
Final Report

13 July 1999 - 30 November 2004

Contract Number F33615-99-C-1497

An Integrated Multi-Layer Approach to Software

Enabled Control: Mission Planning to Vehicle Control

Tamás Keviczky, Ryan Ingvalson, Héctor Rotstein, Oreste Riccardo Natale

and Gary J. Balas

University of Minnesota

Minneapolis, MN 55455

Andrew Packard

University of California
Berkeley, CA 94720

DARPA Software Enabled Control Program

Dr. John Bay, Program Manager Dale Van Cleave, Technical Monitor

Information Exploitation Office Information Directorate

Defense Advanced Research Projects Agency Air Force Research Laboratory

3701 N. Fairfax Drive Air Force Material Command

Arlington, Virginia Wright-Patterson Air Force Base, Ohio

22203-1714 45433-7334

November 30, 2004

Contributing authors

Tamás Keviczky University of Minnesota

Ryan Ingvalson University of Minnesota

Héctor Rotstein On Sabbatical Leave from Rafael, Israel and the

Dept. of Electrical Engineering, Technion, Israel

Andrew Packard University of California, Berkeley

Oreste Riccardo Natale Università degli Studi del Sannio in Benevento

Gary J. Balas University of Minnesota

1

Contents

1 Introduction 5
1.1 DARPA SEC program . 5
1.2 Publications . 9

2 Real-time distributed control: the Open Control Platform 11
2.1 Software enabled control systems architecture . 11
2.2 Open Control Platform overview . 12
2.3 The OCP infrastructure technology . 13

2.3.1 RT CORBA core . 13
2.3.2 OCP features . 13
2.3.3 Middleware services . 13
2.3.4 OCP Controls API . 14

2.4 A new concept in real-time control: the anytime task 16
2.4.1 Resource optimization . 16
2.4.2 Anytime task scheduling . 19

3 System Identification 21
3.1 DemoSim description . 21
3.2 Identification for RHC . 25

3.2.1 Input-output selection . 25
3.2.2 Assumptions on cross-coupling . 26
3.2.3 SISO identification of nonzero transfer matrix entries 27
3.2.4 Creating reduced order SIMO models . 40
3.2.5 Building the MIMO model . 44
3.2.6 Numerical results . 44

3.3 Identification for FDI . 51
3.4 Characterization of flight envelope constraints . 52

4 RHC API 58
4.1 Timing Architecture . 58
4.2 Modification of LSSOL . 59
4.3 RHC Problem Formulation for Each Time Frame . 60

4.3.1 Notation and symbol definitions . 61
4.3.2 Standard Formulation . 62
4.3.3 Argument list for QPformulate . 62

4.4 Constraint Relaxation . 65

2

5 Receding horizon control design 69
5.1 Control objective . 69
5.2 DemoSim modeling . 69
5.3 Prediction model . 69
5.4 RHC problem formulation . 74

5.4.1 Remarks . 78
5.5 Translation to the RHC API problem formulation 79
5.6 RHC reconfiguration based on FDI output . 80
5.7 Flight envelope limits as output constraints . 83

6 Fault detection filter design 85
6.1 Introduction . 85

6.1.1 The challenge . 85
6.1.2 Organization of the chapter . 87

6.2 The H∞ fault detection filter . 88
6.2.1 H∞ problem formulation . 89
6.2.2 H∞ design trade-offs . 90

6.3 Is there a fault? . 90
6.3.1 Relaxing the threshold condition . 92

6.4 Fault detection for the SEC program . 92
6.4.1 Fault model . 93

6.5 Simulation results . 97
6.5.1 Simulation of the FD Filter and DemoSim . 97
6.5.2 Simulation of the full UMN/UCB SEC Capstone Demonstration 100

6.6 Conclusion . 105

7 RHC and FD integration within the RHC API / OCP framework 106
7.1 Introduction . 106
7.2 Control software requirements analysis . 106

7.2.1 Actors identification . 106
7.2.2 Use cases description . 108

7.3 Static structure design . 110
7.3.1 The Newmat library . 110
7.3.2 The Discrete Time Control Library (DTCL) 111
7.3.3 Integration within the OCP framework . 113

7.4 Dynamic behavior specifications . 113
7.5 Implementation issues . 113

7.5.1 Memory allocation in real-time implementation 113
7.5.2 Frame overrun detection and handling . 116

8 Description and presentation of results 117
8.1 Final flight test infrastructure and experiment description 117
8.2 Data analysis . 118

8.2.1 Simulation results in the Matlab/Simulink environment using DemoSim . . . 118
8.2.2 Reconfiguration based on fault detection . 118
8.2.3 Flight envelope limits as output constraints 122
8.2.4 Hardware-in-the-loop simulations . 123
8.2.5 Experimental flight test results . 128

3

8.3 Lessons learned . 128

A DARPA SEC Capstone Demo Description Experiment #1 Manual 135
A.1 T-33/UCAV actions . 136
A.2 Explanation of SFC diagrams, further remarks . 139

B DARPA SEC Capstone Demo Description Experiment #2 Manual 145
B.1 T-33/UCAV actions . 146
B.2 Explanation of SFC diagrams, further remarks . 149

C UML essentials 160
C.1 Use case diagrams . 160
C.2 Class diagrams . 160
C.3 State-chart diagram . 163

4

Chapter 1

Introduction

1.1 DARPA SEC program

The “Software-Enabled Control” (SEC) program sponsored by the Defense Advanced Research
Projects Agency (DARPA) of the United States represents the first large-scale, targeted effort
toward integration of advances in computing and control of autonomous, uninhabited air vehicles
(UAVs). The SEC vision was to enable advanced control systems that exploit information to
significantly increases in the performance and reliability of these vehicles. As part of the SEC
program, the University of Minnesota (UMN) / University of California, Berkeley (UCB) team
developed a unified design framework to synthesize and simulate individual vehicle management
systems.

On-line control customization for Uninhabited Air Vehicles (UAVs) was the focus of our efforts
during the five year program. Advances in on-line control customization have enabled a dramatic
increase in military effectiveness by increasing the level of autonomy in UAVs, probability of mission
success and survivability, expanding the range of UAV missions while reducing air vehicle fatigue
and life cycle costs. The benefits to the military include use of extremely aggressive maneuvering
of UAVs to achieve mission directives, accommodation of goal changes in real-time, life-extending
control, a reduced need for hardware redundancy while allowing more complex control strategies
without increased software production and verification costs. A key component of our research was
the integration of our algorithms into the Open Control Platform (OCP) software infrastructure.

During the five year program advances were made in the areas of modeling, receding hori-
zon control (RHC), linear parameter-varying (LPV) control, fault detection, reconfiguration, any-
time control algorithms and real-time control interfaces and algorithms. The following is a list of
UMN/UCB accomplishments under this contract.

• Development of a high fidelity model of a high performance, fighter aircraft, based on NASA
Technical Paper 1538 [1]. This model served as the baseline fixed-wing UAV for the SEC
program and was released as part of the OCP distributions. The nonlinear simulation included
a baseline flight controller and was fully integrated into the OCP environment. This work
was part of our collaboration with Honeywell Technology Center and Northrop Grumman.

• Early in the SEC program it was important to seamlessly integrate the OCP environment
with Matlab and Simulink. UMN led this integration effort which included the networking of
Matlab/Simulink processes across computer platforms.

• Developed a quasi-LPV model of the high performance nonlinear aircraft model. A sys-

5

tematic approach to transforming nonlinear, fixed wing, aircraft equations of motion into
a quasi-LPV model was developed that is applicable to all similar UAVs. Development of
an accurate quasi-LPV model of a UAV was important for LPV controller synthesis and
RHC/LPV optimization.

• Developed nonlinear receding horizon controllers (RHC) based on LPV control Lyapunov
functions for the high fidelity fixed-wing UAV.

• Developed numerically efficient algorithms to solve the nonlinear aircraft RHC control prob-
lem using NPSOL. As part of this effort, the trade-off between accuracy of solution and
computational expense was investigated to address real-time computational constraints and
issues. This led to the real-time implementation of nonlinear RHC for the longitudinal axis
of the high fidelity fixed-wing UAV model. This represented a factor of 400 speedup relative
to previous simulation results.

• On-line, linear system-theoretic algorithms were developed to handle variable length preview
information. The length and accuracy of preview information provided by the mission planner
allows on-line adaptation of the flight control system. These algorithms make optimal use
of sensor and command preview information which led to an increased responsiveness of the
UAV vehicle.

• Theoretical results were derived on the stability and performance enhancement of receding
horizon control with a disturbance rejection objective, under the hypotheses: an existing
controller is available and the disturbance, over the upcoming horizon length, is known.
These results showed how an existing controller, preview of disturbances and commands and
on-line optimization could be used to improve the disturbance rejection and tracking accuracy
properties of the design.

• Linear matrix inequalities (LMIs) were used extensively in the synthesis and analysis of con-
trollers for the SEC program. To efficiently solve these equations, semi-definite programming
software (SDP) solvers, e.g. the LMI Matlab Toolbox (LMILab), are used. Development of
fast, efficient and accurate SDP solvers is an active research area in the applied math, opti-
mization and the operations research community. Many freely available, public domain SDP
solvers exist and most take advantage of sparsity in the LMI constraints, offering perhaps
significant decreases in computation time required to solve SEC control problems. Each offer
different algorithms to solve the LMI optimization. A Matlab based translation code was
developed to translate LMI problems formulated in LMILab to other freely available SDP
solvers. This allows LMI problems formulated within LMILab to be solved with six freely
available SDP solvers. This code was made available to all researchers through a link on the
UMN SEC webpage.

• Formulated an LMI search method for non-quadratic sum-of-squares polynomial Lyapunov
functions that simultaneously stabilizes a switched linear system. For the given class of
switched linear systems, it was shown that one needs to only search over homogeneous forms
for stabilizing solutions. A possible application of this result is to prove stability of a system
where an on-line supervisor can abruptly switch between controllers while the plant is running.

• Development of anytime control algorithms for linear systems with guaranteed computation
time. These algorithms allow controllers to taken advantage of dynamic scheduling where
allotted CPU time can vary. Anytime control algorithms incorporate trade-offs between

6

performance and CPU time. A smooth switching scheme was used which ensures smooth
transitions of states and outputs as well as guarantees stability.

• Development of decentralized receding horizon control schemes for cooperative control of
multi-vehicle formations. A new framework is formulated based on constrained optimization
techniques to address this challenging problem. Special emphasis is put on decentralization,
which makes the proposed methods implementable in practice. The optimal control frame-
work and the proposed approach holds the promise to enable control design in a systematic
way for real-time decentralized collision-free vehicle formation maneuvers, where the design
cycle and the development time are not prohibitive and scalable. This framework allows
different maneuvering objectives to be achieved by changing appropriate terms in the cost
function (e.g. formation keeping and formation joining). It is immediate to include vehicle
input and state constraints as well as to use multi-input multi-output linear vehicle models.
Controller synthesis and theoretical development make use of algorithms that rely on the most
advanced results in the field of computational geometry, mathematical programming solvers,
constrained optimal control, invariant set computation and hybrid systems. These techniques
allow the formulation of constrained optimal control problems and the computation of their
equivalent look-up tables, which are easily implementable in real-time on a specific hardware
platform.

• Co-edited with Tariq Samad at Honeywell the IEEE Press volume entitled ”Software Enabled
Control: Information Technologies for Dynamical Systems.” [2] This volume covers advances
in software enabled control or “control/software co-design.” Topics covered in this volume
included Software Architectures for Real-Time Control, On-Line Modeling and Control, and
Hybrid Dynamical Systems. It was published in March 2003.

• Developed a RHC programming interface (API) for the OCP. This provided a standard reced-
ing horizon control interface with the OCP for all investigators. The RHC API was optimized
to work with the OCP running under Windows and QNX operating systems and implemented
all required optimization routines to solve the RHC algorithms in real-time. As part of the
RHC API, access to the real-time, adaptive resource manager (RT-ARM) was supported.
This allowed implementation of the RHC algorithms as anytime processes. This was a major
accomplishment and the first time RHC algorithms have been implemented in this manner.
This implementation was also flight tested as part of the Boeing SEC fixed-wing final exam
experiments.

• Developed, synthesized, implemented and tested observer-based fault detection (FD) filters
and threshold functions on the Boeing T-33 final exam platform. The FD algorithms were
used to detect actuator faults in real-time as part of the final exam scenario. The information
derived from the FD filter was used to update the on-line model of the T-33 aircraft. That
model is used by the RHC algorithms for tracking control and trajectory generation.

• Synthesized, implemented and tested on-line RHC trajectory tracking algorithms for the Boe-
ing T-33 final exam platform. The RHC algorithms continuously re-optimized and tracked
trajectories in real-time subject to the on-line T-33 model, environment, maneuvering capa-
bilities and current operational constraints. Both linear and linear parameter-varying RHC
algorithms were implemented and flight tested in real-time under QNX on the Boeing T-33
final exam platform.

7

The subsequent chapters of this final technical report summarize contributions that the Uni-
versity of Minnesota / University of California, Berkeley team accomplished as part of the DARPA
SEC Fixed Wing Capstone Flight Demonstration. The flight tests were performed at NASA Dryden
in Edwards, CA during the two-week period of June 14–25, 2004. Benchmark and hardware-in-
the-loop simulation results are presented and evaluated together with data from the actual flight
tests.

8

1.2 Publications

The following publications resulted from this contract.

Theses

• R. Bhattacharya, “Transformation of Linear Control Algorithms into Operationally Optimal
Real-Time Tasks,” Ph.D. Thesis, University of Minnesota, December 2002.

• K. Zou, “Application of Nonlinear Receding Horizon Control to the F-16 Aircraft,” Master’s
Thesis, June 2002.

• R. Ingvalson, “H∞ Fault Detection Filter Design for a Closed-loop System,” Master’s Thesis,
May 2004.

• Z. Jarvis-Wloszek, “Matrix Representations of Polynomials: Theory and Applications,” Mas-
ter’s Report, May 2001.

• S.M. Estill, “Real-time Receding Horizon Control: Application Programmer Interface Em-
ploying LSSOL,” Master’s Report, December 2003.

Journal Publications

• R. Bhattacharya and G.J. Balas, “Anytime control algorithm: A model reduction approach,”
AIAA Journal of Guidance, Dynamics and Control, accepted for publication, May 2003.

• Z. Jarvis-Wloszek, D.O. Philbrick, M.A. Kaya, A.K. Packard and G.J. Balas, “Control with
disturbance preview and online optimization,” IEEE Transactions on Automatic Control, vol.
49, no. 2, 2004, pp. 266-270.

• J. Bokor and G.J. Balas, “Detection filter design for LPV systems – A geometric approach,”
Automatica, vol. 40, pp. 511-518, March 2004.

• R. Bhattacharya, G.J. Balas, M.A. Kaya and A.K. Packard, “Nonlinear receding horizon
control of the F-16 aircraft,” AIAA Journal of Guidance, Dynamics and Control, vol. 25, no.
5, 2002, p. 924-931.

• R. Bhattacharya and G.J. Balas, “An algorithm for computationally efficient digital imple-
mentation of LTI controllers,” Automatica, submitted for publication, October 2002.

• R. Bhattacharya and G.J. Balas, “Implementation of online control customization within the
Open Control Platform, ” Software-Enabled Control: Information Technology for Dynamical
Systems, IEEE Press, Wiley-InterScience, T. Samad and G.J. Balas, Editors, ISBN 0-471-
23436-2.

Books

• Software-Enabled Control: Information Technology for Dynamical Systems, IEEE Press,
Wiley-InterScience, T. Samad and G.J. Balas, Editors, ISBN 0-471-23436-2, May 2003.

9

Referred Conference Publications

• H. Rotstein, R. Ingvalson, T. Keviczky and G.J. Balas, “Input-Dependent Threshold Function
for an Actuator Fault Detection Filter,” 16th International Federation of Automatic Control
World Congress, Prague CZ, July 2005, submitted Oct 2004.

• F. Borrelli, T. Keviczky, G.J. Balas, G. Stewart, K. Fregene and D. Godbole, “Hybrid Decen-
tralized Control of Large Scale Systems,” Hybrid Systems: Computation and Control, Zurich,
Switzerland March 2005.

• F. Borrelli, T. Keviczky and G.J. Balas, “Collision-free UAV formation flight using decen-
tralized optimization and invariant sets,” IEEE 2004 Conference on Decision and Control,
Paradise Island, Bahamas, Dec. 2004.

• T. Keviczky, F. Borrelli and G.J. Balas, “Hierarchical Design of Decentralized Receding
Horizon Controllers for Decoupled Systems,” IEEE 2004 Conference on Decision and Control,
Paradise Island, Bahamas, Dec. 2004.

• T. Keviczky, F. Borrelli and G.J. Balas, “A Study on Decentralized Receding Horizon Control
for Decoupled Systems,” 2004 American Control Conference, Boston, MA.

• Y. Ketema and G.J. Balas, “Agent–localized sufficient conditions for formation stability,”
IEEE 2003 Conference on Decision and Control, Maui, HI December 2003.

• T. Keviczky and G.J. Balas, “Software enabled flight control using receding horizon tech-
niques,” AIAA Guidance, Navigation and Control Conference, August 2003, AIAA-2003-
5671.

• T. Keviczky and G.J. Balas, “Receding horizon control of an F-16 aircraft: a comparative
study,” European Control Conference, September 2003.

• J. Bokor, Z. Szabo and G.J. Balas, “Inversion of LPV systems and its application to fault
detection,” IFAC SAFEPROCESS Conference, Washington D.C. November 2003.

• R. Bhattacharya and G.J. Balas, “An algorithm for computationally efficient digital imple-
mentation of LTI controllers,” American Control Conference, June 2003, vol. 2, pp. 1165-
1170.

• Y. Ketema and G.J. Balas, “Formation stability with limited information exchange between
vehicles,” American Control Conference, June 2003, vol. 1, pp. 290-295.

• R. Bhattacharya and G.J. Balas, “Implementation of control algorithms in an environment
of dynamically scheduled CPU time,” AIAA Guidance, Navigation and Control Conference,
August 2002, AIAA-2002-4758.

• J. Bokor and G.J. Balas, “Detection filter design within the LPV framework,” Proceeding of
19th Digital Avionics Systems Conference, Philadelphia, PA, October 2000, GA3/1-5, Volume
2.

• R. Bhattacharya, G.J. Balas, M.A. Kaya and A.K. Packard, “Nonlinear receding horizon
control of F-16 aircraft,” 2001 American Control Conference, Alexandria, VA, June 2001, pp.
518-522.

10

Chapter 2

Real-time distributed control: the
Open Control Platform

The growing complexity of control applications requires a software infrastructure that supports the
developer in leveraging from inter-process communication, operating systems, the implementation
details of tasks scheduling, and low level device control software in a seamless manner. This
enables the developer to concentrate all his design efforts on the overall system behavior. One
of the ultimate goals of the DARPA Software Enabled Control program was the development
of the Open Control Platform, which is a software technology supporting real-time distributed
control application development and implementation. This chapter explores the main features and
underlying technology of the OCP.

2.1 Software enabled control systems architecture

Before concepts like software enabled control systems were formalized, control research was pro-
ceeding down a path determined by old views of the computational and systems context. Normal
assumptions were: highly constrained sensing and actuation, limited processing and communica-
tions resources, computational intractability of large or even moderate state spaces, poorly char-
acterized and unpredictable switching effects, and target systems that operated independently and
without interaction with other systems [3].

Control theory and engineering have a remarkably successful history of enabling automation,
and information-centric control is by now pervasive. Yet today’s controllers are conservative: being
products of over-design, they often yield under-performance. Their designs are statically optimized
for nominal performance, around simplified time-invariant models of systems dynamics and a well-
defined operational environment. They also fail in unexpected circumstances: control vulnerabilities
that arise in extreme environments are frequently ignored. Systems modifications (reconfigurations,
damage, failure) may demand large changes in the controller, perhaps on-line during operation.

With the advent of networked sensors and actuators, distributed computing algorithms, and
hybrid control, the term “systems dynamics” has taken on a whole new meaning. Whereas it used to
bring to mind only ordinary differential equations with perhaps some parameter uncertainty, noise,
or disturbances, we can now include dynamic tasking, sensor and actuator reconfiguration, fault
detection and isolation, and structural changes in plant model and dimensionality. Consequently,
the ideas of system identification, estimation, and adaptation must be reconsidered.

This new perspective of the world also requires new models for control software implementation,

11

avoiding to think of the software as simply the language of implementation. Control code (partic-
ularly, embedded control code) is a dynamic system. It has an internal state, responds to inputs,
and produces outputs. It has time scales, transients, and saturation points. It can also be adaptive
and distributed. As a control engineer knows, if we take this software dynamic system and couple
it to the plant dynamics through the sensor and actuator dynamics, we have a composite system
whose properties cannot be decided from the subsystems in isolation.

Thus, when we put an embedded controller on a hardware platform, we have not only a coupled
system with significant off-diagonal terms, but a distributed one as well. To borrow from the com-
puter engineering terminology, we have a problem in control/software co-design. The control design
is evolving through the development of hybrid optimal control, reachability analysis, multiple-model
systems, and parameter-varying control. The software is being facilitated by distributed computing
and messaging services, distributed object models, real-time operating systems, and fault detection
algorithms.

2.2 Open Control Platform overview

The Open Control Platform (OCP) provides an open, middleware-enabled software framework and
development platform for control technology researchers who want to demonstrate their technology
in simulated or actual embedded system platforms [4]. The middleware layer of the OCP provides
the software layer isolating the application from the underlying target platform. It provides services
for controlling the execution and scheduling of components, inter-component communication, and
distribution and deployment of application components onto a target system. The embedded system
domain of particular interest to the SEC program is that of uninhabited aerial vehicles (UAVs),
however the software architecture of the OCP leaves the possibility of applications in other domains
open.

The goals of the OCP are the following:

• Provide an open platform for enabling control research and technology transition.

• Support dynamic configuration of components and services.

• Provide a mechanism enabling the transition between execution and fault management modes
while maintaining control of the target systems.

• Allow for coordinated control of multiple target systems.

• Provide a software system infrastructure that is isolated from a particular hardware platform
or operating system.

The major components of the OCP software are summarized in the list below.

• A middleware framework based on RT-CORBA [5]. Provides the mechanism for connecting
application components together to control their execution.

• A simulation environment. Allows the embedded application to execute and be tested in a
virtual world, reading simulated sensors and driving simulated actuators on plant models.

• Tool integration support. Provides linkages to useful design and analysis tools such as Mat-
lab/Simulink and Ptolemy II, allowing controller designs realized in these tools for easier
transition to embedded targets.

12

• Controls API (Application Programming Interface). Provides a controls-domain friendly look
and feel to the OCP. This is accomplished by using familiar terminology and simplified pro-
gramming interfaces.

A primary motivating factor in implementing a middleware-based architecture was the promise of
isolating the application components from the underlying platforms. This allows for a more cost-
effective path for implementing common software components that could be used across different
product lines and could be re-hosted onto evolving embedded computing platforms.

2.3 The OCP infrastructure technology

2.3.1 RT CORBA core

The OCP middleware is written in C++. It includes an RT CORBA component [5], which leverages
the ACE and TAO products developed by the distributed object computing (DOC) research team
at Washington University. TAO provides real-time performance extensions to CORBA.

2.3.2 OCP features

Real time publish/subscribe Communications among the components which use the RT CORBA
infrastructure make use of the so called CORBA Event Channel (EC). The power of the EC
can be seen from its data distribution capabilities: the components transferring data, includ-
ing data suppliers that publish data and data consumers that subscribe to data, can either
be placed in the same computer or process, or distributed onto other processes or computers,
all without a change to the components source code. Only configuration data, specifying
where the components reside, needs to be updated to implement a working redistributed
architecture.

Naming services The naming service provides a mechanism for getting a reference to a com-
ponent. This allows an application to store and retrieve references to components that are
independent of address space and are therefore portable across processes.

2.3.3 Middleware services

The OCP provides a set of services in addition to the standard services provided by the CORBA
specification, which gives additional real-time performance enhancements as well as higher level
services (e.g. event service and replication utilities, etc.). This forms the application interface to
the underlying middleware and serves two purposes:

• It provides an interface that isolates the application from the details of the underlying RT
CORBA implementation and simplifies the application interface to the lower level services.

• It provides a clean interface for extending the base features provided by the controls API.

Resource management The OCP’s resource management component provides mechanism for
controlling resource in a mode-specific way. This is an essential element for supporting modes
in hybrid systems. The designer specifies quality of service (QoS) information, which is an
input into the resource management component to control the run-time execution of the OCP.
The OCP resource management component is an extension of the Honeywell Labs real-time

13

adaptive resource management (RT-ARM) capability [6]. The resource management com-
ponent is responsible for partitioning the system resources based on the mode of execution.
It performs a sort of meta-scheduling task for the OCP with the assistance of the TAO’s
scheduling component [7, 8]. The resource management component adjusts rates of execu-
tion based on utilization information from the scheduling component and notifies application
components when rates have been adapted. These components, that are scheduled with the
adapted rates, can then modify their behavior based on the assigned rate (e.g. they can adjust
controller gains).

Hybrid systems support A hybrid system is a system that combines both continuous and event
driven elements. For example, in a typical flight controls systems, the lower levels of the ar-
chitecture tend to be designed as continuous-time controllers; when moving to higher levels of
the architecture, controllers tend to be of the event driven supervisory type. These controllers
are designed to function in one or more modes. Adding mode support to the OCP addresses
a set of new challenges especially when controlling a UAV:

1. The OCP must support stable operation of the continuous (physical) system during
mode changes.

2. Mode changes require that the system be reconfigured at run-time.

3. To better utilize limited computing resources, the OCP must support adaptation of
resources in a mode-specific way.

2.3.4 OCP Controls API

As described earlier, the OCP provides several advanced mechanisms such as dynamic scheduling
and resource management. To help hide the complexity from the controls designer, the OCP
includes a control designer abstraction layer above the RT CORBA implementation. This API
allows the designer to focus on familiar tools and terminology while enabling the use of RT CORBA
extensions. This help provides a consistent view of the system that is meaningful to the control
designer. In order to accomplish this task, the Controls API has been generalized as a combination
of a high level description language and a simple programming interface. The designer expresses
the characteristics of the system in familiar terms to form a high level description of the system.
This description is then processed to populate a component registry which is used by the OCP. In
the following sections the terminology associated with the Controls API is briefly explained.

Signals

The distributed control application design starts from the definition of the signals flowing through
the whole application. A signal represents a set of variable definitions (name, type and meaning),
which is used to connect the components of the applications via their ports. Signals represent the
types of data flowing between the components.

Components and their behaviors

The concept of a component is already a familiar term to the control system designer. A control
system is conceptually made up of components which have hardware and software semantics associ-
ated with them. These components communicate by reading and writing signals between connected
ports. The OCP Component is a software entity that combines one or more legacy components

14

(algorithms or piece of code created prior the introduction of the OCP) into an executable entity.
The OCP components could have a one to one mapping or could combine many legacy compo-
nents. OCP components form the minimum encapsulated entities that are manipulated through
the Controls API.

Components often model entities in the physical or modeled world like a continuous or discrete
controller, a supervision controller, or a plant model. An OCP component is classified according
to the following guidelines:

• Loosely coupled (i.e. can execute in parallel).

• Potential distribution boundary (i.e. component may reside on another processor in a multi-
processor system).

• Component choices may also be driven by Quality of Service (QoS) characteristics.

• Tightly coupled and must run at the same rate as other components, based on model of
execution.

• Hard Real-Time.

• Soft Real-Time.

Components consist of Ports and Behaviors. The following sections describe the relationships
between components, ports, and behaviors.

Ports

Input ports and output ports provide a wrapper for specifying Quality of Service (QoS) information
for a component. Besides the Port Name, which provide an entry point for the component, and
a Data Type, which specifies the type of signal sent or received, a port defines the Execution
Information needed to run the component:

• Execution category: periodic, aperiodic or anytime.

• Execution time: worse case execution time.

• Deadline: deadline from the start of the frame.

• Rate set: the valid set of rates that the entry point can execute in a particular Mode. The rate
defines the frequency at which the port scans the signal buffer seeking for new data to input
to the component, or vice-versa the rate at which the data are sent out of the component.

Behaviors

Behaviors provide a mechanism for allowing user customization of the types of activities conducted
by a component. This allows the user to provide meaningful names to user defined code which will
be called by the OCP. The behavior specification syntax also provides a convenient mechanism for
specifying relationships between input and output ports. An OCP component may be statically
provided by more than one behavior, but at run-time – according to the needs of the control
designer – only a subset can be made active. More than one component can read data from the
same input port, but an output port can be assigned only to one behavior.

