only collective pitch

control is considered in this proposed controller. Therefore, the load reduction objective is

more focused on the tower and rotor shaft. However, it will be natural to extend the design

to include individual pitch control in the MIMO architecture for periodic load reduction on

the blades. In the next section, details will be provided on the design of the proposed LPV

controller.
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3.4 LPV Design

3.4.1 LPV Model Construction

The first step of the design is to generate a gridded based LPV model of the C96 2.5 MW

turbine. This LPV model is chosen to be dependent on the trim wind speed vtrim whose

value varies from 4 m/s to 25 m/s. As discussed in Section 3.2, this will lead to an infinite

collection of parameter dependent LMIs in the control synthesis. A practical way to deal

with this problem is to take a finite gridding set of the scheduling parameter and generate the

LTI model at each gridding point. To balance the accuracy of modeling and the complexity

of design, here, 7 points are chosen uniformly in increments of 3 m/s in wind speed from

6 m/s to 24 m/s.

As described in Section 2.3, the LTI model at each trim point is generated by the FAST

simulation and post analysis which consists of the MBC transformation and averaging of

the resulting “weakly” PLTV system. To start the simulation, trim values for the generator

speed ωg trim, collective blade pitch angle βtrim and generator torque τg trim need to be

determined uniquely. This step can be done once the trim wind speed vtrim is selected.

Figure 3.2 shows these trim values as functions of vtrim. The nonlinear turbine model

therefore can be linearized around the selected gridding point based on these trim values.

As shown in Figure 3.1, trim values for the generator torque τg trim and blade pitch angle

βtrim will also be used in the construction of the complete LPV controller by feed-forwarding

them to the control inputs.

The FAST simulation package includes up to 24 DOFs for the linearization. The wind

turbine model in this chapter uses 9 of them that include the rotor position, first tower

fore-aft and side-to-side bending modes, and first flapwise and edgewise bending modes for

each blade. This choice of model complexity will be sufficient for the modeling accuracy and

also helpful for saving the computational cost in the synthesis of the LPV controller. The

corresponding linearized model as described in Equation 2.7 contains 18 states. To avoid

numerical issues in the control synthesis, the state of the rotor position is removed after

the post analysis and the resulting LTI model has 17 states. It should be noted that the

DOF of the drive train torsion is usually included in the model to ensure that the designed

controller damps out the vibration on the rotor shaft. However, the C96 turbine has a

rigid design of the rotor shaft such that the mode for the drive train is lightly damped at

178 rad/s. This is far beyond the bandwidth of actuators and the wind turbulence usually

has minor effects at this frequency. Therefore, it is reasonable to exclude this DOF in the

model.

As introduced in Section 2.3.1, there are up to 5 control inputs for the wind turbine, which
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Figure 3.2: Trim values for linearization.
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include the generator torque, individual pitch angles for three blades and yaw angle. Since

collective pitch control is considered here, there is only 1 control input channel for the blade

pitch actuation. Moreover, the yaw angle input is disabled here as it is held constant at

0 deg to the incoming wind flow. Therefore, the generator torque τg and collective pitch

angle β will be used in the model. Wind disturbance inputs are also simplified to 1 channel

for the hub-height wind speed v which captures the most important characteristics of wind

conditions. The first output of the model is the sensor measurement of the generator speed

ωg. It will be used as a feedback signal in the control loop. To penalize the tower loads in

the design, tower fore-aft and side-to-side bending moments Mtfa and Mtss are selected as

the other two outputs. However, it should be noted that Mtfa and Mtss are only used in the

model for control design and need not to be measured for feedback purposes in simulations.

This is in contrast to the stardard damper designs proposed in [10–13].

To conclude, the resulting LPV model of the turbine G(ρ) is given by state space expression

of the form

[
ẋ

y

]
=

[
A(ρ) Bd(ρ) Bu(ρ)

C(ρ) Dd(ρ) Du(ρ)

]xd
u

 (3.11)

where x ∈ R17 is the state, d := δv ∈ R is the disturbance, u := [ δτg δβ ]T ∈ R2 is the vector

of inputs and y := [ δMtfa δMtss δωg ]T ∈ R3 is the vector of outputs.

It should be noted that the MBC transformation is used to get the LTI model at each trim

point. It takes inputs and outputs of the model in the rotating frame to the non-rotating

frame. Model based control designs are therefore all in the non-rotating frame. If these

inputs and outputs are included in the feedback control loop, the MBC transformation

must also be implemented as a part of the controller. For example, three pitch angles

in the non-rotating frame are expressed as βnr = [ βnravg βnryaw βnrtilt ]T for the individual blade

pitch control. In FAST simulations, these control signals need to be transformed back to the

rotating frame. However, this transformation will not be included in the proposed controller

as only collective pitch control is considered and there are no sensor measurements from

blades to be used in the design.

3.4.2 Weights Tuning

Due to the dependence on scheduling parameters, LPV systems do not have a valid frequency

interpretation. However, as a state space design method in the time domain, the LPV

control synthesis can still be achieved by adopting loop shaping techniques to satisfy the

required performance. This property makes the tuning for LPV controllers similar to the
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process in the classical H∞ design. Specifically, in the LPV control design, performance

objectives can be specified by weighting transfer functions in the frequency domain. These

weights will be transformed into the state space form and interconnected with the original

plant as an augmented system for synthesis. The freedom for weight tuning is even extended

in the LPV control as different weights can be specified at the same channel for performance

trade off when the system dynamics vary with scheduling parameters. Therefore, these

weights are also considered as linear parameter varying.

We

K(ρ)
G(ρ)

Wβ Wτ Wv

Wmδωg cmd
δβ

δτg

δv
δMtss

δMtfa

δωg
−

δẽ δβ̃ δτ̃g δṽ

δM̃tss

δM̃tfa

Figure 3.3: The augmented system for LPV synthesis.

Figure 3.3 shows the augmented system for synthesis of the proposed LPV controller. Here, 5

weights (We, Wτ , Wβ, Wv and Wm) need to be selected for the loop shaping. Considerations

on using parameter varying weights are more critical in such a design as the proposed LPV

controller has distinct objectives in different wind conditions. Table 3.1 shows detailed

expressions of these weights in different trim points. Bode magnitude plots are also provided

in Figure 3.4 for We, Wτ , Wβ and Wv. As shown in Table 3.1, one group of weights (denoted

as W
(1)
e , W

(1)
τ , W

(1)
β , W

(1)
v and W

(1)
m in Figure 3.4) are selected for ρ at 6 m/s and 9 m/s,

which correspond to the operation in Region 2. Another group of weights (W
(3)
e , W

(3)
τ ,

W
(3)
β , W

(3)
v and W

(3)
m ) are chosen for ρ varying from 15 m/s to 24 m/s, which correspond to

the operation in Region 3. The weights at ρ = 12 m/s (W
(2)
e , W

(2)
τ , W

(2)
β , W

(2)
v and W

(2)
m )

are used to ensure a smooth transition between different wind conditions.

We is the performance weight that specifies the objective for generator speed tracking. It

is chosen to limit the low frequency error with less emphasis on high frequency tracking.

The bandwidth of We is selected to be 0.2 rad/s. This is a conservative setting to ensure

that the induced L2 norm of the closed loop LPV system will be close to 1. However, this

value should be sufficient fast for the objective of tracking. Choices for the low frequency

gain of We varies for different wind conditions. In Region 3, the generator speed tracking

is the main objective and the low frequency gain of We is close to 5 which corresponds to

a desired steady-state error of 0.2 RPM. In Region 2, the generator speed is allowed to be
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Table 3.1: Weights at different trim points.

ρ [ 6 9 ] [ 12 ] [ 15 18 21 24 ]

We
0.2s+0.1058
s+0.1323

0.25s+0.1323
s+0.07937

0.25s+0.1323
s+0.02646

Wτ
0.04s+0.12
s+60

0.12s+0.6
s+100

0.16s+0.8
s+100

Wβ
1000s+1890
s+189

500s+1134
s+226.8

500s+1134
s+226.8

Wv
0.0625s+0.04147

s+1.327
0.0625s+0.04147

s+1.327
0.1333s+0.1418

s+1.772

Wm

[
10−3.65 0

0 10−3.25

] [
10−3.65 0

0 10−3.25

] [
10−3.65 0

0 10−3.25

]

more sensitive to the wind disturbance in the low frequency for capturing more power and

relaxing the usage of generator torque. Therefore, the low frequency gain is adjusted to 0.8

in Region 2.

Next, Wτ and Wβ are two weights used to penalize actuations of the generator torque and

blade pitch angle, respectively. Both weights are chosen as high pass filters to penalize

high frequency control effort. The generator torque can be actuated sufficiently fast that

its actuator dynamics can be neglected. However, the weight Wτ is still required to avoid

aggressive generator torque commands and hence accommodate the use of the blade pitch

actuator. Wτ is chosen to have a bandwidth of 3 rad/s in Region 2 and 5 rad/s in Region

3. The bandwidth for Wβ is chosen to be 5 rad/s in Region 2 and 6 rad/s in Region 3.

These values are lower than the bandwidth of blade pitch actuator which is usually around

10 to 15 rad/s. As discussed in Section 3.3, the trade off between these two actuators varies

with wind conditions. Therefore, the low and high frequency gains of Wτ in Region 3 is

4 times higher than the values in Region 2. Correspondingly, these gains of Wβ in Region

2 is twice higher than the values in Region 3. This enables a proper coordination of the

two control inputs for objectives in different wind conditions. The difference of these two

weights in Region 2 and Region 3 are also shown in Figure 3.4.

The weight Wv is used to shape the frequency property of wind disturbance. The power

spectrum of wind turbulence usually has a high gain in the low frequency and then grad-

ually decays in the high frequency [52]. Therefore, Wv is chosen to be as a low pass filter

in [52]. However, it is shown in the tuning process that this choice of Wv does not have e-

nough emphasis on tower modes (around 2 rad/s) and one of blade edgewise bending modes

(around 13 rad/s). These modes have significant effects on loads of the tower and rotor

shaft. Therefore, Wv is adjusted to be as a high pass filter with slightly higher gain in the

high frequency region. Moreover, Wv is more relaxed in Region 2 than in Region 3 as the
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requirement for load reduction is less critical in Region 2.

Finally, the weight Wm is used to penalize the bending moments on the tower base in both

fore-aft and side-to-side directions. Wm is assumed to be diagonal without considering

the coupling between these two loads. 2 diagonal entries in Wm are constant in all wind

conditions. The specific values of these two gains are chosen based on W
(3)
v and the channels

of G(ρ) from the wind disturbance to these two loads in Region 3. For example, the peak

gain for the augmented system from δd̃ to δMtfa is 70 dB at ρ = 18 m/s. Therefore, the

first diagonal term of Wm is chosen as 10−3.65 such that the weighted open loop gain from

δṽ to δM̃tfa is smaller than 1.

Once these weights have been selected, the synthesis of the LPV controller can be performed

using the LPV toolbox in Matlab [18]. While tuning all these weights for different wind

conditions in one time might be complicated and time consuming, it is more convenient to

do the tuning separately for two LTI models in Region 2 and Region 3 using the classical H∞

design method. For instance, two H∞ controllers can be designed after several iterations

for trim points at 9 m/s and 18 m/s respectively. The weights used for the LTI model at

ρ = 9 m/s will be denoted as W
(1)
e , W

(1)
τ , W

(1)
β , W

(1)
v and W

(1)
m for Region 2. Similarly, the

weights used at ρ = 18 m/s will be adopted for Region 3. As described above, weights at

ρ = 12 m/s should ensure a smooth transition as objectives change with wind conditions.

Therefore, these weights will be determined at last. An even more careful design is possible

by tuning weights individually at each trim point. However, the price is more time and work.

As what will be shown in Section 3.4.3, the weights selected in this section are sufficient to

ensure the required performance.

3.4.3 Synthesis Results

The synthesized LPV controller K(ρ) for the augmented system described in Section 3.4.2

has a dependence on the parameter varying rate, which is the acceleration of the trim wind

speed vtrim. The choice of an unbounded rate leads to two constant Lyapunov matrices in

the synthesis, as described in Section 3.2. This will greatly accelerate the process for solving

LMIs but lead to a significant conservativeness in the result. Therefore, it is necessary to

choose a reasonable parameter varying rate in the synthesis. Here, the value is selected as

0.1 m/s2. This value is calculated by first low pass filtering a 11 % turbulent wind profile at

an averaged wind speed of 20 m/s. The bandwidth of the low pass filter is 0.02 rad/s and

the resulting signal is considered as the trim wind speed for scheduling. This trim wind

speed is further high-pass filtered to get the acceleration. The turbulent wind profile used

here is a Class C level wind turbulence of IEC 64000-1 standards [33], which corresponds to

normal wind conditions in practice. The choice of a bounded rate results in the requirement
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for parameter dependent Lyapunov matrices in the synthesis. For simplicity, an affine

dependence is chosen here for the synthesis and the calculated upper bound of the induced

L2 norm of the closed loop LPV system is close to 1. The time consumption for the synthesis

is around 180 s. As a comparison, an unbounded parameter varying rate leads to an upper

bound of the nominal gain at 3.5 and the computation time is 13 s. Figure 3.5 shows more

synthesis results using different parameter varying rates for the proposed LPV controller

with 7 gridding points. Results for the LPV controller with 20 gridding points in this figure

will be discussed later. It is seen in the figure that the upper bound of the induced L2 norm

does not increase significantly until 10 m/s2, which is unrealistic in practice.

10−1 100 101 102 103

1

2

3

4

5

ρ̇ [m/s2]

γ
[−

]

7 gridding points
20 gridding points

Figure 3.5: Upper bound of the induced L2 norm γ with ρ̇.

To verify that the choice of 7 gridding points in the LPV model is sufficient for ensuring

the accuracy, a denser gridding set is chosen in increments of 1 m/s in wind speed from

5 m/s to 24 m/s. The resulting LPV model contains 20 trim points. Synthesis results using

this model are also shown in Figure 3.5. It is noted that the upper bound of the induced

L2 norm with 20 gridding points is slightly larger than the value with 7 gridding points.

However, the computation time is around 700 s using the affine parametric dependence. The

unbounded parameter varying rate is also considered for the model using the denser gridding

set. It leads to an upper bound of the nominal gain at 4.4 and the time consumption is

41 s. Therefore, the selected gridding set with 7 points for the LPV model does not lead to

a significant performance degradation.
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Before implementing the synthesized LPV controller in the FAST simulation environment, it

is necessary to check that it would meet desired performance objectives. In the traditional

LTI control design, this step is achieved by checking frequency responses of the closed

loop system. As discussed in Section 3.4.2, LPV systems do not have a valid frequency

interpretation. However, it is still valuable to perform the frequency analysis for LTI systems

on some representative frozen trim points. This frequency analysis will be helpful at least

on exploring the local performance of the LPV controller at neighborhoods of these trim

points.

Figures 3.6, 3.7 and 3.8 show Bode magnitude plots of the closed loop system from the wind

disturbance δv [m/s] to some outputs at 3 trim wind conditions. The 4 outputs selected here

are generator speed δωg [RPM], torque on the high speed shaft δτhss [kN ·m], tower base

fore-aft bending moment δMtfa [kN ·m] and side-to-side bending moment δMtss [kN ·m].

These figures also show corresponding Bode magnitude plots for the open loop system and

the closed loop system using a baseline controller which is similar to the one introduced

in Section 2.5. This baseline controller is currently implemented on the C96 turbine for

operations. Due to the reason of intellectual properties, however, details on the baseline

controller are hidden here and these plots for the baseline controller are generated using the

method of system identification as in Section 2.3.3.

Figure 3.6 shows the comparison at ρ = 9 m/s which is a typical wind condition in Region 2.

Here, the generator speed of the LPV controller is less sensitive to the wind disturbance in

the low frequency than the baseline controller, which might lead to less power generation.

However, as shown in Figure 3.1, ωg is designed to track a low frequency command for

Region 2 in the proposed control system. As long as the weight We is enough to bound the

sensitivity function from the generator speed command to the error, it is expected that the

performance for maximizing power generation would not be affected too much. Here, both

the LPV controller and the baseline controller have similar frequency responses for the high

speed shaft torque in the low frequency. An extra actuation of the generator torque for the

LPV controller at the frequency range 1 to 3 rad/s leads to a little increase on the high speed

shaft torque. However, as the power in the wind turbulence decays fast with the increase

of frequency, it will contribute few to δτhss in this frequency range. Instead, this extra

actuation of the generator torque on the LPV controller significantly decreases the peak of

δMtss, as shown in the lower left subplot of Figure 3.6. The tower base fore-aft bending

moment δMtfa is less affected by the LPV controller at this trim point. One possible reason

might come from choices of the constant weight Wm and the relaxed weight W
(1)
v in Region

2.

