Development of a Process to Define Unmanned Aircraft Systems Handling Qualities

Defining Handling Qualities for Unmanned Aircraft Systems Stakeholders Workshop at NASA Langley Research Center
July 18, 2017
Presentation Outline

• Phase II SBIR Program Overview
• Motivation
• Proposed Approach
• Example Candidate Metric
• Summary – Reality Check
Phase II SBIR Program Overview
Phase II Team

Mitchell Aerospace Research

NASA
Phase II Team Contacts

- **Systems Technology, Inc.**
 - David Klyde, Principal Investigator
 - 310/679-2281 ext.127, dklyde@systemstech.com
 - Chase Schulze, Senior Research Engineer
 - 310/679-2281 ext.137, cschulze@systemstech.com

- **Mitchell Aerospace Research**
 - David Mitchell, President
 - 562/256-7056, dave@hqresearch.com

- **University of Minnesota**
 - Dr. Peter Seiler, Associate Professor
 - 612/626-5289, seile017@umn.edu

- **NASA LaRC, Aeronautics Systems Analysis Branch**
 - Dr. Natalia Alexandrov, COR
 - 757/864-7059, n.alexandrov@nasa.gov
Key Phase II Technical Objectives

• Expand stakeholder engagement.
 – Engage government, industry and academic stakeholders at regular intervals.
 – Identify means to expand UAS data sources to enhance the requirement definition process.

• Identify and define UAS handling qualities metrics and criteria.
 – Define these in support of each MTE category.
 – Examine and define MTE performance requirements in support of a draft specification.

• Conduct fixed wing flight tests across flight envelope with a representative sUAS, where sUAS < 55 pounds.
 – Perform system identification flights.
 – Evaluate MTE’s.

• Perform similar, but more limited testing with a representative multi-rotor sUAS.
 – Low speed flight regime.

• Evaluate the UAS-HQ process.
 – Leverage the collected flight test data from the fixed and multi-rotor flight tests.
Motivation
In the Beginning...

- Initial work concerning the definition of UAS handling qualities occurred nearly a decade ago.
- Work at the time was dominated by focus on relatively large, military UAS that have much in common with manned aircraft.
- There was a natural push to preserve the use of the manned handling qualities requirements, to the extent this was possible.
... and Then Everything Changed

- Small, low cost drones proliferated and users and potential users demanded access to the air space.
- Commercial use cases are growing at a rapid pace:
 - Agriculture
 - Inspection and patrol
 - Videography
 - Package delivery
 - Many more
- Unlike the large military UAS, these vehicles will operate at low altitude and do not require airports for launch and recovery.
- Traditional HQ requirements not likely to apply in their current form (i.e., data needed to establish new boundaries).
Micro to Macro UAS

-- One Size Does Not Fit All --

AV Wasp III, 0.95 lbs
Aeryon Scout, 3.74 lbs
Martin UAV Bat-3, 7.3 lbs

MQ-8B Fire Scout, 3,150 lbs
MQ-9B Reaper, 10,500 lbs
RQ-4B Global Hawk, 32,250 lbs
Barriers to Requirements

- The UAS arena includes toy makers, traditional airframers, established UAS manufacturers, academic institutions, and many newcomers such as Amazon, Google, and Facebook that see UAS as a means to other commercial ends.
- While progress is now being made, issues continue to slow the development of verification, validation, and certification methods that will enable the safe introduction of UAS to the NAS.
- These issues include the lack of quantitative certification requirements including the definition of handling qualities.
- The “how to” of safely integrating UAS in the NAS raises many questions, and to date, there have been few answers.
- Because of a lack of quantitative data, attempts to address core problems thus far have failed to achieve consensus support.
It’s all about the Data

• A successful set of UAS HQ requirements cannot be established without flight test data.
• Data are needed for all:
 – UAS classes.
 – Mission Task Element (MTE) categories.
• In the absence of data, requirements established for manned vehicles have been considered and applied.
 – Is this an appropriate approach?
 – How do these requirements apply to sUAS?
• Dynamic models for a wide variety of UAS are also needed to assess requirements analytically.
Proposed Approach
Flying versus Handling Qualities

• **Flying Qualities:**
 – Analytical and empirical parameters or criteria that can be measured for a given airplane.
 – Related to the demands the pilot places on the airplane to achieve desired performance.

• **Handling Qualities (Our Focus):**
 – Describes operations while the pilot is actively in the loop.
 – Cooper and Harper stated:
 • “Those qualities or characteristics of an aircraft that govern the ease and precision with which a pilot is able to perform the tasks required in support of an aircraft role.”
 – For UAS, consideration must be given to the ability of the autonomous system to perform the task.
Handling Qualities and Autonomy

• Historically, handling qualities are defined for piloted aircraft.
 – UAS operations, on the other hand, may be:
 • Remotely Piloted
 • Remote Pilot Assisted
 • Fully Autonomous
 • or a combination of the three
 – When actively engaged in flying, the pilot provides GNC functions.
 – Autopilots can provide regulation of some of these functions, but they are not autonomous functions, they are regulators.