15

Processes

Processes provide a mechanism for defining how components are deployed in the system. Compo-
nents are mapped to specific processes of the embedded system. Instances of components defined
to be part of a process are unique across all processes in the system. All components that will
ever exist in the system must be specified in the processes section. Specifying a component in the
processes section does not mean that the component has to be created at startup, but the dynamic
behavior is achieved by creating and destroying components at runtime. QoS information must be
specified by the components of each process. Component interconnections must be specified for
each process.

A graphical representation of the internal organization of an OCP process built of several
components is reported in Figure 2.1, while a whole control application in terms of processes
running on different machines is reported in Figure 2.2.

2.4 A new concept in real-time control: the anytime task

Most control systems built today are resource-limited. This is especially true for embedded control
systems in mobile platforms due to constraints of size, weight, space or power. Great effort is
expended in engineering solutions that provide jitter-free periodic execution while meeting hard
real-time deadlines in systems with high CPU utilization.

Mission-critical command and control is a resource-constrained yet multifunctional enterprise,
requiring simultaneous consideration of a variety of activities such as closed-loop control, measure-
ment and estimation, planning, communication, and fault management. On the same computa-
tional platform, a large number of tasks must execute.

Anytime or incremental algorithms are particularly well suited for implementing tasks that
must adapt their resource usage and quality of service [9, 10]. In an anytime algorithm, the quality
of the result produced degrades gracefully as the computation time is reduced. In particular, such
algorithms may be interrupted anytime and will always have a valid result available. If more
computation time is provided, the quality of the result will improve. Example of applications that
could benefit from dynamic resource management include:

• Automatic target recognition (ATR) systems which rely on distributed pipelined processing
[11].

• Intelligent mission planning software in which processing time is used to synthesize an im-
proved control strategy [12].

• Integrated vehicle health monitoring software based on computationally intensive system
identification methods to detect and recover from fault conditions.

• Real-time trajectory optimizers that can dynamically replan routes and trajectories of a fleet
of UAV [13].

2.4.1 Resource optimization

At a given instant, the set of currently executing models and tasks have to adapt to both internal
and external triggers to make optimal use of the available computational resources. Adaptation
among the executing control tasks occurs according to the following steps:

16

Behaviour 5

Behaviour 2

Behaviour 3

Behaviour 4 Behaviour 6

Behaviour 5

Behaviour 2

Behaviour 3

Behaviour 4 Behaviour 6

Component A

Behaviour 1

Component B

Behaviour 1

Process

Scheduler

Figure 2.1: The internal logical structure of a single process.

1. Based on the computed or observed state, the criticality, completion deadlines, and computing
requirements for the control tasks are determined. These values may be statically determined
based on the mission mode or computed on-line by a higher-level planning system. The
deadlines we refer to here generally correspond to response times derived from mission-level
requirements, such as the need to compute a new trajectory prior to reaching a weather-system
or a pop-up threat.

2. The task scheduler makes CPU computing resources available to tasks based on their critical-
ity, computing requirements, and a schedulability analysis. Resources are measured in terms
of CPU utilization and computed as execution rate × execution time per period.

3. Control tasks execute within their allotted time and are subject to preemption if they attempt

17

Figure 2.2: Software enabled control architecture functional diagram.

to consume more than their allowed resources. Tasks adapt to meet application constraints.
The anytime scheduler provides tasks with the information necessary to adapt their compu-
tation to the resource available. The application tasks may need to balance the competing
demands of deadlines and accuracy, given the resource made available to them. These can
adapt their computation time to meet the deadlines, or adapt the deadlines to meet the
assigned computation times, by including more or fewer algorithm iterations or sensor data
sources, adjusting model fidelity, and using longer or shorter planning horizons. However, the
analysis performed in step 1 ensures that the most critical tasks for the current operational
scenario have the highest claim on resources.

In principle, anytime algorithms can make effective use of any amount of processing time that is
available.

18

2.4.2 Anytime task scheduling

Service requirements for the anytime tasks are specified by an application-level policy task called
the Anytime CPU Assignment Controller (ACAC). The ACAC is responsible for assigning a weight
to each anytime task that indicates its relative CPU assignment. This can be based on deadlines,
mission scenario, or other factors. Selection of the appropriate weight is essentially a control
activity that can be used to optimize overall performance. Anytime tasks are modeled based on
the following characteristics:

1. They are continually executing iterative algorithms that are not periodic. Examples include
algorithms that continually refine their result (imprecise computation) and that produce new
outputs based on new inputs.

2. Computation times and deadlines for each iteration of the algorithm are an order of magnitude
larger than the basic periodic rate.

3. The computation time for each iteration is variable and data-dependent. Furthermore, it is
possible for the algorithm to adapt its computation time based on the resource allocated.

Scheduling anytime tasks opens up some interesting issues. For example, since an anytime task
may be continually executing, it cannot properly be modeled as a periodic task with properties as
desired by rate-monotonic analysis (RMA). In particular, such tasks will all have to be modeled as
having a worst case utilization of 1.0 thus rendering any RMA analysis meaningless. In addition, as
mentioned earlier, the allocation of the CPU time is now a control function. However, the problem
of designing control algorithms to assign computation time for various functional algorithms is
poorly understood. In the short term, these “control” algorithms will necessarily be heuristic in
nature.

Each anytime task is admitted to the system via a negotiator that can determine whether there
is sufficient time in the schedule to accommodate the new task. The anytime scheduler then runs
the anytime tasks for an amount of time proportional to its assigned weighting. All anytime task
will run within a fixed periodic time block allocated by the system.

It is important that anytime algorithms coexist with the periodic tasks in the control system.
In order to achieve this coexistence, the anytime task scheduler executes as a periodic task within
the overall control system with period T and execution time C (see Figure 2.3). This periodic
task is assumed to run at the system clock rate and can be modeled as a periodic task for rate
monotonic analysis. The scheduler allocates a fixed fraction C

T of the overall CPU time for the use
of the anytime tasks, and this allocation is then subdivided based on the allocation of individual
anytime tasks.

19

Major frames

Clock ticks

tasks

Anytime

tasks

Anytime

Minor frames

Real time tasks Real time tasks

Figure 2.3: The coexistence between anytime tasks and real-time tasks. To achieve this coexistence
the anytime scheduler is istantiated as a periodic real-time task and handled by the s.o. scheduler.

20

Chapter 3

System Identification

3.1 DemoSim description

This section provides a brief description of the Software Enabled Control (SEC) program DemoSim
open vehicle simulation model, based on the manual included in OCP release 2.6.6.

DemoSim is a 6DOF flight model of a fixed wing vehicle equipped with an autopilot, which
accepts guidance level input commands and performs waypoint tracking. The flight characteristics
modeled are those of no actual military vehicle, although they model a flight test vehicle which
was configured for SEC program flight demonstrations. The dynamic model and characteristics of
the flight test vehicle were modeled in MATRIXx and autocoded into a Windows executable file,
which could be distributed among the technology developer teams without compromising Boeing
proprietary or otherwise sensitive models and data. The DemoSim open vehicle simulation model
has been developed for researcher experimentation leading up to flight testing within a flight test
vehicle specially configured for SEC experimentation.

The DemoSim executable allows for data-file driven experimentation with the model as well
as control of DemoSim via the so-called UAV Control Interface, which could be used either in
a Matlab/Simulink test environment, or within the Open Control Platform that houses the the
final flight code implementation in C/C++. Due to the executable nature of the model, DemoSim
represents a nonlinear dynamic black-box model of the test aircraft controlled by an autopilot.

The DemoSim input data files include the following:

• a required file specifying vehicle and environment initialization data

• a required file specifying a waypoint plan for the vehicle

• an optional file specifying time-triggered invocations of trajectory commands supported in
the SEC open UAV Control Interface for data-file driven experimentation

From a timing perspective, DemoSim can be executed in one of two modes:

• pseudo real-time mode, where a second of simulated time will take approximately one second
wall clock time

• “turbo” mode, where simulation time will advance as fast as the computational resources on
the PC allow

For the purpose of data-file driven experimentation, DemoSim execution is controlled with
commands and command line options in a DOS window. Simulation inputs are defined in ASCII
input text files and with DOS command line options. Simulation outputs include the following:

21

• an ASCII log file capturing numerous parameters for every 10 milliseconds of simulated time

• messages logged to the DOS window which invoked the DemoSim execution, providing feed-
back on waypoint switching and invocations of trajectory commands defined in the SEC open
UAV Control Interface

There are three files that can be used as inputs into the simulation to control DemoSim. Two
of the files are required and the third is optional and indicated through the command line. The
required files (veh init.dat and wp plan.dat) specify the initial state of the vehicle and an initial
waypoint plan. The optional file (traj cmd.txt) can be used to send trajectory control commands,
as defined in the SEC open UAV Command Interface, at specific instances in simulated time.

Early DemoSim distributions simulated the behavior of a throttle-handling pilot by applying a
quantizer-like effect on speed tracking. Due to numerous requests from the technology developer
teams, this feature became optional in later versions allowing for more accurate modeling and
evaluation of control algorithms.

The DemoSim open vehicle model could be controlled by the following allowable commands,
which had to be either pre-specified in a structured ASCII text file for data-file driven simulations, or
commanded in a Matlab data structure in “real-time” for use within the Simulink test environment.

MaintainCurrentHeadingSpeedAltitude This command has no parameters.

SetAndHoldAltitude This command has two parameters representing the commanded altitude
in feet and specifying the desired altitude rate in feet per second.

SetAndHoldSpeed This command has two parameters. The first one is the unit specification,
which could be selected from

• Millimach

• True Airspeed (ft/s)

• Ground Speed (ft/s)

• Knots

The second parameter is the actual commanded value.

SetAndHoldTurnRate This command has one parameter, which is the commanded turn rate in
radians per second.

SetAndHoldHeading This command has two parameters. The first one is the desired heading
in radians, while the second represents the direction of turn to obtain the desired heading
chosen from the following list

• Left

• Right

• Shortest

FlyToWaypoint The only parameter of this command is the number of the desired waypoint to
reach. The list of waypoints is specified in an ASCII input file.

22

To assist the technology developer teams in the testing and development of their control appli-
cations, a single and multi-vehicle MATLAB Simulink environment was provided by Boeing. This
environment establishes interfaces to DemoSim and the UAV Control Interface. The UAV Control

Simulink block provides the interface to the UAV Control Interface application. The control inputs
are passed on to the UAV Control Interface to be processed. The UAV Control Interface then
applies the command to the DemoSim executable model, which is running as a separate process.
The DemoSimControl Simulink block provides an interface for cycling the DemoSim model and
returning the vehicle state. For each Simulink simulation step (20 Hz), the DemoSim model will
be commanded to cycle 5 times (100 Hz). The output of this block is an array of type double and
a size of 15 with the format shown in Table 3.1.

Data entry Variable Units

1 Current Waypoint Index Integer

2 DemoSim Time Milliseconds

3 Latitude Radians

4 Longitude Radians

5 Baro Corrected Altitude Feet

6 WGS-84 Altitude Feet

7 Velocity North Feet Per Second

8 Velocity East Feet Per Second

9 Velocity Up (Altitude Rate) Feet Per Second

10 Ground Speed Feet Per Second

11 True Airspeed Feet Per Second

12 Heading Degrees

13 Pitch θ Degrees

14 Roll φ Degrees

15 Yaw ψ Degrees

Table 3.1: DemoSim output variables available in the Simulink test environment.

In addition to the signals available in Simulink, the DemoSim simulation posts data to a log file
while it is executing. A new output file is created by each DemoSim execution and logs data every

23

10 milliseconds of simulation time. Thirty-eight different variables are logged, including signals
that are not available on the final test platform. Table 3.2 summarizes the variables logged in the
DemoSim output file.

Column Variable Units

1–15 same as in Table 3.1

16 Next Waypoint Index Integer

17 Calibrated Airspeed Feet Per Second

18 Mach Dimensionless

19 Angle of Attack α Degrees

20 Sideslip β Degrees

21 Roll Rate P Radians Per Second

22 Pitch Rate Q Radians Per Second

23 Yaw Rate R Radians Per Second

24 North Wind Velocity Feet Per Second

25 East Wind Velocity Feet Per Second

26 Down Wind Velocity Feet Per Second

27 Vehicle North Wind Estimate Feet Per Second

28 Vehicle East Wind Estimate Feet Per Second

29 Vehicle Down Wind Estimate Feet Per Second

30 Flight Path Angle γ Degrees

31 X-axis Acceleration Feet Per Second Squared

32 Y -axis Acceleration Feet Per Second Squared

33 Z-axis Acceleration Feet Per Second Squared

34 Most Recent Set and Hold Altitude Command (Baro Corrected Altitude) Feet

35 Most Recent Set and Hold Maximum Altitude Rate Command Feet Per Second

36 Most Recent Set and Hold Heading Command Degrees

37 Most Recent Set and Hold Speed Command Last Commanded Speed Reference

38 Most Recent Set and Hold Turn Rate Command Radians Per Second

Table 3.2: DemoSim log file output variables.

For more details about the DemoSim model the reader is referred to the documentation that

24

comes with the latest OCP release.

3.2 Identification for RHC

This section is a summary of identification experiments related to the DemoSim open vehicle
simulation model conducted at the University of Minnesota. The purpose of system identification
is to provide a LTI MIMO description of DemoSim at a single representative flight condition that
can be used for design and testing of control technologies developed for the DARPA SEC Fixed-
Wing Demonstration.

Identification methods used in the experiments as well as modeling decisions that were made
during the identification process are highlighted along with alternative subsystem models of different
orders for certain input-output channels. This summary assumes that the reader is familiar with
the DemoSim executable model.

3.2.1 Input-output selection

The T-33/UCAV final testbed will accept guidance-level commands from technology demonstrator
software. The formulation of the Receding Horizon Control (RHC) scheme that was proposed by
our team would suggest the selection of velocity, turn rate and flight path angle as the command
signals. This selection of guidance-level commands is not unique. Since not all of these commands
can be accommodated by the software on the final testbed, Table 3.3 lists the eventual command
inputs that were selected (see corresponding explanation and remarks in the following subsection).
The selection of the three output variables shown in Table 3.3 was governed by the objective of the
proposed RHC scheme and its cost function formulation based on an LTI MIMO DemoSim model.

Inputs Outputs

Vcmd V

χ̇cmd χ

ḣcmd γ

Table 3.3: Selected inputs and outputs of the LTI MIMO Demosim model

3.2.1.1 Remarks on input-output selection

1. It is important to keep in mind during the interpretation of identification results and the
controller design/tuning process that velocity tracking will not be accomplished by automatic
control in the final tesbed. The pilot will be cued by a numerical display about the desired
groundspeed. Any time-delay, dynamics or other phenomena that could be associated with
the pilot in the velocity loop were not included in the identification experiments.

2. DemoSim provides the ability to track either a desired heading or a desired turn rate for
lateral guidance. However, turn rate is not available as a measurement on the testbed, which
motivated the selection of heading as an output for this channel. There were two main reasons

25

for selecting turn rate as the command input for lateral guidance. One comes from the RHC
problem formulation and the assumption that the typical trim flight conditions of the aircraft
would be straight and level flight, or steady level turn. Both require a constant turn rate
control command in steady state, which is more beneficial from certain numerical aspects
of the optimization involved in the control solution. Another reason for choosing the turn
rate tracking autopilot option of DemoSim was that the heading control loop of DemoSim
interprets changes in the commanded heading as steps, which results in much more aggressive
turning of the aircraft than might be desired. This induces significant cross coupling into
other outputs and tends to saturate maximum bank angle maneuvering limits. Commanding
desired turn rate gives us more control over how much we intend to approach these limits and
at the same time reduces cross coupling to other outputs.

3. Even though commanding flight path angle of the aircraft would be more desirable from the
aspect of the RHC formulation, DemoSim does not have this capability. Therefore, instead
of commanding flight path angle, we have to be content with commanding a climb rate that
corresponds to a desired flight path angle using some assumption or measurement on the
aircraft’s velocity. The climb rate – flight path angle input-output channel of DemoSim also
has some peculiarities, which influenced the selection of command inputs for the identification
process. Based on previous experiments with DemoSim and a confirmative answer from Boe-
ing on the issue, we concluded that commanding altitude rates smaller than approx. 0.5 ft/s
disables the altitude control loop and results in a diverging altitude trajectory. Using larger
altitude rate commands avoids this problem, however there are significant steady state errors
in altitude rate tracking that depend on the sign of the command signal (i.e. whether ascent or
descent was commanded). These issues with the altitude rate tracking controller of DemoSim
would make it very difficult to identify and control this channel directly. As an alternative
approach, we decided to use the altitude tracking controller of DemoSim (by commanding
sufficiently high altitude rates, since hcmd and ḣcmd have to be issued simultaneously). The
RHC controller still provides a solution in terms of ḣcmd, but it is fed through an integrator to
drive the altitude control loop of DemoSim. Based on these considerations, identification was
performed assuming an altitude command input, and the input was artificially augmented
with an integrator after the identification process.

3.2.2 Assumptions on cross-coupling

Based on extensive experimentation with DemoSim, some entries of the LTI MIMO DemoSim
transfer matrix that represent cross-coupling terms between input and output channels were deter-
mined to be essentially zero or much less significant than other entries. Note that extra care was
taken in these simulations to avoid any nonlinear effects that may stem from saturation of signals
such as normal acceleration (nz), longitudinal acceleration (nx) and bank angle, or flight envelope
limits. The absence of certain cross-coupling terms in our MIMO model does not mean that they
are not present in DemoSim. However, based on their magnitude or nature (e.g. very low frequency
relatively small altitude oscillation induced by step command on turn rate), any proposed RHC
controller should be designed robust enough to handle such level of model mismatch. The assump-
tion on the LTI MIMO DemoSim model structure was decided to be the following for identification
purposes:

26

1

s

0

0

0

0G22

hcmd

χ̇cmd

Vcmd

ḣcmdγ

χ

V

G31 G33

G13G11

Figure 3.1: LTI MIMO DemoSim model structure assumed for identification

3.2.3 SISO identification of nonzero transfer matrix entries

The identification process was based on time-domain simulation data obtained by exciting DemoSim
at the trim values of Table 3.4 corresponding to straight and level flight condition.

h0 15000 ft

M0 0.45

V0 475.291 ft/s

q̄0 169.2628 psf

Table 3.4: Trim values of the identified models in terms of altitude, Mach number, ground speed

and dynamic pressure.

The excitation signal was originally designed to be a composite of a doublet and a chirp signal
in order to simultaneously capture steady-state behavior and emphasize the frequency region of
interest for identification purposes, which was decided to be frequencies below approx. 1 rad/s.
The crossover region of a control system using this model is assumed to be between 0.1 rad/s
and 0.5 rad/s, approximately. The control signal sampling frequency is assumed to be 2 Hz. The
frequency range of the sine sweep in the chirp signal was

[
10−4 Hz − 10−1 Hz

]
.

Initial identification experiments revealed that in some input-output channels the doublet re-
sponse of DemoSim was nonlinear. This effect prompted the construction of a different excitation
signal using a mixture of ramp, hold and chirp signals. This had the beneficial effect of avoiding
saturation in variables such as longitudinal acceleration (nx), when exciting the Vcmd input.

Based on these excitation signals and the simulated DemoSim responses, Empirical Transfer
Function Estimates (ETFE) were created to serve as a basis for evaluation of identified models in
the frequency domain. An ETFE is obtained as the ratio of the output Fourier transform and the
input Fourier transform.

In light of the chosen DemoSim transfer matrix structure, the following approach was used
to identify and construct an LTI MIMO prediction model. First, SISO transfer functions were
identified corresponding to all nonzero input-output channels. Then balanced truncation was used
to construct SIMO models for the velocity V and altitude h inputs based on the identified SISO
subsystems. Finally, after checking that all subsystem poles were sufficiently different, a minimal

27

MIMO realization was constructed by using the identified SIMO and SISO subsystem matrices
directly as building blocks.

The SISO models were identified from raw time domain data, as well as using the ETFEs in
frequency domain and evaluating the obtained models in both time and frequency domains.

The time domain identification techniques that were used for the individual SISO channels
included ARX, ARMAX, Box-Jenkins and the subspace-based MOESP methods. However, even-
tually the prediction error estimation of an Output Error (OE) model provided the most acceptable
SISO models. The Output Error (OE) model has the following form

y (k) =
B (q)

F (q)
u (k − nk) + e (k) (3.1)

In some instances “manual” fitting of second order transfer function responses was also performed.
The identified discrete-time models had a sampling time of 0.5 seconds.

In the frequency domain, algorithmic (magfit, fitmag) and manual (drawmag, bode) fitting
of transfer function responses to ETFEs was used to obtain alternate models.

Observations of Hankel singular values were also involved in making decisions about model
orders of certain input-output channels, however in most cases these tests turned out to be not too
decisive.

3.2.3.1 Remarks

1. Most of the identification experiments conducted at the University of Minnesota were per-
formed before June 24, 2003 based on the DemoSim v0.2 open vehicle executable model, which
was released on May 23, 2003. However, in order to accommodate some requests of the tech-
nology developer teams and correct bugs and modeling issues, a new release was distributed
on September 8, 2003. This new release had completely different dynamic characteristics on
some input-output channels, which rendered some of our previous modeling efforts futile and
made a partial reidentification necessary. Since not all aspects of the updated and corrected
DemoSim dynamics have changed, some identified subsystem models could be retained. The
particular DemoSim version used to generate data is mentioned in the following sections,
which discuss the identification process of each SISO channel.

2. The exact characterization of time-delays associated to each command input was based on
later DemoSim versions within the Simulink testing environment. Time-delays were charac-
terized as integer multiples of the sampling time and incorporated into the RHC prediction
model. As flight tests later revealed, the dramatic time-delay mismatch in the velocity track-
ing channel between the hardware-in-the-loop simulations and the piloted aircraft was one of
the most critical modeling error, which had a significant degrading effect on the controller
performance of each team.

3.2.3.2 Vcmd → V channel

Doublet commands produced significantly nonlinear responses in this channel, even though the
magnitude of the excitation signal was relatively small (20 ft/s). The difference between accelera-
tion and deceleration dynamics of DemoSim was apparent since the longitudinal acceleration and
deceleration (nx) limits were saturated due to the abruptly changing, step-like velocity commands.
This phenomenon could not be captured by a single LTI model. A combined ramp, hold and chirp
excitation signal was used instead to avoid nonlinear DemoSim behavior. The magnitude of the

28

0 100 200 300 400 500 600 700 800 900 1000
−25

−20

−15

−10

−5

0

5

10

15

20

25

sec

δV
 [f

t/s
]

V
cmd

 → V responses

δV
cmd

δV
δV

ID

0 100 200 300 400 500 600 700 800 900 1000
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

sec

γ
[d

eg
]

V
cmd

 → γ responses

γ
cmd

γ
γ
ID

F
igu

re
3.2:

T
im

e
d
om

ain
com

p
arison

of
id

en
tifi

ed
m

o
d
els

w
ith

D
em

oS
im

resp
on

ses
for

th
e
V

cm
d

in
p
u
t

ch
an

n
el

29

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

10
1

G
ai

n

Frequency [Hz]

V
cmd

 → V channel gain

Empirical Transfer Function Estimate (ramp + chirp)
Output Error Identified, Manually Modified Transfer Function

10
−2

10
−1

10
0

−300

−200

−100

0

100

P
ha

se
 [d

eg
]

Frequency [Hz]

V
cmd

 → V channel phase

Empirical Transfer Function Estimate (ramp + chirp)
Output Error Identified, Manually Modified Transfer Function

F
igu

re
3.3:

F
req

u
en

cy
d
om

ain
com

p
arison

b
etw

een
th

e
id

en
tifi

ed
V

cm
d
→

V
m

o
d
el

an
d

D
em

oS
im

E
T

F
E

30

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

G
ai

n

Frequency [Hz]

V
cmd

 → γ channel gain

Empirical Transfer Function Estimate (ramp + chirp)
Output Error Identified Transfer Function

10
−2

10
−1

10
0

−400

−300

−200

−100

0

100

P
ha

se
 [d

eg
]

Frequency [Hz]

V
cmd

 → γ channel phase

Empirical Transfer Function Estimate (ramp + chirp)
Output Error Identified Transfer Function

F
igu

re
3.4:

F
req

u
en

cy
d
om

ain
com

p
arison

b
etw

een
th

e
id

en
tifi

ed
V

cm
d
→

γ
m

o
d
el

an
d

D
em

oS
im

E
T

F
E

31

combined ramp and chirp excitation signal used in this experiment was chosen to be 20 ft/s and
the ramp slope as 0.4 ft/s2. Input-output data of the May 23, 2003 DemoSim release formed the
basis of the identification process for this SISO channel.

Although very accurate fitting of ETFE data could be obtained with relatively low order transfer
functions, time response comparisons of these models indicated poor matching with the simulated
DemoSim response. Significant overshoot or steady state errors prompted us to rely more on time
domain identified OE models. However, frequency responses of these models did not match ETFE
data very well (especially in phase above 0.05 Hz), which also shows up when comparing time
responses with the chirp phase of the excitation signal, a second order OE identified model with
time delay was chosen as a model candidate for this channel. The degree parameters and the time-
delay of the identified OE model were chosen as nb = 1, nf = 2, nk = 1, where nb and nf denote
the degrees of the B and F polynomials in equation (3.1), respectively. This model provided a
good compromise for minimizing errors that occured between the identified model and DemoSim
data.

However, the poles of the identified OE model were slightly modified manually to achieve better
frequency domain fit to DemoSim data. The mismatch in Figure 3.3 is still apparent and the
phase plot indicates that the numerator degree is probably too high. This mismatch was deemed
acceptable in both frequency and time domains based on the following assumptions:

• The controller bandwidth over the velocity channel is expected to be significantly lower than
in other channels on the real testbed.

• Since velocity commands will be implemented by a pilot, DemoSim can provide only an
approximate description of the true system’s behavior to these commands, which would render
any further effort to achieve a more accurate velocity channel model questionable.

Further properties of the identified model are given in Section 3.2.6. Comparative plots between
the identified model and DemoSim data are shown in Figures 3.2 and 3.3.

Remark

At the flight condition under investigation (see Table 3.4), the velocity output had a steady state
bias of 9.759 ft/s, which was removed manually before applying any identification method. It is
important to note that the value of this bias changes with flight condition, exhibiting a positive
correlation between its magnitude and the speed of the aircraft.

3.2.3.3 Vcmd → γ channel

Due to significant changes in the dynamic response of this channel, input-output data of the updated
September 8, 2003 DemoSim release was used as the basis of the identification process for this SISO
channel.

An OE identified model of fourth order (nb = 3, nf = 4, nk = 2) was the simplest one that
provided an acceptable match in both time and freq. domain comparisons. These are shown in
Figures 3.2 and 3.4.

Note that for frequency domain comparisons, ETFE models were generated using the same
excitation signal as in Section 3.2.3.2, however the identified OE model did not make use of the
chirp response.

32

3.2.3.4 χ̇cmd → χ channel

Input-output data of the May 23, 2003 DemoSim release formed the basis of the identification
process for this SISO channel. Although intuitively it seems natural that this channel should include
an explicit integrator between the turn rate command and heading output, DemoSim experiments
showed that the aircraft does not return exactly to its original heading after tracking a turn rate
doublet command. This clearly indicates that the anticipated integral action is not present explicitly
in this channel, it is only a manifestation of a pole very close to zero. Identification experiments
enforcing an explicit integrator by using numerically differentiated heading output data confirmed
this fact by showing apparent mismatch in time domain comparisons.

Finally, a combined doublet and chirp turn rate command signal was used in this experiment
with magnitude of 0.263 deg/s. A second order OE model with delay was identified (nb = 1, nf =
2, nk = 2) using the time domain DemoSim response. The identified discrete-time model was con-
verted to continuous-time using zero order hold transformation and evaluated by the comparisons
shown in Figures 3.5 and 3.6.

Further properties of the identified model are given in Section 3.2.6.

3.2.3.5 hcmd → V channel

Input-output data of the May 23, 2003 DemoSim release formed the basis of the identification
process for this SISO channel. Time domain identified OE models using a combined doublet and
chirp excitation signal of 50 ft magnitude did not seem to capture the higher frequency behavior
of the system very well. Since the OE method essentially weighs all frequencies equally, some kind
of frequency weighting of simulated DemoSim data could be used to remedy this problem.

Instead of pursuing a frequency-weighted time domain identification approach, we found that
either a second order “manually” fitted transfer function or a fourth order “systematically” fitted
transfer function achieved acceptable accuracy in both domains of evaluation. Comparative plots
of these continuous-time transfer functions are shown in Figures 3.7–3.9. Eventually, the second
order transfer function was chosen to reduce the complexity of the overall model.

Remarks

1. The velocity output had the same steady state bias as mentioned in Section 3.2.3.2, which
was removed manually from DemoSim time response data.