Figure 3.7 shows frequency responses at ρ = 12 m/s which is a transition wind speed between

Region 2 and Region 3. In this trim point, both the LPV controller and the baseline
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Figure 3.6: Bode magnitude plots from wind disturbance to some outputs at ρ = 9 m/s.
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controller start to track the rated generator speed for Region 3. However, δωg is more

sensitive to the wind disturbance in the low frequency for the baseline controller. It is also

noted that loads on both the tower and high speed shaft start to decrease for the LPV

controller. This is to be expected as load reduction is more important as the wind speed

increases.
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Figure 3.7: Bode magnitude plots from wind disturbance to some outputs at ρ = 12 m/s.

The performance for the LPV controller is even better in Region 3. As shown in Figure 3.8,

frequency responses for the LPV controller at the trim point of 18 m/s have lower gains

almost everywhere, comparing to responses of the baseline controller. It indicates a better

generator speed tracking performance and better load reductions on the tower and the high

speed shaft. It is noted that the peak of δMtfa does not decrease too much for the LPV

controller. In the tuning process, it is found out that this peak changes less with tighter

weight on Wm. However, the frequency response around this peak significantly decreases

for the LPV controller. Therefore, it is still reasonable to expect that the load reduction

performance will be better for the LPV controller. A possible solution to push down the

peak for further load reduction in the future might be to include the tower top (nacelle)

fore-aft velocity measurement for a damper design.
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To conclude results in the frequency analysis above, the designed LPV controller should meet

performance requirements in different wind conditions. According to FAST simulations and

post analysis which will be shown in the next section, the frequency analysis introduced

here is an effective way to predict the performance of the synthesized LPV controller. This

is important for the working flow as it saves more time in design iterations.

3.5 Simulations and Analysis

3.5.1 Simulation Results

The synthesized LPV controller will be tested in the FAST simulation environment. Struc-

tural modes in the FAST model include the rotor position, drive train torsion, first tower

fore-aft and side-to-side bending modes, and first flapwise and edgewise bending modes for

each blade. Therefore, the model used for simulations contains 10 DOFs. This is a higher

fidelity model than the one used for synthesis, which contains 9 DOFs. The LPV controller

and the baseline controller will be compared in 21 simulations with wind speeds varying

from 5 m/s to 25 m/s. As introduced in Section 2.3, TurbSim is used here to generate tur-

bulent wind profiles. A turbulence level of 5 % is considered for all wind profiles. The time

range for each simulation is 660 s. However, results in the first 60 s will be ignored in the

analysis as different initial responses for the two controllers might affect the comparison.

For simplicity, simulation results in 3 different wind speeds are shown in Figures 3.9 to 3.12,

which cover Regions 2, 2.5 and 3 wind conditions. To get a better view of the data, plots are

narrowed down to the time range from 200 s to 400 s. Figure 3.9 shows simulation results at

ρ = 8 m/s. It is seen in this figure that both the LPV controller and the baseline controller

have good generator speed tracking performance to the varying wind speed for maximizing

the power generation. Actuations of the generator torque are also similar for both two

controllers. It is noted that the LPV controller used the blade pitch angle at about 340 s.

However, it does not affect too much to the power generation, as shown by the comparison

of power generations for these 2 controllers in Figure 3.10. Similar comparison results can

be concluded in other wind speeds of Region 2. This is to be expected based on the design

strategy in Section 3.3 and the weights selection in Section 3.4.2.

Figure 3.11 shows simulation results at ρ = 12 m/s. Here, the LPV controller has better

generator speed tracking performance than the baseline controller. However, detailed anal-

ysis of the results in Figure 3.10 shows that it loses about 12 % of the power generation

comparing to the baseline controller. This is due to imbalanced actuations for the generator

torque and blade pitch. As shown in subplots of Figure 3.11 for these two control inputs,

the LPV controller attempted to use more blade pitch than generator torque for genera-

tor speed tracking, which is more similar to the operation for Region 3. Therefore, more
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Figure 3.9: Simulations for the baseline controller and the LPV controller at 8 m/s.
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Figure 3.10: Comparison of power generations for the baseline controller and the LPV
controller in different wine speeds.

power was lost for the LPV controller. This drawback should be improved in the future by

re-evaluating the trade-off between two actuations in Region 2.5. It is also noted that the

baseline controller has a large drop in the generator torque and power output near 280 s and

355 s. This is because the baseline controller tries to switch control loops from Region 3 to

Regions 2.5 due to the wind speed drops. However, this turbulence is lower pass filtered by

the LPV controller and it still operates in above rated wind speed.

Simulation results for the trim wind speed of 18 m/s are shown in Figure 3.12, which cor-

respond to the operation in Region 3. It is clear that the LPV controller has much better

performance on the generator speed tracking than the baseline controller. To quantitatively

compare the tracking performance, define root mean square (RMS) of the generator speed

tracking error ωg RMS as:

ωg RMS =

(
1

T

∫ T

0
|ωg − ωg rated|2dt

) 1
2

(3.12)

The comparison results for these 2 controllers in different wind speeds of Region 3 are

shown in Figure 3.13, which fit the observation in Figure 3.12. The variation on the power

generation is also less for the LPV controller. The price for this desired tracking performance

is an extra actuation of blade pitch in higher frequencies. However, the resulting damage

to blade pitch actuators should be acceptable as Wβ has been tuned with a bandwidth

lower than the limit of actuators. In addition, as what will be shown in Section 3.5.2, this

actuation does not introduce more loads on blades. It should be noted that the baseline

controller tries to decrease the generator torque for maintaining the rated power generation

when the generator speed increases too much with the wind speed. This phenomenon

happens at around 310 s and 330 s. While this actuation of the generator torque might be
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Figure 3.11: Simulations for the baseline controller and the LPV controller at 12 m/s.
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helpful to decrease variations of the power generation, it leads to the potential of instability

of the rotor dynamics as shown in Equation 2.2. In contrast, the LPV controller guarantees

the stability and provides better load reductions by moderately varying the generator torque

around the rated value. The range for this variation can be adjusted by tuning the weight

Wτ , according to constraints on the generator.

3.5.2 Damage Equivalent Load Analysis

This section provides the post analysis of simulation results on loads for a further comparison

between the two controllers. The metric for evaluating loads on the turbine is based on the

calculation of damage equivalent loads (DELs). The DELs show the equivalent fatigue

damage caused by the load on a specific component. The DELs can be calculated using the

MCrunch [73] which is also developed by NREL. Results of the DELs analysis for the two

controllers are shown in Figure 3.14 based on the data in 21 simulations as mentioned in

Section 3.5.1. Here, 5 different loads are considered which include the tower base bending

moments in fore-aft and side-to-side directions Mtfa and Mtss, high speed shaft torque τhss

and averaged blade flapwise and edgewise bending moments Mbfw and Mbss.

As shown in Figure 3.14, all loads generally increase with the wind speed, except for the

blade edgewise bending moment. The detailed check on this load shows that the vibration

of blades in the edgewise direction is dominated by the periodic motion of the rotation.

Therefore, collective pitch control has few effects on this load. It is also noted that the high

speed shaft torque reaches its maximum in Region 2.5. This makes sense as the turbine

still uses the generator torque as the main control input for power maximization in Region

2.5, where the wind speed is sufficient high to introduce large vibrations on the generator

torque.

Improvements for the LPV controller on load reduction are shown in Figure 3.15 by com-

paring to the baseline controller on DELs. It is seen in this figure that the load reduction

effect is not obvious in Region 2 for the LPV controller. This is because load reduction is

less critical in Region 2 and less emphasis has been put in the corresponding weight of wind

turbulence W
(1)
v . In Region 2.5, the LPV controller starts to show better load reduction

results than the baseline controller. However, there is a trade off between the blade flapwise

bending moment and the high speed shaft torque. As the high speed shaft torque is similar

to the generator torque, considering the lightly damped drive train torsion mode in the high

frequency, this observation reflects the balance of two actuations in Region 2.5. In Region

3, the LPV controller has much less DELs than the baseline controller. Specifically, there is

about 20 % decrease of the DEL on the high speed shaft torque. The improvement for the

blade flapwise bending moment is about 10 %. The load reductions on the tower fore-aft
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Figure 3.12: Simulations for the baseline controller and the LPV controller at 18 m/s.
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Figure 3.13: Comparison of RMS of the generator speed tracking error for the baseline
controller and the LPV controller in Region 3.

and side-to-side bending moments are about 25 % and 50 % respectively.
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Figure 3.14: Damage equivalent loads (DELs) for the baseline controller and the LPV
controller at different wind speeds.
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Figure 3.15: Improvements for the LPV controller on load reduction at different wind
speeds.
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Chapter 4

Robust Synthesis for LPV Systems

Using IQCs

4.1 Introduction

This chapter considers the robust synthesis problem for a class of uncertain linear parameter

varying (LPV) systems. The uncertain system is described as an interconnection of a nom-

inal (not-uncertain) LPV system and a block structured uncertainty. The state matrices of

the nominal system are assumed to have an arbitrary dependence on parameters, i.e. the

nominal part is a “gridded” LPV system. Such models arise naturally in many applications

via linearization of a nonlinear model around parameterized operating (trim) points. Spe-

cific examples of current interest include aeroelastic vehicles [74] and wind turbines [63,75].

The input/output behavior of the uncertainty is described by integral quadratic constraints

(IQCs) [19]. The use of IQCs is sufficiently general to describe “uncertain” components that

include nonlinearities, e.g. saturation, in addition to (parametric or dynamic) uncertainty.

The robust synthesis problem, formulated in Section 4.3.1, involves a search for a controller

that minimizes a closed-loop robust performance metric. This leads to a non-convex opti-

mization that involves a search for both the controller state matrices and the IQC analysis

variables. The proposed algorithm, given in Section 4.3.3, consists of a coordinate-wise

descent similar to the well-known DK-iteration [20,76] for µ synthesis. Specifically, the pro-

posed algorithm alternates between an LPV synthesis step and an IQC analysis step. The

synthesis step essentially relies on existing results for nominal (not) uncertain ”gridded”

LPV systems in [57,58]. The analysis step is performed using a matrix inequality condition

to bound the robust performance of the closed-loop uncertain LPV system (Section 4.4.1).

Both steps can be efficiently solved as semidefinite programs (SDPs). The effectiveness of
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the proposed method is demonstrated on a simple numerical example in Section 4.5.

There are two main technical challenges in developing this algorithm. First, the nominal

LPV system does not have a valid frequency response interpretation and hence the robust-

ness analysis requires a time domain approach. Section 4.4.1 develops a matrix inequality

robustness analysis condition (Theorem 3) using (time domain) dissipation inequality tech-

niques. This result requires several technical lemmas to convert a conic combination of

many frequency domain IQCs into a single, equivalent time domain IQC. This analysis

condition is an extension of the worst-case gain condition in [77,78]. We note that there are

alternative robust stability conditions for time-varying systems based on the ν-gap metric

rather than dissipation inequalities [79]. These alternative robust stability conditions can

potentially be used to develop synthesis algorithms complementary to those developed here.

The second technical challenge is that an appropriate scaled system must be constructed

to link the analysis and synthesis steps. In particular, the single equivalent time domain

IQC from the analysis step must be combined with the nominal open-loop system to cre-

ate the scaled system. This construction, described in Section 4.4.2, is such that the next

synthesis step on the scaled plant yields a controller that improves the closed-loop robust

performance. These technical results are used to show the following main result in Sec-

tion 4.4.3: the robust performance metric is non-increasing at each iteration step and hence

the algorithm converges.

This chapter builds on many known results for both LPV systems and IQCs. A brief

review of these existing results is provided in Section 4.2. In addition, there are several

related robust synthesis results for LPV systems [68,80–83]. These existing robust synthesis

results are for the case where the state matrices of the nominal LPV system have a rational

dependence on the scheduling parameters. This rational (linear fractional) dependence on

the parameters is exploited in the algorithm development and leads to finite-dimensional

matrix inequalities for both the synthesis and analysis steps. In contrast, the algorithm in

this chapter is developed for the case where the state matrices of the nominal LPV system

have an arbitrary dependence on the parameters. As noted above, this enables applications

to systems, e.g. aeroelastic aircraft or wind turbines, for which arbitrary dependence on

scheduling parameters is a natural modeling framework. The drawback of this approach is

that it leads to parameter-dependent matrix inequalities for both the synthesis and analysis

steps. As a result, parameter gridding is required to obtained finite-dimensional matrix

inequality conditions. Finally, this chapter builds on a related conference paper submission

[84]. The conference paper only considered LTI uncertainty while this chapter considers

(possibly nonlinear) components whose input/output behavior are described by a general

class of dynamic IQCs.
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4.2 Integral Quadratic Constraints

Integral quadratic constraints (IQCs) [19] provide a framework for robustness analysis build-

ing on work by Yakubovich [85]. The IQC specifies a constraint on the input-output signals

of the perturbation. The form of the constraint is such that it can be easily incorporat-

ed into tractable stability and performance analysis conditions. The following definitions

characterize the constraint in the frequency and time domain.

Definition 1. Let Π ∈ RL(nv+nw)×(nv+nw)
∞ be a rational and uniformly bounded function

of jω. Two signals v ∈ Lnv2 [0,∞) and w ∈ Lnw2 [0,∞) satisfy the frequency domain IQC

defined by the multiplier Π if∫ ∞
−∞

[
V̂ (jω)

Ŵ (jω)

]∗
Π(jω)

[
V̂ (jω)

Ŵ (jω)

]
dω ≥ 0 (4.1)

where V̂ and Ŵ are Fourier transforms of v and w. A bounded, causal operator ∆ :

Lnv2e [0,∞) → Lnw2e [0,∞) satisfies the frequency domain IQC defined by Π if Equation 4.1

holds for all v ∈ Lnv2 [0,∞) and w = ∆(v).

Definition 2. Let Ψ be a stable LTI system, i.e. Ψ ∈ RHnz×(nv+nw)
∞ , and M = MT ∈

Rnz×nz . Two signals v ∈ Lnv2e [0,∞) and w ∈ Lnw2e [0,∞) satisfy the time domain IQC defined

by the multiplier Ψ and matrix M if the following inequality holds for all T ≥ 0∫ T

0
zT (t)Mz(t) dt ≥ 0 (4.2)

where z is the output of Ψ driven by inputs (v, w) with zero initial conditions. A bounded,

causal operator ∆ : Lnv2e [0,∞)→ Lnw2e [0,∞) satisfies the time domain IQC defined by (Ψ,M)

if Inequality 4.2 holds for all v ∈ Lnv2e [0,∞), w = ∆(v) and T ≥ 0.

IQCs can be used to model a variety of nonlinearities and uncertainties. In particular, [19]

provides a library of frequency domain IQC multipliers that are satisfied by many important

system components, e.g. saturation, time delay, and norm bounded uncertainty. Figure 4.1

provides a graphical interpretation for the time domain IQC. The input and output signals

of ∆ are filtered through Ψ. If ∆ satisfies the time domain IQC defined by Ψ then the

filtered signal z satisfies the constraint in Equation 4.2 for any finite-horizon T ≥ 0.

A precise connection between the frequency and time domain IQC formulations is im-

portant for the robust synthesis algorithm described in this chapter. Assume ∆ satis-

fies the time domain IQC defined by (Ψ,M). Taking T → ∞ in Equation 4.2 yields
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Figure 4.1: Graphical interpretation of the IQC.

∫∞
0 z(t)TMz(t) dt ≥ 0. By Parseval’s theorem [20], this is equivalent to the frequency do-

main constraint
∫∞
−∞ Ẑ(jω)∗MẐ(jω) dω ≥ 0 where Ẑ(jω) = Ψ(jω)

[
V̂ (jω)

Ŵ (jω)

]
. Thus if ∆

satisfies the time domain IQC defined by (Ψ,M) then it satisfies the frequency domain IQC

defined by Π = Ψ∼MΨ.

The reverse implication is more technical and fails to hold in general. Specifically, assume ∆

satisfies the frequency domain IQC defined by the multiplier Π. Any rational multiplier Π

can be factorized as Π = Ψ∼MΨ where Ψ ∈ RHnz×(nv+nw)
∞ is stable and M = MT ∈ Rnz×nz .

Such factorizations are not unique but can be computed using state-space calculations

[86–88]. One specific numerical construction is given by Lemma 4 in Appendix A. Substitute

the factorization for Π into the frequency domain IQC (Equation 4.1) and apply Parseval’s

theorem [20] to convert to a time domain constraint. This yields
∫∞

0 z(t)TMz(t) dt ≥ 0

where z is the output of Ψ driven by v and w = ∆(v) with zero initial conditions. This

time domain constraint holds, in general, only over infinite horizons and only for finite-

norm input signals v ∈ Lnv2 [0,∞). However, the time domain IQC (Definition 2) requires

the integral inequality to hold over all finite times T ≥ 0 and for all extended-space input

signals v ∈ Lnv2e [0,∞). A time domain IQC as in Definition 2 is referred to as a hard IQC

in [19]. In contrast, factorizations for which the time domain constraint holds only for

T =∞ are called soft IQCs. This distinction is important because the dissipation theorems

specified later for robustness analysis require the use of hard IQCs.1 Lemmas 5 and 6

in Appendix A provide a specific ”hard” factorization (Ψ,M) that can be constructed

under additional assumptions on the frequency domain multiplier Π. To summarize these

lemmas, let Π = Π∼ ∈ RL(nv+nw)×(nv+nw)
∞ be partitioned as

[
Π11 Π12
Π∼12 Π22

]
where Π11 ∈ RLnv×nv∞

and Π22 ∈ RLnw×nw∞ . If Π11(jω) > 0 and Π22(jω) < 0 ∀ω ∈ R ∪ {∞}, then Π has a

hard factorization (Ψ,M) that yields a time domain IQC (Definition 2). (Ψ,M) can be

constructed from the stabilizing solution to an Algebraic Riccati Equation (ARE) and is

called a J-spectral factorization of Π.