• Autonomous functions feature a decision making capability that attempts to replicate or even improve upon piloted operations.

• If a UAS mission is to, for example, station keep over a given location it matters not in terms of handling qualities whether it is remotely piloted or autonomous, the mission requirements will be the same.
The Need for UAS Classification

• To define UAS handling qualities, there must first be an effective classification scheme:
 – The Navy approach as defined in AIAA-2008-6555 (Holmberg, et al.) has been to base classification as defined in the fixed wing flying qualities specifications that classifies based on aircraft size and weight.
 – Cotting, as part of his doctoral dissertation, proposed an approach that classifies by Reynolds number, Mach number, and weight.
 – A more recent NASA-funded study led by Embry-Riddle Aeronautical University used maximum kinetic energy, weight, and wingspan.

• The common denominator in all of these approaches is size, weight, andairspeed.

• Application of the Mission Oriented Approach allows for a simplified classification scheme that is discussed next.
UAS Classification

- The Mission-Oriented Approach is itself a classifier.
- This allows for a simple classification based on weight classes, e.g.:
 - Very Large UAS (VLUAS) Weight > 1320 pounds
 - Large UAS (LUAS), 330 < Weight < 1320 pounds
 - UAS, 55 < Weight < 330 pounds
 - Small UAS (sUAS), 20 < Weight < 55 pounds
 - Mini UAS (mUAS), 4.4 < Weight < 20 pounds
 - Micro UAS (μUAS), Weight < 4.4 pounds
- Other classifiers such as speed, type (e.g., fixed wing, rotary wing, ducted fan, etc.) will be naturally captured by the defined mission – as represented by MTEs.
- For example, consider a precision hover MTE:
 - The MTE naturally defines a vehicle type that can hover!
 - MTE and weight classification selection then leads to appropriate requirements.
Proposed UAS HQ Assessment Process
Example Candidate Metrics
Aircraft Bandwidth

- Developed to address 6DOF control modes (AFWAL-TR-81-3027 by Hoh, et al.).
- Expanded to cover “modern” airplanes: the Neal-Smith data.
- Considerable development since initial release:
 - Added flightpath Bandwidth requirement.
 - Added frequency-domain pitch rate overshoot requirement.
 - Greatly relaxed handling qualities Levels.
 - Added Pitch Rate Overshoot parameter to account for excessively high short-period dynamics.
 - Developed PIO limits.
- Primary response requirement in US Army rotorcraft handling qualities specification, ADS-33E-PRF.
- Metric is independent of vehicle response type, which is an important UAS consideration.
Aircraft Bandwidth and Pitch Rate Overshoot Parameters

\[\omega_{BW_\theta} = \text{MIN}(\omega_{BW_{gain}}, \omega_{BW_{phase}}) \]

\[\tau_{p_\theta} = \frac{\Delta \phi}{57.3} \left(\frac{2\omega_{180}}{2\omega_{180}} \right) \]

\[\Delta G(q) \]

Aircraft Bandwidth

Pitch Rate Overshoot
Airplane Pitch/Roll Attitude Bandwidth Requirements for Transport Aircraft

Note: Landing, Feel System Excluded

Pitch Attitude Bandwidth

Roll Attitude Bandwidth
Airplane Bandwidth Parameters for NASA AirSTAR with Mode 1 FCL

Note: Approach Flight Condition (Offset Landing MTE)

- **Pitch Attitude**
 Airplane BW = 7.19 rad/s
 Phase BW = 7.19 rad/s
 Gain BW = 8.13 rad/s
 $\omega_{180} = 10.9$ rad/s
 $\phi_2 = -223$ deg
 $\tau_p = 0.0346$ sec
 $\Delta G(q) = 9.91$ dB

- **Roll Attitude**
 Airplane BW = 6.2 rad/s
 Phase BW = 6.2 rad/s
 Gain BW = 7.7 rad/s
 $\omega_{180} = 10.6$ rad/s
 $\phi_2 = -217$ deg
 $\tau_p = 0.0308$ sec
Airplane Pitch/Roll Attitude Bandwidth with AirSTAR Model Data

Note: Landing, Feel System Excluded

Pitch Attitude Bandwidth

Roll Attitude Bandwidth
Summary – Reality Check

• Existing HQ Standards evolved over decades
• Government $$$ for research, piloted simulation, and flight test
• Fixed Wing, MIL-STD-1797B
 – Evolved from MIL-F-8785C
 – Criteria based on Aircraft Categories and Flight Phases
 – Collection of modal to high order systems requirements
• Rotorcraft V/STOL, ADS-33E-PRF
 – Mission-Oriented Spec
 – Introduced MTEs
• Our Reality – One Phase II SBIR program will not have the breadth to fully address the need, that is, to fully define UAS handling qualities, but we’ll try!