2. A derivative (i.e. a zero at 0) was included explicitly in the “manually” identified second order
transfer function.

Further properties of the identified models are given in Section 3.2.6.

3.2.3.6 hcmd → γ channel

Input-output data of the May 23, 2003 DemoSim release formed the basis of the identification
process for this SISO channel as well. Using the same excitation signal as in Section 3.2.3.5, two
alternative models were obtained that both showed acceptable match with time and frequency
domain DemoSim data.

A “manually” fitted second order transfer function including an explicit derivative was chosen
as one alternative.

33

0 100 200 300 400 500 600 700 800 900
−5

0

5

10

15

20

25

30

35

dχ/dt
cmd

 → χ responses

χ
[d

eg
]

sec

χ
cmd

χ
χ

ID

0 100 200 300 400 500 600 700 800 900
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

dχ/dt
cmd

 → dχ/dt responses

dχ
/d

t [
de

g/
s]

sec

dχ/dt
cmd

dχ/dt
dχ/dt

ID

F
igu

re
3.5:

T
im

e
d
om

ain
com

p
arison

of
th

e
id

en
tifi

ed
m

o
d
el

an
d

D
em

oS
im

resp
on

ses
for

th
e
χ̇

cm
d

in
p
u
t

ch
an

n
el

34

10
−2

10
−1

10
0

10
0

10
1

10
2

10
3

10
4

G
ai

n

Frequency [Hz]

dχ/dt
cmd

 → χ channel gain

Empirical Transfer Function Estimate
Output Error Identified Transfer Function

10
−2

10
−1

10
0

−300

−200

−100

0

100

P
ha

se
 [d

eg
]

Frequency [Hz]

dχ/dt
cmd

 → χ channel phase

Empirical Transfer Function Estimate
Output Error Identified Transfer Function

F
igu

re
3.6:

F
req

u
en

cy
d
om

ain
com

p
arison

b
etw

een
th

e
id

en
tifi

ed
χ̇

cm
d
→

χ
m

o
d
el

an
d

D
em

oS
im

E
T

F
E

35

0 100 200 300 400 500 600 700 800 900
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

h
cmd

 → V responses

δV
 [f

t/s
]

sec

δV
cmd

δV
δV

ID4
δV

ID2

0 100 200 300 400 500 600 700 800 900
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

h
cmd

 → γ responses

γ
[d

eg
]

sec

γ
cmd

γ
γ
ID2

γ
ID3

F
igu

re
3.7:

T
im

e
d
om

ain
com

p
arison

b
etw

een
id

en
tifi

ed
m

o
d
els

of
d
iff

eren
t

ord
er

an
d

D
em

oS
im

resp
on

ses
for

th
e
h

cm
d

in
p
u
t

ch
an

n
el

(n
u
m

b
er

in
su

b
scrip

t
d
en

otes
m

o
d
el

ord
er)

36

40 60 80 100 120 140 160 180
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

h
cmd

 → V responses

δV
 [f

t/s
]

sec

δV
cmd

δV
δV

ID4
δV

ID2

40 60 80 100 120 140 160 180
−1

−0.5

0

0.5

h
cmd

 → γ responses

γ
[d

eg
]

sec

γ
cmd

γ
γ
ID2

γ
ID3

F
igu

re
3.8:

E
n
larged

p
ortion

s
of

th
e

tim
e

d
om

ain
com

p
arison

sh
ow

n
in

F
ig.

3.7
for

th
e
h

cm
d

in
p
u
t

ch
an

n
el

37

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

G
ai

n

Frequency [Hz]

h
cmd

 → V channel gain

Empirical Transfer Function Estimate
Freq. Domain Fitted Transfer Function (4th order)
Freq. Domain Fitted Transfer Function (2nd order)

10
−2

10
−1

10
0

−450

−400

−350

−300

−250

−200

−150

−100

−50

0

P
ha

se
 [d

eg
]

Frequency [Hz]

h
cmd

 → V channel phase

Empirical Transfer Function Estimate
Freq. Domain Fitted Transfer Function (4th order)
Freq. Domain Fitted Transfer Function (2nd order)

F
igu

re
3.9:

F
req

u
en

cy
d
om

ain
com

p
arison

b
etw

een
id

en
tifi

ed
h

cm
d
→

V
m

o
d
els

an
d

D
em

oS
im

E
T

F
E

38

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

G
ai

n

Frequency [Hz]

h
cmd

 → γ channel gain

Empirical Transfer Function Estimate
Freq. Domain Fitted Transfer Function (2nd order)
Output Error Identified Transfer Function (3rd order)

10
−2

10
−1

10
0

−250

−200

−150

−100

−50

0

50

100

150

P
ha

se
 [d

eg
]

Frequency [Hz]

h
cmd

 → γ channel phase

Empirical Transfer Function Estimate
Freq. Domain Fitted Transfer Function (2nd order)
Output Error Identified Transfer Function (3rd order)

F
igu

re
3.10:

F
req

u
en

cy
d
om

ain
com

p
arison

b
etw

een
id

en
tifi

ed
h

cm
d
→

γ
m

o
d
els

an
d

D
em

oS
im

E
T

F
E

39

A third order OE identified model based only on the doublet portion of the input-output data
was selected as the other alternative that provided somewhat better accuracy. Comparison of these
models is shown in Figures 3.7, 3.8 and 3.10. Eventually, the third order OE model was chosen
based on its better accuracy.

Further properties of the identified models are given in Section 3.2.6.

3.2.4 Creating reduced order SIMO models

After the identification of individual SISO subsystems, the next step in the modeling process was
to merge subsystems that belong to one input channel and create SIMO models that can later be
put together in a simple way to form the MIMO system.

SIMO models were created by merging the SISO systems as shown in (3.2) and applying bal-
anced model reduction techniques.

[
V
γ

]

=

[
GV V

GγV

]

Vcmd,

[
V
γ

]

=

[
GV h

Gγh

]

hcmd (3.2)

The number of states to keep after truncation was decided after inspecting the diagonal elements
of the Gramian corresponding to the balanced realization. The steady-state contribution of the
truncated states were kept using the following technique.

Assume that the state matrices of the balanced realization are partitioned according to

A11 A12 B1

A21 A22 B2

C1 C2 D

and the states corresponding to A11, B1, C1, D will be kept. The truncated, reduced order matrices
are calculated according to the following formulas to account for the steady-state contribution of
the truncated states

Ar = A11 −A12A
−1
22 A21, Br = B1 −A12A

−1
22 B2, (3.3)

Cr = C1 − C2A
−1
22 A21, Dr = D − C2A

−1
22 B2.

Note that since the χ̇cmd → χ input-output channel was modeled as a completely decoupled
SISO subsystem, only the Vcmd and hcmd input channels are treated in this section.

3.2.4.1 Vcmd input channel

The balanced model reduction was performed using a scaling factor of 50 on the γ output channel.
After inspecting the diagonal entries of the balanced Gramian, state matrices were truncated to
keep only 4 states and account for the steady-state contribution of the truncated ones.

Although this truncated model had the correct steady-state gain, it introduced high frequency
zeros. These zeros were removed from the model manually and one-one zero was added in each
output channel, for better frequency domain match.

Figures 3.11-3.12 show a comparison of the bode plots between the reduced order SIMO models
and the original identified SISO ones. Figure 3.13 evaluates the SIMO model in the time domain
by comparing it to DemoSim output data.

Further properties of the reduced order SIMO models are given in Section 3.2.6.

40

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

10
0

10
1

G
ai

n

Frequency [Hz]

V
cmd

 → V channel gain

Identified SISO Transfer Function
Reduced Order SIMO Model

10
−2

10
−1

10
0

−300

−200

−100

0

100

P
ha

se
 [d

eg
]

Frequency [Hz]

V
cmd

 → V channel phase

Identified SISO Transfer Function
Reduced Order SIMO Model

F
igu

re
3.11:

F
req

u
en

cy
d
om

ain
com

p
arison

b
etw

een
th

e
red

u
ced

ord
er
V

cm
d

in
p
u
t

S
IM

O
m

o
d
el

an
d

th
e

id
en

tifi
ed

S
IS

O
V

cm
d →

V
m

o
d
el

41

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

G
ai

n

Frequency [Hz]

V
cmd

 → γ channel gain

Identified SISO Transfer Function
Reduced Order SIMO Model

10
−2

10
−1

10
0

−400

−300

−200

−100

0

100

P
ha

se
 [d

eg
]

Frequency [Hz]

V
cmd

 → γ channel phase

Identified SISO Transfer Function
Reduced Order SIMO Model

F
igu

re
3.12:

F
req

u
en

cy
d
om

ain
com

p
arison

b
etw

een
th

e
red

u
ced

ord
er
V

cm
d

in
p
u
t

S
IM

O
m

o
d
el

an
d

th
e

id
en

tifi
ed

S
IS

O
V

cm
d →

γ
m

o
d
el

42

0 100 200 300 400 500 600 700 800 900 1000
−25

−20

−15

−10

−5

0

5

10

15

20

25

V
cmd

 → V responses

δV
 [f

t/s
]

sec

δV
cmd

δV
δV

SISO
δV

SIMO

0 100 200 300 400 500 600 700 800 900 1000
−0.5

0

0.5

V
cmd

 → γ responses

γ
[d

eg
]

sec

γ
cmd

γ
γ
SISO

γ
SIMO

F
igu

re
3.13:

T
im

e
d
om

ain
com

p
arison

b
etw

een
th

e
id

en
tifi

ed
S
IS

O
m

o
d
els,

th
e

red
u
ced

ord
er

S
IM

O
sy

stem
an

d
D

em
oS

im
resp

on
ses

for
th

e
V

cm
d

in
p
u
t

ch
an

n
el

43

3.2.4.2 hcmd input channel

The balanced model reduction was performed exactly as decribed in the previous section. State
matrices were truncated to keep only 2 states and account for the steady-state contribution of the
truncated ones.

Although this truncated model had the correct steady-state gain, it introduced high frequency
zeros in this case as well. These zeros were removed from the model manually.

Figures 3.14-3.15 show a comparison of the bode plots between the reduced order SIMO models
and the original identified SISO ones. Figures 3.16-3.17 evaluate the SIMO model in the time
domain by comparing it to DemoSim output data.

Further properties of the reduced order SIMO models are given in Section 3.2.6.

3.2.5 Building the MIMO model

Poles of the two reduced order SIMO and one SISO subsystems were determined to be sufficiently
different from each other to enable building the identified MIMO model using simple diagonal
augmentation and merging of the subsystem state matrices based on the corresponding input-
output relationship structure. The hcmd input channel was augmented with an integrator to form
an ḣcmd input. The combined and augmented MIMO model has 9 states: 4 comes from the Vcmd

SIMO model, 2 comes from the hcmd SIMO model, 2 comes from the χ̇cmd SISO model and 1
additional integrator on the hcmd input.

3.2.6 Numerical results

The identified SISO models of Section 3.2.3 and the reduced order SIMO models of Section 3.2.4
are given here along with their poles and zeros.

3.2.6.1 Vcmd → V model

The second order OE identified model after manual modification:

1.27
0.018268s+ 0.0748015

s2 + 0.45s+ 0.09

Corresponding poles and zeros:

Vcmd → V poles

real imaginary frequency damping

−2.2500E−01 1.9843E−01 3.0000E−01 7.5000E−01

−2.2500E−01 −1.9843E−01 3.0000E−01 7.5000E−01

Vcmd → V zeros

real imaginary frequency damping

−4.0947E+00 0.0000E+00 4.0947E+00 1.0000E+00

44

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

G
ai

n

Frequency [Hz]

h
cmd

 → V channel gain

Identified SISO Transfer Function
Reduced Order SIMO Model

10
−2

10
−1

10
0

−350

−300

−250

−200

−150

−100

−50

0

P
ha

se
 [d

eg
]

Frequency [Hz]

h
cmd

 → V channel phase

Identified SISO Transfer Function
Reduced Order SIMO Model

F
igu

re
3.14:

F
req

u
en

cy
d
om

ain
com

p
arison

b
etw

een
th

e
red

u
ced

ord
er
h

cm
d

in
p
u
t

S
IM

O
m

o
d
el

an
d

th
e

id
en

tifi
ed

S
IS

O
h

cm
d →

V
m

o
d
el

45

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

G
ai

n

Frequency [Hz]

h
cmd

 → γ channel gain

Identified SISO Transfer Function
Reduced Order SIMO Model

10
−2

10
−1

10
0

−250

−200

−150

−100

−50

0

50

100

150

P
ha

se
 [d

eg
]

Frequency [Hz]

h
cmd

 → γ channel phase

Identified SISO Transfer Function
Reduced Order SIMO Model

F
igu

re
3.15:

F
req

u
en

cy
d
om

ain
com

p
arison

b
etw

een
th

e
red

u
ced

ord
er
h

cm
d

in
p
u
t

S
IM

O
m

o
d
el

an
d

th
e

id
en

tifi
ed

S
IS

O
h

cm
d →

γ
m

o
d
el

46

0 100 200 300 400 500 600 700 800 900
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

h
cmd

 → V responses

δV
 [f

t/s
]

sec

δV
cmd

δV
δV

SISO
δV

SIMO

0 100 200 300 400 500 600 700 800 900
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

h
cmd

 → γ responses

γ
[d

eg
]

sec

γ
cmd

γ
γ
SISO

γ
SIMO

F
igu

re
3.16:

T
im

e
d
om

ain
com

p
arison

b
etw

een
th

e
id

en
tifi

ed
S
IS

O
m

o
d
els,

th
e

red
u
ced

ord
er

S
IM

O
sy

stem
an

d
D

em
oS

im
resp

on
ses

for
th

e
h

cm
d

in
p
u
t

ch
an

n
el

47

40 60 80 100 120 140 160 180
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

h
cmd

 → V responses

δV
 [f

t/s
]

sec

δV
cmd

δV
δV

SISO
δV

SIMO

40 60 80 100 120 140 160 180
−1

−0.5

0

0.5

h
cmd

 → γ responses

γ
[d

eg
]

sec

γ
cmd

γ
γ
SISO

γ
SIMO

F
igu

re
3.17:

E
n
larged

p
ortion

s
of

th
e

tim
e

d
om

ain
com

p
arison

sh
ow

n
in

F
ig.

3.16
for

th
e
h

cm
d

in
p
u
t

ch
an

n
el

48

3.2.6.2 Vcmd → γ model

The fourth order OE identified model:

3.837E−04z−2 − 7.677E−04z−3 + 3.84E−04z−4

1 − 3.742z−1 + 5.276z−2 − 3.323z−3 + 0.7888z−4

Poles and zeros of the corresponding continuous-time model obtained using Zero Order Hold:

Vcmd → γ poles

real imaginary frequency damping

−8.7204E−02 6.4796E−02 1.0864E−01 8.0268E−01

−8.7204E−02 −6.4796E−02 1.0864E−01 8.0268E−01

−1.5006E−01 −3.4132E−01 3.7284E−01 4.0246E−01

−1.5006E−01 3.4132E−01 3.7284E−01 4.0246E−01

Vcmd → γ zeros

real imaginary frequency damping

−6.4883E−03 0.0000E+00 6.4883E−03 1.0000E+00

7.7638E−03 0.0000E+00 7.7638E−03 −1.0000E+00

3.8307E+00 0.0000E+00 3.8307E+00 −1.0000E+00

3.2.6.3 χ̇cmd → χ model

The second order OE identified model:

3.304z−2

1 − 1.909z−1 + 0.9085z−2

Poles and zeros of the corresponding continuous-time model obtained using Zero Order Hold:

χ̇cmd → χ poles

real imaginary frequency damping

−1.9191E−01 0.0000E+00 1.9191E−01 1.0000E+00

8.1735E−05 0.0000E+00 8.1735E−05 −1.0000E+00

χ̇cmd → χ zeros

real imaginary frequency damping

3.9371E+00 0.0000E+00 3.9371E+00 −1.0000E+00

49

3.2.6.4 hcmd → V model

The second order identified model: −0.0105s

s2 + 0.4s+ 0.04

Poles and zeros of the second order continuous-time model:

hcmd → V poles

real imaginary frequency damping

−2.0000E−01 −2.3853E−09 2.0000E−01 1.0000E+00

−2.0000E−01 2.3853E−09 2.0000E−01 1.0000E+00

hcmd → V zeros

real imaginary frequency damping

0.0000E+00 0.0000E+00 0.0000E+00 N/A

3.2.6.5 hcmd → γ model

The third order OE identified model:

1.534E−03z−1 − 1.658E−03z−2 + 1.239E−04z−3

1 − 2.312z−1 + 1.769z−2 − 0.4512z−3

Poles and zeros of the corresponding continuous-time model obtained using Zero Order Hold:

hcmd → γ poles

real imaginary frequency damping

−1.0868E−01 0.0000E+00 1.0868E−01 1.0000E+00

−7.4155E−01 −3.0481E−01 8.0175E−01 9.2491E−01

−7.4155E−01 3.0481E−01 8.0175E−01 9.2491E−01

hcmd → γ zeros

real imaginary frequency damping

−3.7701E+00 0.0000E+00 3.7701E+00 1.0000E+00

−3.0046E−05 0.0000E+00 3.0046E−05 1.0000E+00

50

3.2.6.6 Reduced order SIMO model of the Vcmd input channel

The fourth order SIMO model has the following state matrices:

A =







−6.998E−01 −2.617E−01 −4.338E−02 −2.283E−03
1 0 0 0
0 1 0 0
0 0 1 0






, B =







1
0
0
0






,

C =

[
6.367E−02 8.935E−02 3.507E−02 2.41E−03
2.575E−04 2.575E−03 −4.279E−06 −1.214E−07

]

, D =

[
0
0

]

.

Poles of the fourth order continuous-time SIMO model:

Vcmd →
[

V γ
]T

poles

real imaginary frequency damping

−9.5568E−02 0.0000E+00 9.5568E−02 1.0000E+00

−1.9101E−01 0.0000E+00 1.9101E−01 1.0000E+00

−2.0660E−01 −2.8701E−01 3.5364E−01 5.8422E−01

−2.0660E−01 2.8701E−01 3.5364E−01 5.8422E−01

The model has no transmission zeros.

3.2.6.7 Reduced order SIMO model of the hcmd input channel

A =

[
−4.276E−01 −4.231E−02

1 0

]

, B =

[
1
0

]

,

C =

[
−1.116E−02 −1.9E−19

4.85E−03 1.514E−07

]

, D =

[
0
0

]

.

Poles of the second order continuous-time SIMO model:

hcmd →
[

V γ
]T

poles

real imaginary frequency damping

−2.7207E−01 0.0000E+00 2.7207E−01 1.0000E+00

−1.5553E−01 0.0000E+00 1.5553E−01 1.0000E+00

The model has no transmission zeros.

3.3 Identification for FDI

The SISO LTI model used for the design of a fault detection filter was obtained using a process
different from what was presented in the previous section. Identification was based on DemoSim
simulation data in this case as well, although a faster sampling time was chosen. The model is
described in Chapter 6 along with the techniques used for identification.

51

3.4 Characterization of flight envelope constraints

This section describes how the approximate nonlinear flight envelope limits were characterized and
represented by a collection of linear constraints.

The most important constraints to be characterized and enforced by any chosen control approach
were found to be the following:

• Flight envelope limits in terms of altitude and airspeed.

• Limits on maximum bank angle.

• Minimum and maximum vertical and longitudinal acceleration limits.

• Any other important limitations induced by the autopilot in DemoSim.

Figure 3.18 shows the flight envelope of the T-33 aircraft augmented with the UCAV avionics
and autopilot. The actual flight envelope limits were restricted to the shaded area for the purpose
of the flight test demonstration.

Figure 3.18: T-33/UCAV airspeed flight envelope in terms of altitude and Mach.

These flight regime constraints were respected by choosing a reference trajectory that lies be-
tween the minimum and maximum altitude limits. The constraints on minimum and maximum

52

velocity were imposed by limiting the allowable deviations (±100 ft/s) from the trim velocity value
(approx. 500 ft/s). These limits were incorporated into the controller in terms of ground speed,
whereas the actual limits were on true airspeed. (This caused issues given the very windy environ-
ment at Edwards AFB, as described in Section 8.3).

The main objective of characterizing the remaining three types of constraints was to arrive at
formulas that could be approximated with linear expressions of available DemoSim model output
variables and their derivatives. Consider the transformation of accelerations from BODY to EARTH

coordinate frame given by the following expression





V̇ + g sin γ
V χ̇ cos γ

−V γ̇ − g cos γ



 =





cosα cosβ sinβ sinα cosβ
sinα sinµ− cosα sinβ cosµ cosβ cosµ − cosα sinµ− sinα sinβ cosµ
− sinα cosµ− cosα sinβ sinµ cosβ sinµ cosα cosµ− sinα sinβ sinµ





︸ ︷︷ ︸

TB→E





nxg
nyg
nzg





(3.4)
where the transformation matrix TB→E is based on the angle-of-attack α, sideslip angle β and bank
angle µ variables. The BODY-axis accelerations are denoted by nx, ny, nz, whereas the velocity V ,
heading angle χ, and flight path angle γ variables are defined in EARTH-axis. The gravitational
constant is denoted by g. Since the transformation matrix TB→E is orthonormal, we can write
equation (3.4) equivalently as





nxg
nyg
nzg



 = T T
B→E





V̇ + g sin γ
V χ̇ cos γ

−V γ̇ − g cos γ



 (3.5)

Based on the limited information that was available about the autopilot incorporated into
DemoSim, the following assumptions were reasonable to make

• Angle-of-attack can be considered zero α ≈ 0.

• The aircraft performs coordinated turns, therefore the side force and sideslip angles are ap-
proximately zero ny ≈ 0, β ≈ 0. This means also that in level flight (γ = 0) we have

V χ̇

g
= tanµ (3.6)

Using these assumptions and the equations in (3.5) we obtain the following three equations that
represent different types of constraints

1. Longitudinal acceleration constraint

nxg = V̇ + g sin γ (3.7)

2. Turn constraint equation

0 = cosµ · V χ̇ cos γ − sinµ (V γ̇ + g cos γ) (3.8)

3. Vertical acceleration constraint equation

nzg = − sinµ · V χ̇ cos γ − cosµ (V γ̇ + g cos γ) (3.9)

53

If we further assume that |µ| < π/2, i.e. cosµ > 0 and γ̇ > −g cos γ/V , (e.g. γ < 10 deg, V =
200 m/s −→ γ̇ > −3 deg/s), then using equation (3.8) we can express the sine and cosine of the
bank angle µ using the following formulas

cosµ =
a√

a2 + b2
, sinµ =

b√
a2 + b2

, (3.10)

a =
V γ̇

g cos γ
+ 1, b =

V χ̇

g
(3.11)

Substituting cosµ and sinµ into equation (3.9) we obtain

√
(
V χ̇

g

)2

+

(
V γ̇

g cos γ
+ 1

)2

= − nz

cos γ
(3.12)

By studying the behavior of DemoSim and running extensive simulations, the following set of
limitations on velocity, vertical acceleration and bank angle were determined

Vmax = 630 ft/s, Vmin = 340 ft/s,

nz,max = 1.4 g, nz,min = 0.6 g, (3.13)

µmax = 32 deg, µmin = −32 deg.

Flight path angle γ was also limited to approximately ±2 deg.
With these limits in mind and using the small angle approximation cos γ ≈ 1, we arrive at

the nonlinear expressions that serve as the basis for characterizing the important constraints to be
enforced by the controller. Using (3.6), (3.8), (3.12) and the limits in (3.13) we get the following
inequalities in the three variables of V, χ̇ and γ̇

Vmin < V < Vmax, (3.14a)

g tanµmin

Vmin
< χ̇ <

g tanµmax

Vmin
, (3.14b)

(nz,ming)
2 < (V χ̇)2 + (V γ̇ + g)2 < (nz,maxg)

2 , (3.14c)

tanµmin <
V χ̇

V γ̇ + g
< tanµmax. (3.14d)

(The constraint on longitudinal acceleration (nx) using equation (3.7) will not be used to for-
mulate output constraints, instead a limit on the change of velocity command is the only way this
aspect of the flight characteristics is incorporated in the controller design.)

Figure 3.19 represents the different types of constraints that were considered. Constraint type 1
represents bank angle µ limits based on the inequalities in (3.14d) and constraint type 2 shows
vertical acceleration limitations imposed by (3.14c). Constraint type 3 was discovered after running
extensive simulations with DemoSim. We could not explain this phenomenon using mathematical
formulas, however its limiting effect could be approximated with straight lines very well in the given
coordinate frame. This limitation is most probably induced by the autopilot in situations when the
aircraft is trying to pitch down (nz approaches its minimum), while turning hard (large χ̇) at the
same time.

Since the coordinate axes each depend on two variables and both axes share velocity as one of
the variables, the shape of nonlinear constraints can be visualized in a three-dimensional plot. The
individual axes in this case are the three variables V, χ̇ and γ̇. This three-dimensional characteri-
zation of constraints is illustrated in Figure 3.20. The “front” and “back” facets of the shape that

54

Figure 3.19: Characterization of nonlinear constraints (2D).

represent Vmin and Vmax limits are not shown in this and any subsequent plots for better visibility.
Notice that the χ̇min and χ̇max limits (3.14b) become “active” in forming the boundary of this
non-convex region near the edges at lower velocity and positive γ̇ values.

The objective of representing these nonlinear constraints by linear expressions using the afore-
mentioned three variables was achieved by finding a polyhedron that is an inner approximation of
the non-convex feasible region shown in Figure 3.20. The resulting polytope, which is constructed
from a small number of halfspaces compromising approximation accuracy is depicted in Figure 3.21.
(Note that the bounding planes associated with Vmin, Vmax limits are not displayed. Hyperplanes
representing χ̇min and χ̇max limits are also not shown, since other facets of the polytope rendered
these redundant.) The number of halfspaces that characterize the polytope and represent linear
constraints in terms of the three variables were kept small to allow the complexity of the problem
to be maintained at a manageable size.

Using the halfspace representation of the inner polyhedral approximation to the non-convex
constraint set, the original nonlinear maneuver limits can be characterized by the following linear
inequality

Az





V
χ̇
γ̇



 ≤ bz (3.15)

55

300
400

500
600

700

−0.06
−0.04

−0.02
0

0.02
0.04

0.06
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

V

DemoSim Vehicle Maneuver limits

dχ/dt

d
γ/

d
t

Figure 3.20: Characterization of nonlinear constraints (3D).

where Az ∈ R
10×3 and bz ∈ R

10. This inequality represents ten halfspace constraints, six of which
are depicted in Figure 3.21. The remaining four are the maximum and minimum limits on velocity
V and turn rate χ̇.

Acknowledgement

The formulas and derivation of the approximate nonlinear flight envelope constraints were obtained
from George Papageorgiou at Honeywell Labs. His help and discussions on the subject is greatly
appreciated.

56

300

400

500

600

700

−0.1
−0.05

0
0.05

0.1
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

V

Halfspace representation of inner polyhedral approximation

dχ/dt

d
γ/

d
t

Figure 3.21: Inner polyhedral approximation of nonlinear constraints (3D).

57

Chapter 4

RHC API

4.1 Timing Architecture

Each time frame is divided into 3 intervals: Pre, Opt, and Post. These intervals allocate compu-
tation time to different parts of the RHC problem formulation and solution. From user supplied
data (see Section 4.3), the RHC component can formulate, solve, and compute the proper control
action to be taken.

The descriptions of Pre, Opt and Post are summarized in the following table.
Frame Task Type Description

Pre Hard Real Time Formulates the RHC problem from user sup-
plied data. Computes candidate control ac-
tion.

Opt Anytime Solve constrained optimization problem. If
solution is infeasible, reformulate and solve re-
laxed problem.

Post Hard Real Time Process solution of RHC problem and return
desired control action.

The hard-realtime function Pre executes 2 primary operations. It

• calls the warm-start function, which has two purposes:

– initialize the decision variable v, based on data from the previous frame.

– compute a candidate control action u0.

• forms the linearly constrained, quadratic program using H, xest, dest
k:k+H−1, and the dynamic,

constraint and cost matrices.

Although problem-dependent, the user can give worst-case (problem dependent) execution times
for both of these steps, so these can be done in hard realtime fashion.

The anytime function Opt does one operation, calling LSSOL to solve the QP.

• If LSSOL returns infeasible, then the relaxed problem (see Section 4.4) is formed, and LSSOL
is called again.

• Opt is terminated by the Scheduler. Cleanup will be a hard realtime task.

Finally, the hard real-time function Post is called.

58

• Post converts the most recent value of v into a control action, uv
0.

• Post then makes a decision of which control action to use, u0 or uv
0. This value becomes the

RHC component’s output at the end of the frame.