LPV systems do not have a valid frequency response interpretation. Hence existing condi-

tions for robust analysis of gridded LPV systems [77,78] rely on the use of valid time domain

1The terms “complete” and “conditional” IQCs in [89] are generalizations of hard and soft IQCs. The
hard/soft terminology will be used here.
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(hard) IQCs. Section 4.4.1 generalizes these existing results to handle factorizations (Ψ,M)

that are not necessarily hard. Moreover, analysis conditions for a worst-case gain metric are

provided in [77,78]. Here, analysis conditions are derived for a robust performance metric.

Definitions of these two metrics and their difference will be introduced in Section 4.3.1.

4.3 Robust Synthesis Algorithm

4.3.1 Problem Formulation

Consider the robust synthesis problem for the uncertain LPV system as shown in Figure 4.2.

The uncertain LPV system is described by the interconnection of an open loop LPV system

Gρ, a perturbation ∆, and an LPV controller Kρ. A state-space realization for Gρ is given

by: 
ẋG

v

e

y

 =


A(ρ) Bw(ρ) Bd(ρ) Bu(ρ)

Cv(ρ) Dvw(ρ) Dvd(ρ) Dvu(ρ)

Ce(ρ) Dew(ρ) Ded(ρ) Deu(ρ)

Cy(ρ) Dyw(ρ) Dyd(ρ) Dyu(ρ)



xG

w

d

u

 (4.3)

where xG ∈ RnG , w ∈ Rnw , d ∈ Rnd , u ∈ Rnu , v ∈ Rnv , e ∈ Rne and y ∈ Rny . The following

assumptions are made regarding Gρ and ∆:

Assumption 1. Gρ is quadratically stabilizable from u and quadratically detectable from y

as defined in Chapter 1 of [57].

Assumption 2. The perturbation is a bounded, causal operator ∆ : Lnv2e [0,∞)→ Lnw2e [0,∞)

that satisfies a collection of IQCs defined by {Πk}Nk=1 ⊂ RL(nv+nw)×(nv+nw)
∞ in the frequency

domain.

Assumption 3. Partition the frequency domain multipliers {Πk}Nk=1 as
[

Πk,11 Πk,12
Π∼k,12 Πk,22

]
where

Πk,11 is nv×nv. Each frequency domain multiplier satisfies Πk,11(jω) ≥ 0 and Πk,22(jω) ≤ 0

∀ω ∈ R ∪ {∞}.

Assumption 4. The perturbation has been normalized to satisfy ‖∆‖ ≤ 1 and the first IQC

is defined by the multiplier Π1 :=
[
Inv 0
0 −Inw

]
.

The first assumption ensures that there is a controller Kρ from y to u that stabilizes the

(nominal) open loop interconnection of Gρ and Kρ. This open loop interconnected system

is a lower LFT, denoted Fl(Gρ,Kρ). The IQCs in the second assumption are used to bound

the input-output behavior of the perturbation ∆. This formulation can handle systems

where ∆ has block diagonal structure including static nonlinearities (e.g. saturations) and
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Figure 4.2: Interconnection for LPV robust synthesis.

infinite dimensional operators (e.g. time delays) in addition to true system uncertainties.

The term “uncertainty” is used for simplicity when referring to the perturbation ∆. The

notation ∆(Π1, . . . ,ΠN ) will be used to denote the set of bounded, causal operators ∆ that

satisfy all frequency domain IQCs defined by {Πk}Nk=1.

The third and fourth assumptions are used to simplify the algorithm. Assumption 3 only re-

quires the multipliers satisfy non-strict definiteness conditions Πk,11 ≥ 0 and Πk,22 ≤ 0. This

is sufficiently general to cover most typical frequency domain multipliers used in IQC anal-

ysis. In fact, all frequency domain multipliers listed in [19] satisfy Πk,11 ≥ 0 and Πk,22 ≤ 0

except those for certain sector bounded nonlinearities and polytopic uncertainties which fail

to contain the zero operator ∆ = 0. Finally, note that the individual multiplier Πk need not

satisfy the strict definiteness conditions Πk,11 > 0 and Πk,22 < 0 given in Lemma 5 for the

existence of a J-spectral factorization. However, Assumptions 3 and 4 are sufficient to en-

sure that a “combined” multiplier that appears in the proposed robust synthesis algorithm

satisfies the strict definiteness conditions and thus has a J-spectral factorization. Specifi-

cally, the “combined” multiplier described below will be formed (with an additional scaling

neglected here) as: Πλ :=
∑N

k=1 λkΠk. The coefficients will be constrained to satisfy λ1 > 0

and λk ≥ 0 for k = 2, . . . N . Assumptions 3 and 4 along with these constraints on λ are

sufficient to ensure that the combined multiplier satisfies the strict definiteness conditions

Πλ,11 > 0 and Πλ,22 < 0 given in Lemma 5. Other parameterizations of the IQC multiplier

are possible. For example, [90] uses the form Πλ := Ψ∗M(λ)Ψ where Ψ is a given stable

filter (not necessarily square) and M is an affine matrix function of λ. The robust synthesis

algorithm proposed here can be generalized to handle alternative parameterizations as long

as the conditions Πλ,11 > 0 and Πλ,22 < 0 can be enforced as a convex constraint on λ.

To simplify notation, define Hρ := Fl(Gρ,Kρ). The uncertain LPV system in Figure 4.2

can therefore be expressed as an upper LFT, denoted Fu(Hρ,∆). A natural performance
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metric for the uncertain LPV system is the worst-case gain:

sup
∆∈∆(Π1,...,ΠN )

‖Fu(Hρ,∆)‖ (4.4)

This is the largest induced L2 gain of the uncertain LPV system over all uncertainties

consistent with the specified IQCs. This metric has been widely used for robustness analysis

[77,78,91]. Note that the worst-case gain is only finite (< +∞) if the controller Kρ robustly

stabilizes the plant over any uncertainty ∆ ∈ ∆. Hence the use of worst-case gain for

robust synthesis requires an initial controller that achieves robust stability. It is possible

to construct a two-stage synthesis algorithm that in the first stage attempts to design a

robustly stabilizing controller and in the second stage attempts to minimize the worst-case

gain. The first stage requires a way to measure the “robustness” of the controller relative to

the uncertainty set ∆. A scaled uncertainty set can serve this purpose. Specifically, define

Sb as the scaling matrix
[
bInv 0

0 Inw

]
. Let ∆b(Π1, . . . ,ΠN ) denote the set of bounded, causal

operators ∆ that satisfy the frequency domain IQCs defined by SbΠkSb for k = 1, . . . , N .

For the scaled set, if b2 ≥ b1 then ∆b2 ⊇ ∆b1 .2 This inclusion means that stability with

respect to a scaled uncertainty set ∆b defined by b provides a useful robustness metric,

i.e. larger values of b indicate more robustness. For many multipliers this scaling has

a simple interpretation. For example, Π :=
[

1 0
0 −1

]
defines norm bounded uncertainty

‖∆‖ ≤ 1. For this multiplier the scaled set ∆b(Π) corresponds to SbΠSb =
[
b2 0
0 −1

]
and

defines uncertainty ‖∆‖ ≤ b. In some cases the interpretation is not as intuitive. For

example, Zames-Falb multipliers can be used to describe an uncertainty set ∆ that contains

monotonic nonlinearities such as the saturation. The scaled uncertainty set does not have

an easy interpretation for such IQC multipliers. In these cases we can simply state that if a

controller achieves robust stability with b ≥ 1 then it achieves robust stability with respect

to the unscaled set ∆.

The two-stage algorithm proposed above would use both a robust stability and worst-

case gain metric. It is more convenient to combine these stages into a single algorithm.

Specifically, it is standard, e.g. in DK synthesis, to instead use a robust performance metric

that simultaneously scales both the uncertainty level and the system gain. This metric,

formally defined below, is used for the robust synthesis algorithm in this chapter. The

definition of robust performance uses the notion of a scaled uncertainty set discussed above.

Definition 3. The system Hρ achieves robust performance of level γ with respect to the

2A sketch of the proof is given. Assume Π11(jω) ≥ 0 and Π22(jω) ≤ 0 ∀ω ∈ R ∪ {∞}. Let
V̂ and Ŵ be Fourier transforms of two signals in L2. Define a function f : R>0 → R by f(b) :=∫∞
−∞

[
bV̂ (jω)

Ŵ (jω)

]∗
Π(jω)

[
bV̂ (jω)

Ŵ (jω)

]
dω. It can be shown that if f(b1) ≥ 0, then f ′(b) ≥ 0 ∀b ≥ b1. This can

be used to show that if (V̂ ,Ŵ ) satisfy the scaled IQC defined by Sb1ΠSb1 then (V̂ ,Ŵ ) satisfy the scaled IQC
for any b2 ≥ b1.
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uncertainty described by {Πk}Nk=1 if

sup
∆∈∆1/γ(Π1,...,ΠN )

‖Fu(Hρ,∆)‖ ≤ γ (4.5)

Let r∆(Π1,...,ΠN )[Hρ] denote the smallest level of robust performance achievable by Hρ.

Hρ achieves robust performance of level γ if the worst-case induced L2 gain from d to e

is ≤ γ over all uncertainties in the scaled set ∆1/γ(Π1, . . . ,ΠN ). For decreasing levels of

robust performance, the gain decreases and the bound of the tolerable uncertainty increases.

The robust performance level for the uncertain system with known nominal plant Hρ can

be analyzed using convex optimization as described in Section 4.4.1.

The objective of the robust synthesis problem is to synthesize an LPV controller Kρ with the

form in Equation 3.6 that stabilizes the open-loop model Gρ and minimizes the closed-loop

robust performance. Thus the synthesis problem is:

inf
Kρ stabilizing

r∆(Π1,...,ΠN) [Fl(Gρ,Kρ)] (4.6)

It is typical to scale the performance weights to achieve a robust performance metric near

1. This ensures that the synthesized controller robustly stabilizes the modeled (unscaled)

uncertainty.

4.3.2 DK Synthesis

This section briefly reviews the standard DK synthesis algorithm [20, 76]. The objective is

to clarify the notation presented thus far and to provide a basis for comparison with the

proposed algorithm. In DK synthesis the nominal plant G is LTI and the uncertainty ∆

is LTI and unit norm bounded. The robust synthesis problem involves the search for an

LTI controller K and robustness analysis scalings D (called D-scales). The problem is non-

convex, in general, and DK synthesis employs a coordinate-wise iteration. Specifically, the

algorithm iterates between a controller synthesis step (K-step) and a robustness analysis

step (D-step). The synthesis step involves the design of an H∞ controller K on a nom-

inal (not-uncertain) scaled system. The analysis step involves the search for a frequency

domain scaling D to assess the robust performance of the closed-loop H := Fl(G,K). The

coordinate-wise iteration for DK synthesis does not, in general, converge to a local (nor

global) optima. However it has the advantage that each of the decoupled synthesis and

analysis steps is a convex optimization.

The main technical result for DK synthesis is that the iteration is well posed at each
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step and the robust performance is (in theory) non-increasing. This result is based on the

construction of a scaled system that links the analysis and synthesis steps. The scaled system

used in the K-step is DGD−1 where D is the scaling from the analysis step. The main loop

theorem [20] establishes the equivalence between robust performance of the (uncertain)

closed-loop Fu(H,∆) and the induced L2 performance of the (not-uncertain) scaled system

Fl(DGD−1,K). If the synthesis problem includes mixed (real and complex) uncertainty

then the construction of an appropriate scaled system is more subtle. For example, the

DGK synthesis algorithm [92,93] uses a specific factorization of the D/G scalings to prove

that the robust performance monotonically decreases. One of the major technical results

given below leads to the construction of an appropriate scaled system for the robust LPV

synthesis with general IQCs.

Finally, we briefly connect the notation used in standard DK synthesis with that introduced

here for the robust LPV synthesis problem. The uncertainty in DK synthesis is, in general,

block structured but for simplicity this discussion assumes ∆ is SISO (no structure). If

‖∆‖∞ ≤ 1 then ∆ satisfies the frequency domain IQC defined by Π =
[
α 0
0 −α

]
for any SISO,

LTI system α such that α(jω) = α(jω)∗ > 0 ∀ω ∈ R ∪ {∞}. Moreover, if ‖∆‖∞ ≤ 1
γ

then ∆ satisfies the frequency domain IQC defined by the scaled multiplier S1/γΠS1/γ .

The condition α > 0 ensures that α has a spectral factorization α = d∼d where d is the

scaling/multiplier that appears in DK synthesis. In this case, Ψ =
[
d 0
0 d

]
and M =

[
1 0
0 −1

]
defines a J-spectral factorization of Π. The D-step in DK synthesis is typically implemented

by solving for D-scales on a frequency grid and then fitting the result with a rational transfer

function. Here, the scalings will be restricted to a finite, linear combination of user selected

basis functions. In particular, the definition of robust performance (Definition 3) requires

a finite number N of (fixed) multipliers {Πk} to be specified. In the context of this DK

synthesis example, this corresponds to the selection of N scalings {αk}. The proposed

algorithm given below will search for the best linear combination of these scalings.

4.3.3 Algorithm Description

This section gives a high-level overview of the proposed LPV robust synthesis algorithm.

Technical details regarding the algorithm are then given in Section 4.4. As in DK syn-

thesis, the robust LPV synthesis is, in general, non-convex. In particular, Theorem 3 in

Section 4.4.1 provides a linear matrix inequality (LMI) formulation for robust performance.

Applying this result for synthesis leads to a matrix inequality condition that is bilinear in

the state matrices for the controller Kρ and the analysis variables consisting of a storage

matrix P ≥ 0 and IQC coefficients {λk}Nk=1. A standard coordinate-wise approach is used

to decouple the design into a nominal controller synthesis step (for Kρ) and a robust per-

formance analysis step (for P and λ). The technical results in Section 4.4 are used to link
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these steps.

The detailed steps of the algorithm including the initialization and termination conditions

are described in Algorithm 1. This algorithm is briefly described to provide a roadmap for

the technical results in the following section. The algorithm initialization (Step 2) computes

a factorization for each IQC multiplier. Any stable factorization of the Πk may be used in

and the construction in Lemma 4 of Appendix A is just one possibility. As noted above,

a J-spectral factorization need not exist for the individual multipliers Πk and hence the

factorization need not be “hard”. The main steps of the algorithm involve a synthesis step

(Step 8), analysis step (Step 9), and the construction of a scaled-system Gsclρ that links these

steps (Steps 5-7). The synthesis ste is a standard (nominal) LPV synthesis on the scaled

system. It uses the algorithm in [57,58] and summarized by Theorem 2 in Section 3.2. The

analysis step is a parameterized matrix inequality condition (Theorem 3 in Section 4.4.1)

that involves a storage function matrix P , analysis vector λ, and robust performance bound

γ. The bound γ enters bilinearly in the matrix inequality and hence this step requires

bisection to find the minimum feasible value of γ. This step can be interpreted as a search

over linear combinations of the scaled IQCs to form a single combined IQC multiplier (Step

6). The technical condition λ1(i) > 0 in Step 9 is used to ensure that the combined IQC

multiplier in Step 6 has a J-spectral factorization. In particular, Assumption 3 along with

λ ∈ R≥0 implies that Πλ satisfies the non-strict conditions Πλ,11 ≥ 0 and Πλ,22 ≤ 0.

Assumption 4 gives Π1 :=
[
I 0
0 −I

]
so that λ1(i) > 0 ensures that the strict conditions

Πλ,11 > 0 and Πλ,22 < 0 are satisfied. Hence the combined multiplier has a J-spectral

factorization by Lemma 5. Finally, the analysis and synthesis steps are linked by the

construction of a particular scaled system (Step 7). The construction of the scaled system

is described further in Section 4.4.2. The algorithm can be easily modified to incorporate

other termination criteria in Step 10, e.g. maximum number of iterations and/or relative

stopping tolerances.

As noted above, the LPV robust synthesis problem inherits the non-convexity of DK syn-

thesis. The proposed coordinate-wise iteration will not, in general, converge to a local (nor

global) optima. However, it is a pragmatic approach that decouples the synthesis and analy-

sis steps into convex optimizations. The main technical result (Theorem 4 in Section 4.4.3)

is that the algorithm iteration is well posed at each step and the robust performance is

non-increasing. This is similar to the convergent property of the DK synthesis.

61



Gρ
u�y �
d�e �

Ψ†λ

v

-
wλ - vλ-

w

�

Figure 4.3: LFT interconnection of Scaled System, Gsclρ .