The concepts described above can be found in the source code within the RHC Core:

• In LSSOL RHC Interface the PreOptimize() method formulates the standard RHC problem
formulation given user supplied data.

• In LSSOL RHC Interface, the Optimize() method attempts to solve the constrained opti-
mizatino problem. If the solution is infeasible, the problem is reformulated and the relaxed
problem is solved.

• In LSSOL RHC Interface the PostOptimize() method receives the solution from the Optimize
frame. The solution is interpreted and a control action is computed.

4.2 Modification of LSSOL

The quadratic program solver LSSOL has been modified in order to allow recovery of intermediate
iterates following premature termination from other processes. Section 10 of the LSSOL license
from SBSI allows for modifications to the software.

Four additional arguments have been added to the call to LSSOL. These arguments are sum-
marized in the following table.

Additional Arguments in LSSOL Modification

Name Dimension/Class Notes

iterflagstart 2 × 1 integer Elements are iteration numbers
iterflagend 2 × 1 integer Elements are either 0 (iteration incomplete)

or 1 (iteration complete)
decisionvar1 (nv + nε) × 1 double Solution pertaining to odd iteration numbers
decisionvar2 (nv + nε) × 1 double Solution pertaining to even iteration numbers

Upon completion of an odd-numbered iteration of LSSOL, the following sequence of operations
occurs:

O1 The iteration number is written in the 1st element of iterflagstart.
O2 The decision variable is written into memory starting at decisionvar1
O3 The 1st element of iterflagend is set to 1
O4 The 2nd element of iterflagend is set to 0

Upon completion of an even numbered iteration of LSSOL, the following sequence of operations
occurs:

E1 The iteration number is written in the 2nd element of iterflagstart.
E2 The decision variable is written into memory starting at decisionvar2
E3 The 2nd element of iterflagend is set to 1
E4 The 1st element of iterflagend is set to 0

Under the modest assumption that LSSOL completes one iteration before being interrupted, it
is always possible to retrieve an uncorrupted decision variable value. Specifically

• If both entries of iterflagend are 0, then LSSOL was unable to complete the first phase,
which consisted of

– complete a single iteration,

59

– write 1 (the iteration number) to 1st element of iterflagstart

– write the decision variable to decisionvar1

– write a 1 to 1st element of iterflagend

In this case, the value of decisionvar1 and decisionvar2 must be considered suspect. An
alternate solution must be used. One strategy, which we employ, is to use the control action
from the previous time step. In our application, the decision variables represent deviations
from the previous control action, hence a decision variable value of identically zero represents
this action. Therefore, if decisionvar1 is initialized to 0, it can be thought of as a valid
value in this situation.

• If both entries of iterflagend are 1, then LSSOL was terminated between steps O3/O4 or
E3/E4. Both decision variables are uncorrupted. The most recent value can be determined
by examining the iterflagstart values.

– If the 1st entry of iterflagstart is larger than the 2nd entry of iterflagstart, then
the value in decisionvar1 is the most recent iterate from LSSOL.

– If the 2nd entry of iterflagstart is larger than the 1st entry of iterflagstart, then
the value in decisionvar2 is the most recent iterate from LSSOL.

• If the 1st entry of iterflagend is 1 and the 2nd entry is 0, then LSSOL was terminated
sometime after O4, but before completing E3. It is guaranteed that decisionvar1 is an
uncorrupted iterate.

• If the 1st entry of iterflagend is 0 and the 2nd entry is 1, then LSSOL was terminated
sometime after E4, but before completing O3. It is guaranteed that decisionvar2 is an
uncorrupted iterate.

The concepts described above can be found in the source code within the RHC Core:

• In LSSOL Optimizer.h the GetRecentIter() method shows how the valid LSSOL iteration
result is read.

• The modified LSSOL code is in lssolsubs.c. Search for the string “KEN” to find the
modifications, which include function definitions, and about 30 lines of code implementing
the readout logic.

• In LSSOL Optimizer.cpp contains the actual call to lssol2 which is the modified version of
LSSOL.

4.3 RHC Problem Formulation for Each Time Frame

The receding horizon control problem formulates and solves a quadratic optimization problem
during each time frame. In the following subsections, we describe the standard problem formulation
and its relaxed counterpart. We begin with two tables of notation whose meaning will be described
in subsequent sections.

60

4.3.1 Notation and symbol definitions

Dimensions, Measurements, Dynamic Model Parameters

Variable Dimension/Class Meaning

nx scalar int State Dimension
nu scalar int Input Dimension
ny scalar int Output Dimension
nd scalar int Known Signal Dimension
nv scalar int Decision variable Dimension
H scalar int Horizon Length

x0 nx × 1 double Initial Condition
d0:H−1 nd ×H double preview of Known Signal

A nx × nx double Dynamic Model Parameters
B nx × nu double Dynamic Model Parameters
E nx × nd double Dynamic Model Parameters

Q nx × nx double Symmetric State Step Cost
R nu × nu double Symmetric Input Step Cost
M ny × ny double Symmetric Known Signal Step Cost
C ny × nx double Cost-Related Matrix for State
G ny × nd double Cost-Related Matrix for Signal
F nv × nv double direct quadratic Cost
K nv × 1 double direct linear Cost
Φ nx × nx double Symmetric State Terminal Cost

U nu × nv double matrix for map from v to u

Constraints

ax,box nx × 1 double Lower Bound State Box Constraint
bx,box nx × 1 double Upper Bound State Box Constraint

au,box nu × 1 double Lower Bound Input Box Constraint
bu,box nu × 1 double Upper Bound Input Box Constraint

nLx scalar int # of Linear State Constraints
ax nLx × 1 double Lower Bound State Constraint
bx nLx × 1 double Upper Bound State Constraint
Lx nLx × nx double State Constraint Matrix

nLu scalar int # of Linear Input Constraints
au nLu × 1 double Lower Bound Input Constraint
bu nLu × 1 double Upper Bound Input Constraint
Lu nLu × nu double Input Constraint Matrix

nLGu
scalar int # of Linear General u Constraints

aGu nLGu
× 1 double Lower Bound General u Constraint

bGu nLGu
× 1 double Upper Bound General u Constraint

LGu nLGu
× (H × (nx + nu)) double General u Constraint Matrix

nLGv
scalar int # of Linear General v Constraints

aGv nLGv
× 1 double Lower Bound General v Constraint

bGv nLGv
× 1 double Upper Bound General v Constraint

LGv nLGv
× (H × nx + nv) double General v Constraint Matrix

61

4.3.2 Standard Formulation

In this section, we describe the constrained convex quadratic optimization problem that is formu-
lated and solved at each time frame. Given the parameters described in section 4.3.1, consider the
following minimization problem.

min
v

H−1∑

k=0

xT
kQxk + uT

kRuk + [Cxk −Gdk]
T M [Cxk −Gdk] + vTFv +KT v + xT

HΦxH

subject to
ax,box ≤ xk ≤ bx,box k = 1, . . . , H

ax ≤ Lxxk ≤ bx k = 1, . . . , H
au,box ≤ uk ≤ bu,box k = 0, . . . , H − 1

au ≤ Luuk ≤ bu k = 0, . . . , H − 1

aGu ≤ LGu

[
x1:H

u0:H−1

]

≤ bGu

aGv ≤ LGv

[
x1:H

v

]

≤ bGv

Here, the linear dynamics of the system are specified by the matrices A,B, and E such that

xk+1 = Axk +Bux + Edk for k = 0, . . . , H − 1

where the signal d represents both estimated disturbance and desired trajectories. The columns of
U form a basis for the control input subspace. As a result, the control input signal u can then be
written as linear combinations of the columns of U .

u0:H−1 :=






u0
...

uH−1




 = Uv

Discussion: The first four constraints are targeted towards typical operational constraints. The
last two constraint types are general, allowing the user to specify general linear constraints on
x1, x2, . . . , xH , u0, . . . , uH−1 and on x1, x2, . . . , xH , v.

The subroutine QPformulate maps the system model and cost function matrices into the vari-
ables which parameterize the quadratic program, namely

(
Q̄, L̄, Z̄, ā, W̄ , b̄

)
. The resulting problem

can then be represented as a quadratic program of the form

minimize 1
2v

T Q̄v + vT L̄+ Z̄
subject to ā ≤ W̄v ≤ b̄

Once formulated, the parameters
(
Q̄, L̄, Z̄, ā, W̄ , b̄

)
are passed to the quadratic program solver,

LSSOL.
LSSOL will return a flag informing that the problem is infeasible. The subroutine Reformulate

can be used to reformulate a relaxed problem with additional slack variables (see Section 4.4).

4.3.3 Argument list for QPformulate

The function prototype for QPformulate() is:

62

void QPformulate(double *x0pr, double *Apr, double *Bpr,

double *Epr, double *Cpr, double *LXpr, double *LUpr,

double *LGXUpr, double *LGXVpr, double *aUpr,

double *bUpr, double *aLXpr, double *bLXpr,

double *aLUpr, double *bLUpr, double *aXpr, double *bXpr,

double *aLGXUpr, double *bLGXUpr, double *aLGXVpr,

double *bLGXVpr, int rX, int ru, double *dpr, double *Qpr,

double *Rpr, double *Mpr, double *Gpr, double *Phipr,

double *Fpr, double *Kpr, double *Upr, int nx, int nu,

int ny, int nd, int numDec, int allocV, int rowF, int rowK,

int rLX, int rLU, int rLGxu, int rLGxv, int Hint,

double *CostQuadpr, double *CostLpr, double *CostZpr,

double *CCmatpr, int allocRowsCC, double *avecpr,

double *bvecpr)

A detailed description of each argument follows:
QPformulate, Arguments 1-5, Initial condition, matrices in linear model

Name Meaning variable # elements accessed starting from ptr

x0pr Initial State x0 nx

Apr A-matrix A n2
x

Bpr B-matrix B nxnu

Epr E-matrix E nxnd

Cpr C-matrix C nynx

QPformulate, Arguments 6-21, Constraint Data

Name Meaning variable # elements accessed starting from ptr

LXpr Linear map on xk Lx nLxnx

LUpr Linear map on uk Lu nLunu

LGXUpr Linear map on x and u LGu nLGu
H(nx + nu)

LGXVpr Linear map on x and v LGv nLGv
H(nx + nv)

aUpr LowerBox on uk au,box nu or 0, see variable ru below
bUpr UpperBox on uk bu,box nu or 0, see variable ru below
aLXpr Lower on Lxxk ax nLx

bLXpr Upper on Lxxk bx nLx

aLUpr Lower on Luuk au nLu

bLUpr Upper on Luuk bu nLu

aXpr LowerBox on xk ax,box nx or 0, see variable rX below
bXpr UpperBox on xk bx,box nx or 0, see variable rX below
aLGXUpr Lower on LGu [x;u] aGu nLGu

bLGXUpr Upper on LGu [x;u] bGu nLGu

aLGXVpr Lower on LGv [x; v] aGv nLGv

bLGXVpr Upper on LGv [x; v] bGv nLGv

QPformulate, Arguments 22-23, Constraint Data

Name Notes

rX should be 0 if no box constraints on x, otherwise should be nx

ru should be 0 if no box constraints on u, otherwise should be nu

63

It is possible to count the number of linear constraints. Here, H is the optimization horizon,
argument #45, still to be described. The total number of linear constraints TLC is equal to

TLC = H(rX + ru+ nLx + nLu) + nLGu
+ nLGv

This enters into the sizes of some of the matrices to be defined.
QPformulate, Arguments 24-31, Cost Function Weights

Name Meaning variable # elements accessed starting from ptr

dpr dk on [0, H − 1] d ndH
Qpr Q-matrix Q n2

x

Rpr R-matrix R n2
u

Mpr M-matrix M n2
y

Gpr G-matrix G nynd

Phipr Phi-matrix Φ n2
x

Fpr F-matrix F n2
v

Kpr K-matrix K nv

QPformulate, Argument 32, Basis for input signal

Name Meaning variable # elements accessed starting from ptr

Upr U-matrix U Hnunv

QPformulate, Arguments 33-37, Dimensions

Name Meaning variable Notes

nx # of States nx

nu # of Inputs nu

ny # of Outputs ny

nd # of KnownExternal nd

numDec # of Decision Variables nv

Arguments 38-45, Constraint Data Dimensions

Name Meaning variable Notes

allocV numDec + # of constraint relaxation slack
variables (see Section 4.4

rowF # of rows of F Extraneous, must be set to nv

rowK # of rows of K Extraneous, must be set to nv

rLX # of rows of Lx nLx

rLU # of rows of Lu nLu

rLGxu # of rows of LGu nLGu

rLGxv # of rows of LGv nLGv

Hint Optimization Horizon H

Discussion: Memory for the following variables must be allocated before calling QPformulate.
QPformulate fills these arrays, which are then ready for an immediate call to LSSOL to solve the
quadratic program.

64

Arguments 46-52, Resultant data for QP solver

Name Meaning variable # of Allocated Elements

CostQuadpr quadratic cost Q̄ allocV*allocV
CostLpr linear cost L̄ allocV
CostZpr constant cost Z̄ 1
CCmatpr Linear Constraint Matrix W̄ 2TLC*allocV
allocRowsCC Rows Allocated for CCmatpr Extraneous. Must be 2TLC

avecpr Constraint Lower Bound ā 2TLC

bvecpr Constraint Upper Bound b̄ 2TLC

The concepts described above can be found in the source code within the RHC Core. Specifi-
cally, in LSSOL RHC Interface, QPformulate() is called by methods within PreOptimize().

4.4 Constraint Relaxation

If the contrained problem is infeasible, the constraints must be relaxed and the problem solved
again. The subroutine Reformulate.c does this is an automatic manner, using user-specified
weights which define the relative “cost” of relaxing individual constraints.

Associated with each linear constraint bound (lower bounds ax,box, ax, au,box, au, aGu , aGv , and
corresponding upper bounds) is an index vector. For example, consider ax. Let aSx,idx be a column
vector of the same dimension, containing nonnegative integer values. These are referred to as the
soft indices. Consider the i’th element, associated with the i’th row of the constraints, namely

(ax)i ≤ (Lxxk)i k = 1, . . . , H

The intepretation is as follows:

• If aSx,idx(i) = 0, then this constraint is not relaxed in the reformulation.

• If aSx,idx(i) > 0, then this constraint is relaxed in the reformulation. A constraint relaxation
variable, εaSx,idx(i) is introduced, and the constraint is modified to

−εaSx,idx(i) + (ax)i ≤ (Lxxk)i k = 1, . . . , H

which clearly relaxes the constraint.

There are analogous soft index vectors for each of the constraints. The values in these vectors
are all nonnegative. Elements that are 0 correspond to constraints that are not relaxed in the
reformulation. Positive entries indicate the constraint is relaxed in the reformulation, and the
value of the positive entry is the index of the associated slack variable.

Assume that the positive values of the soft indices consist of the numbers 1, 2, . . . , nε, where
various soft index entries may have the same value (meaning they are relaxed with the same slack
variable).

Let ε denote the nε × 1 slack variable. Let ρ ∈ Rnε be a specified weight vector with positive
entries. If the original problem is infeasible, the relaxed problem is

min
v,ε

ρT ε+
1

2
vT Q̄v + vT L̄+ Z̄

subject to the relaxed constraints.

65

At this point, we have introduced the notation in the tables below.
Dimensions, Measurements, Dynamic Model Parameters

Variable Dimension/Class Meaning

nε scalar int Relaxation Variable Dimension

ρ nε × 1 double nonnegative Relaxation weights

Constraint relaxation soft indices

Variable Dimension/Class Associated with...

aSx,box,idx nx × 1 int ax,box

bSx,box,idx nx × 1 int bx,box

aSu,box,idx nu × 1 int au,box

bSu,box,idx nu × 1 int bu,box

aSx,idx nLx × 1 int ax

bSx,idx nLx × 1 int bx
aSu,idx nLu × 1 int au

bSu,idx nLu × 1 int bu
aSGu,idx nLGu

× 1 int aGu

bSGu,idx nLGu
× 1 int bGu

aSGv ,idx nLGv
× 1 int aGv

bSGv ,idx nLGv
× 1 int bGv

The function prototype for Reformulate.c is

void Reformulate(double *CostLpr, int

numLinCons, int nv,

double *Wpr, int neps, double *ConsMatpr,

int nrowConsMat, int H, int nrowLx, int nrowLu, int nBx,

int nBu, int nrowGxu, int nrowGxv,

double *lowBoundHardpr, double *upBoundHardpr,

double *lowBoundSoftpr, double *upBoundSoftpr,

int *lowLxSoftInd, int *upLxSoftInd, int *lowLuSoftInd,

int *upLuSoftInd, int *lowBxSoftInd, int *upBxSoftInd,

int *lowBuSoftInd, int *upBuSoftInd, int *lowGxuSoftInd,

int *upGxuSoftInd, int *lowGxvSoftInd, int *upGxvSoftInd)

A detailed description of each argument follows:

66

Reformulate, Arguments 1-16

Name Meaning variable Notes

costLpr linear cost term L̄ from QPformulate, updated to
reflect cost of relaxation

numLinCons # of linear constraints TLC

nv # of orig decision variables nv

Wpr relaxation weighting ρ
neps # of relaxation slack variables nε

ConsMatpr W̄ same as CCmatpr from QPfor-
mulate, updated to reflect re-
laxed constraints

nrowConsMat must be 2TLC*allocV
H Horizon H
nrowLx # linear constraints on x nLx

nrowLu # linear constraints on u nLu

nBx same as rX
nBu same as ru
nrowGxu # linear constraints on x, u nLGu

nrowGxv # linear constraints on x, v nLGv

lowBoundHardpr ā avecpr from QPformulate
upBoundHardpr b̄ bvecpr from QPformulate

Discussion: Memory for the following variables must be allocated before calling Reformulate.
Reformulate fills these arrays, which are then ready for an immediate call to LSSOL to solve the
quadratic program.

Reformulate, Arguments 17-18

Name Meaning variable Notes

lowBoundSoftpr updated ā to reflect relaxed
constraints

upBoundSoftpr updated b̄ to reflect relaxed con-
straints

Discussion: The following variables represent the soft indices. They are nonnegative integers.

67

Reformulate, Arguments 19-30, soft indices

Name variable Notes

lowLxSoftInd aSx,idx

upLxSoftInd bSx,idx

lowLuSoftInd aSu,idx

upLuSoftInd bSu,idx

lowBxSoftInd aSx,box,idx can be NULL if rX is 0
upBxSoftInd bSx,box,idx can be NULL if rX is 0
lowBuSoftInd aSu,box,idx can be NULL if ru is 0
upBuSoftInd bSu,box,idx can be NULL if ru is 0
lowGxuSoftInd aSGu,idx

upGxuSoftInd bSGu,idx

lowGxvSoftInd aSGv ,idx

upGxvSoftInd bSGv ,idx

After Reformulate is called, the resulting quadratic program (with nv + nε total decision vari-
ables) can be called using variables

• CostQuadpr, CostLpr (updated), CostZpr

• ConsMatpr (updated) (equivalently CCmatpr)

• lowBoundSoftpr, upBoundSoftpr (both updated from) lowBoundHardpr and upBoundHardpr)

68

Chapter 5

Receding horizon control design

5.1 Control objective

The objective of the RHC control design was to track a time-stamped three-dimensional position
reference trajectory in the presence of constraints that limit the maneuverability of the aircraft
based on the identified guidance-level vehicle model. The considered set of constraints were char-
acterized in Section 3.4.

In Chapter 3 the nonlinear black-box open vehicle executable model, called DemoSim, was used
to identify linear time-invariant models and important constraints of the dynamic behavior between
certain commands and output signals. This process provided a high-level, closed-loop model of
the T-33 aircraft equipped with an autopilot to represent the most important characteristics of a
UCAV-like unmanned vehicle.

5.2 DemoSim modeling

The inputs to the identified LTI DemoSim model are the following command signals: ground
speed command Vcmd (i.e. total velocity w.r.t. ground), turn rate command χ̇cmd and altitude rate
command ḣcmd. The model outputs are ground speed V , heading χ and flight path angle γ. A
representation of these variables is depicted in Figure 5.1 using a fixed local coordinate frame. The
variables ζ and η denote the local north and east coordinates, respectively.

The linear DemoSim dynamics was identified at the following input-output trim values

VDStrim = 505 ft/s,

χ̇DStrim = 0 rad/s,

ḣDStrim = 0 ft/s, (5.1)

χDStrim =
π

2
rad,

γDStrim = 0 rad.

5.3 Prediction model

The prediction model was chosen to accommodate two important requirements. It has to provide
a reasonably accurate description of the dynamic relationship between the control inputs of the
test platform and the output signals of interest, which include position coordinates for tracking

69

V

h

z

h

gc

h

c

Figure 5.1: Representation of DemoSim model input and output variables in a local coordinate
frame.

performance and other variables used for describing maneuvering constraints. At the same time, it
has to be simple enough to limit the complexity of the optimization problem that is solved online
in a receding horizon fashion.

These objectives were captured by constructing the prediction model from the identified LTI
DemoSim dynamics and a flat-earth kinematic model. Using linearized kinematics that was updated
every timestep, this approach resulted in a discrete-time linear time-invariant prediction model.
Although this model was fixed throughout the prediction horizon of the optimization problem, the
updates to the linearized kinematics part rendered the prediction model a linear parameter-varying
system, which depended on the current velocity, heading and flight path angle values.

The continuous-time nonlinear prediction model, comprised of the LTI dynamics and the non-
linear kinematics, is depicted in Figure 5.2. The tilded input and output variables of the LTI
DemoSim model represent deviations from the trim values:

Vcmd = VDStrim + Ṽcmd (5.2a)

χ̇cmd = χ̇DStrim + ˜̇χcmd (5.2b)

ḣcmd = ḣDStrim +
˜̇
hcmd (5.2c)

V = VDStrim + Ṽ (5.2d)

χ = χDStrim + χ̃ (5.2e)

γ = γDStrim + γ̃ (5.2f)

A schematic diagram of the linearized prediction model is shown in Figure 5.3. Note that the
nonlinear kinematics is linearized around fixed V0, χ0, γ0 values that represent current measure-
ments. The inputs fed into the linearized kinematics model represent the differences between the
true values predicted by the LTI DemoSim model (after addition of trim values) and the current
measurements used for linearization:

Ṽ0 = (VDStrim + Ṽ) − V0 (5.3a)

χ̃0 = (χDStrim + χ̃) − χ0 (5.3b)

γ̃0 = (γDStrim + γ̃) − γ0 (5.3c)

70

LTI

model
DemoSim

Nonlinear
kinematics

γ

Vcmd

χ̇cmd

ḣcmd

VDStrim

χ̇DStrim

ḣDStrim

Ṽcmd

˜̇χcmd

˜̇
hcmd

Ṽ

χ̃

γ̃

VDStrim

χDStrim

γDStrim

ζ̇

η̇

ḣ

η

h

ζV

χ

Figure 5.2: Nonlinear prediction model.

LTI

model
DemoSim

Kinematics
linearized

at
η̃

h̃

ζ̃
˜̇
ζ

˜̇η

˜̇
h

Ṽ0

χ̃0

γ̃0

Ṽ

χ̃

γ̃

Ṽcmd

˜̇χcmd

˜̇
hcmd

V0 − VDStrim

χ0 − χDStrim

γ0 − γDStrim V0, χ0, γ0

Figure 5.3: Linearized prediction model.

The linearized model was discretized using the discrete-time identified DemoSim dynamics and
approximating the continuous-time nonlinear kinematics around fixed V0, χ0, γ0 values with the
following forward-Euler discretized linear system





ζ̃(k + 1)
η̃(k + 1)

h̃(k + 1)



 = Ã





ζ̃(k)
η̃(k)

h̃(k)



 + B̃





Ṽ0(k)
χ̃0(k)
γ̃0(k)



 (5.4)

where

Ã = I3, B̃ = Ts ·





cosχ0 cos γ0 −V0 sinχ0 cos γ0 −V0 cosχ0 sin γ0

sinχ0 cos γ0 V0 cosχ0 cos γ0 −V0 sinχ0 sin γ0

sin γ0 0 V0 cos γ0



 . (5.5)

The sampling time Ts was 0.5 seconds.
The addition of DemoSim trim values and the subtraction of the current measurement values

at the output of the LTI DemoSim model were implemented by augmenting the LTI dynamics with
extra states (integrators with zero inputs), which were subtracted from the model outputs. The
state values were updated every timestep based on the difference between DemoSim trim values
and current measurements. Let us denote the original discrete-time LTI DemoSim matrices with
ADS, BDS, CDS, DDS. Using ADS0, BDS0, CDS0, DDS0 to denote the augmented dynamics that adjusts

71

the output values based on current measurements (V0, χ0, γ0) we have

ADS0 =

[
ADS 0
0 I3

]

, BDS0 =

[
BDS

0

]

, (5.6)

CDS0 =
[
CDS −I3

]
, DDS0 = DDS.

The estimated time-delays associated with the pilot model and data processing by the on-board
avionics were accounted for by augmenting the discrete-time DemoSim dynamics with extra states.
The command input time-delays were characterized as integer multiples of the sampling time Ts.
Assuming a time-delay of nd samples affecting each input channel, the state-space matrices of the
DemoSim dynamics were augmented as

Ad =





ADS0 BDS0 0
0 0 I3(nd−1)

0 0 0



 , Bd =





0
0
I3



 , (5.7)

Cd =
[
CDS0 DDS0 0

]
, Dd = 0.

Since the nonlinear kinematics part of the prediction model was always linearized around the
current measurements of V0, χ0, γ0, the outputs of this augmented, modified LTI DemoSim model
could be fed directly into the linearized kinematics model. In other words, the complete linear
prediction model could be obtained by the following augmentation of the state-space matrices

A =

[
Ad 0

B̃Cd Ã

]

, B =

[
Bd 0

B̃Dd 0

]

, (5.8)

C =
[
0 I3

]
, D =

[
0 I3

]
.

Additional disturbance inputs were added in the formulas above (5.8), to model additive output
disturbance that affects the plant.

The states associated with the DemoSim dynamics “half” of the prediction model were updated
using a linear time-invariant observer that relied on the control inputs sent from the RHC controller
to the plant (Vcmd, χ̇cmd, ḣcmd) and measurements of ground speed V , heading angle χ and flight
path angle γ. Note that flight path angle could not be measured directly on the test platform, so a
conversion from ground speed and altitude rate measurements was performed to obtain flight path

angle according to γ = arcsin ḣ
V . The input-output scheme of the RHC controller and the observer

are shown in Figure 5.4.

RHC

Observer

Figure 5.4: RHC controller and observer.

72

The T-33 test platform avionics provides GPS position measurements in terms of latitude λ,
longitude Λ and altitude h using the WGS-84 system. These measurements were converted to
north ζ, east η and altitude h values to be compatible with the coordinate frame of the reference
trajectory. The north and east coordinates were obtained by the transformation of the geodetic
measurements (GPS) into an NEU (north-east-up) local Cartesian coordinate frame that had its
origin at the point in space where the RHC controller is engaged (λ0,Λ0, h0). This flat-earth
coordinate frame for north-east navigation is depicted in Figure 5.5 as Kζη. The geodetic GPS
altitude measurements however were used directly, without any further conversion. This geodetic
coordinate frame for altitude navigation is also illustrated in Figure 5.5 and denoted by Kh.

(, ,)l L0 0 0h

z

h

h

Kzh

K
h

Figure 5.5: Navigation frames for north, east, and altitude coordinates.

This means that the current north-east local coordinates of the nonlinear prediction model
were obtained from geodetic GPS measurements using the NEU frame conversion, whereas the
current GPS altitude measurement was used directly as the current altitude coordinate. The states
associated with the position integrators of the linearized prediction model were always initialized
at zero (current position).

The output signals of the entire linear prediction model were assigned to three objective groups
denoted by u, z and y. These correspond to hard actuator or other input constraints, maneuvering
limits and tracking performance, respectively. The commanded input signals are denoted by r.

The prediction model in (5.8) has only y outputs for tracking performance. The outputs z used
to define maneuvering limits were not included in the flight code and will be described in more
detail in Section 5.7, including the definition of Az, bz linear constraint parameters obtained in
Section 3.4.

y =





ζ̃
η̃

h̃



 , z = Az





V
χ̇
γ̇



 , u = r =






Ṽcmd
˜̇χcmd
˜̇
hcmd




 , ∆r =






∆Ṽcmd

∆˜̇χcmd

∆
˜̇
hcmd




 (5.9)

The parameter-variance of the prediction model present in the B̃ matrix of the linearized kine-
matics model (5.5), is characterized by the nominal velocity V0, heading χ0 and flight path angle

73

γ0, around which the kinematic model was linearized. Denoting this vector of parameters with
% (k) = [V0 (k) χ0 (k) γ0 (k)]T , the linearized discrete-time prediction models have the form

x(k + 1) = Akx(k) +Bkr(k) (5.10)




y(k)
z(k)
u(k)



 = Ckx(k) +Dkr(k)

where the parameter dependency of the prediction model is indicated by the subscript k, meaning

Ak = A (% (k)) , Bk = B (% (k)) ,

Ck = C (% (k)) , Dk = D (% (k)) .

5.4 RHC problem formulation

The time-stamped three-dimensional position reference trajectory was specified in terms of north,
east, and altitude coordinates in a local NEU coordinate frame relative to the point in space where
the controller is engaged. The reference position vector elements were placed 0.5 seconds apart from
each other in time. Denote the reference position trajectory values by ζref (k), ηref (k), href (k) at
time step k. The LTI prediction model-based RHC controller was required to track a “linearized”
position reference trajectory ζ̃ref (k), η̃ref (k), h̃ref (k). This was generated by subtracting the sim-
ulated output of the nonlinear kinematics from the original reference trajectory. The “nominal”
simulated trajectory was calculated using fixed V0, χ0, γ0 values based on the current measurements
used for linearization. The linear reference trajectory was therefore obtained by

ζ̃ref (k) = ζref (k) − ζ0(k), (5.11a)

η̃ref (k) = ηref (k) − η0(k), (5.11b)

h̃ref (k) = href (k) − h0(k), (5.11c)

where the “nominal” simulated trajectories were calculated by

ζ0(k) =
k∑

i=1

Ts · ζ̇0(V0, χ0, γ0), (5.12a)

η0(k) =
k∑

i=1

Ts · η̇0(V0, χ0, γ0), (5.12b)

h0(k) =
k∑

i=1

Ts · ḣ0(V0, χ0, γ0). (5.12c)

The state values that represent the constant additive output disturbance in the prediction model
were updated every timestep based on the following disturbance filter

d(k + 1) = 0.99d(k) + 0.01din(k) (5.13)

where the input din(k) was determined from the following error equation

din(k) =





ζ(k)
η(k)
h(k)





︸ ︷︷ ︸

pos. meas.

−





ζref (k)
ηref (k)
href (k)





︸ ︷︷ ︸

pos. ref.

−





ζ̃(k|k − 1)
η̃(k|k − 1)

h̃(k|k − 1)





︸ ︷︷ ︸

pred. lin. output

(5.14)

74

(Note: Although the error equation in (5.14) was implemented in the flight code, it is incorrect.
The correct error equation would be

din(k) =





ζ(k)
η(k)
h(k)





︸ ︷︷ ︸

pos. meas.

−





ζ0(k|k − 1)
η0(k|k − 1)
h0(k|k − 1)





︸ ︷︷ ︸

nom. pos. pred.

−





ζ̃(k|k − 1)
η̃(k|k − 1)

h̃(k|k − 1)





︸ ︷︷ ︸

pred. lin. output

(5.15)

where ζ0(k|k−1), η0(k|k−1), h0(k|k−1) are position predictions based on the nonlinear kinematics
model and V0(k − 1), χ0(k − 1), γ0(k − 1) measurements at time k − 1.

Nominal simulation results show a marginal improvement in performance using the correct error
equation. When trying to simulate the flight test environment by assuming orders of magnitude
greater time-delays in the actual plant than what was assumed in the prediction model, the differ-
ence introduced by the corrected error equation is more eloquent, however still doesn’t change the
qualitative nature of the results.)

The optimization problem setup is based on the linear MPC formulation of [14] with some
modifications. The studies in [15, 16] formed the basis of the RHC design for the final flight test.
In most linear predictive controllers, the performance is specified by the following quadratic cost
function to be minimized, which will also be adopted here:

J(k) =

Hp∑

i=1

‖ŷ (k + i | k) − yref (k + i | k)‖2
Q +

+

Hc−1∑

i=0(δHc)

‖∆r (k + i | k)‖2
R + ρε

(5.16)

where ŷ (k + i | k) is the i-step ahead prediction of the outputs based on data up to time k. Hp

denotes the number of steps in the output prediction horizon. These predictions of the outputs are
functions of future control increments ∆r (k + i | k) for i = 0, δHc, 2δHc, . . . , Hc − 1. The integer
number of samples Hc is called the control horizon, the control signal is allowed to change only
at integer multiples of δHc samples and is set to be constant for all i ≥ Hc. This means that
the future control signal has the form of a stairstep function with steps occuring at δHc intervals.
The reference signal yref represents the desired outputs, Q and R are suitably chosen weighting
matrices. For our specific application, the optimization problem was specified using the following
parameters

Hc = 1, δHc = 1, Hp = 40,

Q =





0.01 0 0
0 0.01 0
0 0 1



 , R =





10 0 0
0 5 · 106 0
0 0 1



 .

The slack variable ε and its weight ρ are used for softening constraints. The exact purpose of the
slack variable and weight in the problem formulation will be clarified shortly.

In order to obtain the predictions for the signals of interest, a model of the process is needed.
By using a linear model, the resulting optimization problem of minimizing J(k) will be a quadratic
programming (QP) problem, for which fast and numerically reliable algorithms are available. The
linearized prediction model, developed in Section 5.3, is augmented with extra states to fit the
formulation in this RHC scheme. Three integrators are added to convert the control changes ∆r

75

into actual controls r, each one associated with the command inputs of velocity, turn rate and
altitude rate. A simple disturbance model is incorporated to the state space description of the
prediction model in equation (5.17), which assumes constant disturbances are acting on outputs.
The constant disturbance estimates are obtained by filtering the difference between measured and
predicted outputs, as described by equation (5.14).

The disturbance model also serves to mitigate the effect of model mismatch. The augmented
linear prediction model has the following form

ξ̂(k+1)
︷ ︸︸ ︷




x̂(k + 1)

d̂(k + 1)
r(k)



 =

Ak
︷ ︸︸ ︷




Ak 0 Bk

0 I 0
0 0 I





ξ̂(k)
︷ ︸︸ ︷




x̂(k)

d̂(k)
r(k − 1)



 +

Bk
︷ ︸︸ ︷




Bk

0
I



 ∆r(k) (5.17)





ŷ(k)
ẑ(k)
û(k)





︸ ︷︷ ︸

ŵ(k)

=



Ck

∣
∣
∣
∣
∣
∣

I
0
0

∣
∣
∣
∣
∣
∣

Dk





︸ ︷︷ ︸

Ck





x̂(k)

d̂(k)
r(k − 1)





︸ ︷︷ ︸

ξ̂(k)

+ Dk
︸︷︷︸

Dk

∆r(k)

After creating the prediction model and formulating the RHC problem, the optimization prob-
lem was translated to the formulation used by the RHC API described in Section 4.3 of Chapter 4.
A table showing the corresponding parameters of the two formulations and how the conversion was
done will be described in Section 5.5.

In order to gain better insight to the RHC problem, a standard quadratic programming solution
based on substitution is shown. Although this derivation does not represent the actual process that
was used within the RHC API to solve the problem, some parts of this development were used in
the flight code to obtain predictions of the system for the disturbance estimator.

By using successive substitution, it is straightforward to derive that the prediction model of
inner-loop outputs (signals of interest) over the prediction horizon is given by equation (5.18).

Denote parts of the state matrices Ck and Dk in equation (5.18) that correspond to the predicted




















ŵ (k + 1 | k)
ŵ (k + 2 | k)

...

ŵ (k +Hc | k)
ŵ (k +Hc + 1 | k)

...

ŵ (k +Hp | k)




















︸ ︷︷ ︸

W(k)

=




















CkAk

CkA2
k

...

CkAHc

k

CkAHc+1
k

...

CkAHp

k




















︸ ︷︷ ︸

Ψk

ξ̂(k) +





















CkBk Dk · · · 0

CkAkBk CkBk Dk

...
...

...
. . .

. . .

CkAHc−1
k Bk CkAHc−2

k Bk · · · CkBk

CkAHc

k Bk CkAHc−1
k Bk · · · CkAkBk

...
...

. . .
...

CkAHp−1
k Bk CkAHp−2

k Bk · · · CkAHp−Hc

k Bk





















︸ ︷︷ ︸

Θk








∆r (k | k)
...

∆r (k +Hc − 1 | k)








︸ ︷︷ ︸

∆R(k)

(5.18)

76

ŷ(k) outputs in ŵ(k), with an additional y subscript

Ck =





Cky

Ckz

Cku



 , Dk =





Dky

Dkz

Dku



 .

Consider only those predicted outputs that appear in the performance index

ŷ(k) = Cky ξ̂(k) + Dky∆r(k),

Y(k) = [ŷ (k + 1 | k) , . . . , ŷ (k +Hp | k)]T

using only the corresponding Cky and Dky matrices in expression (5.18). The prediction for these
outputs has the form

Y(k) = Ψky ξ̂(k) +Θky∆R(k) (5.19)

Substituting the predicted output in (5.19) into the cost function of (5.16), we get a quadratic
expression in terms of the control changes ∆R(k):

J(k) = ∆R(k)THk∆R(k) − ∆R(k)TGk + const+ ρε (5.20)

where

Hk = ΘT
kyQeΘky +Re, Gk = 2ΘT

kyQeE(k),

const = ET (k)QeE(k)

and E(k) is defined as a tracking error between the future target trajectory and the free response
of the system, i.e. E(k) = Yref (k)−Ψky ξ̂(k). Qe and Re are block diagonal matrices of appropriate
dimensions with Q and R on the main diagonal, respectively. (These could be chosen parameter-
dependent also.)

As in most applications, there are level and rate limits on control inputs. These are enforced
as hard constraints

u ≤ û (k + 1 | k) , . . . , û (k +Hp | k) ≤ u (5.21)

∆r ≤ ∆r (k) ,∆r (k + δHc) , . . . ,∆r (k +Hc) ≤ ∆r (5.22)

since the RHC algorithm has almost direct control over them (the optimization variables are
the changes in control inputs), so there is no modeling uncertainty associated with this aspect
of the prediction model. However, another type of constraint is also considered in this specific
application example represented by certain maneuvering limits on the aircraft. The controller
has to be versatile enough to handle these limits that might be system-state dependent or change
according to different stages of a mission. The most important maneuvering constraints of the T-33
testbed were characterized in Section 3.4 based on the DemoSim open vehicle executable model.
It is vital that these limits are treated as soft constraints, since disturbances and model mismatch
can easily lead to infeasibility problems if hard constraints are put on these type of output signals.

The numerical values of the u output signal limits (representing hard constraints) were specified
as

u =






−100 ft/s

−0.035 rad/s

−1000 ft/s




 , u =






100 ft/s

0.035 rad/s

1000 ft/s




 . (5.23)

77

Hard constraints were put on the optimization variables as well, specifically

∆r =






−4 ft/s2

−0.01 rad/s2

−1000 ft/s2




 , ∆r =






4 ft/s2

0.01 rad/s2

1000 ft/s2




 . (5.24)

Constraint softening for the outputs z is accomplished by introducing an additional slack vari-
able that allows some level of constraint violation if no feasible solution exists

z − ε ≤ ẑ (k + 1 | k) , . . . , ẑ (k +Hp | k) ≤ z + ε (5.25)

0 ≤ ε

It is beneficial to use an ∞-norm (maximum violation) penalty on constraint violations (as shown
in (5.16) and (5.25)), because it gives an “exact penalty” method if the weight ρ is large enough.
This means that constraint violations will not occur unless no feasible solution exists to the original
“hard” problem. If a feasible solution exists, the same solution will be obtained as with the “hard”
formulation. Using the linear prediction model in (5.18), all of the constraints in (5.21) and (5.25)
can be posed as linear constraints on the optimization variables ∆R and ε. Finally, the QP to be
solved at each time step has the following form

min
∆R, ε

∆RTHk∆R + ∆RTGk + const+ ρε

s. t.

[
Ωk,hard

Ωk,soft

]

∆R ≤
[
ωk,hard

ωk,soft

]

+

[
0
ε

]

0 ≤ ε

(5.26)

Note: The optimization yields ∆Ṽcmd,∆˜̇χcmd,∆
˜̇
hcmd values, which were integrated to get

Ṽcmd, ˜̇χcmd,
˜̇
hcmd. The obtained

˜̇
hcmd value was further integrated to get h̃cmd. Trim values were

added to arrive at Vcmd, χ̇cmd, hcmd values, which could be directly implemented on the T-33 au-
topilot.

5.4.1 Remarks

The problem formulation in the preceding section is a natural extension of a fixed LTI model
based RHC. The prediction at a certain time step is based on a linear model that best describes
the plant at the actual flight condition, assuming that flight condition dependent linear models
are available for prediction. A fixed LTI model is used over the entire prediction horizon but it
is updated according to the values of the scheduling parameters % (k) every time the horizon is
propagated and the optimization is resolved based on new measurement data. This approach leads
to the QP problem in (5.26), and the state matrices describing the internal model change in each
implementation cycle according to their current values: Ak, Bk, Ck, Dk. Usually a flight condition
dependent description of the plant dynamics can be obtained either by freezing the scheduling
parameters of a quasi-LPV model [17], or interpolating over a database of linearized models. In
other cases the nonlinear prediction model is simple enough to lend itself to “online” linearization,
while still retaining a reasonable prediction accuracy. This latter approach was followed in our
control solution.

We note if an accurate prediction of the parameters that the linear models depend on is available,
this would allow for the prediction model to vary over the prediction horizon. The optimization

78

problem could still be formulated as a quadratic program using different state matrices of the
internal model at each time step. Obtaining a reasonable prediction of the scheduling parameters
is not always easy, one could experiment with solving the problem first with the fixed LTI model
based RHC method and use the solution as the prediction for the scheduling parameters. Our
investigations indicate, that this extra effort doesn’t lead to significant improvement for the specific
application example and horizon lengths considered. Moreover, even though the optimization
problem complexity is retained, the additional computational overhead could undermine real-time
implementation of these ideas if the parameter-dependent models are calculated using interpolation
over a collection of linear systems.

Acknowledgement

The authors gratefully acknowledge discussions with George Papageorgiou at Honeywell Labs on
the particular RHC formulation to be used in the final flight test.

5.5 Translation to the RHC API problem formulation

Denote the dimensions of input-output signals and states introduced in the previous section with
nr, ny, nz, nu and nξ, respectively. The number of control changes to optimize over is denoted by
n∆R = nrdHc/δHce. Let us denote the selection matrix that maps the control change optimization
variables ∆R into changes in control at each time step of the output horizon with S






∆r0
...

∆rHp−1




 = S∆R (5.27)

where S ∈ R
Hp×nrdHc/δHce represents the difference between the output horizon Hp and control

horizon Hc, as well as any blocking technique implemented by choosing δHc > 1. This means that
in general the matrix S is structured as follows

S =
















1 0 · · · 0
...

...
...

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
...

...
...

0 0 · · · 0
















(5.28)

where the ‘1’-s appear in row numbers that are integer multiples of δHc, until the column space is
spanned. The remaining rows are all zeros.

Tables 5.1 and 5.2 contain a summary of the conversion between the RHC API problem for-
mulation and the corresponding parameters described in Section 5.4. The general linear constraint
matrix LGv referred to in Table 5.2 is given as

LGv =





IHp ⊗ Ckz 0nzHp×n∆R
−1Hp×1

−IHp ⊗ Ckz 0nzHp×n∆R
1Hp×1

01×nξHp 01×n∆R
1



 (5.29)

79

RHC API notation RHC parameters in Section 5.4

Q 0nξ×nξ

R R

C Cky

G Iny

M Q

F 0(n∆R+1)×(n∆R+1)

K [01×n∆R
ρ]T

Φ 0nξ×nξ

U
[
S ⊗ Inr 0nrHp×1

]
∗∗

A Ak

B Bk

E 0nξ×ny

H Hp

uk ∆rk

dk yref (k)

Table 5.1: Corresponding parameters in the RHC API problem formulation (to be continued).

5.6 RHC reconfiguration based on FDI output

The Fault Detection (FD) filter design is described in Chapter 6 along with a description of the
test environment in the final flight demonstration. For detailed information about the experiment
timetable and the activation time of the fault detection filter, refer to Appendices A-B.

For the purpose of describing the RHC reconfiguration process based on FDI output, it suffices
to say that at some point in the flight experiment a simulated aileron actuator fault is inserted.
This is implemented in the flight control software by corrupting the turn rate command output

∗∗ In the specific example at hand with the chosen parameters described in the previous section, we have

U =

[

I3 03×1

0(nrHp−3)×3 0(nrHp−3)×1

]

80

RHC API notation RHC parameters in Section 5.4

ax,box −∞

bx,box +∞

Lx Cku

ax u

bx u

au,box ∆r

bu,box ∆r

Lu 0

au −∞

bu +∞

LGu 0

aGu −∞

bGu +∞

LGv see in equation (5.29)

aGv

[
11×Hp ⊗ zT 0

]T

bGv

[
11×Hp ⊗ zT + ∞

]T

Table 5.2: Corresponding parameters in the RHC API problem formulation (continued).

of the controller with the output of a fault model. The corrupted control signal is then sent to
the healthy aircraft, however for the controller it appears as if a fault has occurred in the aircraft.
The fault detection filter was designed to detect this artificially inserted fault when the aircraft
reaches a certain segment of the reference trajectory designed to excite the lateral fault dynamics
and facilitate the detection process.

The fault model is depicted in Figure 5.6, which illustrates how the turn rate control command
was corrupted in the fault scenario.

The receding horizon controller was reconfigured when the threshold residual of the detection
filter indicated a fault after the insertion of the simulated fault model at the appropriate segment
of the flight experiment. The reconfiguration process involved two major changes to the RHC

81

AircraftRHC

Fault on

controller χcmd χcmd,f

Gf

Figure 5.6: Fault injection diagram.

controller. The prediction model was updated and augmented with additional dynamics to reflect
the faulty behavior of the aircraft. At the same time, more restrictive constraints were put on the
turn rate control command, to counteract the corruption caused by the fault model and represent
a less aggressive control strategy.

The numerical values of the modified u control signal limits (representing hard constraints)
associated with the faulty model were specified as

u =






−100 ft/s

−0.027 rad/s

−1000 ft/s




 , u =






100 ft/s

0.027 rad/s

1000 ft/s




 . (5.30)

A description of modifications to the prediction model based on incorporation of the fault
dynamics follows. Based on modeling considerations described in Chapter 3, the turn rate (χ̇)
input to heading (χ) output channel of DemoSim was identified as a single-input single-output
(SISO) system, decoupled from other inputs and outputs. This means that the state matrices
describing the identified DemoSim dynamics have the following structure:

ADS =





AV V 0 AV h

0 Aχχ̇ 0
AγV 0 Aγh



 , BDS =





BV V 0 BV h

0 Bχχ̇ 0
BγV 0 Bγh



 , (5.31)

CDS =





CV V 0 CV h

0 Cχχ̇ 0
CγV 0 Cγh



 , DDS =





DV V 0 DV h

0 Dχχ̇ 0
DγV 0 Dγh



 .

Due to this decoupled structure, the faulty lateral DemoSim dynamics can be represented by the
interconnection shown in Figure 5.7, where Af , Bf , Cf , Df stand for the state matrices of the SISO
fault model. The faulty lateral dynamics can be described by the following state matrices based on
the interconnection in Figure 5.7.

Aχχ̇,f =

[
Aχχ̇ Bχχ̇Cf

0 Af

]

, Bχχ̇,f =

[
Bχχ̇(1 +Df)

Bf

]

, (5.32)

Cχχ̇,f =
[
Cχχ̇ Dχχ̇Cf

]
, Dχχ̇,f =

[
Dχχ̇(1 +Df)

]
.

Using this representation, we can construct the modified prediction model incorporating the
faulty lateral dynamics by replacing Aχχ̇, Bχχ̇, Cχχ̇, Dχχ̇ in the DemoSim state matrices with
Aχχ̇,f , Bχχ̇,f , Cχχ̇,f , Dχχ̇,f . The obtained faulty state matrices of ADS,f , BDS,f , CDS,f , DDS,f are
then used to build the complete prediction model as described in (5.6)–(5.8).

82

Fault model

dynamics
DemoSim

Cf

χcmd χcmd,f χf

Aχχ̇ Bχχ̇

Dχχ̇Cχχ̇

Df

BfAf

Figure 5.7: Lateral DemoSim dynamics after fault activation.

5.7 Flight envelope limits as output constraints

Flight envelope limits were characterized in Section 3.4 as a collection of linear inequalities in the
following form

Az





V
χ̇
γ̇



 ≤ bz (5.33)

This means that predictions for V, χ̇, γ̇ variables are needed in order to implement the constraints
of the form (5.33).

State matrices of the original linear discrete-time identified DemoSim model can be used to
define the additional prediction model outputs that are needed for constraint specifications. The
identified DemoSim model is described with state matrices ADS, BDS, CDS, DDS corresponding
to Ṽ , χ̃, γ̃ outputs that represent deviations from trim values. Specifying a true ground speed V
output of the complete prediction model requires the addition of the trim value to the identified
LTI DemoSim model output variable: V = VDStrim + Ṽ . Since the identified model has χ and
γ outputs, their derivatives could be approximated using the discrete-time state matrices in the
following way. Assume that a discrete-time LTI system is described with state-matrices A,B,C,D.
If the D matrix is all zero, then the derivative of the output signal y can be approximated by

ẏ ∼ T−1
s ∆y = T−1

s (yk+1 − yk) = T−1
s C(A− I)xk + T−1

s CBuk (5.34)

where Ts is the sampling time. Since the DDS matrix of the identified DemoSim model is all zero,
we can apply this method to formulate new χ̇, γ̇ outputs using the original identified state matrices.

Partition the original CDS, DDS identified DemoSim matrices with respect to the individual
outputs in the following way

CDS =





CDS,V

CDS,χ

CDS,γ



 , DDS =





DDS,V

DDS,χ

DDS,γ



 . (5.35)

Then form the matrices

Co
DS =





CDS,V

T−1
s CDS,χ(ADS − I)
T−1

s CDS,γ(ADS − I)



 Do
DS =





DDS,V

T−1
s CDS,χBDS

T−1
s CDS,γBDS



 (5.36)

83

in order to create new augmented DemoSim matrices of

Ao
DS0 = ADS0, Bo

DS0 = BDS0, (5.37)

Co
DS0 =

[
CDS0

Co
DS 0

]

, Do
DS0 =

[
DDS0

Do
DS

]

.

which now have six outputs of the variables

[

Ṽ0 χ̃0 γ̃0 Ṽ ˙̃χ ˙̃γ
]T

including the newly defined last three. The matrices in (5.37) will replace the original ADS0, BDS0,
CDS0, DDS0 matrices of (5.6) in constructing the complete prediction model. This means that the
matrices Ad, Bd, Cd, Dd are constructed exactly as in (5.7), but using the newly defined Ao

DS0,
Bo

DS0, C
o
DS0, D

o
DS0 from (5.37). The complete prediction model state matrices are then formed by

Ao =

[
Ad 0

B̃Cd1 Ã

]

, Bo =

[
Bd 0

B̃Dd1 0

]

, (5.38)

Co =

[
0 I3

AzCd2 0

]

, Do =

[
0 I3

AzDd2 0

]

.

where Cd1, Dd1 correspond to the original three outputs and Cd2, Dd2 to the newly created second
three outputs of the matrices Cd, Dd. The complete prediction model of (5.38) describes the
dynamic relationship between the control r and disturbance d inputs, and the tracking y and soft
constraint z outputs as defined in (5.9)

xk+1 = Aoxk +Bo

[
rk
dk

]

(5.39)

[
yk

zk

]

= Coxk +Do

[
rk
dk

]

The flight envelope limits can then be represented by lower and upper limits on the z output signals

z = −∞, z = bz −Az





VDStrim

0
0



 (5.40)

to be used in the soft constraint formulation of (5.25).

84

Chapter 6

Fault detection filter design

This chapter describes the fault detection filter design process for the Fixed Wing Capstone Flight
Demonstration. The contents of this chapter is borrowed from a publication1 that will be submitted
to a journal in the near future and in its format represents a separate entity within this technical
report.

6.1 Introduction

6.1.1 The challenge

The Software Enabled Control (SEC) program [2] was a research initiative undertaken by DARPA
and the U.S. Air Force Research Laboratory (AFRL) to exploit recent developments in software and
computing technologies for applications to control systems. The program was geared toward unin-
habitated air vehicles (UAVs), and culminated with a flight test during June 2004, where the main
technologies were demonstrated in a “simulated” UAV, the T-33/UCAV. The group at the Univer-
sity of Minnesota (UMN), in collaboration with the University of California at Berkeley (UCB),
implemented and flight tested a receding horizon control (RHC) algorithm for trajectory tracking.
The open control platform (OCP) [18] provided the middleware interface to the T-33/UCAV for im-
plementation of real-time adaptive control algorithms. The flight control system is a safety-critical
component of the UAV and should include a level of fault detection and RHC reconfiguration in
case a faulty condition has been declared.

The flight testbed to be used was a T-33 jet aircraft. This aircraft was chosen because its avionics
package was the same as the X-45 uninhabited combat air vehicle (UCAV), see Figure 6.2.2 This
provided the SEC program with a single aircraft characterized by realistic UAV dynamics as well
as being fitted with an avionics interface of a true UAV.

To understand the challenge involved in designing a fault detection (FD) filter for the SEC flight
test, consider the block diagram of the system illustrated in Figure 6.1. From this block diagram,
the signals available for control and FD were the control signal u and the measurement signal y.
Hence the system of interest is an input/output black-box for which a nonlinear model DemoSim
was developed specifically for the SEC program by Boeing, who provided the project management
for the SEC program, and was provided to the SEC groups. As could be expected, the resulting

1R. Ingvalson, H. P. Rotstein, T. Keviczky and G. J. Balas, “Input-Dependent Threshold Function for an Actuator
Fault Detection Filter”

2The T-33 photo in this figure was obtained from an online photo database. The UCAV photo was obtained from
the Boeing Company’s corporate web site: www.boeing.com.

85

-u j-

6
Autopilot -- j- Actuator - T-33 Aircraft

Dynamics
- Avionics -y

�Stability Augmentation
System

6

Figure 6.1: Fault detection setup in the SEC experiment. Notice that only the signals u and y are
available for processing

Figure 6.2: The T-33 jet aircraft (left) and the X-45 UCAV (right)

model and system involve complexities that cannot be ignored when doing control and FD design:
unknown time-delays, non-linear behavior in the form of various limiters at the autopilot level,
plant variations, etc.

The signals internal to the closed-loop system formed by the autopilot, actuators, aircraft
dynamics and avionics are not available for design or use in DemoSim or on the actual flying
platform, see Figure 6.1. The reason for this limited information is a combination of proprietary
and confidential information. Needless to say, the limited information greatly constrains the FD
problem. Indeed, almost every approach to FD assumes that either an inexact, but decent, model
of the internal dynamics of the system of interest exists or that learning from examples is possible.
See, e.g. the comprehensive books [19] and [20]. In the SEC case, a model was available but the
internal dynamics were not. Because of this, evaluation of the effect of an actuator fault could not
be performed. Moreover, faults due to changes in the internal dynamics could not be simulated
since the flight simulation for design and testing, provided to the SEC researchers, did not have
access to internal dynamics. The challenge was to develop an FD system that could be designed and
tested both in hardware-in-the-loop and flight test given a limited set of information and actuation.
As discussed in this chapter, the challenge was addressed by using a number of tools, including
H∞ fault detection, a full nonlinear aircraft simulator for fault models estimation and development
of a new threshold function as a detection tool.

The constraints imposed by the SEC final testbed, as artificial as they may seem, are appearing
with increasing frequency in practice for a number of reasons. From a system’s engineering view-

86

point, it is desirable to see each one of the components of a given project as independent as possible.
This greatly facilitates the development of a project in terms of responsibilities and performance
demonstration, but tends to perturb the information flow, especially if a new sub-systems is added
as an after-thought. Moreover, different blocks, e.g. the autopilot and the flight controls, may be
developed by different groups on possibly different processors, with the corresponding communica-
tion and proprietary concerns. Finally, software re-usability driven by economical and certification
considerations, where entire sub-components are taken off-the-shelf, may further restrict the access
to relevant signals.

With all of these limitations, it remained the responsibility of the SEC UMN researchers to
develop a FD algorithm for the T-33/UCAV flight testbed. The strategy employed for addressing
this closed-loop FD problem is based primarily on the foundations of robust control theory, specif-
ically that of H∞ optimization. Also necessary for this problem was an input-dependent threshold
function, for which a novel approach is developed using ideas from the model invalidation litera-
ture. The FD algorithm and threshold function were a primary component of the OCP, and once
completed they were integrated into the OCP, where the algorithm could be tested by simulation
and ultimately flight tested as part of the SEC Capstone Demonstration. This chapter focuses on
the work done on the FD algorithm, up to and including the simulation of the UMN/UCB SEC
Capstone Demonstration, integrated with the FD algorithm.