4.4 Technical Details

4.4.1 Robust Performance Condition

This section derives a matrix inequality condition to bound the robust performance for

an uncertain LPV system. The uncertain LPV system is specified by the interconnection

Fu(Hρ,∆). The main technical issue is that the uncertainty ∆ is described by IQCs {Π}Nk=1

in the frequency domain but the nominal system Hρ is LPV and does not have a valid

frequency domain interpretation. The approach given here combines the frequency domain

IQCs and converts it to a single, equivalent time domain IQC. The steps in this section

alternate between various conditions involving the frequency domain IQCs and the single

time domain IQC. This leads to the main technical result (Theorem 3) which involves a

dissipation inequality characterization for robust performance.

The nominal LPV system Hρ has the following state-space realization:ẋHv
e

 =

A(ρ) Bw(ρ) Bd(ρ)

Cv(ρ) Dvw(ρ) Dvd(ρ)

Ce(ρ) Dew(ρ) Ded(ρ)


xHw
d

 (4.7)

where xH ∈ RnH , w ∈ Rnw , d ∈ Rnd , v ∈ Rnv and e ∈ Rne . The uncertainty ∆ is assumed

to satisfy multiple frequency domain IQCs defined by {Πk}Nk=1 under Assumptions 2, 3

and 4 in Section 4.3.1. Construct a factorization for each Πk as (Ψk,Mk) where Ψk is

stable, e.g. using the basic method described by Lemma 4 in Appendix A. The special

J-spectral factorization is not required at this point. In fact, the individual Πk need not

satisfy the special sign-definiteness conditions specified in Lemma 5 for constructing a J-

spectral factorization. Moreover, it should be emphasized that the factorization (Ψk,Mk)

need not specify a valid time domain IQC as given by Definition 2.

The factorizations {(Ψk,Mk)}Nk=1 are constructed for the multipliers {Πk}Nk=1 that define

the normalized uncertainty set ∆(Π1, . . . ,ΠN ). Recall that the definition of robust perfor-

mance involves the scaled uncertainty set ∆1/γ(Π1, . . . ,ΠN ). This corresponds to the use of

the scaled (frequency domain) multipliers S1/γΠkS1/γ (k = 1, . . . , N). Thus a factorization
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for each scaled multiplier is given by (ΨkS1/γ ,Mk). Let zk denote the output of the scaled

system ΨkS1/γ driven by the input/output signals (v, w) of ∆ assuming zero initial condi-

tions. Then all {ΨkS1/γ}Nk=1 can be aggregated into a single system denoted Ψ1/γ with the

following (minimal) state-space realization:

[
ẋψ(t)

zk(t)

]
=

[
Ã γ−1B̃v B̃w

C̃zk γ−1D̃zkv D̃zkw

]xψ(t)

v(t)

w(t)

 (k = 1, . . . , N) (4.8)

Equation 4.8 uses an abbreviated notation to denote that the outputs of Ψ1/γ are [zT1 , . . . z
T
N ]T .

Note that the scaling matrix S1/γ :=
[
γ−1Inv 0

0 Inw

]
only modifies the state matrices of Ψ1/γ

associated with the v input, i.e. it only scales the B̃v and D̃zkv matrices.

The robust performance analysis is based on the interconnection shown in Figure 4.4 with

∆ ∈ ∆1/γ(Π1, . . . ,ΠN ). The dynamics of this analysis interconnection are described by

w = ∆(v) and the extended system of Hρ and Ψ1/γ :

 ẋzk
e

 =

 A(ρ) Bw(ρ) Bd(ρ)

Czk(ρ) Dzkw(ρ) Dzkd(ρ)

Ce(ρ) Dew(ρ) Ded(ρ)


xw
d

 (k = 1, . . . , N) (4.9)

where the state vector is x = [xH ;xψ] ∈ RnH+nψ with xH and xψ being the state vectors of

the LPV system Hρ and the filter Ψ1/γ , respectively. The state matrices for the extended

system can be expressed in terms of the state matrices for Hρ (Equation 4.7) and Ψ1/γ

(Equation 4.8). Appendix B provides one realization. Note that the state matrices of the

extended system depend on the robust performance level γ. However this dependence on

γ is not explicitly denoted. The uncertainty ∆ is shown in the dashed box of Figure 4.4

to signify that the analysis condition given below is specified only in terms of the extended

system of Hρ and Ψ1/γ . This effectively overbounds the precise relation w = ∆(v) with the

IQCs satisfied by ∆.

Hρ
d�e �

∆

v

-

w

�

-

-
Ψ1/γ

zk-

Figure 4.4: Uncertain LPV system extended to include filter Ψ1/γ .
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The robust performance analysis condition (given below) relies on a connection between

Ψ1/γ and a combined multiplier Πλ :=
∑N

k=1 λkS1/γΠkS1/γ defined by scalars {λk}Nk=1 with

conditions that λ1 ∈ R>0 and λk ∈ R≥0 (k = 2, . . . , N). This combined multiplier can be

expressed in terms of the state-space realization of Ψ1/γ (Equation 4.8) as:

Πλ =
[

(−sI−Ã)−1B̃
I

]T [ Q̃λ S̃λ
S̃Tλ R̃λ

] [
(sI−Ã)−1B̃

I

]
(4.10)

where

B̃ :=
[
γ−1B̃v B̃w

]
(4.11)[

Q̃λ S̃λ

S̃Tλ R̃λ

]
:=

N∑
k=1

λk

 C̃Tzk
γ−1D̃Tzkv

D̃Tzkw

Mk [ C̃zk γ
−1D̃zkv D̃zkw ] (4.12)

Note that conditions on {λk}Nk=1 along with Assumptions 3 and 4 imply that (Πλ)11(jω) > 0

and (Πλ)22(jω) < 0 ∀ω ∈ R∪{+∞}. Therefore Πλ has a J-spectral factorization (Lemma 5).

This factorization is constructed from the stabilizing solution X to the ARE in Equation A.2

with (Ã, B̃, Q̃λ, S̃λ, R̃λ). Without loss of generality, the J-spectral factorization can be

rescaled as (Ψλ,Mλ) where the constant matrix is Mλ :=
[
γ−2I 0

0 −I

]
. Specifically, Let (Ψ,M)

be a J-spectral factorization of Πλ with M :=
[
I 0
0 −I

]
. Then (Ψλ,Mλ) := (SγΨ, S1/γMS1/γ)

is another factorization of Πλ with the constant matrix given by S1/γMS1/γ =
[
γ−2I 0

0 −I

]
.

In addition, the properties of a J-spectral factorization given in Lemma 6 carry over for this

rescaled factorization. This rescaling will be important for the construction of the scaled

plant in the synthesis step of our proposed algorithm (described in Section 4.4.2). The

rescaled filter Ψλ only has one output and has a state-space realization of the form:

[
ẋψ(t)

zλ(t)

]
=

[
Ã γ−1B̃v B̃w

C̃zλ D̃zλv D̃zλw

]xψ(t)

v(t)

w(t)

 (4.13)

This rescaled system Ψλ has the same state matrix Ã and input matrix [γ−1B̃v, B̃w] as the

original filter Ψ1/γ . Only the output and feedthrough matrices of Ψλ are different from

those in Ψ1/γ . Finally, an extended system of Hρ and Ψλ can be formed yielding:

 ẋzλ
e

 =

 A(ρ) Bw(ρ) Bd(ρ)

Czλ(ρ) Dzλw(ρ) Dzλd(ρ)

Ce(ρ) Dew(ρ) Ded(ρ)


xw
d

 (4.14)

The state matrices for this extended system can be expressed in terms of the state ma-

trices for Hρ (Equation 4.7) and Ψλ (Equation 4.13). Only the output and feedthrough
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matrices associated with zλ in this alternative extended system differ from those given in

Equation 4.9. Appendix B provides explicit formulae for Czλ , Dzλw, and Dzλd. Again, the

dependence on γ is not made explicit in this notation for the alternative extended system.

The robust performance condition relies on a technical lemma regarding matrix inequalities

associated with the two extended systems presented thus far. Specifically, the extended

system of Hρ and Ψ1/γ (Equation 4.9) can be used to define the following parameterized

matrix inequality involving multiple IQCs:[
PA+ATP PBw PBd
BTwP 0 0

BTd P 0 −I

]
+

N∑
k=1

λk

 CTzk
DTzkw
DTzkd

Mk [ Czk Dzkw Dzkd ] +
1

γ2

[
CTe
DTew
DTed

]
[ Ce Dew Ded ] < 0

(4.15)

This matrix inequality is parameterized by ρ ∈ P through the dependence of the extended

system state matrices on the parameter. Similarly, the extended system of Hρ and Ψλ (E-

quation 4.14) can be used to define the following parameterized matrix inequality involving

the single, rescaled J-spectral factorization:[
P̃A+AT P̃ P̃Bw P̃Bd
BTwP̃ 0 0

BTd P̃ 0 −I

]
+

 CTzλ
DTzλw
DTzλd

Mλ [ Czλ Dzλw Dzλd ] +
1

γ2

[
CTe
DTew
DTed

]
[ Ce Dew Ded ] < 0 (4.16)

The technical result regarding these two matrix inequalities is formally stated in the next

Lemma.

Lemma 1. Let {Πk}Nk=1 ⊂ RL(nv+nw)×(nv+nw)
∞ , γ > 0, and {λk}Nk=1 be givenwhere {Πk}Nk=1

satisfies Assumptions 3 and 4, λ1 ∈ R>0 and λk ∈ R≥0 (k = 2, . . . , N). Let each Πk

have a factorization (Ψk,Mk) where Ψk is stable. Define Πλ :=
∑N

k=1 λkS1/γΠkS1/γ. Thus

(Πλ)11(jω) > 0 and (Πλ)22(jω) < 0 ∀ω ∈ R∪{+∞} and hence Πλ has a rescaled J-spectral

factorization (Ψλ,Mλ) as defined above. Let X denote the corresponding stabilizing solution

to the ARE (Equation A.2) with (Ã, B̃, Q̃λ, S̃λ, R̃λ). Finally, assume the nominal system

Hρ is stable.

Then, using the extended system notation defined above, the symmetric matrix P = P T

satisfies Equation 4.15 for all ρ ∈ P if and only if P̃ := P+
[

0 0
0 X

]
≥ 0 satisfies Equation 4.16

for all ρ ∈ P.

Proof. See Appendix C.

This technical lemma is used to prove the following main result.
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Theorem 3. Assume Fu(Hρ,∆) is well posed for all ∆ ∈ ∆1/γ(Π1, . . . ,ΠN ). Then Hρ

achieves robust performance of level γ if there exists a matrix P = P T ∈ R(nH+nψ)×(nH+nψ)

and scalars {λk}Nk=1 such that:

(i) (P, λ, γ) satisfy the parameterized matrix inequality in Equation 4.15 for all ρ ∈ P

(ii) λ1 ∈ R>0 and λk ∈ R≥0 (k = 2, . . . , N).

Proof. As described above, condition (ii) along with Assumptions 3 and 4 are sufficien-

t to ensure the combined multiplier Πλ :=
∑N

k=1 λkS1/γΠkS1/γ satisfies (Πλ)11(jω) > 0

and (Πλ)22(jω) < 0 ∀ω ∈ R ∪ {+∞}. Hence Πλ has a rescaled J-spectral factorization

(Ψλ,Mλ). Define P̃ := P +
[

0 0
0 X

]
≥ 0 where X is the stabilizing ARE solution used to con-

struct this factorization. By Lemma 1, P̃ satisfies the parameterized matrix in equality in

Equation 4.16. The remainder of the proof is based on dissipation theory using the storage

function V : RnH+nψ → R+ defined as V (x) := xT P̃ x. Left and right multiply Equation

4.16 by [xT , wT , dT ] and [xT , wT , dT ]T to show that V satisfies the dissipation inequality:

V̇ (t) + zTλ (t)Mλzλ(t) ≤ d(t)Td(t)− γ−2e(t)T e(t) (4.17)

Append Ψλ to the (v, w) channels of the uncertain system Fu(Hρ,∆). This corresponds to

the interconnection shown in Figure 4.4 except with Ψλ replacing Ψ1/γ . Let (x,w, d, z, e) the

solution of this interconnection for some ∆ ∈ ∆1/γ(Π1, . . . ,ΠN ), disturbance d ∈ Lnd2 , ad-

missible trajectory ρ ∈ T , and zero initial conditions. Integrating the dissipation inequality

(4.17) along this solution from t = 0 to t = T yields:

V (x(T )) +

∫ T

0
zλ(t)TMλzλ(t) dt+

1

γ2

∫ T

0
e(t)T e(t) dt ≤

∫ T

0
d(t)Td(t) dt (4.18)

It follows from λk ≥ 0 that ∆ ∈ ∆(Πλ). In addition, the rescaled J-spectral factorization

(Ψλ,Mλ) is a hard factorization of Πλ by Lemma 6. Therefore, (Ψλ,Mλ) is a valid time

domain IQC for ∆. Apply this time domain IQC along with P̃ ≥ 0 to Equation 4.18 to

conclude that ‖e‖ ≤ γ‖d‖. Hence Hρ achieves RP of level γ.

The parameterized matrix inequality (Equation 4.15) in condition (i) of Theorem 3 involves

N IQCs. Note that left/right multiplying Equation 4.15 by [xT , wT , dT ] and [xT , wT , dT ]T

does not yield a true dissipation inequality for two reasons. First, (Ψk,Mk) does not need

to be a hard factorization and hence not a valid time domain IQC by Definition 2. Second,

the matrix P need not be positive definite and thus does not necessarily define a valid

storage function. The technical result in Lemma 1 addresses both issues. It converts the

original problem in an alternative form (equation 4.16) involving only a single, valid time
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domain IQC. The alternative form involves P̃ = P +
[

0 0
0 X

]
≥ 0 which defines a valid storage

function. The term X, which is the stabilizing solution of the ARE used to construct a

hard factorization, can be interpreted as additional energy. Finally, it is important to recall

that soft IQCs only hold, in general, over infinite time horizons and they require the signals

(v, w) to be in L2. Hence soft IQCs cannot be used in the dissipation inequality proof since

we do not know, a priori, that (v, w) are in L2. On the other hand, hard IQCs hold over

all finite time horizons and for all signals (v, w) in the extended space L2e. Hence a hard

factorization of Πλ is needed.

The conditions in Theorem 3 are sufficient to prove that the uncertain system satisfies a

certain level of robust performance (Definition 3). This ensures that ‖Fu(Hρ,∆)‖ ≤ γ for

all uncertainty ∆ ∈∆1/γ . This is a (finite-gain) input-output stability result, i.e. the gain

from input to output is less than γ < ∞, that appears frequently in literature, e.g. [94].

In fact, feasibility of the parameterized LMI in Equation 4.16 is sufficient to prove a type

of internal stability. In particular, the arguments in [95] (Proposition 1.2 and its proof)

demonstrate that the extended state x converges asymptotically to zero from any initial

condition and for any disturbance input d ∈ Lnd2 . In general, exponential convergence of

the extended state x does not hold and no conclusions regarding the “internal” state of ∆

can be made.

4.4.2 Scaled System

This section constructs a specific scaled system that will be used to link the analysis and

synthesis steps in our robust (IQC) synthesis algorithm. Consider the uncertain system

Fu(Hρ,∆). Theorem 3 provides a sufficient condition to ensure that Hρ achieves robust

performance of level γ. The proof involves a rescaled J-spectral factorization (Ψλ,Mλ). In

particular, robust performance is shown via a dissipation inequality (Equation 4.17) defined

for the extended system of Hρ and Ψλ. Recall that the J-spectral factorization was rescaled

so that Mλ :=
[
γ−2I 0

0 −I

]
. Thus partitioning zλ := [ vλwλ ] simplifies the dissipation inequality

to

V̇ (t) ≤
(
d(t)Td(t)− γ−2e(t)T e(t)

)
+
(
wλ(t)Twλ(t)− γ−2vλ(t)T vλ(t)

)
(4.19)

The form of this dissipation inequality implies a connection to nominal induced L2 gain

performance. Note that Theorem 1 in Section 3.2 provides a sufficient condition to upper

bound the induced L2 gain of an LPV system. The proof for this nominal performance

condition uses a dissipation inequality (Equation 3.4) that is similar to Equation 4.19.

In particular, Equation 4.19 has the form of a dissipation inequality used to prove a (not-

uncertain) LPV system with inputs (wλ, d) and outputs (vλ, e) has induced gain ≤ γ. Based
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on this insight, a scaled system will be constructed with these inputs and outputs. First,

rewrite the extended system of Hρ and Ψλ (Equation 4.14) by partitioning zλ := [ vλwλ ]:
ẋ

vλ

wλ

e

 =


A(ρ) Bw(ρ) Bd(ρ)

Cvλ(ρ) Dvλw(ρ) Dvλd(ρ)

Cwλ(ρ) Dwλw(ρ) Dwλd(ρ)

Ce(ρ) Dew(ρ) Ded(ρ)


xw
d

 (4.20)

Assume that Dwλw(ρ) is nonsingular ∀ρ ∈ P. Then the output equation for wλ can be

rewritten as:

w = Dwλw(ρ)−1 (wλ − Cwλ(ρ)x−Dwλd(ρ)d) (4.21)

Use this relation to substitute for w in the extended system (Equation 4.20). This gives the

following “scaled” system with inputs (wλ, d) and outputs (vλ, e) (neglecting dependence

on ρ): ẋvλ
e

 =


 A Bw Bd
Cvλ Dvλw Dvλd
Ce Dew Ded


 I 0 0

−D−1
wλw
Cwλ D−1

wλw
−D−1

wλw
Dwλd

0 0 I



 xwλ
d

 (4.22)

The use of the term “scaled” system will be further clarified below. The next lemma

gives a formal statement connecting robust performance of the extended system to nominal

performance of this scaled system.