6.1.2 Organization of the chapter

A brief background to FD is discussed in the next section, which is followed by a more detailed
introduction to the FD SEC problem, Section 6.2. Here, the setup and design of the FD problem
are described. Section 6.3 contains the theoretical contribution of the chapter: a function that
can be implemented on-line to decide if a fault has occurred. Since the function may provide a
conservative criterion, a number of tuning parameters is also introduced, and their effect on the
overall performance is discussed.

Section 6.4 contains further modeling details in the SEC problem, and shows the considerations
involved in the design of the FD filter and the tuning of the threshold function. Section 6.5
illustrates the performance of the FD scheme in simulations and also in an actual flight test.
Finally, Section 6.6 contains the conclusions and suggestions for future work.

Fault detection is understood as the ability to recognize unexpected changes in the functioning of
a system, usually resulting from physical failures or breakdowns. Research efforts in fault detection
started during the early 1970’s and a relatively large body of knowledge is now available. For a
review of many results and pointers to the literature, the reader is referred to the books [20] and
[19].

Arguably the most straightforward method of dealing with faults is to use redundant subsys-
tems. For instance, a typical commercial aircraft navigation system may have triple-redundant
inertial references plus double-redundant air data systems as a navigation sensing suite. A voting
scheme can then be implemented to check the performance of the individual sensors and detect
abnormal behavior. As another example, the Segway human transporter has a suite of 9 gyros for
stabilization/equilibrium purposes.

Hardware redundancy is expensive and usually limited to high-end applications. Hence the
drive to replace hardware redundacy by “analytic” redundancy whereby additional knowledge of
the systems involved is used instead of actual redundancy. Earlier work in FD concentrated on the
conditions for detecting and identifying faults for highly idealized models (see e.g. [21]) and their
application in design. The focus of this work is on the trade-off between the ability to detect faults

87

and the level of noise in the measurements. Recently, paralleling the developments in control theory,
the effect of uncertainty in the models has been recognized as a major factor affecting the detection
of faults. This has given rise to the idea of robust fault detection, namely, the ability to detect
faults in the presence of model uncertainty. Initially, robustness has been addressed indirectly by
first designing a fault detection filter and then applying threshold filters, based upon the assumed
uncertainty level, to the residuals, signals generated by the FD filters [22, 23]. In particular, [22]
attempted to estimate the smallest size of the failure which is detectable in spite of sensor noise and
model uncertainty. In later work, model uncertainty was explicitly taken into account and several
robust FD filters were proposed [24, 19, 25, 26]. Preliminary applications of these techniques have
also been reported in the literature, e.g. [27].

An FD scheme usually consists of two stages: construction of a filter for generating residuals and
a decision stage for analyzing the residuals and deciding if a fault has actually occurred. Relatively
little has been done in combining robust FD filters with the synthesis of a robust threshold strategy.
For example, in [28] the optimal threshold function is investigated, where optimality is understood
in terms of false-alarm and miss-detection rates. This approach provides a practical solution when
the basic trade-off is with measurement noise, but becomes less convenient when measurement
noise is small as compared to model uncertainty. The main trade-off for the flight demonstration
is between fault detection and model uncertainty. Thus, robust techniques were required for both,
the filter design and threshold strategy.

When model uncertainty is large, the residuals generated by any FD filter, due to this un-
certainty, are significant; hence, the design of a threshold function capable of handling model
uncertainty becomes critical. This chapter presents a solution to this problem using energy-like
arguments. The proposed approach has similarities with the work in [29], where a model invalida-
tion argument is used to decide whether a fault has occurred or not. The main disadvantage of the
model invalidation approach is that it cannot be implemented on-line since it involves the solution
of an optimization problem of monotonically increasing size. Exploiting the special structure of the
SEC problem, an alternative criterion may be formulated for the fault detection threshold filter
which dramatically reduces the computation cost and hence can be implemented in real-time.

6.2 The H∞ fault detection filter

As stated earlier, the FD filter design was accomplished using techniques well known to the robust
control community. The basic setup for the FD problem under consideration is shown in Figure 6.3.
One familiar to robust control will immediately recognize it as a typical “uncertain” system. The
block Gnom represents the nominal model of the system, and the block F is the filter to be designed.
The W -blocks and the ∆-blocks represent the uncertain aspects of the system, and are known as the
weighting functions and perturbation matrices, respectively. The primary difference in our approach
is that we solved an open-loop H∞ optimization problem. Whereas, control designers typically use
H∞ to solve closed-loop problems. The proposed FD problem is open-loop because the design
block, the filter F , does not lie in a feedback path. Even though this is not a typical H∞ problem,
it is still well suited for it, because the basic assumptions for H∞ methods are easily satisfied for
our proposed FD problem. For example, one assumption requires that all system interconnection
transfer functions (see Figure 6.4) are stable and proper which is satisfied for the given problem
formulation.

As seen in Figure 6.3 there are two ∆ blocks – also known as uncertainty matrices – in consid-
eration. In robust control theory, these uncertainty blocks are unknown and, in general, complex-
unstructured matrices. They are used to model parametric uncertainties, or can also be used to

88

u -

- ∆f - Wf

?i

- ∆m
- Wm

?- i -Gnom
- i

?
n

Wn

? -y F -r

Figure 6.3: Uncertain representation of the fault detection system

represent uncertainties that are more difficult to define, such as system modeling errors. Addition-
ally, it is usually assumed that each ∆ is norm-bounded by 1, i.e. ‖∆‖ < 1. With this assumption,
the weighting functions W must be scaled appropriately to represent the magnitude of the signals.
Although, many robust control methods approach uncertainty in a similar manner, there are certain
robust techniques that make additional assumptions about the uncertainty blocks. For instance,
in µ-synthesis the ∆-blocks are assumed to have a structured form, specifically a block-diagonal
structure. H∞ methods, on the other hand, assume unstructured uncertainties.

6.2.1 H∞ problem formulation

The first block ∆f is associated with the perturbations due to the fault model. The second block
∆m represents the uncertainty involved in describing the physical system via a mathematical model,
i.e. modeling errors. Lastly, the block Wn is included to encompass any high-frequency errors that
may enter the system, such as noise. The weighting functions Wf and Wm allow the introduction
of a priori knowledge on the nature of the fault and the plant uncertainty. As mentioned in the
introduction, the objective of the fault detection algorithm is to detect a fault during a closed-
loop operation. These two uncertainty blocks, see Figure 6.3, represent an input-output effort
at modeling plant uncertainty and fault dynamics. This setup clearly highlights that if there is
no separation between the frequency associated with the faults and the frequency of the model
uncertainty, then one cannot distinguish between them using input-output signals. Therefore, in
the proposed approach it is assumed that the faults and the modeling errors do not share the exact
same frequency characteristics.

Following the idea of H∞ norm-based fault detection (see, e.g. [27]), the configuration in Fig-
ure 6.3 is re-drawn as shown in Figure 6.4. In this figure, the uncertainty blocks ∆f and ∆m have
been removed and two new fictitious signals f and d are included. The objective of the H∞ fault
detection design is to synthesize a filter F such that the transfer matrix Trw between the extended
input:

w =





f
u
d



 (6.1)

and the residual error r̃ are small in an H∞ sense. This would imply, in particular, that the residual
r of the FD filter tracks the fault f̂ = Wff . Notice that the particular uncertainty model selected
also covers disturbances at the plant input.

One of the advantages of this formulation is that standard tools for H∞ control design can be
used to design the filter. For other alternative approaches to H∞ fault detection, see Chapter IX
in [19].

89

f - Wf
f̂

??r

- Gm

?
u - j - Gm

- j - j
y

− - F -
r

j− - r̃

d - Wm

6

n - Wn

6

Figure 6.4: Setup for the H∞ fault detection filter design. If the transfer function from f to r̃ is
“small,” then the residual r tracks the fault signal f̂ .

6.2.2 H∞ design trade-offs

In order to better understand the trade-off involved in the H∞ optimization problem, one should
look closely at the effect of the system inputs on the residual r. These relations can be obtained
from the system interconnection, shown in Figure 6.4. From this figure, the residual is related to
the inputs by

r = F [Gm (Wff +Wmd) +Wnn] −Wff

= (FGm − I)Wff + FGmWmd+ FWnn (6.2)

Equation (6.2) shows the trade-off involved in the proposed fault detection problem. To track the
fault, the filter F should invert the plant Gm in the bandwidth of the fault as determined by Wf .
At the same time, the filter should be small enough to attenuate the effect of noise Wnn and plant
uncertainty (and input disturbance) GmWmd. If there is adequate frequency separation for these
two, then a good solution can be obtained by approximating G−1

m in the frequency band of interest
and then “rolling-off” to prevent disturbance and noise affect the residuals.

Notice that if there is significant overlap in the bands of Wf and GmWm or Wn, then no FD
filter will be able to isolate a fault adequately. This should be a major concern in the design of a
FD filter for a closed-loop system. In many cases of practical importance, however, separation will
hold approximately and the H∞ FD filter produces the best compromise in terms of the H∞ norm.
This observation motivates the topic of the next section: design of fault decision criterion.

6.3 Is there a fault?

In the absence of a clear frequency separation, plant uncertainty will result in a non-negligible
residual even if no fault is present. The use of a simple thresholding strategy will hence give rise to
a large number of false alarms or, if the threshold value is increased, miss-detections. This section

90

describes an input-dependent threshold function that exploits the additional information assumed
for the system. From Figure 6.3,

r = F ([Gm (I + ∆mWm) (I + ∆fWf) −Gm]u+Wnn) (6.3)

Following the model invalidation paradigm (see, e.g. [30]) a fault will not be declared if there exist
∆m stable and n such that ‖∆m‖∞ ≤ 1, ‖n‖2 ≤ 1, and:

r = F (Gm∆mWmu+Wnn) . (6.4)

Namely, there exists an uncertainty and a noise consistent with the problem that can “explain” the
observed data.

As shown in [29] in the context of fault detection, given (u(τ), r(τ)) for τ = 0, · · · , t, the problem
of verifying the existence of a norm bounded uncertainty ∆m subject to (6.4) can be transformed
into an optimization problem with a linear matrix inequality constraint. This fact has interesting
consequences for off-line fault detection, but involves the solution of a monotonously increasing
optimization problem and hence cannot be used for on-line computations. The objective of this
section is to present an alternative, albeit weaker, criterion suitable for real-time applications.
Consider the projection operator:

(T t2
t1
u)(τ) =

{
u(τ) t1 ≤ τ < t2
0 elsewhere

(6.5)

with the simplifying notation T t = T t
0. Then (6.4) can be replace by the stronger condition:

∥
∥T tr

∥
∥2

2
≤

∥
∥T tFGm∆mWmu

∥
∥2

2
+

∥
∥T tFWnn

∥
∥2

2
(6.6)

for each time instant t. Given a causal operator G, one has
∥
∥T tGu

∥
∥

2
≤

∥
∥GT tu

∥
∥

2
, and so (6.6)

implies
∥
∥T tr

∥
∥2

2
≤

∥
∥FGm∆mWmT

tu
∥
∥2

2
+

∥
∥FWnT

tn
∥
∥2

2
(6.7)

Given the assumptions ‖∆m‖∞ ≤ 1, ‖n‖2 ≤ 1,

∥
∥T tr

∥
∥2

2
≤ ‖FGmWm‖2

∞

∥
∥T tu

∥
∥2

2
+ ‖FWn‖2

∞ (6.8)

Since for a given design the transfer matrices above are constant, (6.8) can be re-written as:

∥
∥T tr

∥
∥2

2
≤ α2

∥
∥T tu

∥
∥2

2
+ β2 (6.9)

where:

α
.
= ‖FGmWm‖∞

β
.
= ‖FWn‖∞ .

Condition (6.9) can be used for fault detection in real-time applications. Indeed, one can compute
the threshold signal:

f(t) =
∥
∥T tr

∥
∥2

2
− α2

∥
∥T tu

∥
∥2

2
− β2 (6.10)

for each time t and declare a fault if f(t) > 0 at some time instant t.
Notice that if (6.6) holds for each time t, then (6.4) will also hold true. The opposite is not

necessarily true for time-invariant uncertainties ∆m, and in general the former condition will be
much more restrictive. In addition to the above, the use of the triangular inequality and the norm-
bounding properties makes (6.9) a sufficient, but in general far from necessary condition for (6.4).
Hence (6.10) must be relaxed to make it useful in practice.

91

6.3.1 Relaxing the threshold condition

In addition to the gap between (6.4) and (6.7), there are good reasons to relax the constraint on
T tr associated with (6.7) by introducing new design parameters. Indeed, during the fault detection
filter design stage, the weighting functions Wm, Wn may be modified to achieve desirable behaviors
of the filter not necessarily captured by the H∞ formulation (e.g. a roll-off rate). This is especially
true for the noise signal n, which is often stochastic in nature and hence can only be approximately
modeled in the H∞ design. Moreover, being a worst-case criteria, H∞ and the threshold strategy
defined above are ill-suited for trading-off false-alarm and miss-detection rates, which are central
in any fault detection design.

Two design parameters are introduced in (6.9) in an attempt to compensate the difficulties
mentioned above. First, the running-norm

∥
∥T tu

∥
∥2

2
=

t−1∑

τ=0

‖u(τ)‖2

is modified by introducing the forgetting factor κ < 1:

Stu(t)2
.
=

t−1∑

τ=0

‖κt−1−τu(τ)‖2

This exponential decay on the influence of “old” data can be used for both norms in (6.10). The
usage of the forgetting factor has two main consequences:

1. The threshold strategy (6.10) tends to become insensitive to faults if Wm is relatively large
as compared to the actual plant/model mismatch observed in practice, especially when the
function is computed over long time intervals. This may give rise to fault miss-detection.

2. At some points during the operation of the system, one may want to allow for relatively large
plant/model mismatch, not captured by the uncertainty bound Wm. In these instances, (6.10)
may result in a false-alarm since the unduly mismatch effectively behaves as a fault. This
difficulty may be overcome by temporarily ignoring the value achieved by f while the large
mismatch is present, and then allowing the exponential weight to bring f back to negative.

Second, the noise level β is replaced by a tuning parameter β that can be used to reduce the
false-alarm rate. This parameter can be tuned by analyzing (u(t), r(t)) data records under benign
conditions, e.g. operating points where model/plant mismatch is small.

6.4 Fault detection for the SEC program

The fault detection design for the SEC program is based on the simulation DemoSim of the
T-33/UCAV aircraft provided by Boeing to the SEC research groups. DemoSim is a black-box
simulation of the T-33/UCAV augmented aircraft. As mentioned in the introduction, although one
can provide inputs, modify a few functioning parameters, and observe output logs there is no access
to the internal signals, dynamics, or logic of the simulator. As a consequence of and in addition
to standard model uncertainty, one needs to address the fact that DemoSim’s autopilot implemen-
tation and internal discrete logic (saturation levels, limiters) are unknown. To make things more
difficult from a fault detection viewpoint, the inputs to DemoSim are actually autopilot commands
and hence only guidance-level (i.e. kinematic) control of the vehicle is possible.

92

Input Channels Output Measurements

Vcmd – Velocity (ft/sec) Vmeas – Velocity (ft/sec)
χ̇cmd – Heading Rate (deg/sec) χmeas – Heading (deg)

ḣcmd – Altitude Rate (ft/sec) γmeas – Flight Path Angle (deg)

Table 6.1: Input and output signals for the T-33/UCAV Testbed

The set of input and output signals used for control are presented in Table 6.1. The fault
detection scheme described in the previous sections was applied to the single-input, single-output
lateral-directional dynamics subsystem from χ̇cmd to χmeas. This transfer function is referred to
as the χ-channel. This subsystem was selected since χmeas would be essentially decoupled from
the other two reference inputs when control commands are restricted to lie within tolerable limits.
Thus, the FD problem could be simplified to a single-input, single-output (SISO) problem.

A linear model was identified from I/O data obtained using DemoSim’s χ-channel3. The model
identified was based upon the response of DemoSim to a 0.5 deg/sec step command. A third-order
autoregressive exogenous model was identified using the Matlab System Identification Toolbox.
The identified discrete time transfer function with sampling period of 0.1 seconds was

Gm =
2.48 · 10−3z3

(z − 0.98)(z2 − 1.89z + 0.90)

This is the model used in all subsequent analysis and design. The frequency response of this model
is shown in Figure 6.5.

6.4.1 Fault model

DemoSim does not provide a way of internally simulating a fault and hence it was necessary to
simulate a fault by either corrupting the input or output channel of DemoSim in such a way that
the resulting output resembled a faulty system. There are many ways in which this can be done,
the approach used involved insertion of a multiplicative input fault, as shown in Figure 6.6. In this
figure, u is the actual or true command to be fed to DemoSim, and û is the “corrupted” command
which will produce the “faulty” output. The “no fault” scenario corresponds to the case when the
“Fault On” switch is open, û = u.

Since only the lateral motion was being considered in this FD problem, it was necessary to only
look at faults which would have strong coupling to this channel. One such fault would be an aileron
actuator fault. Hence, Wf was designed such that the overall system (i.e. with the multiplicative
fault input) would behave as if a true aileron actuator fault occurred.

Physically, an aileron actuator fault may result in changing the dynamics of the actuator, e.g. a
change in the damping or natural frequency of the actuator. These changes could result from actual
damage, i.e. faults, to the physical system – such as a loss of hydraulic pressure or damage to the
aileron control surface.

3For identification and simulation, it was actually the numerically differentiated output of DemoSim that was
used. That is, the model identified was based on a χ̇cmd → χ̇out response of DemoSim.

93

10
−2

10
−1

10
0

10
1

10
2

10
−5

10
0

10
5

|G
m

(j
ω

)|

ω [rad/sec]

10
−2

10
−1

10
0

10
1

10
2

−300

−200

−100

0

100

φ
[d

eg
]

ω [rad/sec]

Gm

Wf

Figure 6.5: Bode plots of the plant model Gm and the fault model Wf

-u
Wf �

�
�>

?

Fault On

- j -û

6

Figure 6.6: Multiplicative fault input

94

-u
Wf - j - Gm

-ŷ

6

Figure 6.7: Fault identification setup

Gm
-u - Wf -yf j -ŷ

6y

Figure 6.8: Equivalent representation for fault ID setup

6.4.1.1 Identification of Wf

Identification of the fault filter, Wf , was performed using a Boeing 747 aircraft simulation.4 This
simulation allowed individual parameters of the actuators to be varied. From the simulation, a
nominal response and a faulty response was generated which was not possible with DemoSim. The
fault filter Wf was identified using these responses as described in the following paragraphs. Wf was
generalized and scaled according to the dynamics of DemoSim’s χ-channel relative to the Boeing
747 simulation.

Denote the faulty system as Ĝm. Assuming a multiplicative input fault, as in Figure 6.6, the
response ŷ of the true faulty system Ĝm was approximated by

ŷ = Gm(1 +Wf)u (6.11)

It now remains to identify Wf , such that the above equation is a good approximation to the faulty
system. The block diagram for this equation is given in Figure 6.7. Assuming that all systems are
linear, we can redraw Figure 6.7 with Gm on the input side, as in Figure 6.8. From this figure, it
is clear that ŷ = y + yf , where yf is the response of Wf to input y. Thus, the relationship can be
written as z = ŷ− y, and since both y and ŷ are know from the simulation, the frequency response
of Wf can be calculated as

Wf =
FFT (ŷ − y)

FFT y
(6.12)

where FFT denotes the discrete-time Fast Fourier Transform.
Since a true fault in a physical system usually cannot be characterized precisely by one response

ŷ – as (6.12) would suggest – it was necessary to generate a family of faulty responses, ŷ. This
collection of faulty responses needs to be a good representation of the entire set of possible faulty
responses. An individual weighting function Wf was determined for each faulty response, to this
collection of weighting functions a hand-fit upper bound W f was determined. The W f upper bound
was used as the final weight.

4In the remainder of this section, the Boeing 747 simulation will be referred to as “the simulation”. Any references
to DemoSim will be explicit.

95

10
−2

10
−1

10
0

10
1

10
2

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

[d
eg

]

ω [rad/sec]

F
W

p
W

n

F
Wm

Wn

Figure 6.9: H∞ Filter design and weighting functions

6.4.1.2 Generation of nominal and faulty responses

As mentioned earlier, the fault being simulated is an aileron actuator fault. In the simulation, this
actuator is modeled as a second-order system with a nominal natural frequency of ωm = 16.4 rad/sec
and damping ratio ζm = 0.67. Using these parameters, the nominal response y of (6.12) was
generated with the simulation.

The collection of the faulty cases was chosen with natural frequency ωf ∈ [15, 3] rad/sec and
damping ratios from ranges ζf ∈ [0.7, 1.5]. This was done to cause the actuator to exhibit a slower
response; and thus, more characteristic of a truly faulty or degraded actuator. A number of these
fault cases were simulated to generate faulty responses ŷ, with (6.12) used to generate a frequency
response for each fault case. The upper bound fit W f to these responses was the weight used in
design. Future reference to Wf will be understood to refer to this upper bound.

Since the dynamics of the Boeing 747 simulation were not the same as the dynamics of DemoSim
it was necessary to shift the frequency of Wf so that it’s response lied within the bandwidth of
DemoSim’s linear model Gm. The gain was also adjusted, and was later used as a parameter to
vary the intensity of the fault. The resulting transfer function was

Wf =
2.6 · 10−3s(s+ 10)(s+ 5)(s+ 0.3)

(s+ 0.9)(s+ 0.2)(s2 + 0.416s+ 0.64)
.

The frequency response of Wf is shown Figure 6.5.

6.4.1.3 Filter design results

The characteristics of the final H∞ filter design and the expected performance are briefly discussed
here. Figure 6.9 shows the results of the H∞ optimization of the fault detection filter. Included in
the plot are the H∞ optimal filter F , as well as the weighting functions Wp and Wn used in the
final design.

From Figure 6.9, it is clear that F is essentially a low-pass filter. This in not surprising since
the problem has been formulated as a disturbance rejection problem. The roll-off also occurs at a
frequency where expected, around 0.4 rad/sec. This is near the frequency in which the noise Wn

96

-u = χ̇cmd Wf �
��3
?

Fault On

-yf i

6

-û DemoSim - du
dt

-χ̇out i

- Gm

6−
-ỹ F -r

Figure 6.10: FD filter test simulation diagram

begins to increase. Further discussion of the performance of this filter is presented in subsequent
sections.

6.5 Simulation results

Section 6.5.1 contains a summary of the simulation results obtained from integrating the FD filter
with DemoSim. These results demonstrate the performance of the FD filter by issuing an a priori
command signal.

Following these results, Section 6.5.2 presents the simulation results of integrating the FD
filter into the UMN/UCB final SEC Capstone Demonstration. In this simulation, the commands
to DemoSim were generated by the RHC algorithm developed for the T-33/UCAV testbed by
UMN researchers and described in Chapter 5. Section 6.5.2 also contains an overview of the entire
UMN/UCB SEC Capstone Flight Demonstration Experiment as well as a discussion of the Capstone
simulation environment.

6.5.1 Simulation of the FD Filter and DemoSim

Based on the H∞ design interconnection shown in Figure 6.4, a simulation environment was con-
structed to test the fault detection filter. The block diagram for the simulation is shown in Fig-
ure 6.10.

In this simulation, 0.5 deg/sec χ̇ step commands are issued to DemoSim – a positive step at
t = 0 sec was followed by a negative step at t = 100 sec. The fault was turned on 70 seconds after
the positive step command. The simulation results are shown in Figure 6.11. These plots show the
command u, the faulty command û, the model “error” ỹ, and the residual r and fault signal yf ,
respectively.

According to the simulation experiment setup, the filter’s response to the positive step shows the
performance in the presence of no fault. Whereas, the negative step shows the filter’s performance
in the presence of a fault. Also, note from Figure 6.5 that Wf rolls off at low frequency; thus, the
fault will only affect the output of DemoSim during the transient phase of the input command u.
This is clear from the plot of û in Figure 6.11, since no change is seen immediately in this signal
when the fault is turned on at 70 sec. It is only after the second step, that a change is noticed in
the command – note the sinusoidal behavior of û after the negative step.

From the plot of the residual in Figure 6.11, it is quite clear that it is excited more during the
negative step than the positive step, due to the effect of the fault. Also, plotted on the same axes
is the output yf of Wf , see Figure 6.10. In the H∞ optimization, one of the performance objectives

97

0 100 200
−0.5

0

0.5

1

[d
eg

/s
ec

]

 ← FAULT ON

0 100 200
−0.5

0

0.5

1

[d
eg

/s
ec

]

 ← FAULT ON

0 100 200

−0.1

−0.05

0

0.05

0.1

[d
eg

/s
ec

]

[sec]

 ← FAULT ON

0 100 200

−0.1

−0.05

0

0.05

0.1

[sec]

 ← FAULT ON

u û

ỹ

r

yf

Figure 6.11: Simulation results

98

0 50 100 150 200 250
−0.5

0

0.5

1

[d
e

g
/s

e
c]

0 50 100 150 200 250
−0.1

−0.05

0

0.05

0.1

[d
e

g
/s

e
c]

y

ynl

u

ỹ = ynl − y

Figure 6.12: χ̇ Responses and model mismatch

was such that r was to track the fault yf . Though, the tracking error is not always small, the
filter’s response converges toward the response yf as we desire.

One of the reasons why the residual tracking error is not as small as we would like is due to the
model mismatch inherent in the system. To understand the mismatch between the linear model
and DemoSim, a simulation identical to that shown in Figure 6.11 was performed, without fault.
The results of this “model mismatch run” are shown in Figure 6.12. The non-faulted χ̇ responses
of the nonlinear DemoSim and of the linear model of DemoSim Gm – ynl and y, respectively – are
shown in the first plot of Figure 6.12. Shown in the second plot is the output error ỹ = ynl − y,
also know as the model mismatch5. The signal ỹ is the signal that is fed to the filter F . From the
plot of ỹ one can see that the signal does not have much high frequency content, therefore it was
difficult to filter out its effect, because its frequency band lied in the same range as that of the fault.
In other words, the system lacked sufficient frequency separation between the model mismatch and
the fault. This trade-off forced a design which had poor tracking performance, i.e. of the filter
residual r and the fault signal f̂ (see Section 6.2 for definitions), in order to have greater ability to
detect the fault.

Knowing that ỹ (see Figure 6.10) is a measure of the model mismatch in the system, one can
gain insight into how the filter responds when there is model mismatch and no fault by looking
at the response to the positive step command. That is, ỹ(t) for t < 70 sec is precisely the model
mismatch in the system, and its effect is seen as a small jump in the residual around time t = 10 sec,
see the plot of r in Figure 6.11.

As mentioned earlier, one of the main trade-offs in the filter design was between the fault

5Note that ỹ is referred to as the “model mismatch” in this instance only. This is because the fault has been
turned off, and in this situation ỹ is truly a measure of the model mismatch, but in general it is not.

99

0 50 100 150 200 250
0

0.01

0.02

0.03

0.04

0.05

0.06

S
ig

n
al

 E
n

er
g

y

[sec]

���
1st Step

���
2nd Step

HHj
Fault On

Figure 6.13: Running integral of residual energy

tracking accuracy of the filter and the extent to which the model mismatch is rejected. Shown in
Figure 6.13 is a 5 sec running integral of the energy of the residual r (see Figure 6.11). Clearly,
from Figure 6.13, the energy in the residual is much greater after the second step than the first
step. If we denote the peak energy level after the first step as E1 and the peak energy level after the
second step as E2. Then we can define the difference ∆E = E2 −E1. While designing and testing
the filters, this difference ∆E was worse, i.e. smaller, for filters which had better fault tracking.
Thus, verifying our proposition that better tracking leads to poorer model mismatch rejection.
The final filter design exhibited the greatest separation in terms of ∆E. The simulation results of
Section 6.5.1 are based upon this design.

6.5.2 Simulation of the full UMN/UCB SEC Capstone Demonstration

Further verification of the FD algorithm was obtained by simulation of the full flight experiment
demonstration, that is, by incorporating all UMN/UCB developed technologies: the RHC con-
troller, the RHC API, and the FD algorithm. Herein we will focus our attention on the results and
performance of the combined FD algorithm and threshold function. But first, let us present a brief
overview of the UMN/UCB SEC Capstone Flight Demonstration Experiment.

6.5.2.1 UMN/UCB SEC Capstone Demonstration overview

Outlined below are the events of the SEC UMN/UCB flight demonstration experiment plan. The
actual flight test took place in June 2004. Figure 6.14 is a diagram of the flight demonstration test
range and the UMN/UCB flight plan. The main part of the flight experiment is divided into three
segments: Phase I – pop-up threat avoidance, Phase II – target engagement, and Phase III – fault
insertion and detection.

Prior to the main three phases is the Initialization Phase. It is a set of conditional procedures
that the pilot must undertake to ensure a safe transition of control from the autopilot to the RHC
algorithm. The main objective is that the T-33/UCAV must be flying within tolerable limits and at
the proper altitude and speed at the time the RHC is engaged. Since the flight plan and trajectory

100

−117.5 −117

34.8

34.9

35

35.1

35.2

La
tit

ud
e

[d
eg

]

Longitude [deg]

Test Range Boundary
Flight Path
Pitch Up (Ascent)
Pitch Up (Level)
Pitch Down (Descent)
Pitch Down (Level)
Enter Turn
Exit Turn

NFZ

NFZ
NFZ

NFZ

(2) Initial Turn for FD algorithm
(1) Initiation of Actuator Fault for FD

Flight Direction

Engagement
Area

POP−UP

Target

Figure 6.14: UMN/UCB SEC Capstone Demonstration experiment plan

are defined relative to the point the RHC is engaged, care must also be taken that the engagement
happens in a timely manner so that the trajectory does not defy the bounds of the test range.
For this purpose an Engagement Area was defined near the ingress point of the test range for the
T-33/UCAV. Thus, if the aircraft is flying with a westerly track the flight experiment will proceed
if the RHC is engaged in this Engagement Area, see Figure 6.14.

Phase I of the flight demonstration experiment involves trajectory tracking and obstacle avoid-
ance while proceeding toward a predefined target. In this phase the reference trajectory flies around
no-fly-zone obstacles (NFZs, see Figure 6.14), and also flies over a potential pop-up obstacle, which
may or may not appear depending upon the decision of the flight experiment manager. In the
case where the pop-up is inserted, the flight path will be replanned to avoid the pop-up, and the
T-33/UCAV will continue toward the target.

The next stage, Phase II, begins after the aircraft passed the pop-up location. Whether or
not the pop-up threat is inserted, the T-33/UCAV will continue its way towards the target for
engagement. Target engagement occurs when the T-33/UCAV flies over the target. This event
signifies the end of Phase II.

The last phase, Phase III, is the flight segment of most interest to the fault detection component.
This is the part of the experiment where the aileron actuator fault is inserted,6 and the fault
detection algorithm, implementing the threshold strategy of Section 6.3, is used to detect the fault.

Within 30 seconds of target engagement, the fault is to be turned on, i.e. the input command u
will be corrupted, as in Figure 6.6, to simulate an aileron actuator fault (see Section 6.4.1). Imme-
diately during and after the target flyover, the aircraft should be in straight and level flight. Thus,
a fault should not be detected until the onset of a turn. This FD part of the flight demonstration
will be discussed later.

See Chapter 8 for further details on the complete UMN/UCB flight demonstration experiment
results.

6See Section 6.4.1 for details on how this is accomplished.

101

-χds 1−z−1

Ts

-χ̇ds j - F -r f(u)=u2 - j - Ts
z−κ

- j?

β

+
-rth

-uds 1
z∆t/Ts

- Gm
- Kp -

6−

WpF - f(u)=u2

6−

Figure 6.15: Simulation setup for the fault detection algorithm

6.5.2.2 Simulation environment of the UMN/UCB Capstone Demonstration

Figure 6.14 shows an overview of the UMN/UCB flight test scenario including the initiation of the
fault. This simulation environment very closely follows what was flown during the actual flight
demonstration in June of 2004. There are two notable differences. First, the T-33/UCAV was
replaced with the nonlinear, high-fidelity DemoSim executable model. Second, the RHC and the
FD algorithms have been implemented in a Matlab/Simulink environment which interfaces to the
OCP and DemoSim.

The simulation implementation of the FD algorithm, the H∞ filter (see Section 6.4) and the
threshold function (see Section 6.3), is outlined in the discrete-time block diagram of Figure 6.15.
The inputs to the algorithm are χds and uds, DemoSim’s χ output and χ̇-channel control command,
respectively. The output is rth, denoting the threshold residual, which is in comparison to the
H∞ FD residual r. Table 6.2 is a description of the signals and blocks of this figure. It contains
both the constant parameters and the design parameters of the algorithm. The Table also includes
the final values used for the design parameters.

Constant Description

F H∞ Fault Detection Filter
Gm Identified LTI Model of DemoSim
Wp The H∞ Model Uncertainty Weighting Function
Ts Algorithm Sampling Period
∆t χ-Channel Input Time Delay of DemoSim

Design
Parameter Description Value

κ Forgetting Factor 0.95

β System Noise Level 1.9 × 10−3

Kp Model Uncertainty Tuning Gain 0.5

Table 6.2: FD algorithm constants and design parameters

As mentioned earlier, the FD algorithm, as well as the RHC algorithm, was implemented and

102

tested in a Matlab/Simulink environment. This environment is called the UAV Control Interface,
and it was a tool provided with the OCP. It allowed the SEC researchers a simple means for
implementing and testing their algorithms within the OCP framework, without the need to generate
native OCP code (C++) for all of the algorithms. The UAV Control Interface was only used by
SEC researchers for testing of algorithms. All final flight code was ultimately coded into C++ and
merged into the OCP7 for the flight test.

6.5.2.3 Capstone Demonstration simulation results

Testing the performance of the FD algorithm illustrated in Figure 6.15, required a trajectory that
would cause the RHC controller to issue χ̇ commands within the range validity for the FD algorithm.
This restriction was that u ≤ |0.5| deg/s.8 Based upon the expected – constant and nominal –
velocity, a way-point trajectory was designed such that the heading rate χ̇ would fall in this range.
The trajectory for the FD segment of the flight is a series of S-turns with a turn rate of ≤ |0.2| deg/s.
The onset of these turns is shown in Figure 6.14.

For clarity to the reader, it is worthwhile to mention again the inputs to the FD algorithm: χds

and uds. The input χds is the χ-channel output of DemoSim. The input uds is the nominal χ-channel
RHC controller command. The FD algorithm is trying to detect the cases when DemoSim exhibits
a faulty response. If one recalls, this faulty response is obtained by issuing a corrupted command
ûds instead of the nominal command uds. The corrupted signal is obtained by a multiplicative fault
input such that ûds = (1 +Wf)uds, see Figure 6.6 and Section 6.4.1 for more information. But ûds

can be viewed as an auxiliary/internal variable and is invisible to the FD algorithm. For the FD
algorithm u is a χ̇ command in deg/s.

The Figures 6.16 and 6.17 are from a run of the full simulation with the RHC controller, RHC
API, and the FD algorithm. The time scales have been shifted relative to the time when the fault
was turned on ton. This was timed to start just before a series of turns which will excite the fault
for detection.9 The time that the turns begin tturn is 20 sec. The χ̇ commands and response of
DemoSim for the full simulation run are shown in Figure 6.16.

The simulated output of the threshold generator (displayed in Figure 6.15) is shown in Fig-
ure 6.17. This plot is the threshold function’s residual rth. Since the trajectory was designed such
that DemoSim would be in straight and level flight at ton, no activity is expected form the FD
algorithm until it is excited. This is designed to occur at tturn, when the trajectory begins its series
of turns. From this figure this appears to have happened – albeit, with a time delay. Some of this
delay is clear from Figure 6.16, where one can notice that there is a significant delay – about 8 sec
– in the χ̇ response of DemoSim. The rest of the delay may be a result of the threshold function
still damping out (i.e. by means of the “forgetting factor”) the remaining transients in the system
from previous maneuvers. From Figure 6.16 one can see this, because both χ̇ds and uds have not
completely reached steady state prior to the series of turns.

Nonetheless, the threshold function did accomplish its goal, and the fault is detected. At
t = 75.5 sec it is quite clear that the threshold function has responded to the fault. If one recalls,
the criteria for detection of a fault is that rth > 0. This occurs at 75.5 sec, thus tdetect = 75.5 sec.

7For the RHC algorithm this was done via the RHC API.
8This range was determined from stand alone testing of the FD algorithm and DemoSim. This limitation was

in effect, a direct result of the fact that the inner dynamics of DemoSim were unavailable to the SEC researchers
causing an inability to identify an accurate model of DemoSim, and hence, resulting in significant model mismatch.

9Recall there is no response to the fault in steady-state since the fault weight Wp rolls off at low frequencies.
Hence, a fault will only appear in the output during a transient, and thus the need for the series of turns to excite
the system.

103

−50 0 50 100 150
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

[sec]

[d
eg

/s
ec

]

Faulted Command
Nominal Command
DemoSim Output

HHHHj

Fault On:

ton = 0 ���

Begin Turn:

tturn = 20

ûds

uds

χ̇ds

Figure 6.16: χ̇ Simulation signals

−50 0 50 100 150
−0.005

0

0.005

0.01

[sec]

HHHj

Fault On:

ton = 0

����

Begin Turn:

tturn = 20
���

Fault Detected:

tdetect = 75.5

Figure 6.17: Simulation threshold rth

104

6.6 Conclusion

The focus of this chapter was the FD algorithm design, implementation, and testing. The FD
design discussed herein was done using well known H∞ design methods. Additionally, a novel
approach to thresholding the residual of an FD algorithm was presented, along with the theory,
design, and testing of this new uncertainty-conscious, input-dependent threshold function.

The effectiveness of this combined algorithm – H∞ FD filter and threshold function – was
tested in a simulation with a full non-linear aircraft simulator coupled with other SEC UMN/UCB
technologies: the RHC guidance controller and the RHC API. The results of the combined FD
algorithm has shown promising results based upon successful detection of an aileron actuator fault.
It is hoped that the results and insights of the input-dependent threshold function will provide a
basis for further research and investigation into robust fault detection.

105

Chapter 7

RHC and FD integration within the
RHC API / OCP framework

7.1 Introduction

This chapter describes the integration of the Receding Horizon Controller (RHC) and the Fault
Detection filter (FD) using the RHC Application Program Interface (RHC API) implemented under
the Open Control Platform (OCP) software infrastructure. In the appendix the Unified Modeling
Language notations used in this chapter are briefly reviewed.

7.2 Control software requirements analysis

7.2.1 Actors identification

The use case diagram in Figure 7.1 shows the main actors and collection of scenarios identified
in this work. The external rectangle depicts the whole Aerial Vehicle Control system, with which
only the actor Pilot interacts. Internally, the actors Receding Horizon Controller, Fault Detection
Filter and OCP interact with each other within the Experiment Supervision System. The identified
actors are described in the following.

The Pilot The Pilot actor represents the two pilots of the Lockheed T-33 aircraft involved in
the experiment. The Pilot interacts with the Aerial Vehicle Control system to activate and
deactivate the controller during the flight. The discrete events that can be issued by the Pilot
are listed in Table 7.1 and are sent to RHC Controller actor which reacts according to the
Experiment Execution use case.

The Fault Detection Filter The Fault Detection Filter has been described in Chapter 6 and
it is implemented by the Fault Detection Filter actor (FD actor in the following). Table
7.2 shows the name and the meaning of the input / output signals to the FD actor, while
Table 7.4 lists the discrete events issued by the FD actor and sent to RHC Controller actor.

The Fault Simulator The Fault Simulator actor generates the fault signal that is used to corrupt
the turn rate control command sent to the aircraft. This actor is used to simulate a fault in
the aileron actuator. Table 7.3 shows the name and the meaning of the input / output signals
of the Fault Simulator actor.

106

Trajectory control

Experiment Execution

Fault Detection

Fault Detection

Filter

Fault Simulator

Receding Horizon
Controller

OCPPilot

<< include >>

<< include >>

Experiment supervision system

Aerial Vehicle Control system

Figure 7.1: Flight experiment supervision system Use Case diagram. The picture shows the actors
identified and the subsystems with which they interact.

107

Discrete event

CMD ON (button)

CMD OFF (button)

START (button)

RESET (button)

SND OBST (button)

FAULT ON (button)

Table 7.1: Discrete events sent by the Pilot to the RHC Controller .

Signal name Type I/O

sigTurnRate OutputSetAndHoldTurnRate OCPSignal I

inputUAV State Heading[0] float I

faultDetected bool O

Table 7.2: Input / output signals of the FD actor.

The Receding Horizon Controller The Receding Horizon Controller actor (RHC Controller
actor in the following) is the component of the Aerial Vehicle Control system which issues
commands to the airplane’s autopilot to follow a predefined or dynamically defined trajectory.
The control strategy has been described in Chapter 5. Table 7.5 shows the name of the input
/ output signals to the RHC actor, and Table 7.6 reviews all the discrete events which can
change the internal discrete state of the RHC Controller actor.

OCP This actor represents all the functionalities provided by the OCP and the RHC API (de-
scribed in Chapter 4).

7.2.2 Use cases description

This section describes the three use cases depicted in Figure 7.1.

7.2.2.1 Experiment execution (Experiment 1)

This use case covers two scenarios, each of them corresponding to a different flight experiment
configuration called UMNUCB Experiment 1 and UMNUCB Experiment 2. A detailed description
of the two experiments can be found in the appendices.

7.2.2.2 Tracking control

This use case is included in the Experiment Execution use case. Once the controller has been
engaged, it’s role is to compute the control inputs that fly the aircraft along the assigned trajectory
as described in Experiment Phase I to Experiment Phase III in the appendices.

Signal name Type I/O

sigTurnRate OutputSetAndHoldTurnRate OCPSignal I

faultedSignal float O

Table 7.3: Input / output signals of the Fault Simulator actor.

108

Discrete event

Fault detected

Table 7.4: Discrete events sent by the FD to the RHC Controller .

Signal name Type I/O

inputUAV State CommonState[0].time float I

refTrajNorth Matrix I

refTrajEast Matrix I

refTrajAlt Matrix I

inputUAV State CommonState[0].latitude float I

inputUAV State CommonState[0].longitude float I

inputUAV State CommonState[0].theWGS84 Altitude float I

inputUAV State CommonState[0].velocityUp float I

inputUAV State Heading[0] float I

inputUAV State GndSpeed[0] float I

sigSpeed OutputSetAndHoldSpeed OCPSignal O

sigHeading OutputSetAndHoldHeading OCPSignal O

sigAltitude OutputSetAndHoldAltitude OCPSignal O

sigTurnRate OutputSetAndHoldTurnRate OCPSignal O

Table 7.5: Input / output signals of the RHC controller.

Discrete event Sender

CMD ON (button) Pilot

CMD OFF (button) Pilot

START (button) Pilot

RESET (button) Pilot

SND OBST (button) Pilot

FAULT ON (button) Pilot

Fault detected FD Filter

Engagement conditions met RHC Controller

Target reached RHC Controller

Table 7.6: Incoming discrete events of the RHC Controller actor (note that the last two listed
events are internally generated).

109

Newmat

DTCL MatrixR

Figure 7.2: Relationships between the designed and reused packages.

7.2.2.3 Fault detection

This use case is included in the Experiment Execution use case.

7.3 Static structure design

Given the requirements expressed informally in the previous section, the static structure of the
control software has been designed to satisfy the following needs

• perform numerical integration of discrete time linear systems used as prediction models and
state observers;

• simplify coding of matrix computations;

• enable the control systems to react to discrete events;

• provide input / output interfaces to text files;

• implement control algorithms within the OCP RHC API

according to the following principles

• address each requirement by integrating their solution into the static code structure to enhance
the possibility of reuse;

• make use of libraries already available.

Figure 7.2 shows the relationships between the designed and reused packages. Section 7.3.1
explains the purpose of the Newmat library and how it has been extended to fit the needs of this
work. Section 7.3.2 deals with the library designed to directly implement the control algorithms.
The integration of the control algorithms within the OCP framework is discussed in section 7.3.3.

7.3.1 The Newmat library

In order to expedite C++ coding of the control algorithms that rely heavily on matrix algebra and
manipulations, we made use of the 8.0 version of the Newmat C++ library. This package is intended
for scientists and engineers who need to manipulate a variety of types of matrices using standard
matrix operations [31]. Emphasis is on the kind of operations needed in statistical calculations such
as least squares, linear equation solve and eigenvalues.

It supports among other matrix types Matrix, RowVector, ColumnVector. Only one element
type (float or double) is supported. The package includes the operations ∗, +, −, Kronecker prod-
uct, Schur product, concatenation, inverse, transpose, conversion between types, submatrix, deter-
minant, Cholesky decomposition, QR triangularisation, singular value decomposition, eigenvalues

110

Figure 7.3: The extension of the class Matrix (from the package Newmat) to add standard text file
input / output capabilities.

of a symmetric matrix, sorting, fast Fourier transform, printing and an interface with Numerical
Recipes in C.

It is intended for matrices with dimensions ranging from 10-by-10 to the maximum size your
machine will accommodate in a single array. The number of elements in an array cannot exceed
the maximum size of an int. The package will work for very small matrices but becomes rather
inefficient. In this version of the package some of the factorisation functions are not optimised for
paged memory and so become inefficient when used with very large matrices. A lazy evaluation
approach to evaluating matrix expressions is used to improve efficiency and reduce the use of
temporary storage.

This package has been extended to provide the possibility to read and write matrix elements
from standard text files. Figure 7.3 shows the derived class with the added methods.

7.3.2 The Discrete Time Control Library (DTCL)

Figure 7.4 shows the class diagram of the DTCL library. There is a main class, the GeneralSystem
class, which has been designed to provide a framework for derivation of the other classes. This
class exposes the oneStep() method, which is responsible for computing one step of the algorithm
implemented by the class.

The LTISystem class, derived from GeneralSystem, implements a general discrete time linear
time-invariant system. When the overloaded method oneStep(input : const Matrix&) is called, the
standard difference equations

xk+1 = Axk +Buk,
yk = Cxk +Duk,

x(0) = x0,
(7.1)

are calculated, where the value of the variable uk is equal to input value. The class provides through
the class MatrixR the input / output capabilities using standard text files.

The MPCController api implements the actual controller, whose algorithm has been described
in Chapter 5. This class is associated with a state observer, realized as an LTISystem object, and
with four helper classes used to collect all the data needed for computations.

111

Figure 7.4: Class diagram of the DTCL library.

112

7.3.3 Integration within the OCP framework

The RHC API provides the RHC Component class which is directly interfaced with the OCP. The
methods Pre(), Opt(), and Post() represent the three main components of the flight controller code.
These methods have different scheduling mechanisms in the real-time system and are invoked by
the Anytime scheduler as described in Chapter 4.

The RHC Component implements both the FD and the RHCController actors by associations
to a set of LTISystem classes and to the MPCController api class (through a proper interface class),
respectively.

7.4 Dynamic behavior specifications

The RHC Component has an internal discrete state machine used to interact with the Pilot as well
as with the FD and the RHCController actors implementation as specified by the use case diagram
described in Section 7.2.2. The main state-chart is depicted in Figure 7.6, while the corresponding
sub-state-charts are depicted in Figure 7.6, Figure 7.8, and Figure 7.9, respectively.

7.5 Implementation issues

7.5.1 Memory allocation in real-time implementation

The programming paradigms used for the implementation of the described algorithms (such as
object oriented programming in C++ under the QNX real-time operating system) raised an inter-
esting issue which, if present, is usually not relevant for non-real-time applications. In this section,
the fundamental problem and the adopted solution is discussed.

The memory allocated by the operating system to a process ready for execution can be divided
into two logical parts: the stack and the heap1. The stack memory is used to store all the data
whose storage size does not change during the process execution. Typical examples of this type of
data are the code itself and the statically allocated data (i.e. the variables local to a process and
its non recurrent procedures belonging to types predefined by the compiler).

The heap instead, is used to store data whose size changes during the execution. In object
oriented programming, class objects are often created and destroyed at run time. When an object
is created, the necessary space is taken from the heap; when the object is destroyed, the memory
is released to be used again by some other object.

A consequence of this process is that memory fragmentation problems can arise when memory
allocation and release occurs frequently. If the memory becomes too fragmented, it can lead to the
lack of enough contiguous memory space to be allocated for an object, even if the sum of all the
free space available is much more than needed. When this occurs the object cannot be created, the
program encounters an out of memory error message (or similar one) and its execution is stopped
by the operating systems.

In the real-time application described in this report, a lot of objects of considerable size are
dynamically created and destroyed at each execution cycle (two times a second). After a certain
number of steps (it could be even couple of minutes of execution), the process was terminated due
to the described dynamic heap memory allocation error.

1The technical reasons for this memory classification are not addressed in this report, the reader is referred to [32]
for more details.

113

Figure 7.5: Static structure of the control system implementation within the OCP.

114

RHC_Component

Include / MainMachine

Main

Include / FaultMachine

Fault

Include / Pop_UpMachine

Pop_up

Reset

Reset
Reset

Figure 7.6: State-chart for the RHC Component.

MainMachine

S1

do: fly to initial
 conditions

S2

do: fly to initial
 conditions

S3S3

do: keep issuing
 last command

S4

Start

[unsuccesful engagement]
[(toleance match)AND(within engagement area)]
/ Set RHC controller ON

Time1 elapsed

/ Set Reference_Trajectory_2
[IS_IN (S21)] [IS_IN (S22)]

End of Experiment
/ Set RHC Controller OFF

Figure 7.7: Main state-chart for the experiment execution.

Pop_UpMachine

S20 S21

PopUp_ON
[IS_IN (S4)]

Figure 7.8: State-chart for the Popup threat handling.

115

FaultMachine

S11S10

entry: Set Fault
 OFF

/ Set Fault ON

Fault detected
/ Reconfigure RHC

FAULT_ON

FAULT_OFF

Figure 7.9: State-chart for the FD subsystem.

The solution adopted in order to get around this issues has been to code all variables as local
and allocate objects dynamically in an initialization phase only, which occurs during startup at
the beginning of the flight experiment. No dynamic allocation function call has been used during
normal control execution. Although this solution satisfied real-time flight code requirements and
is very simple in principle, it has the disadvantage of making the resulting code less intuitive and
readable.

7.5.2 Frame overrun detection and handling

Due to the particular structure of flight code implementation within the OCP real-time environ-
ment, extra care had to be taken to ensure that execution does not violate the tripartite process
structure of the Pre-Opt-Post framework for RHC implementation, described in Chapter 4. This
meant that any frame-overruns that occur from abnormal code execution, or algorithmic anomalies
had to be detected and appropriate contingency measures had to be put in place to maintain con-
trol of the aircraft and avoid a situation from which the code execution and the controller cannot
recover.

This critical element of the flight code was accomplished using a simple state machine that
caught any frame overruns that might have occurred in the three-process structure. Depending
on which process was responsible for the frame-overrun, appropriate actions could be taken in the
flight code to prevent an unrecoverable execution error. For instance, if the optimization solver
could not converge and produce any control outputs to implement in the available time-frame, then
a guaranteed safe, baseline solution was sent to the autopilot for implementation. This contingency
measure was able to overcome accidental frame-overruns and prevent software crashes. Although
this ad-hoc solution might lead to decreased performance, it maintains control of the aircraft at all
times.

116

Chapter 8

Description and presentation of
results

The contents of this chapter consists of two main parts. Section 8.1 includes a general description
of the final flight test infrastructure and the most important elements of the final experiment. A
basic summary of key features of the experiment controller interface and a brief timeline of events
in the UMN/UCB experiment scenario are also provided.

In light of this description, results are presented in Section 8.2 based on Matlab/Simulink
simulations using the DemoSim open vehicle executable model and the RHC control techniques
described in Chapter 5. High fidelity hardware-in-the-loop simulations and the recorded final flight
test data are provided as well. Finally, conclusions are drawn in Section 8.3.

8.1 Final flight test infrastructure and experiment description

The flight tests took place at Edwards Air Force Base in the Mojave desert in June 2004. A brief
description of the flight demonstration scenario is provided next in order to aid in the interpretation
of results provided in this chapter. For more detail, refer to Appendices A-B. Figure 8.1 shows a
bird’s eye view of the test range and the experimental scenario elements.

The timeline of events starts with engaging the RHC controller in a pre-specified area near the
ingress point once the starting conditions are met. The controller tracks a time-stamped position
reference trajectory while respecting constraints on the vehicle dynamics. At a certain point along
the reference trajectory, a pop-up threat can be invoked by a ground operator, which results in
a switch to an alternative reference trajectory that avoids the threat. After the target is reached
with a specified heading, a simulated fault is inserted into the system, which is detected shortly
thereafter at a trajectory segment designed specifically for this purpose. After detection, the fault
is removed and the aircraft returns to the egress point.

In a second, more ambitious scenario, the fault is not removed from the system after detection,
and the RHC controller is reconfigured to adapt to the faulty vehicle dynamics. Constraints are
also adjusted to restrict the aircraft’s maneuvers. Section 8.2.2 presents high-fidelity simulation
results for this scenario.

Flight envelope and maneuvering limits were not included in the flight code but they were
implemented as soft output constraints for testing in high-fidelity simulations. Results are shown
in Section 8.2.3.

117

−117.7 −117.6 −117.5 −117.4 −117.3 −117.2 −117.1 −117

34.8

34.85

34.9

34.95

35

35.05

35.1

35.15

35.2

35.25

Longitude [deg]

La
tit

ud
e

[d
eg

]

UMN−UCB Capstone Demo Experiment Plan

NFZ

NFZ

NFZ

Target

POP−UP

Figure 8.1: Illustration of the reference trajectory in the flight test area with the target, pop-up
threat and no-fly-zone locations of the experiment scenario.

8.2 Data analysis

8.2.1 Simulation results in the Matlab/Simulink environment using DemoSim

The receding horizon guidance controller was tested in simulation with different wind conditions
and showed excellent robustness. Figure 8.2 shows the resulting position trajectories under dif-
ferent wind conditions using the RHC controller described in Chapter 5. Tracking performance is
illustrated by coordinate-wise tracking errors depicted in Figure 8.4.

Figure 8.3 shows how the true airspeed was adjusted according to wind conditions, to achieve
the necessary ground speed required for accurate tracking of the position reference. Constraint
enforcement under various wind conditions is also demonstrated in this figure by the saturating
turn rate command. The main limitation of good performance at higher wind velocities was posed
by flight envelope constraints.

Figure 8.5 shows the threshold residual of the fault detection filter after the fault has been
inserted. The detection time is almost exactly the same in varying wind conditions.

8.2.2 Reconfiguration based on fault detection

As mentioned in earlier chapters, a second more ambitious experiment was constructed to test RHC
controller reconfiguration based on fault detection and to provide a longer, more versatile reference
trajectory for evaluating the guidance controller. Experiment #2 is conducted exactly the same way
as Experiment #1 until the point of fault insertion, where the fault is not removed from the system
after detection. Instead, the prediction model and constraints of the RHC controller are updated as

118

0 2 4 6 8 10 12 14 16 18

x 10
4

−10

−8

−6

−4

−2

0

2

4
x 10

4

East coord. relative to RHC engagement (ft)

N
or

th
 c

oo
rd

. r
el

at
iv

e
to

 R
H

C
 e

ng
ag

em
en

t (
ft)

North−East trajectories (simulation)

Reference
−60 ft/s East wind
−50 ft/s East wind
−20 ft/s East wind
 60 ft/s East wind
 50 ft/s East wind
 20 ft/s East wind
no wind

0 200 400 600 800 1000 1200
1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65
x 10

4

Time relative to RHC engagement (sec)

W
G

S
−8

4
A

lti
tu

de
 (

ft)

Altitude trajectories (simulation)

Reference
−60 ft/s East wind
−50 ft/s East wind
−20 ft/s East wind
 60 ft/s East wind
 50 ft/s East wind
 20 ft/s East wind
no wind

Figure 8.2: Simulated north, east and altitude tracking performance under different wind condi-
tions.

0 200 400 600 800 1000 1200

440

460

480

500

520

540

560

Time relative to RHC engagement (sec)

T
ru

e
ai

rs
p

ee
d

 (
ft

/s
)

Velocity (simulation)

 no wind

 20 ft/s E wind

 50 ft/s E wind

 60 ft/s E wind

−20 ft/s E wind

−50 ft/s E wind

−60 ft/s E wind

0 200 400 600 800 1000 1200
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

Time relative to RHC engagement (sec)

(r
ad

/s
)

Turn rate command (simulation)

upper limit

lower limit

Figure 8.3: True airspeed and turn rate command simulation results under different wind conditions.

described in Section 5.6. More details of Experiment #2 can be found Appendix B. Unfortunately,
this experiment could not be flight tested due to difficulties with asset scheduling at the base
and shortage of time. This section presents simulation results conducted in the Matlab/Simulink
environment using DemoSim.

Figure 8.6 shows position trajectories of the Experiment #2 simulation indicating good tracking
performance even after reconfiguration of the RHC controller.