Lemma 2. Let P̃ ≥ 0 and γ > 0 be given. The following statements are equivalent:

1. (P̃ , γ) satisfy the robust performance LMI associated with the extended system of Hρ

and Ψλ for all ρ ∈ P:[
P̃A+AT P̃ P̃Bw P̃Bd
BTwP̃ 0 0

BTd P̃ 0 −I

]
+

 CTvλ CTwλ
DTvλw D

T
wλw

DTvλd D
T
wλd

Mλ

[ Cvλ Dvλw Dvλd
Cwλ Dwλw Dwλd

]
+

1

γ2

[
CTe
DTew
DTed

]
[ Ce Dew Ded ] < 0

(4.23)

where the dependence on ρ has been omitted.

2. Dwλw(ρ) is nonsingular ∀ρ ∈ P. Let (Ascl,Bscl, Cscl,Dscl) denote the state-space rep-

resentation of the scaled system formed from Hρ and Ψλ (Equation 4.22). (P̃ , γ)

satisfy the induced L2 gain LMI (Equation 3.3) associated with the scaled system for
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all ρ ∈ P: [
P̃Ascl+ATsclP̃ P̃Bscl
BTsclP̃ −I

]
+

1

γ2

[
CTscl
DTscl

]
[ Cscl Dscl ] < 0 (4.24)

where the dependence on ρ has been omitted.

Proof. (1⇒ 2) Assume statement 1 holds. The (2,2) block of Equation 4.23 implies:

γ−2DTvλwDvλw −D
T
wλw
Dwλw + γ−2DTewDew < 0 (4.25)

This inequality implies DTwλwDwλw > γ−2(DTvλwDvλw + DTewDew) ≥ 0 and hence Dwλw is

nonsingular. Next, define the parameter-dependent congruence transformation:

T (ρ) :=

[
I 0 0

−D−1
wλw

(ρ)Cwλ (ρ) D−1
wλw

(ρ) −D−1
wλw

(ρ)Dwλd(ρ)

0 0 I

]
(4.26)

T is nonsingular for all ρ ∈ P. Multiplying Equation 4.23 on the left/right by T T /T

demonstrates that Equation 4.24 holds. The reverse implication (2 ⇒ 1) follows by the

inverse transformation. Specifically, multiply Equation 4.24 on the left/right by T−T /T−1

to show that Equation 4.23 holds.

Multiplying the robust performance LMI in Equation 4.23 on the left/right by [xT , wT , dT ]

and its transpose yields the dissipation inequality in Equation 4.19. The congruence trans-

formation T effectively changes to a dissipation inequality in variables (x,wλ, d). The lemma

states that the robust performance condition for Hρ is satisfied if and only if the nominal

(induced L2 gain) performance condition is satisfied for the scaled system. The main issue

at this point is that the extended system depends on Hρ and Ψλ. Thus the scaled system

in Equation 4.22 appears to be a complicated function of the state matrices of Hρ and Ψλ.

This is an issue because the robust synthesis algorithm will require the use of this result

with the closed-loop, Hρ := Fl(Gρ,Kρ).

In fact, the scaled system has a particularly simple construction. The extended system is

formed by Hρ and Ψλ. The scaled system is essentially formed by inverting the input/output

channel associated with w to wλ. The channel from w to wλ only involves the filter Ψλ.

The filter Ψλ (given in Equation 4.13) can be expressed in terms of the partitioned output

zλ := [ vλwλ ] as: ẋψvλ
wλ

 =

 Ã γ−1B̃v B̃w

C̃vλ D̃vλv D̃vλw

C̃wλ D̃wλv D̃wλw


xψv
w

 (4.27)
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The conditions on {λk}Nk=1 along with Assumptions 3 and 4 imply (Πλ)22(jω) < 0 ∀ω ∈
R ∪ {+∞}. This condition at ω = ∞ is sufficient to ensure that D̃wλw is nonsingular. If

D̃wλw is nonsingular then w can be solved in terms of (xψ, wλ, v):

w = D̃−1
wλw

(
wλ − C̃wλxψ − D̃wλvv

)
(4.28)

In this case, let Ψ†λ denote the filter from (v, wλ) to (vλ, w) obtained by inverting the w to

wλ channel of Ψλ. Ψ†λ has the following state-space realization:ẋψ(t)

vλ(t)

w(t)

 =


 Ã γ−1B̃v B̃w

C̃vλ D̃vλv D̃vλw

0 0 I


 I 0 0

0 0 I

−D̃−1
wλw

C̃wλ D̃−1
wλw

−D̃−1
wλw

D̃wλv



xψ(t)

wλ(t)

v(t)


(4.29)

The next lemma provides an alternative, but equivalent, construction for the scaled system

as a simple linear fractional transformation.

Lemma 3. Assume D̃wλw is nonsingular so that Ψ†λ as defined in Equation 4.29 is well-

defined. Moreover, assume Dwλw(ρ) is nonsingular ∀ρ ∈ P so that the scaled system formed

from Hρ and Ψλ (Equation 4.22) is well-posed. Then the scaled system is equivalent to the

LFT interconnection of Hρ and Ψ†λ as shown in Figure 4.5.

Hρ
d�e �

Ψ†λ

v

-
wλ - vλ-

w

�

Figure 4.5: LFT interconnection of Hρ and Ψ†λ.

Proof. The state-space realization for the scaled system (Equation 4.22) is constructed from

the state matrices of Hρ (Equation 4.7) and Ψλ (Equation 4.27). The state-space realization

for the interconnected system in Figure 4.5 is constructed from the state matrices of Hρ

(Equation 4.7) and Ψ†λ (Equation 4.29). The proof only involves algebra to verify the

equivalence of the two state-space realization. This is straight-forward and hence details

are omitted.

For the special case of LTI uncertainty the scaled system shown in Figure 4.5 reverts to

that used in DK synthesis. As noted above, the use of D-scales in DK synthesis (for SISO
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LTI uncertainty) corresponds to the frequency domain IQC defined by Π =
[
α 0
0 −α

]
for any

SISO, LTI system α such that α(jω) = α(jω)∗ > 0 ∀ω ∈ R ∪ {∞}. Moreover, the rescaled

J-spectral factorization in Step 6 is given by Mλ :=
[
γ−2I 0

0 −I

]
and Ψλ =

[
d 0
0 d

]
where d is

a spectral factor of α. In this case, inverting the channels w and wλ yields Ψ†λ :=
[

0 d
d−1 0

]
.

The scaled system created by the LFT interconnection of Fl(Gsclρ ,Kρ) and Ψ†λ is thus given

by
[
d 0
0 1

]
Fl(Gsclρ ,Kρ)

[
d−1 0

0 1

]
. This is precisely the standard scaled system that appears in

DK synthesis.

4.4.3 Main Theorem

The main technical result for the proposed algorithm is that the iteration is well posed at

each step and the robust performance is non-increasing at each iteration. Thus the closed-

loop robust performance metric will eventually converge and the iteration in Algorithm 1

will terminate. As with DK synthesis, there are no guarantees that the coordinate-wise

iteration will lead to a local optima let alone a global optima. However, the iteration is

a useful heuristic that enables robust synthesis to extended naturally from LTI to LPV

systems. This main convergence result is now stated.

Theorem 4. The iteration is well-posed at each step and the iteration is non-increasing,

i.e. γ(i) ≤ γ(i− 1) for i = 1, 2, . . ..

Proof. Note that the initial iteration i = 1 slightly differs from the consecutive ones. Specif-

ically, the choice of λ(0) = [1, 0, . . . , 0] yields Πλ(0) = Π1 in Step 6 of the first iteration.

The definition of Π1 (Assumption 4) implies that it has a simple J-factorization with

Ψ1 := Inv+nw and M1 :=
[
Inv 0
0 −Inw

]
in Step 7. No rescaling is used on the first itera-

tion. The static filter Ψ1 is equivalent to zλ := [ vλwλ ] satisfying vλ = v and wλ = w. In

this case, the scaled system in Step 7 is simply Gsclρ = Gρ. The synthesis step 8 is then

performed with no special modifications for the initial step. As a result, the synthesis step

8 yields a controller Kρ(1) that stabilizes the system Gρ and achieves a finite closed-loop

gain ν(1) < ∞. This follows because the nominal system Gρ is quadratically stabilizable

and detectable (Assumption 1). The analysis step of the first iteration then achieves a finite

robust performance γ(1) <∞ because the closed-loop Hρ is stable. Thus the first iteration

is well-posed and achieves γ(1) < γ(0) = +∞.

Subsequent iterations (i > 1) begin with the iteration count update (Step 4) and per-

formance scaling definition (Step 5). Next the combined multiplier Πλ is constructed.

The coefficients from the previous analysis step satisfy λk(i − 1) ≥ 0 and λ1(i − 1) > 0.

This fact along with Assumptions 3 and 4 imply that the combined multiplier satisfies

(Πλ)11(jω) > 0 and (Πλ)22(jω) < 0 ∀ω ∈ R ∪ {∞}. Thus the combined multiplier satisfies
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the sufficient conditions in Lemma 5 for the existence of a J-spectral factorization. In ad-

dition, (Πλ)22(+∞) < 0 implies that the feedthrough matrix of Ψλ from w to wλ must be

non-singular. In the notation of Section 4.4.2, this corresponds to nonsingularity of D̃wλw.

Hence by Lemma 3, the construction of Ψ†λ in Step 7 is well-defined.

The analysis step from the previous iteration involves the robust performance parameterized

matrix inequality (Equation 4.15) with the factorized IQC multipliers {(Ψk,Mk)}Nk=1. Hence

there exists (P (i− 1), λ(i− 1), γ(i− 1)) satisfying Equation 4.15. By Lemma 1, this implies

the existence of P̃ (i − 1) ≥ 0 that, along with (λ(i − 1), γ(i − 1)), satisfies the matrix

inequality (Equation 4.15) with the rescaled J-spectral factorization.

Next, Lemma 2 states that feasibility of Equation 4.15 (which is simply Equation 4.23

written in different notation) implies that the scaled closed-loop of Hρ := Fl(Gρ,Kρ(i− 1))

and Ψλ is well-posed and has induced gain ≤ γ(i − 1). By Lemma 3, this scaled system

can be represented by the feedback interconnection of Hρ and Ψ†λ as shown in Figure 4.5.

Removing the controller, i.e. opening up the u/y channels, yields the scaled open-loop

plant. Thus the construction of the scaled system in Step 7 is well-defined.

Finally, the synthesis in Step 8 optimizes over all stabilizing controllers. Hence the new

controller Kρ(i) must yield a cost no greater than that achieved by the previous controller

Kρ(i − 1) on the scaled plant. Hence ν(i) ≤ γ(i − 1). Thus the new controller must

satisfy the nominal performance LMI in Equation 4.24 with the slightly larger cost of

γ := γ(i− 1). Lemmas 2 and 1 can be used to work backward to the analysis condition in

Step 9. Specifically, the closed-loop with new controller Kρ(i) satisfies the analysis condition

in Step 9 with the previous performance level γ(i−1), scalings λ(i−1) and matrix P (i−1).

Step 9 involves optimizing over all feasible coefficients λ and matrix P . This must yield a

robust performance cost no greater than the previous step γ(i) ≤ γ(i− 1).

4.5 Numerical Example

A simple example is used to demonstrate the applicability of the proposed robust synthesis

algorithm. The example is based on an example that appears in [81] to test an alternative

IQC synthesis algorithm for LTI systems. Here the example is extended to include plant

dynamics described by an LPV system. The objective of the example is to design a robust

controller for the feedback system shown in Figure 4.6. The nominal plant dynamics are

given by the following 2-input, 2-output LPV system Fρ:

ẋ(t) =

(
− 1

71 + 2ρ
I2

)
x(t) +

(
1

71 + 2ρ
I2

)
u(t) (4.30)

y(t) =
[

87+0.2ρ2 −87.2+0.2ρ2

107.4+0.2ρ2 −110.4+0.2ρ2

]
x(t) (4.31)
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The plant dynamics depend on a single scheduling parameter ρ that is restricted to the

interval [1, 3]. This nominal LPV plant Fρ was constructed by modifying an LTI model for

the idealized distillation process in [96]. The objective is to synthesize a robust controller

Krob that offers good tracking performance at low frequencies while penalizing control input

at high frequencies. These objectives are specified via the following weights We and Wu on

the error e and control input u, respectively:

We(s) =
0.3(s+ 0.1)

2s+ 10−5
I2 (4.32)

Wu(s) =
s+ 10

s+ 100
I2 (4.33)

The controller should also be robust to the uncertainty ∆. The specific assumptions re-

garding ∆ will differ in the various comparisons given below. However, in each case the

uncertainty weight is defined as Wd := [ 0.6 0
0 0.3 ].

We

Krob

Wu Wd ∆

Fρ
d e u

ũẽ

v w

− y

−

Figure 4.6: Synthesis interconnection for the numerical example.

4.5.1 Comparison to Standard DK Synthesis

First, the proposed algorithm is compared with the DK iteration algorithm. DK synthesis

solves the robust synthesis problem for LTI systems. Hence for this comparison the param-

eter ρ is fixed at 2 to get an LTI model Fρ=2. The uncertainty ∆ in Figure 4.6 is assumed

to be block diagonal, i.e. ∆ :=
[

∆1 0
0 ∆2

]
. In addition, each block is assumed to be an LTI

uncertainty with norm bound of 1. To apply the proposed algorithm for synthesis, 5 IQCs

are selected to model each ∆i. As stated in Algorithm 1, the first IQC is Πa :=
[

1 0
0 −1

]
.

The remaining 4 IQCs {Πpk}4k=1 are given by Πpk = Ψ∼pkMΨpk where Ψpk = pk
s+pk

I2 and

M =
[

1 0
0 −1

]
. The four poles {pk}4k=1 are spaced logarithmically on [0.01, 1]. These mul-

tipliers Πa and {Πpk}4k=1 are defined for the blocks ∆i. They can be combined in the

following way to obtain an IQC multiplier for the block diagonal structured uncertainty
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∆ :=
[

∆1 0
0 ∆2

]
:

(Πi,Πj) :=

 (Πi)11 0 (Πi)12 0
0 (Πj)11 0 (Πj)12

(Πi)21 0 (Πi)22 0
0 (Πj)21 0 (Πj)22

 (4.34)

The individual multipliers Πa and {Πpk}4k=1 are combined to construct 9 extended IQCs:

Π1 := (Πa,Πa), Π2 := (Πa,Πp1), Π3 := (Πp1 ,Πa), . . ., Π8 := (Πa,Πp4) and Π9 := (Πp4 ,Πa).

It is easy to check that {Πn}9n=1 satisfy Assumptions 2, 3 and 4 in Section 4.3.1.

The synthesis results are listed in Table 4.1. From Case 1 to Case 5, the number of IQCs

involved in the synthesis is gradually increased to provide less conservative modeling of

∆. The robust performance has accordingly decreased from 1.06 to 0.88 with the price

of increased computation time. As a comparison, the DK synthesis in Case 6 provides a

controller with robust performance of 0.75 after 11.84 s. For this example, DK synthesis

provides a better result with less computation time. This is due, in part, by the use of

frequency-gridding and other LTI-specific numerical techniques in standard DK synthesis.

The advantage of the proposed algorithm is that it extends, albeit with more computa-

tion, to cases where the nominal system is LPV and/or more general classes of uncertainty

described by IQCs. This example also illustrates that further research into the parameter-

ization of IQC multipliers is needed. This could potentially reduce the conservatism in the

result and also reduce the computational burden.

Table 4.1: LTI robust synthesis results.
Case # Method IQCs Robust Performance Computation Time (s)

1 Algorithm 1 Π1 1.06 1.87
2 Algorithm 1 {Πn}3n=1 1.00 7.68
3 Algorithm 1 {Πn}5n=1 0.96 32.41
4 Algorithm 1 {Πn}7n=1 0.89 127.74
5 Algorithm 1 {Πn}9n=1 0.88 467.87
6 DK N/A 0.75 11.84

4.5.2 Robust LPV Synthesis

Next, the proposed algorithm is used to synthesize a robust controller Krob when Fρ is LPV

and ∆ is a nonlinear perturbation. Each block of ∆ is assumed to be a dead zone operator

wi = ∆i(vi) defined by:

wi = ∆i(vi) :=


vi − bi, vi > bi

0, vi ∈ [−bi, bi]

vi + bi, vi < −bi

(4.35)
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where bi = 0.05 (i = 1, 2). The weights Wd, We and Wu are the same as above. Standard

DK synthesis is unable to synthesize a controller for this case. Three different IQCs are

chosen to describe each dead zone ∆i. The first one is still Πa =
[

1 0
0 −1

]
. The second one

Πb =
[

0 1
1 −2

]
is used to model the [0, 1] sector bound [19] of the dead zone. The last IQC Πc =[

0 1+H(s)
1+H∼(s) −(2+H(s)+H∼(s))

]
with H(s) = 1

s+1 corresponds to a Zames-Falb multiplier. This is

used to model the monotonic odd nonlinearity [19]. Five extended IQCs (Equation 4.34) are

used to model the structured uncertainty ∆ :=
[

∆1 0
0 ∆2

]
: Π̄1 := (Πa,Πa), Π̄2 := (Πa,Πb),

Π̄3 := (Πb,Πa), Π̄4 := (Πa,Πc) and Π̄5 := (Πc,Πa).

Several cases are considered to explore properties of the proposed robust synthesis algorithm.

A stopping criteria εtol = 0.05 is used in all iterations. Cases (i) and (ii) approximate Fρ

with 5 and 11 gridding points, respectively, spaced equally in the parameter range [1, 3].

In both cases, {Π̄k}5k=1 are used to describe ∆. The synthesis results are shown in Table

4.2. The denser grid in Case (ii) provides a more accurate approximation to the true,

infinite-dimensional synthesis problem. This yields a large (worse) robust performance

measure because the LMI constraints are enforced on more points and this also requires

more computation time. As mentioned in Section 3.2, a common approach in practice is to

use a sparse gridding set for synthesis and verify the performance afterwards using a denser

gridding set. Here the two results are sufficiently close that we will focus on Case (i) for

further study.

Next, Cases (iii) and (iv) also use 5 grid points to approximate Fρ but the IQCs used

to describe ∆ are {Π̄k}3k=1 and Π̄1, respectively. Comparison of Cases (i), (iii) and (iv)

illustrates a basic trade-off with the multipliers. Specifically, a more conservative result

(larger robust performance) comes with less constraints on ∆. Additional multipliers reduce

this conservatism by further constraining the input/output behavior of ∆. The additional

multipliers come with the expense of computation time: Case (i) takes 46.89s compared to

4.75s for Case (iii) and 3.55s for Case (iv).

Finally, Case (v) uses an alternative synthesis algorithm for comparison. Algorithm 1

decouples the design into two steps which are each individually convex. Case (v) is instead

solved using a simple line search for a single IQC scaling λ1. Specifically, a value of λ1 is

selected and used to construct a combined multiplier Πλ := λ1Π̄1. Then a robust controller

is synthesized with this Πλ using Steps 7 and 8 in Algorithm 1. This one dimensional

search is performed with 100 values of λ1 selected equidistantly in the interval [0.02, 2].

This yields a robust performance of 0.87 in 233.15s. The alternative approach used for

Case (v) can, in theory, yield the global optimum with an exact search in the IQC scaling

space. This idea can be extended to cases with more than one IQC multiplier/scaling. The

gap between Cases (iv) and (v) is another indicator that the proposed algorithm yields a

suboptimal solution. However, the alternative search used in Case (v) requires significantly
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more computation and becomes infeasible for more than a few IQC multipliers and scalings.

Table 4.2: LPV robust synthesis results.
Case # Method Gridding Points IQCs Robust Performance Time (s)

(i) Algorithm 1 5 {Π̄n}5n=1 0.96 46.89
(ii) Algorithm 1 11 {Π̄n}5n=1 0.99 103.43
(iii) Algorithm 1 5 {Π̄n}3n=1 0.98 4.75
(iv) Algorithm 1 5 Π̄1 1.00 3.55
(v) Line Search 5 Π̄1 0.87 233.15

Finally, the LPV robust controller Kρ synthesized in Case (i) is compared with a nominal

LPV controller Knom designed for the system without uncertainty (∆ = 0). Knom is

designed using the standard LPV synthesis method described in Section 3.2 again using 5

grid points to approximate Fρ. The induced L2 norm of the nominal system using Knom

and Krob is given by 0.42 and 0.56, respectively. As expected, Knom achieves better nominal

performance as measured with the L2 norm bound. Next, the robust performance of the

closed-loop was assessed using the matrix inequality condition in Section 4.4.1. This yields

3.03 and 0.96 for Knom and Krob, respectively. As expected, the robust design Krob achieves

better robust performance. The gap in robust performance between the two controllers is

also illustrated by a time domain step response simulation (Figure 4.7). In the simulation,

unit step signals are injected into both channels of d simultaneously at t = 10 s and the

parameter trajectory is given by ρ(t) = sin(0.05 t) + 2. The responses of y1 and y2 are

shown in Figure 4.7. It is seen that Knom performs well (solid blue curve) when there is no

uncertainty in the system. However, it degrades dramatically (dash-dot red curve) when

the uncertainty is added. In contrast, Krob maintains good tracking and steady state error

(dash green curve) with existence of the uncertainty.
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Figure 4.7: Step responses for Knom and Krob.
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Algorithm 1 Robust Synthesis for LPV Systems

1: Given: LPV system Gρ and multipliers {Πk}Nk=1 satisfying Assumptions 1-4; Stopping
tolerance parameters imax ∈ N and εtol > 0.

2: Initialization: Initialize the iteration count to i = 0. Set λ(0) = [1, 0, . . . , 0] ∈ RN≥0

and γ(0) = +∞. Factorize each Πk as (Ψk,Mk) with Ψk ∈ RHnz×(nv+nw)
∞ according to

Lemma 4 in Appendix A.

3: if i < imax then
4: Iteration Count: Increment count i := i+ 1.

5: Performance Scaling: If i > 1 then define the scaling matrix S(i − 1) :=[
γ−1(i−1)Inv 0

0 Inw

]
, otherwise S(0) := Inv+nw .

6: Combined Multiplier: Construct Πλ :=
∑N

k=1 λk(i− 1)S(i− 1)ΠkS(i− 1). Com-
pute a J-spectral factorization (Ψλ,Mλ) of Πλ according to Lemma 5 in Appendix A.

7: Scaled System Construction: Assume Ψλ has the state-space realization as in
Equation 4.27. Invert the w/wλ channels to construct Ψ†λ with state-space realization
in Equation 4.29. Form the (open-loop) scaled system Gsclρ as shown in Figure 4.3

by connecting: the first nv outputs of Gρ to the last nv inputs of Ψ†λ and the last nw

outputs of Ψ†λ to the first nw inputs of Gρ. The scaled system has inputs (wλ, d, u)
and outputs (vλ, e, y).

8: Synthesis Step: Use Theorem 2 in Section 3.2 to solve the synthesis problem
with the scaled plant: minKρ

∥∥Fl(Gsclρ ,Kρ)
∥∥. This minimizes the (upper bound) on

the closed-loop induced gain from (wλ, d) to (vλ, e). The result is the bound on
closed-loop induced gain, denoted ν(i), and controller Kρ(i).

9: Analysis Step: Use Theorem 3 in Section 4.4.1 to compute the best upper bound
on the robust performance of the closed-loop Hρ := Fl(Gρ,Kρ(i)) with respect to
∆(Π1, . . . ,ΠN ). Enforce λ ∈ RN≥0 and λ1(i) > 0 in this calculation. The result is

the robust performance bound γ(i), scalars {λk(i)}Nk=1, and storage function matrix
P (i) = P (i)T .

10: Termination Condition: If γ(i)− γ(i− 1) ≤ εtol then stop the iteration.
11: end if

12: Return: Final controller Kρ(i) and robust performance upper bound γ(i).
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Chapter 5

Robust LPV Design for Active

Power Control

5.1 Motivation

As discussed in Chapter 1 and Section 2.1, the power output of wind turbines operated

in the traditional mode is variable due to time-varying wind speeds and this may cause

unreliable operation of the power grid. This is not a significant issue when wind power is

only a small portion of the total electricity generated on the grid. However, to integrate

higher levels of variable wind power into the grid it is important for wind turbines to provide

active power control (APC) [4]. APC can be used for the turbine to respond to fluctuations

in grid frequency, termed primary response, and to the power curtailment command from

transmission system operator, termed secondary response or automatic generation control

(AGC) [97].

However, traditional wind turbine control systems as introduced in Section 2.5 and Chap-

ter 3 do not provide active power control. The power electronics used in variable speed wind

turbines decouple the mechanical/inertial turbine dynamics from the power grid. Thus a

wind turbine with a traditional control law does not have the inertial response to a grid

frequency event like a conventional coal power generator [98]. As a result the wind tur-

bine does not participate in the primary response. Moreover, the power output from the

turbine fluctuates with variations in wind speed. As a result, new control strategies are

being considered to enable wind turbines to track power commands and possible provide

ancillary services [99–104]. Some of these designs provide primary response by using inertia

response emulation [99, 100]. Another approach is to operate the wind turbine above the

optimal tip speed ratio thus reserving kinetic energy [101, 102]. This approach enables the
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wind turbine to track the power commands and hence this can be used to realize AGC. The

use of blade pitch control with or without combined generator torque control has also been

explored [103,104].

The robust synthesis algorithm proposed in Chapter 4 will be used in this chapter to design

an LPV controller to provide APC. The architecture is a 2-input, 2-output controller where

collective blade pitch and generator torque are coordinated in order to track power and

rotor speed reference commands. Similar to the LPV controller proposed in Chapter 3 for

traditional operations, this active power controller has parameter dependence on the wind

speed. Actually, this control system architecture can be considered as a natural extension

of the LPV controller in Chapter 3, as there is only one extra feedback loop for power

reference tracking added to the existing design for APC purposes. The design procedure is

therefore significantly simplified as some of the tuning results in Chapter 3 can be directly

inherited here. However, different from the design in Chapter 3, the LPV model of wind

turbine is slightly modified in this chapter to satisfy performance requirements of APC. In

addition, a multiplicative uncertainty is considered in the blade pitch input channel of the

turbine model. The synthesized robust LPV controller shows similar performance on APC

as a nominal LPV controller designed without considerations of uncertainty. However, the

robust controller has much better performance when the worst case uncertainty is added to

the system dynamics.

The remainder of this chapter is organized as follows. Section 5.2 briefly describes the

proposed control strategy for APC. Section 5.3 gives the detailed design process for the

robust LPV controller. Simulation results are presented and discussed in Section 5.4.

5.2 Control Strategy Development

Traditional turbine control systems as reviewed in Section 2.5 and proposed in Chapter 3

do not provide active power control. This section describes the proposed approach to

provide the capability to track power reference commands. It is important to note that

the wind conditions limit the power that can be generated (in steady-state) by the turbine.

Specifically, the turbine must operate within the power vs. wind speed envelope below

the blue curve for traditional operations shown in Figure 2.4. Thus active power control

is constrained to power reference commands that are within this envelope. Methods to

reserve power and operate within this envelope include de-rating, relative spinning reserve,

and absolute spinning reserve [102,104,105]. Each of these methods corresponds to operation

along a specific power v.s. wind speed curve that lies within the available power envelope.

The proposed approach here is to operate anywhere within the power envelope. This would

enable de-rating, relative spinning reserve, and absolute spinning reserve as special cases.
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The basic operational concept is shown in Figure 5.1. To operate at one of the (v, P ) trim

conditions within the envelope of Figure 2.4, the turbine must reduce the power coefficient

to a new value Cp < Cp∗ by changing the blade pitch angle and/or the tip speed ratio.

As shown in Figure 5.1, there is a contour of possible values of (λ, β) that achieve any

value of Cp < Cp∗. For a given (v, P ) trim condition, the controller can be designed to

operate at any point on the new Cp contour. For example, in low wind speeds the controller

proposed in [102] shifts from (λ∗, β∗) to a larger tip speed ratio λ > λ∗ while holding blade

pitch fixed at β∗. The benefit of this approach is that the turbine operates at a higher

rotor speed and hence retains kinetic energy that can be extracted at a later point in time.

To summarize, each (v, P ) trim condition corresponds to a desired power coefficient. The

selection of (λ, β) along the contour of this desired Cp enables a secondary performance

objective to be achieved, e.g. stored kinetic energy, reduced structural loads, etc.

Figure 5.1: Operation envelope for APC.

The controller proposed in this chapter tracks the desired power as follows. In low wind

speeds, the controller shifts from (λ∗, β∗) to the desired Cp by increasing to a larger blade

pitch β > β∗ while holding tip speed ratio fixed at λ∗. The dash black arrow in Figure 5.1

indicates the proposed shift to the desired Cp in low wind speeds. In constant wind condi-

tions, this approach holds desired rotor speed constant (to maintain λ∗) while blade pitch
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angle is increased to shed extra power according to the desired power command. The ben-

efit is that the constant loads on the blade, tower, and gearbox should be reduced by this

method of shedding power. However, this approach has the drawback that it will increase

the pitch actuator usage. Another drawback of this approach is that less kinetic energy is

retained in the rotor than if the turbine were to shift to a larger tip speed ratio.

The APC strategy proposed here can be implemented as the control system structure shown

in Figure 5.2. A 2-input, 2-output control system is used to coordinate the blade pitch and

generator torque. The main objective is to track the power reference command Pcmd. The

generator speed command ωg cmd specifies the desired point on the power coefficient contour.

In particular the generator speed command is defined as follows:

ωg cmd = min

{
N
λ∗
R
vtrim, wg rated

}
(5.1)

where wg rated is the rated generator speed and vtrim is an estimate of the effective wind

speed. As described above, this generator speed command attempts to keep the λ at the

optimal value λ∗ at lower wind speeds. This will cause an increasing rotor speed demand

as wind speed increases. At higher wind speeds, the generator speed command saturates

and attempts to maintain the rated value. The solid black curve in Figure 5.1 shows the

operation curve for traditional operations in above rated wind speeds. Therefore, the shaded

region as shown on the right side of the solid black curve represents the envelope for APC

in Region 3.

It is also assumed here that an accurate and real time measurement of the wind speed is

available. As shown in Figure 5.2, an estimate of the wind speed could be obtained from a

LIDAR [71]. Alternatively, an estimate of the effective wind speed could be constructed [72].

In either case, the actual wind speed fluctuates and hence low-pass filtering, denoted LPF

in the figure, is used to smooth out these fluctuations.

5.3 Robust LPV Design

This section provides details on a robust control design using the strategy proposed in

Section 5.2. As shown in Figure 5.2, the proposed active power controller has a 2-input

2-output MIMO structure. It forms a closed loop system that is similar to the one proposed

in Section 3.3 for traditional operations, except for the extra feedback loop for power refer-

ence tracking. This consistency of the system structure provides convenience in the design

of a new active power controller. Specifically, some design procedures, such as modeling and

controller tuning, can be inherited from the design in Chapter 3 without significant modi-

fications. As a further step of consideration, the design in this Chapter takes the possible
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Figure 5.2: The proposed LPV controller for APC.

model uncertainty into account. The robust synthesis algorithm proposed in Chapter 4

is therefore used to find out an LPV controller that ensures robust performance for the

uncertain system.

5.3.1 Uncertain LPV Model Construction

The nominal LPV model constructed in Section 3.4.1 covers the dynamics variation with

the parameter of wind speed in Regions 2 and 3. A uniform LPV control design as proposed

in Section 3.3 is therefore capable of achieving multiple objectives in traditional operations.

However, this LPV model is not suitable for APC design purposes. As shown in Section 5.2,

APC requires the turbine to operate in the power v.s. wind speed envelope below the

traditional operation curve. In the mode of APC, the system dynamics is affected by not

only the wind speed, but also the power generation. The LPV model constructed on the

traditional operation curve is therefore not accurate enough when the turbine operates in

the status of low power generation. In an extreme condition which has been discussed

in Section 3.3, the model linearized at any trim point on the maximum power generation

curve of Region 2 is theoretically not affected by the input of blade pitch angle. The control

strategy proposed in Section 5.2 can never be realized in this case.

To find an LPV model for the APC design, trim points for linearization have been modified

as follows. In Chapter 3, 7 trim points were taken uniformly on the maximum power

generation curve, as shown by the red circles in Figure 5.3. In the case of APC, these trim

points are shifted downwards such that the power generation at each point is 80 % of the

original value. Other trim values at each point can be found out according to the control

strategy proposed in Section 5.2. For instance, the trim generator speed will be the same
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after the modification, while the trim generator torque will be 80 % of the original value.

The trim blade pitch angle can be found out after the simulation for linearization in FAST.

These values are shown by the blue squares in Figure 5.3 with comparison to original values

for traditional operations in Chapter 3.

It will be shown in following sections that this LPV model is accurate enough to ensure

that the synthesized controller achieves objectives of the APC design. The choice on how

much these trim points should be shifted from original ones is based on practice. In a more

general setting, the percentage of maximum power generation can be another scheduling

parameter for constructing the LPV model. For instance, 2 extra groups of trim points can

be chosen such that the power generations are 50 % and 20 % of the maximum value, for

each group respectively. Therefore, a more accurate LPV model can be constructed on a

7-by-3 gridding set of the 2 scheduling parameters. This is similar to the approach used

in [106] for constructing an LPV model with 2 parameters. However, the use of absolute

power generation as one of the parameters in [106] leads to a non-rectangular set of trim

points, which is less convenient for applying the LPV toolbox [18] in Matlab. It should also

be noted that adding one extra parameter in the LPV model construction will significantly

increase the computational time in the following control synthesis. This issue is more critical

for the iteration algorithm proposed in Chapter 4 for robust synthesis. Therefore, concerns

on the accuracy and complexity should be well balanced in the model construction stage.

As the robust synthesis algorithm to be applied in this chapter is expected to take much

longer time for computation than the nominal LPV synthesis algorithm, the linearization in

FAST for constructing the LPV model has been simplified to contain only 2 DOFs. These

2 DOFs are the rotor position and tower first fore-aft bending mode. As no DOFs with the

blade motion are involved in the model, the MBC transformation is not required in the post

analysis. The resulting LTI model therefore has 3 states after removing the state of rotor

azimuth angle for avoiding numerical issues. This simplified model captures the essential

rotor dynamics and part of the structural dynamics. It will simplify the design and it is

useful for verifying the effectiveness of the proposed APC strategy.

Similar to the model used for traditional operations in Chapter 3, the disturbance input

is the hub-height wind speed v and 2 control inputs are still the generator torque τg and

collective pitch angle β. Outputs of the model have been modified to contain the generator

speed ωg and the power generation P [kW] for feedback control purposes. Therefore, the

LPV model for APC design can be constructed as

[
ẋ

y

]
=

[
A(ρ) Bd(ρ) Bu(ρ)

C(ρ) Dd(ρ) Du(ρ)

]xd
u

 (5.2)
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Figure 5.3: Trim points for APC design.
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where x ∈ R3 is the state, d := δv ∈ R is the disturbance, u := [ δτg δβ ]T ∈ R2 is the vector

of control inputs and y := [ δωg δP ]T ∈ R2 is the vector of outputs. This nominal (without

uncertainties) LPV model is shown as G(ρ) in Figure 5.4.

∆ Wu

G(ρ)

δv

δτg

δβ

δωg

δP

Figure 5.4: Uncertain LPV model of wind turbine.

The model uncertainty is considered in the APC design to ensure enough robustness of the

controller. In current stage, there is only a multiplicative uncertainty ∆ added to the blade

pitch input channel as shown in Figure 5.4. The concern of robustness in this channel is

raised as more blade pitch actuations are required for APC. ∆ here is assumed to be an LTI

uncertainty with norm bound of 1. The weight Wu will be selected later to shape frequency

properties of ∆.

5.3.2 Weights Tuning

Frequency loop shaping techniques are still used here for the APC design. Figure 5.5 shows

the augmented system for synthesis of the proposed LPV controller. Here, 7 weights (We,

Wτ , Wβ, Wv, WPi, WPe and Wu) need to be selected for the loop shaping. Comparing to

the LPV design for traditional operations in Chapter 3, there are more weights required here

for achieving APC. However, the design process can be significantly simplified by inheriting

some of the weights used in Chapter 3. These weights include We, Wτ , Wβ and Wv, which

are the same as listed in Table 3.1.

WPi and WPe are used for penalizing the power reference input and tracking error. Here

WPi equals to 20, which corresponds to a power reference command of 20 kW. Though this

value is relatively small, considering the range of power variation from 0 to 2500 kW, it is

considered as a normalization such that the weighted power reference command matches

existing weights on control actuations. WPe(s) = 0.025s+0.003307
s+0.006614 is the performance weight

on the power reference tracking error. Similar to We for the generator speed tracking,

WPe(s) emphasizes more on the low frequency error and less on the high frequency part.

The low frequency gain of WPe(s) is 0.5, which corresponds to a steady-state error of 2

RPM. WPe(s) is tuned to have a bandwidth of 0.05 rad/s. Thought this value is relatively

small comparing to the bandwidth for the generator speed tracking, it is enough to ensure
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Figure 5.5: Augmented system for APC design.

the performance of APC, as the response in power grids usually takes several minutes or

even longer [4]. It should be noted that these 2 weights are not time varying with the

parameter ρ.

As described in Section 5.3.1, Wu = 1.25s+0.3062
s+1.531 is the weight used to shape frequency

properties of the normalized uncertainty ∆. As a reasonable assumption, there should be

more uncertainty in the high frequency than in the low frequency. Therefore, Wu is selected

to have a low frequency gain of 0.2 and a high frequency gain of 1.25, which correspond to

uncertain levels of 20 % and 125 %, respectively.

5.3.3 Synthesis Results

The augmented system described in Section 5.3.2 is used to synthesize a robust LPV con-

troller for APC purposes. Similar to the set up for nominal LPV control synthesis in

Chapter 3, the parameter varying rate for ρ in the robust synthesis is chosen as 0.1 m/s2.

The corresponding Lyapunov matrices are also set to have an affine dependence on ρ. To

start Algorithm 1, 2 IQCs are selected for the normalized uncertainty ∆. As required by

the algorithm, the first IQC is Π1 =
[

1 0
0 −1

]
. The second IQC is defined by

Π2 =

[
1

(s+1)2
0

0 − 1
(s+1)2

]
(5.3)

to simplify the computation. The stopping tolerance εtol is set as 0.04 to terminate the

algorithm at a proper time. The synthesized robust LPV controller will be denoted as Krob.
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At the same time, a nominal LPV controller Knom will be synthesized for comparisons

without considering the uncertainty ∆.

Details on the iteration process for the robust LPV controller Krob is shown in Table 5.1.

According to Theorem 4, the robust performance should be decreasing non-strictly each

iteration. However, it is seen in Table 5.1 that the algorithm converges after 5 iterations

and leads to a robust performance of 1.5891, which is slightly larger than the value in the

previous iteration. A possible explanation for this phenomenon should be attributed to the

numerical error.

Table 5.1: Iteration process for the robust LPV controller.

Iteration #
Time consumption [s]

Robust performance [unitless]
Synthesis Analysis

1 7.4038 387.7608 13.7120
2 14.1918 380.0770 2.9085
3 13.8396 268.1088 1.8678
4 13.6005 316.5674 1.5409
5 13.4095 362.2312 1.5891

The computation time is another concern for the robust synthesis algorithm. It is noted

that the computation time for each analysis step is usually around 260 to 400 s, which is

much longer than the time consumption of synthesis step. As described in Section 4.3.3, the

robust performance bound γ at the analysis step enters bilinearly in the matrix inequality

and hence bisection is required to find the minimum feasible value of γ. This bisection

takes multiple times and leads to the low efficiency of the algorithm. For instance, it is

found out that the bisection in the 1-st analysis step ends after 12 times. This is a critical

bottleneck for applications of the robust synthesis algorithm, as the time consumption will

be unacceptable for more complicated designs. As the bound γ enters into the matrix

inequality bilinearly, it leads to a quasi-convex optimization problem, which can be solved

more efficiently using existing method than the bisection search. Therefore, an update of

Algorithm 1 should be considered in the future to improve the efficiency.

It is also noted that the synthesis step in the first iteration takes around 7 s while all

other synthesis steps need about 14 s. This is due to the size difference of the synthesized

controller at each iteration. Specifically, there is only 1 constant IQC Π1 used in the first

iteration of Algorithm 1. Considering the size of the augmented system in Figure 5.5, the

synthesized controller at this iteration contains 9 states. However, all other iterations lead

to a controller with 11 states, as the second IQC Π2 is involved. It can be concluded that

the computation time for the nominal LPV synthesis is very sensitive to the model size and

a careful choice of model complexity is required in applications.
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To evaluate performance of the robust LPV controller Krob before simulations, it is first com-

pared with the nominal LPV controller Knom in the case with no uncertainty in the model.

The induced L2 norm of the nominal system using Knom and Krob, is given by 0.81 and 0.99,

respectively. As expected, Knom achieves slightly better nominal performance than Krob.

Detailed checks are also performed to evaluate frequency responses of these 2 controllers at

each trim points. As shown in Section 3.4.3, these local frequency responses provide some

complementary information of the system. For instance, Figure 5.6 shows Bode magnitude

plots of the sensitivity function from δPcmd to δPe at trim points of ρ = 9 m/s and 18 m/s,

which represent operations in below and above rated wind speeds, respectively. It is seen

that Knom achieves slightly better power reference tracking performance than Krob in both

2 wind conditions, which fits the numerical analysis results mentioned above.
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Figure 5.6: Bode magnitude plots of the sensitivity function from δPcmd to δPe.

In the next step, the controller Krob is compared with Knom when the uncertainty ∆ is

considered in the turbine model. As shown in Table 5.1, the robust performance of Krob

is about 1.6. It indicates that the induced L2 norm of the uncertain system with Krob has

an upper bound of 1.6, when ‖∆‖ ≤ 1
1.6 . The matrix inequality condition in Section 4.4.1

is used here to analyze the robust performance of Knom and it yields a value of 2.41.

Apparently, Krob achieves better performance than Knom with existence of the uncertainty

in the model.

The robustness of Krob and Knom is further analyzed using the metric of worst case gain, as

discussed in Section 4.3.1. Here, a specific value of b is chosen as the norm bound of ∆. The

worst case gain condition in [107] is used to analyze the induced L2 norm of the uncertain

system when ‖∆‖ ≤ b. This condition has a small variation to the robust performance
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condition in Section 4.4.1 by fixing the norm bound of ∆ and it provides an upper bound of

the worst case gain γwc. At the same time, the maximum value of the worst case LTI gain at

each trim point provides a lower bound of γwc. This worst case LTI gain can be computed

by using the function wcgain() in Matlab [108]. Figure 5.7 shows how the upper and lower

bounds of γwc change with b for Krob and Knom respectively. It is seen that the upper

bound for Knom is less than the value for Krob when b ≤ 0.3. However, the performance of

Knom degrades significantly when b gets close to 0.53. This value provides a robust stability

margin for Knom. In contrast, Krob robustly stabilizes the uncertain system until b = 0.86.
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Figure 5.7: Worst case gain analysis for the robust controller Krob and the nominal controller
Knom.

It should be noted that the lower bounds for both Krob and Knom have much smaller values,

comparing to the upper bounds shown in Figure 5.7. These gaps explain conservativeness

of the computation methods used above. Specifically, the LMI condition for worst case gain

of uncertain LPV systems [107] is naturally conservative. In addition, the worst case gain

for LTI systems at forzen trim points could be much smaller than the real value of γwc, as

the worst case parameter trajectory might contain large variations with time. Instead, [109]

provides a less conservative method to compute the lower bound of γwc by searching over

classes of parameter varying trajectories. This method will be considered in the future work

to minimize the gap between upper and lower bounds of γwc.
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It should also be noted that the lower bounds in Figure 5.7 only provides limited infor-

mation on the local robustness as the value of b is not larger enough to destabilize the

LTI systems. Instead, Figure 5.8 plots disk margins in the collective pitch input channel

for these 2 controllers at each trim points. The disk margins can be calculated using the

Matlab function dmplot(). It provides a disk gain margin and a disk phase margin of a

specific input/output channel, which form an ellipse to guarantee stability of the closed loop

system for all combined gain/phase variations. Here, the channel selected is the collective

pitch input to the wind turbine, which is consistent with the assumption of uncertainty in

Section 5.3.1. As shown in Figure 5.8, Krob has better disk margins than Knom at all trim

conditions. For instance, the disk gain margin for Krob is 7.5 at ρ = 6 m/s while Knom only

has a margin of 3.4. The disk phase margins at this trim condition are 76 deg and 57 deg

for Krob and Knom, respectively. However, both these 2 controllers show smaller margins

at ρ = 12 m/s, which indicate less robustness at the transition between Regions 2 and 3. A

possible reason for this phenomenon might come from the variation of control actuations

shaped by Wβ.
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Figure 5.8: Disk margins analysis for the robust controller Krob and the nominal controller
Knom at different trim wind speeds.

To conclude here, Knom achieves slightly better nominal performance than Krob. However,
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Krob has much better robust performance when the effect of uncertainty can not be ignored

in the model. The difference between these 2 controllers will be verified by simulations in

the following section.

5.4 Simulations and Analysis

5.4.1 Simulations for APC

Both the robust controller Krob and the nominal controller Knom will be tested in the FAST

simulation environment. As these two designs were based on a simplified model of the C96

turbine, structural modes in the FAST simulation include the rotor position, drive train

torsion and first tower fore-aft mode. Therefore, the model used for simulations contains 3

DOFs. The objective of simulation is to verify the APC performance without uncertainty

in the turbine model. Similar to the set up in Section 3.5, a turbulence level of 5 % is used

to generate all wind profiles in TurbSim. In addition, simulation results in the first 60 s will

be ignored due to the effect of initial response.

For simplicity, simulation results in 2 different wind speeds are shown in Figures 5.9 and

5.10, which cover Regions 2 and 3 wind conditions. In the first simulation, the mean wind

speed is 9m/s. Krob and Knom are simulated to track a power reference as shown by the

solid green curve in the second subplot of Figure 5.9. This command steps from 700 kW

to 1300 kW at t = 210 s, then drops to 100 kW at t = 360 s and finally steps back to

700 kW at t = 560 s. It is seen that Krob and Knom have similar responses to the reference

signal. The 90 % settling time to the step command is around 20 s, which is reasonable

for the objective of APC. It should be noted that the maximum available power at 9m/s

is 1426 kW, according to Equation 2.1. Therefore, the wind turbine might not be able to

track the power reference of 1300 kW accurately from t = 210 s to 360 s, if the wind speed

drops too much due to the turbulence. To prevent possible instability of the system in this

situation, the power reference signal is saturated by the maximum available power, which

can be calculated based on measurements of the trim wind speed. It is seen that the power

output drops at t = 300 s when the wind speed is close to 8 m/s and the system maintains

stable due to the saturation. The generator speed is also affected by the wind turbulence.

As shown in the third subplot of Figure 5.9, both Krob and Knom try to track the rated

generator speed when the wind speed is above 9 m/s. In contrast, the generator speed tracks

a time varying command that is proportional to the wind speed when it goes below 9 m/s.

The second simulation is performed at an average wind speed of 18m/s which is above

the rated value. In traditional operations as discussed in Chapter 3, the C96 wind turbine

tries to track the rated generator speed and maintain the power output of 2500 kW at this

wind speed. Therefore, in the mode of APC, Krob and Knom should be able to track a
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Figure 5.9: Simulations for APC using the robust controller Krob and the nominal controller
Knom at ρ = 9 m/s.
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power reference command varying from 0 to the rated value. Here, the power reference is

set as shown by the solid green curve in the second subplot of Figure 5.10. It steps from

1500 kW to 2300 kW at t = 210 s, then drops to 700 kW at t = 360 s and finally steps back

to 1500 kW at t = 560 s. Results of the power reference tracking for Krob and Knom are

also shown in this subplot of Figure 5.10. Comparing to the nominal controller Knom, Krob

shows a slower response to the reference. This difference can be explained by the sensitivity

function of power reference tracking, as shown in the right subplot of Figure 5.6. Specifically,

Krob has a smaller bandwidth for tracking the reference signal at this trim condition. A

further comparison on the fourth subplot of Figure 5.10 shows that the limited bandwidth

of actuation on the generator torque leads to the slow response of Krob. As the wind speed is

kept above rated in the simulation, the generator speed command is held fixed at the rated

value. Both Krob and Knom show good tracking performance of this constant command,

as shown in the third subplot of Figure 5.10. The actuations on the blade pitch are also

similar between these 2 controllers.

5.4.2 Worst Case Performance Simulations

Simulations in Section 5.4.1 show that the robust controller Krob has similar performance

as the nominal controller Knom for the objective of APC. These results were based on the

assumption that there is no uncertainty in the turbine model. Therefore, it is meaningful

to explore robust performance of Krob and Knom. The basic idea here is to find out a worst

case uncertainty model ∆wc with a fixed norm bound for each controller and then compare

the performance degradation after ∆wc is considered in simulations. However, the robust

performance condition in Section 4.4.1 does not provide any information on the worst case

uncertainty model for LPV systems. As a compromise, the Robust Control toolbox [108] is

used again to find out ∆wc for the LTI system at a specific trim point. Here, the trim point

is chosen at ρ = 15 m/s to get the closed loop LTI model. As described in Section 5.3.1,

the uncertainty in the blade pitch input channel is assumed to be LTI and normalized

as ‖∆‖ ≤ 1. It can be modeled using the command ultidyn() and interconnected with

the nominal system. This interconnected uncertain system is analyzed using the function

wcgain() which provides detailed information on the worst case gain and the corresponding

model of ∆wc. However, it should be noted that the worst case uncertainty ∆wc might be

different for Krob and Knom.

These 2 controllers are first simulated in FAST without ∆wc interconnected to the system

and the average wind speed is 15m/s with 5 % of turbulence. In the next step, ∆wc is

included in the system with Krob and Knom for simulations. The performance degradation

is analyzed based on the error of output yu = y0 − ywc. Here y0 and ywc are outputs of

simulation without and without ∆wc. Figure 5.11 shows the error of power output Pu for
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Figure 5.10: Simulation for APC using the robust controller Krob and the nominal controller
Knom at ρ = 18 m/s.
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Krob and Knom. It is clear that ∆wc leads to large variation of Pu for Knom. Analysis results

for other outputs signals show the similar conclusion and are therefore not plotted here.
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Figure 5.11: Error on the power output with ∆wc using the robust controller Krob and the
nominal controller Knom.

To further evaluate these errors, define the root mean square (RMS) of the error yu as:

yRMS =

(
1

T

∫ T

0
|yu|2dt

) 1
2

(5.4)

where T is the simulation time. This metric is applied to the generator speed, power output

and blade pitch angle. The results are shown in Table 5.2, which provides a quantitative

comparison between Krob and Knom. It is seen that Krob has significantly prevented the

performance degradation due to the worst case uncertainty. In addition, the damage equiv-

alent load (DEL) is also calculated for the low speed shaft torque. The values in the last

row of Table 5.2 show increments of DEL after the ∆wc was included in the model. It is

noted that the DEL for Knom has increased by 74.12 %, while this value for Krob is only

34.39 %. Apparently, Krob shows better robust performance than Knom on load reduction.

Table 5.2: Performance degradation with ∆wc.
Description Knom Krob

RMS Power Error [kW] 6.2196 4.0241
RMS Speed Error [RPM] 3.8464 1.9653
RMS Pitch Angle [deg] 0.8642 0.4466
Low Speed Shaft DEL Increase 74.12 % 34.39 %
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Chapter 6

Conclusions

This thesis proposes a uniform MIMO control framework for wind turbines using the robust

linear parameter varying (LPV) design method. This framework takes multiple objectives in

different wind conditions into a systematic consideration, such that existing results based

on SISO linear control design can be integrated together with stability and performance

guarantee. As a first step, Chapter 3 proposes an LPV controller that is able to maximize

the power generation in Region 2 and track the rated generator speed in Region 3. Con-

siderations on load reduction are also included in the MIMO control structure. The use of

recently developed LPV toolbox in Matlab [18] ensures that the designed controller meets

objectives in different wind conditions and provides better load reduction performance than

the baseline controller.

A further step for the proposed LPV design is to ensure enough robustness of the system.

However, robust synthesis algorithms like µ-synthesis [20] is not directly available for LPV

systems and existing theories for robust LPV control are still incomplete. Therefore, Chap-

ter 4 proposes a robust synthesis algorithm for a class of uncertain LPV system, using the

theory of integral quadratic constraints (IQCs). The robust synthesis problem leads to a

non-convex optimization and the proposed algorithm is a coordinate-wise descent similar

to the well-known DK iteration for µ synthesis. Specifically, the proposed algorithm alter-

nates between an LPV synthesis step and an IQC analysis step. Both steps can be efficiently

solved as semidefinite programs. It is shown that the proposed algorithm ensures that the

robust performance is non-increasing at each iteration step.

This robust synthesis algorithm is used in Chapter 5 to design an LPV controller to pro-

vide APC. The control architecture is proposed by slightly modifying the LPV controller

for traditional operations in Chapter 3, with only one extra feedback loop for power ref-

erence tracking. The design procedure is therefore significantly simplified as some of the

97



tuning results in Chapter 3 can be directly inherited for APC. In addition, a multiplica-

tive uncertainty is considered in the blade pitch input channel of the turbine model. The

synthesized robust LPV controller shows similar performance on APC as a nominal LPV

controller designed without considerations of uncertainty. However, the robust controller

has much better performance when the worst case uncertainty is added to the system dy-

namics. Therefore, the robust LPV controller has guaranteed performance on APC, even

with perturbed system dynamics.

Overall, the robust LPV design framework proposed in this thesis provides a uniform control

architecture for wind turbines. This architecture, along with the unified design flow from

modeling, weights tuning to simulation, makes possible improvements in the future a natural

extension of the existing design. For example, it is possible to construct extra feedback loops

in this architecture for further load reduction, as sensors for turbine loads monitoring are

incorporated in the system. The popular individual pitch control can also be included to

decrease the periodic load on turbine blades. At the same time, more uncertainties can be

considered in the design to ensure robust performance of the controller, such as parametric

uncertainty in the turbine model, saturation/rate-limitation for actuators, etc.

Another important direction for future works is to improve efficiency of the robust synthesis

algorithm in Chapter 4. As shown in Chapter 5, this algorithm takes much longer time for

computation than the nominal synthesis algorithm included in the LPV toolbox. Therefore,

there were only 2 DOFs considered in the turbine model to simplify the APC design.

This is a critical bottleneck for applications of the robust synthesis algorithm, as the time

consumption will be unacceptable for more complicated designs. As the robust performance

bound γ enters into the matrix inequality bilinearly, it leads to a quasi-convex optimization

problem. It is therefore possible to solved the analysis step more efficiently using existing

method than the current bisection search.
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Appendix A

IQC Factorizations

Two factorizations of the frequency domain IQC multiplier Π are provided in Lemma 4

and Lemma 5. The first factorization given by Lemma 4 only assumes Π to be rational

and uniformly bounded. However, this factorization (Ψ,M) does not, in general, yield a

valid time domain IQC. The second factorization given by Lemma 5 is called a J-spectral

factorization and it requires additional assumptions on Π. Lemma 6 shows that this J-

spectral factorization yields a valid time domain IQC.

Lemma 4. If Π = Π∼ ∈ RLm×m∞ then there exists real matrices Ã, B̃, Q̃, S̃, R̃ of compatible

dimensions with Ã Hurwitz, Q̃ = Q̃T , and R̃ = R̃T such that

Π(s) = [ B̃T (−sI−ÃT )−1 I ]
[
Q̃ S̃

S̃T R̃

] [
(sI−Ã)−1B̃

I

]
(A.1)

Proof. The proof follows from arguments in Section 7.3 of [110]. Let (Aπ, Bπ, Cπ, Dπ) be

a minimal state-space realization for Π. Separate Π into its stable and unstable parts

Π = GS +GU +Dπ. Let (Ã, B̃, C̃, 0) denote a state-space realization for the stable part GS

so that Ã is Hurwitz. The assumptions on Π imply that GU has a state-space realization of

the form (−ÃT ,−C̃T , B̃T , 0) (Section 7.3 of [110]). Thus Π = GS +GU +Dπ can be written

as in Equation A.1 with Q̃ = 0, S̃ = C̃T and R̃ = Dπ.

Lemma 4 provides a factorization of Π in the form Ψ∼MΨ where Ψ(s) :=
[

(sI−Ã)−1B̃
I

]
and M :=

[
Q̃ S̃

S̃T R̃

]
. The main construction in the proof is to separate the stable and

unstable parts of Π. This can be easily implemented in Matlab using the stabsep command.

This provides a factorization Π = Ψ∼MΨ where Ψ ∈ RHnz×m
∞ is stable but non-square.

Moreover, this factorization (Ψ,M) does not, in general, yield a valid time domain IQC as
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described in Definition 2. Lemma 5 below states another special factorization with some

additional assumptions on Π.

Lemma 5. Let Π = Π∼ ∈ RL(nv+nw)×(nv+nw)
∞ be partitioned as

[
Π11 Π12
Π∼12 Π22

]
where Π11 ∈

RLnv×nv∞ and Π22 ∈ RLnw×nw∞ . If Π11(jω) > 0 and Π22(jω) < 0 ∀ω ∈ R ∪ {∞}, then

(i) There exists real matrices Ã, B̃, Q̃, S̃, R̃ of compatible dimensions with Ã Hurwitz,

Q̃ = Q̃T , and R̃ = R̃T such that Π can be expressed as in Equation A.1.

(ii) R̃ is nonsingular and there exists a unique real solution X = XT to the the following

ARE

ÃTX +XÃ− (XB̃ + S̃)R̃−1(XB̃ + S̃)T + Q̃ = 0 (A.2)

such that Ã− B̃R̃−1
(
XB̃ + S̃

)T
is Hurwitz.

(iii) Π has a factorization (Ψ,M) with M :=
[
Inv 0
0 −Inw

]
and Ψ,Ψ−1 ∈ RH(nv+nw)×(nv+nw)

∞ .

A state-space realization of Ψ is given by
(
Ã, B̃, C̃, D̃

)
where D̃ is a solution of R̃ =

D̃TMD̃ and C̃ := MD̃−T
(
B̃TX + S̃T

)
.

Proof. Conclusion (i) holds for any Π = Π∼ and follows from Lemma 4. Conclusions (ii)

and (iii) follow from Lemma 4 in [111].

The factorization in Conclusion (iii) is called a J-spectral factorization of Π. For this fac-

torization, Ψ is square, stable, and stably invertible. Existence conditions for a J-spectral

factor of Π are provided by the canonical factorization theorem in [112]. Chapter 7 of [110]

summarizes these results. Existence conditions for a J-spectral factor can also be specified

using the notion of an equalizing vector as defined in [113]. Lemma 5 above provides an

alternative existence condition for a J-spectral factorization in terms of definiteness prop-

erties on Π. Lemma 6 below states that the J-spectral factorization is a hard factorization

of Π. Thus a frequency domain IQC multiplier can, under some additional assumptions on

Π, be factorized to yield a valid time domain IQC. Lemma 6 also provides an additional

technical result that will be used in Chapter 4.

Lemma 6. Let Π = Π∼ ∈ RL(nv+nw)×(nv+nw)
∞ be partitioned as

[
Π11 Π12
Π∼12 Π22

]
where Π11 ∈

RLnv×nv∞ and Π22 ∈ RLnw×nw∞ . Assume Π11(jω) > 0 and Π22(jω) < 0 ∀ω ∈ R ∪ {∞}. Let

(Ψ,M) be the J-spectral factorization given in Conclusion (iii) of Lemma 5. Then,
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(i) (Ψ,M) is a hard factorization of Π: If ∆ is a bounded, causal operator that satisfies the

frequency domain IQC specified by Π (Definition 1) then ∆ satisfies the time domain

IQC specified by (Ψ,M) (Definition 2).

(ii) The cost of the max/min game defined in Equation A.3 based on (Ψ,M) satisfies

J(xψ0) = 0.

J(xψ0) := sup
w∈Lnw2 [0,∞)

inf
v∈Lnv2 [0,∞)

∫ ∞
0

z(t)TMz(t) dt (A.3)

subject to:

ẋψ = Ãxψ + B̃ [ vw ] , xψ(0) = xψ0

z = C̃xψ + D̃ [ vw ]

Proof. Conclusion (i) follows from Theorem 2.4 in [89] or Theorem 4 in [111]. Conclusion

(ii) follows from Lemma 5 and the proof of Theorem 4 in [111]. J is the lower-value of a

two-player differential game and the proof of Conclusion (ii) given in [111] essentially relies

on results for LQ differential games [114,115].
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Appendix B

Extended System State Matrices

A state-space realization for the extended system of Hρ and Ψ1/γ is given in Equation 4.9.

The state matrices for the extended system can be expressed in terms of the state matrices

for Hρ (Equation 4.7) and Ψ1/γ (Equation 4.8) as:

A(ρ) :=

[
A(ρ) 0

γ−1B̃vCv(ρ) Ã

]
(B.1)

Bw(ρ) :=

[
Bw(ρ)

γ−1B̃vDvw(ρ) + B̃w

]
, Bd(ρ) :=

[
Bd(ρ)

γ−1B̃vDvd(ρ)

]
(B.2)

Czk(ρ) :=
[
γ−1D̃zkvCv(ρ), C̃zk

]
, Ce(ρ) :=

[
Ce(ρ), 0

]
(B.3)

Dzkw(ρ) := γ−1D̃zkvDvw(ρ) + D̃zkw, Dew(ρ) := Dew(ρ) (B.4)

Dzkd(ρ) := γ−1D̃zkvDvd(ρ), Ded(ρ) := Ded(ρ) (B.5)

Similarly, the state-space realization for the extended system of Hρ and Ψλ is given in

Equation 4.14. These state matrices can be expressed in terms of the state matrices for

Hρ (Equation 4.7) and Ψλ (Equation 4.13). Only the output and feedthrough matrices

associated with the output zλ are changed. These are given by:

Czλ(ρ) :=
[
γ−1D̃zλvCv(ρ), C̃zλ

]
(B.6)

Dzλw(ρ) := γ−1D̃zλvDvw(ρ) + D̃zλw (B.7)

Dzλd(ρ) := γ−1D̃zλvDvd(ρ) (B.8)
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Appendix C

Proof of Lemma 1

Proof. (⇒) Assume P = P T satisfies Equation 4.15. The output zk from Ψ1/γ is a linear

function of (xψ, v, w) as defined in Equation 4.8:

zk = [ C̃zk γ
−1D̃zkv D̃zkw ]

[
xψ
v
w

]
(C.1)

These variables (xψ, v, w) can, in turn, be expressed in terms of the extended system state

and inputs (x,w, d) as:xψv
w

 =

 [0, I] 0 0

[Cv(ρ), 0] Dvw(ρ) Dvd(ρ)

[0, 0] I 0



[ xH
xψ

]
w

d

 := L(ρ)


[ xH
xψ

]
w

d

 (C.2)

Thus, using the extended system state matrices defined in Appendix B, the second term of

the matrix inequality in Equation 4.15 can be rewritten as:

N∑
k=1

λk

 CTzk
DTzkw
DTzkd

Mk [ Czk Dzkw Dzkd ] = L(ρ)T

[
Q̃λ S̃λ

S̃Tλ R̃λ

]
L(ρ) (C.3)

Q̃λ, S̃λ, and R̃λ are defined in Equation 4.12. Substitute for Q̃λ using the ARE in Equa-

tion A.2. Rearrange terms in the matrix inequality to show that P̃ := P +
[

0 0
0 X

]
satisfies

Equation 4.16.

This direction of the proof is completed by showing that P̃ ≥ 0. Define the quadratic

function V (x0) := xT0 P̃ x0. In addition, define the following quadratic cost functional V ∗(x0)
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based on the extended system of Hρ and the rescaled factorization (Ψλ,Mλ):

V ∗(x0) := sup
w∈Lnw2 [0,∞)

∫ ∞
0

zλ(t)TMλzλ(t) dt (C.4)

subject to:

ẋ = A(ρ)x+ Bw(ρ)w, x(0) = x0

zλ = Czλ(ρ)x+Dzλw(ρ)w

The disturbance input of the extended system is neglected (d = 0) in this linear quadratic

optimization. Note that the extended system is stable since Hρ is stable (by assumption),

Ψλ is stable (by construction), and Ψλ is connected in an open loop fashion to Hρ. First we

show that V (x0) ≥ V ∗(x0) for all x0 ∈ RnH+nψ . This follows along the lines of Theorems 2

and 3 in [116] and hence the proof is only sketched. Let x(t), zλ(t) be the resulting solutions

of the extended system of Hρ and Ψλ for a given input w ∈ Lnw2 [0,∞), admissible trajectory

ρ ∈ T , and initial condition x0 ∈ RnH+nψ assuming d = 0. Multiply the matrix inequality in

Equation 4.16 on the left/right by

[
x(t)
w(t)

0

]T
and

[
x(t)
w(t)

0

]
to show V̇ (x(t))+zλ(t)TMλzλ(t) ≤ 0.

Integrate this inequality from t = 0 to t = T to obtain

V (x(T )) +

∫ T

0
zλ(t)TMλzλ(t) dt ≤ V (x0) (C.5)

limT→∞ x(T ) = 0 for any w ∈ Lnw2 [0,∞) because the extended system is stable. Maximizing

the left side of Equation C.5 over w ∈ Lnw2 [0,∞) for T =∞ thus yields V (x0) ≥ V ∗(x0).

Next, consider the max/min game defined for the rescaled J-spectral factorization (Ψλ,Mλ):

J(xψ0) := sup
w∈Lnw2 [0,∞)

inf
v∈Lnv2 [0,∞)

∫ ∞
0

zλ(t)TMλzλ(t) dt (C.6)

subject to:

ẋψ = Ãxψ + B̃ [ vw ] , xψ(0) = xψ0

z = C̃zλxψ + D̃zλ [ vw ]

where D̃zλ := [D̃zλv, D̃zλw]. This max/min game is connected to the quadratic optimization

defined in Equation C.4. Specifically, restricting v in the max/min game to be the output

of Hρ generated by w ∈ L2, d = 0, and xH(0) = xH0 yields the quadratic optimization in

Equation C.4. This specific choice of v yields a value that is no lower than the infimum

over all possible v ∈ L2. Hence the max/min game yields the bound J(xψ0) ≤ V ∗(x0). By

Lemma 6, the cost of this max/min game is J(xψ0) = 0. Putting these results together
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yields the following inequality

0 = J(xψ0) ≤ V ∗(x0) ≤ V (x0) := xT0 P̃ x0 (C.7)

This holds for any x0 and thus P̃ ≥ 0.

(⇐) This direction of the proof essentially involves reversing the algebraic rearrangement

to go from the matrix inequality in Equation 4.16 to the form in Equation 4.15.
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