Figure 8.7 illustrates one effect of reconfiguration by plotting the turn rate command output
of the RHC controller, which was corrupted by the output of the fault simulator, and the faulty
command sent to DemoSim. Note that bounds on turn rate command became more restrictive
after fault detection, as part of the controller reconfiguration. Note also that constraints were
formulated for the RHC controller output and not the actual autopilot command, which includes
the corruption by the fault simulator. This means that although the RHC controller restricted its

119

200 400 600 800 1000 1200

−500

0

500

1000

(f
t)

North trajectory tracking error

−60 ft/s East wind
−50 ft/s East wind
−20 ft/s East wind
 60 ft/s East wind
 50 ft/s East wind
 20 ft/s East wind
no wind

200 400 600 800 1000 1200

−1000

−500

0

500

(f
t)

East trajectory tracking error

200 400 600 800 1000 1200
−60

−40

−20

0

20

40

Simulation time (sec)

(f
t)

Altitude trajectory tracking error

Figure 8.4: North, east and altitude tracking errors under different wind conditions.

turn rate commands to respect the specified tighter limits, the actual transient commands, due to
the additive effect of the fault model, could reach values larger than the constraint limits. This is
simply a consequence of the chosen fault modeling, and does not have any practical significance.

120

1020 1040 1060 1080 1100 1120 1140 1160 1180 1200
−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

Simulation time (sec)

R
es

id
u

al
 v

al
u

e

Fault detection threshold residual comparison (focus on detection part)

Fault button press

Start of "fault detection turns"

Fault detection

−60 ft/s East wind
−50 ft/s East wind
−20 ft/s East wind
 60 ft/s East wind
 50 ft/s East wind
 20 ft/s East wind
no wind

Figure 8.5: Threshold residual and fault detection under different wind conditions.

0 2 4 6 8 10 12 14 16 18

x 10
4

−10

−8

−6

−4

−2

0

2

4

6
x 10

4

East coord. relative to RHC engagement (ft)

N
or

th
 c

oo
rd

. r
el

at
iv

e
to

 R
H

C
 e

ng
ag

em
en

t (
ft)

North−East trajectory (simulation)

Reference
Experiment #2

0 200 400 600 800 1000 1200 1400 1600 1800
1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65
x 10

4

Time relative to RHC engagement (sec)

W
G

S
−8

4
A

lti
tu

de
 (

ft)

Altitude trajectory (simulation)

Reference
Experiment #2

Figure 8.6: Simulated north, east and altitude tracking performance of Experiment #2 involving
RHC reconfiguration.

If the fault model represents an actual physical system component, then soft output constraints
could be specified on the corrupted control signal as well.

121

0 200 400 600 800 1000 1200 1400 1600 1800
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

Time relative to RHC engagement (sec)

(r
ad

/s
)

Turn rate command (simulation)

upper limit

lower limit

upper limit

lower limit

Fault insertion

Fault detection, RHC reconfiguration

Corrupted faulty turn rate command
RHC controller turn rate command output

Figure 8.7: Commanded and corrupted (faulty) turn rate commands in Experiment #2. RHC
reconfiguration includes updating turn rate command constraints after fault detection.

8.2.3 Flight envelope limits as output constraints

This section presents simulation results using maneuvering and flight envelope limits characterized
in Section 3.4 as soft output constraints in the RHC formulation according to the description
provided in Section 5.7.

Figure 8.8 shows north, east and altitude position trajectories, which indicate poorer tracking
accuracy compared to the performance obtained without output constraint enforcement. The reason
is that the inner polyhedral approximation of such constraints results in more restrictive limits on
bank angle and consequently on turn rate command than before. The reference trajectory includes
tighter turns than what these new linearized approximate limits allow, so the guidance controller is
unable to perform very precise tracking given these restrictions on maneuverability. On the other
hand, the controller tries to keep up with the time-stamped position reference by velocity control
and accelerating to “catch up” with the reference point that “got ahead” of the aircraft in the
tighter turns.

The component-wise trajectory tracking errors depicted in Figure 8.9 reflect this deviation
from the reference trajectory due to restrictions on aircraft maneuverability. These error plots also
indicate how tracking performance is regained by speed control. Ground speed, turn rate and roll
angle are reported in Figure 8.10 showing a much more active velocity control profile than without
maneuvering restrictions.

Maneuvering and flight envelope constraint enforcement is illustrated in Figure 8.11 by plotting
the aircraft trajectory in the output constraint space defined by V, χ̇, γ̇. These plots show the non-

122

0 2 4 6 8 10 12 14 16 18

x 10
4

−10

−8

−6

−4

−2

0

2

4
x 10

4

East coord. relative to RHC engagement (ft)

N
or

th
 c

oo
rd

. r
el

at
iv

e
to

 R
H

C
 e

ng
ag

em
en

t (
ft)

North−East trajectory (simulation)

Reference
Actual

0 200 400 600 800 1000 1200
1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65
x 10

4

Time relative to RHC engagement (sec)

W
G

S
−8

4
A

lti
tu

de
 (

ft)

Altitude trajectory (simulation)

Reference
Actual

Figure 8.8: North, east and altitude tracking performance with linearized maneuvering limits as
soft constraints.

linear feasible region from different viewing angles together with its inner polyhedral approximation
as introduced in Section 3.4. The aircraft trajectory was plotted in terms of the constraint-space
coordinate axes and overlayed on these images to show that the soft output constraints are re-
spected. Slight violations can be noticed on the facets of the constraint-polyhedron corresponding
to bounds on bank angle. These violations are possible due to the soft constraint formulation.

8.2.4 Hardware-in-the-loop simulations

The Boeing Company was responsible for coordinating and executing the flight tests, which took
place in the second half of June, 2004. Boeing was also responsible for integrating the individual
flight experiments and controller code developed for DemoSim and OCP by the different teams
participating in the final demo. Preparations for the flight tests culminated in a final system
check and testing phase of code development, which included hardware-in-the-loop testing of flight
experiments in a realistic, high-fidelity simulation environment at the Boeing facilities, in Saint
Louis.

The hardware-in-the-loop simulation environment relied on high-fidelity nonlinear closed-loop
aircraft dynamics represented by the DemoSim model. It also made use of the actual avionics
pallet flown in the flight tests with simulated sensors and electronic command data processing.
Due to proprietary reasons and the International Trade of Arms Regulations (ITAR), only Boeing
employees could perform these simulations. After the flight test, recorded data from hardware-in-
the-loop simulations were cleared for public distribution.

Three hardware-in-the-loop simulations were run as part of the final pre-flight system check
of our experiment. In the following, we will refer to hardware-in-the-loop simulations as “HIL”
for brevity. The first HIL simulation was conducted by Boeing employees without inserting the
fault at the specified segment of the scenario, which provided data for evaluating the false alarm
characteristic of the detection filter (i.e. would it detect a fault if it wasn’t inserted). The second
HIL simulation was interrupted due to some problems with the Boeing test facilities that was
beyond our control and occurred soon after the fault was initiated in our simulation. Data was
recorded only up to a few seconds after fault detection, however it could be evaluated only up to

123

0 200 400 600 800 1000 1200
−6000

−5000

−4000

−3000

−2000

−1000

0

1000

2000

(f
t)

North trajectory tracking error

0 200 400 600 800 1000 1200
−12000

−10000

−8000

−6000

−4000

−2000

0

2000

(f
t)

East trajectory tracking error

0 200 400 600 800 1000 1200
−150

−100

−50

0

50

100

Simulation time (sec)

(f
t)

Altitude trajectory tracking error

Figure 8.9: Coordinate-wise position tracking errors with limits on aircraft maneuverability.

the time instant of detection. The third and final HIL test run contains a full simulation of our
experiment scenario including the initiation of the fault. (Note that only Experiment #1 was tested
in HIL simulations.)

For comparison purposes, the figures used for illustration in this subsection depict HIL simula-
tion data as well as simulation results conducted in our lab at the University of Minnesota using
OCP and DemoSim. This latter simulation will be referred to as “UMN” results.

Figure 8.12(a) shows the evolution of the threshold residual value near the point where the
fault was inserted using the “FAULT-ON” button of the experiment controller interface and the

124

0 200 400 600 800 1000 1200

400

450

500

550

600

G
ro

u
n

d
 s

p
ee

d
 (

ft
/s

)

Velocity

0 200 400 600 800 1000
−0.05

0

0.05

(r
ad

/s
)

Turn rate

0 200 400 600 800 1000 1200

−30

−20

−10

0

10

20

30

Time relative to RHC engagement (sec)

(d
eg

)

Roll angle

Figure 8.10: Ground speed, turn rate and roll angle time histories with limits on aircraft maneu-
verability.

aircraft reached the “fault detection” segment of the reference trajectory. The threshold value rises
above zero near 1025 seconds after controller engagement signalling detection of the fault. The
result looks remarkably similar to our UMN simulation. Figure 8.13(a) depicts the evolution of the
threshold residual during the entire simulation. Figures 8.12(b)-8.13(b) show the same plots for
test run #1, where the fault was not inserted. Results in this simulation indicate that the filter
would not trigger a false alarm if the fault is not inserted in the HIL simulation.

Figure 8.14 shows a comparison of tracking performance in the north-east coordinate frame and

125

(a) (b)

(c) (d)

Figure 8.11: Output constraints.

in terms of altitude. Tracking errors are depicted in Figures 8.15-8.16 exhibiting similar trends
between the in-house UMN and the high-fidelity HIL simulation results.

Figure 8.17 illustrates the velocity, heading and roll angle evolution during the simulation.
The “jagged”, sawtooth-like nature of the velocity signal is due to the pilot model embedded into
DemoSim, which represents pilot reaction to speed commands by a quantizer, which is probably
acting on speed tracking error. This pilot quantization effect could be switched off in the Mat-
lab/Simulink/DemoSim environment, so this phenomenon was not present in the results presented

126

950 1000 1050 1100 1150
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Time relative to RHC engagement (sec)

R
es

id
u

al
 v

al
u

e

Fault detection threshold residual comparison (focus on detection part)

UMN fault button press

HIL fault button press

UMN test run
HIL test run

(a) With fault insertion.

950 1000 1050 1100 1150
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Time relative to RHC engagement (sec)
R

es
id

u
al

 v
al

u
e

Fault detection threshold residual comparison (focus on detection part)

UMN fault button press

UMN test run
HIL test run (no fault)

(b) No fault inserted.

Figure 8.12: Hardware-in-the-loop threshold residual comparison plots (focus on fault detection).

0 200 400 600 800 1000 1200
−0.1

−0.05

0

0.05

0.1

0.15

0.2

Time relative to RHC engagement (sec)

R
es

id
u

al
 v

al
u

e

Fault detection threshold residual comparison

UMN fault button press

HIL fault button press

UMN test run
HIL test run

(a) With fault insertion.

0 200 400 600 800 1000 1200
−0.1

−0.05

0

0.05

0.1

0.15

0.2

Time relative to RHC engagement (sec)

R
es

id
u

al
 v

al
u

e

Fault detection threshold residual comparison

UMN fault button press

UMN test run
HIL test run (no fault)

(b) No fault inserted.

Figure 8.13: Hardware-in-the-loop threshold residual comparison plots (entire simulation).

in previous sections. The HIL test environment was constructed in such a way that this quanti-
zation effect could not be switched off. In order to obtain a fair comparison, pilot quantization
was turned on during all UMN experiments presented in this section. The effect of this peculiar
modeling phenomenon can be observed on the command signals as well, which are depicted in
Figure 8.18. Enforcement of constraints can be observed by the saturating turn rate command.

127

0 2 4 6 8 10 12 14 16 18

x 10
4

−10

−8

−6

−4

−2

0

2

x 10
4

East coordinate relative to RHC engagement (ft)

N
or

th
 c

oo
rd

in
at

e
re

la
tiv

e
to

 R
H

C
 e

ng
ag

em
en

t (
ft)

North−East trajectories

Reference
UMN test run
HIL test run

(a)

0 200 400 600 800 1000 1200
1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65
x 10

4

Time relative to RHC engagement (sec)
W

G
S

−8
4

A
lti

tu
de

 (
ft)

Altitude trajectories

Reference
UMN test run
HIL test run

(b)

Figure 8.14: Hardware-in-the-loop north, east and altitude tracking performance comparison.

8.2.5 Experimental flight test results

Several universities and aerospace companies were involved in the two-week long flight demonstra-
tions of the DARPA SEC project, each having their own experimental flight scenario to be tested.
Due to difficulties with asset scheduling at the base, our team eventually had only two flight tests
that could be evaluated.

The top two plots in Figure 8.19 show simulated tracking performance in the north-east co-
ordinate frame and in terms of altitude under different wind conditions. The bottom two plots
in Figure 8.19 illustrate the flight test results. The main reason for deviations from the reference
trajectory and degraded tracking performance during flight test was that automatic speed control
was not available on the test platform. Airspeed was controlled using manual adjustments to the
throttle by the pilot, who was cued either verbally by a Weapons System Officer from the back
seat or by a three-state LED indicator whether to increase, decrease or maintain the velocity of
the aircraft based on commanded and actual speed measurements. The dead-zone of the “maintain
speed” status indicator was approximately 30 ft/s wide. Another factor influencing the outcome of
experiments was that flight tests were conducted in the presence of strong winds (25-30 knots).

Figure 8.20 suggests an average delay of 50-100 seconds in the velocity command channel, which
was not modeled in the RHC controller. The controller was tested only up to 10-20 samples (5-10
seconds) of unmodeled additional delay compared to the prediction model and showed acceptable
degradation of performance.

8.3 Lessons learned

As soon as details of the flight test environment was determined by Boeing, one of the main practical
conclusions of the flight tests could already be anticipated. As foreseen already in early stages of

128

0 200 400 600 800 1000 1200
−1000

−500

0

500

1000
T

ra
ck

in
g

 e
rr

o
r

(f
t)

North trajectory tracking error

UMN maximum error = 1019.9917 ft

HIL maximum error = 1055.9793 ft

UMN test run
HIL test run

0 200 400 600 800 1000 1200

−1000

0

1000

T
ra

ck
in

g
 e

rr
o

r
(f

t)

East trajectory tracking error

UMN maximum error = 1223.6721 ft

HIL maximum error = 1778.7603 ft

UMN test run
HIL test run

0 200 400 600 800 1000 1200
−50

0

50

Time relative to RHC engagement (sec)

T
ra

ck
in

g
 e

rr
o

r
(f

t)

Altitude trajectory tracking error

UMN maximum error = 55.0603 ft

HIL maximum error = 56.3588 ft

UMN test run
HIL test run

Figure 8.15: Comparison of coordinate-wise hardware-in-the-loop tracking errors.

preparations, the flight tests showed that automatic speed control is essential for tracking time-
stamped position reference trajectories. Despite the absence of automatic throttle control, which is
an essential part of every autonomous unmanned air vehicle, the RHC guidance controller showed
acceptable tracking results in a windy environment.

At the cost of a few unsuccessful test runs, the first days of flight tests revealed that the avionics
package provided altitude measurements in terms of barometric altitude as opposed to the WGS-
84 system, which was assumed for control design and was also the units of commands sent to the
autopilot. This meant that the engagement tolerances defined to trigger the execution of the RHC
guidance controller had to be relaxed significantly to account for the possibly very large mismatch
between barometric and WGS-84 GPS altitude. This in turn resulted in significant transients during
the engagement procedure at the beginning of each test run. Strong winds resulted in saturation
of flight envelope speed limits, which were practically determined by true airspeed as opposed to
ground speed, which was used to formulate constraints in the control design process.

During the first half of our experiment, intense maneuvering and deviations from the reference
trajectory were significant in both flight tests. This prevented the input-dependent threshold

129

0 200 400 600 800 1000 1200
0

200

400

600

800

1000

1200

1400

1600

Time relative to RHC engagement (sec)

T
ra

ck
in

g
er

ro
r

no
rm

 (
ft)

2−norm of trajectory tracking error

UMN maximum error = 1247.7636 ft

UMN mean error = 750.7482 ft

HIL maximum error = 1778.7794 ft

HIL mean error = 820.5827 ft

UMN test run
HIL test run

Figure 8.16: Comparison of the 2-norm of hardware-in-the-loop position tracking errors.

residual from sinking below zero by the start of the detection segment, which resulted in a false
alarm immediately after the fault was inserted. Thus, flight testing of the fault detection filter
were unsuccessful due to the input-dependence of the threshold residual, which relied heavily on
excellent RHC tracking performance. This latter was hindered by difficulties in speed control as
mentioned in the previous paragraph.

During the final pre-flight preparation phase we learned that close and frequent interaction with
people responsible for conducting the final flight test experiment is essential. It is crucial for both
influencing the development of the final test software environment and for clarifying elements of
the experiments for all parties involved. Deficiencies in the communication of flight experiment
details between all “players” of the flight test has even prevented one team from obtaining a single
successful flight test that could be evaluated.

In conclusion, the RHC-based guidance system showed amenable robustness properties inspite of
the dramatic difference between the velocity tracking behavior of the prediction model and the real
system. Performance analysis of flight test data and simulation results with varying wind conditions
suggest that the RHC guidance law would have excellent tracking performance using an autonomous
speed control system. Further high-fidelity simulations showed that output constraints could be
also accommodated using soft constraint formulation. This, along with the observed successful
reconfiguration experiments, suggests that the proposed approach provides a high-performance,
versatile guidance technology for future unmanned aircraft systems.

130

0 200 400 600 800 1000 1200
460

480

500

520

540

G
ro

u
n

d
 S

p
ee

d
 (

ft
/s

)

Velocity comparison

UMN test run
HIL test run

0 200 400 600 800 1000 1200

−100

0

100

H
ea

d
in

g
 (

d
eg

)

Heading comparison

UMN test run
HIL test run

0 200 400 600 800 1000 1200

−20

0

20

Time relative to RHC engagement (sec)

R
o

ll
an

g
le

 (
d

eg
)

Roll angle comparison

UMN test run
HIL test run

Figure 8.17: Ground speed, heading and roll angle comparison.

131

0 200 400 600 800 1000 1200
460

480

500

520

540

G
ro

u
n

d
 S

p
ee

d
 (

ft
/s

)

Velocity command comparison

UMN test run
HIL test run

0 200 400 600 800 1000 1200

−0.02

0

0.02

T
u

rn
 r

at
e

(r
ad

/s
)

Turn rate command comparison

UMN test run
HIL test run

0 200 400 600 800 1000 1200
1.3

1.4

1.5

1.6

x 10
4

Time relative to RHC engagement (sec)

A
lt

it
u

d
e

(f
t)

Altitude command comparison

UMN test run
HIL test run

Figure 8.18: Comparison of command signals.

132

0 2 4 6 8 10 12 14 16 18

x 10
4

−10

−8

−6

−4

−2

0

2

4
x 10

4

East coord. relative to RHC engagement (ft)

N
or

th
 c

oo
rd

. r
el

at
iv

e
to

 R
H

C
 e

ng
ag

em
en

t (
ft)

North−East trajectories (flight test #1)

Reference
Flight test #1

0 2 4 6 8 10 12 14 16 18

x 10
4

−10

−8

−6

−4

−2

0

2

4
x 10

4

East coord. relative to RHC engagement (ft)

N
or

th
 c

oo
rd

. r
el

at
iv

e
to

 R
H

C
 e

ng
ag

em
en

t (
ft)

North−East trajectories (flight test #2)

Reference
Flight test #2

0 2 4 6 8 10 12 14 16 18

x 10
4

−10

−8

−6

−4

−2

0

2

4
x 10

4

East coord. relative to RHC engagement (ft)

N
or

th
 c

oo
rd

. r
el

at
iv

e
to

 R
H

C
 e

ng
ag

em
en

t (
ft)

North−East trajectories (simulation)

Reference
−60 ft/s East wind
−50 ft/s East wind
−20 ft/s East wind
 60 ft/s East wind
 50 ft/s East wind
 20 ft/s East wind
no wind

0 200 400 600 800 1000 1200

1.4

1.45

1.5

1.55

1.6

1.65

x 10
4

Time relative to RHC engagement (sec)

W
G

S
−8

4
A

lti
tu

de
 (

ft)

Altitude trajectories (flight test #1)

Reference
Flight test #1

0 200 400 600 800 1000 1200

1.4

1.45

1.5

1.55

1.6

1.65

1.7

x 10
4

Time relative to RHC engagement (sec)

W
G

S
−8

4
A

lti
tu

de
 (

ft)

Altitude trajectories (flight test #2)

Reference
Flight test #2

0 200 400 600 800 1000 1200

1.3

1.35

1.4

1.45

1.5

1.55

1.6

x 10
4

Time relative to RHC engagement (sec)

W
G

S
−8

4
A

lti
tu

de
 (

ft)

Altitude trajectories (simulation)

Reference
−60 ft/s East wind
−50 ft/s East wind
−20 ft/s East wind
 60 ft/s East wind
 50 ft/s East wind
 20 ft/s East wind
no wind

Figure 8.19: North, east and altitude tracking performance. The top two plots show simulation
results under different wind conditions. The middle two plots show results of flight test #1. The
bottom two plots represent flight test #2 data.

133

0 200 400 600 800 1000 1200

400

450

500

550

600

Time relative to RHC engagement (sec)

G
ro

u
n

d
 s

p
ee

d
 (

ft
/s

)

Velocity command and response (flight test #1)

command
response

0 200 400 600 800 1000 1200

400

450

500

550

600

Time relative to RHC engagement (sec)

G
ro

u
n

d
 s

p
ee

d
 (

ft
/s

)

Velocity command and response (flight test #2)

command
response

0 200 400 600 800 1000 1200

400

450

500

550

600

Time relative to RHC engagement (sec)

G
ro

u
n

d
 s

p
ee

d
 (

ft
/s

)

Velocity command and response (simulation)

command
response

Figure 8.20: Commanded and actual ground speed in simulations and during flight tests #1, #2.

134

Appendix A

DARPA SEC Capstone Demo
Description Experiment #1 Manual

135

DARPA SEC Capstone Demo Description
Experiment #1

University of Minnesota

June 15, 2004

This document describes the Experiment Controller set-up for Experiment #1 of the University
of Minnesota / UC Berkeley SEC Capstone Flight Demonstration. The first few sections contain
an informal description of the anticipated sequence of events during the flight test. This will be
used to specify expected actions on the pilot cue-cards. The last section provides a description of
the experiment controller logic using Sequential Functional Charts (SFC) [33]. In this document,
the controller software used by our team will be referred to as UMNUCBC.

UMN/UCB Capstone Demonstration Overview

A summary of the anticipated events planned for the UMN/UCB Capstone Flight Demonstration
Experiment is provided as a one-page overview at the end of this document. A more detailed
description is provided in the following sections.

A.1 T-33/UCAV actions

Approach to Ingress Point

After take-off, and any testing required by the Boeing Demo Description Document, the pilot will
be required to approach the Ingress Point of the test range from the west, flying straight and level
at a constant altitude of 15000 ft (WGS84) and ground speed of 500 ft/s, keeping the same latitude
as the Ingress Point location. In the meantime, UMNUCBC is issuing constant “SetAndHold”
commands to fly to the same flight condition, which are ignored by the autopilot at this stage.

Controller engagement procedure

While en route to the Ingress Point on an approach trajectory described above, the pilot shall
press the CMD-ON button to hand over control of the aircraft to the autopilot. The constant
“SetAndHold” commands that are issued by UMNUCBC for the autopilot are implemented to
continue to fly at the initial flight condition. The command shall approximately correspond to the
actual flight condition of the aircraft.

When reaching the longitude corresponding to the Ingress Point, the pilot shall press the START
button to engage the RHC controller, if the following criteria are met:

• The autopilot has reached a steady state tracking status.

• Aircraft autopilot is maintaining the specified flight condition up to the tolerances defined in
Table A.1.

136

Measurement Tolerance

Groundspeed ±15 ft/s

Heading ±0.1 deg

WGS-84 Altitude ±100 ft

Table A.1: Engagement tolerances

Corner Latitude Longitude

NW 35.112◦ −117.75◦

NE 35.112◦ −117.6998◦

SW 35.088◦ −117.6998◦

SE 35.088◦ −117.75◦

Table A.2: Engagement area definition

• The aircraft is within the designated “Engagement Area”, described in Table A.2 by the four
corner coordinates of the rectangular region.

If these criteria are not met, the pilot shall not press the START button. Instead, the pilot
shall disengage by pushing the CMD-OFF button, then take control over the aircraft and repeat
procedure from the approach to Ingress Point.

Remark: It is important to engage the RHC controller within the Engagement Area, otherwise
the reference trajectory, which starts relative to the position of engagement could violate test range
area limitations. Engagement outside the specified area is not allowed.

If the engagement procedure is unsuccessful after pushing the Start button (e.g. because the
aircraft leaves the Engagement Area without satisfying flight condition tolerances), a disengagement
message is displayed and the experiment has to be repeated from the beginning.

Experiment Phase I

After a successful engagement, UMNUCBC starts tracking a reference trajectory, which leads to
the vicinity of a predefined target. Currently the target has predefined parameters described in
Table A.3.

There is a window of opportunity within 0−450 seconds after the engagement to initiate a pop-
up threat along the route to the target by pushing the SND OBST button. After this time-frame,
initiating the pop-up threat will have no effect.

137

Parameter Value

Latitude 35.149◦

Longitude −117.289◦

Radius 0.014◦

Table A.3: Target definition

Parameter Value

Latitude 34.97◦

Longitude −117.31◦

Radius 0.04◦

Table A.4: Pop-up threat definition

Experiment Phase II

After 450 seconds have passed since the time of engagement, the controller will track an approach
trajectory to the target, which is dependent on whether the pop-up threat obstacle has been sent
using the SND OBST button in Phase I. Pushing the SND OBST button and sending the pop-up
threat obstacle in this phase of the experiment will not have any effect on the reference trajectory.
When the aircraft has finished avoiding the pop-up threat, a message is displayed and it continues
flying towards the target. This second phase of the experiment ends with flying over the target.
The pop-up threat location is predefined according to Table A.4.

Experiment Phase III

After passing the target the aircraft should be flying straight and level. The pilot is expected
to push the FAULT-ON button when the “Target reached” message is displayed or the aircraft
exits the target circle, but no later than 30 seconds after the target is reached. This initiates the
corruption of controller signals with the output of the fault simulator, and the observing of the
Fault Detection filter output. As soon as the fault is detected, the fault simulator is switched off
automatically.

The trajectory in this phase of the experiment leads back the aircraft to the vicinity of the
engagement area, where the pilot should disengage by pushing the CMD-OFF button and taking
control over the aircraft to leave the flight test area, either for landing or a rerun.

Disengagement can be initiated based on the pilot’s decision, once the aircraft is back in the
engagement area, or after the status display: “Experiment ended. Disengage controller!”.

If the controller is deviating “significantly” from the reference trajectory after the initiation of
the fault, the pilot can also take control by pushing CMD-OFF.

138

Reset functionality

The RESET button should be pushed only if the aircraft is in an approach to the Ingress Point.
The procedure described in the “Approach to Ingress Point” section should be repeated after the
RESET button is pushed.

A.2 Explanation of SFC diagrams, further remarks

General remarks

Goal of the SFC design is to simplify the experiment control logic by relying on pilot to execute
actions and button-presses in the right order, according to the specified sequence and criteria.

Main Sequential Functional Chart (SFC 1)

This SFC defines the experiment control logic around the Receding Horizon Controller (RHC) from
engagement until the end of the experiment.

The notation t/Xi/Ti represents the value of a boolean variable that becomes true when the
time Ti elapses after the activation of the state Xi, i.e. it represents a timer which starts when
the state Xi is activated. This notation is used to define a time window during which the Pop-Up
Threat indicator button value can be set.

After the experiment has ended by completing the trajectory, UMNUCBC stops sending Set-
AndHold commands (i.e. the last ones issued remain valid) at the end of the trajectory and a
disengagement message is displayed. The pilot shall disengage by taking control (CMD-OFF) and
exit from the test area. The controller could be restarted by following the Approach to Ingress
Point procedure and pushing the RESET button.

Fault Simulator / Detection button (SFC 2)

The fault simulator and the fault detection filter are started when the application starts up and
stopped if the engagement procedure was unsuccessful or when the aircraft reaches the end of the
reference trajectory (“End of experiment” condition). This SFC represents two logical states that
determine whether the output of the fault simulator should be added to the controller output for
implementation and whether to look at the output of the fault detection filter. The transition
between these two states can be initiated by pressing the FAULT-ON and FAULT-OFF buttons.
Once the fault has been initiated, the value of the FD flag, which is set based on the output of
the fault detection filter, could also lead to cancelling the fault (i.e. reconfiguration after fault
detection).

Pop-up threat (SFC 3)

This SFC for pop-up threat is used to set a flag, which indicates which trajectory to follow from
two alternatives: one that avoids the threat and the other (default) that goes through it. The
two trajectories are similar except for the segment near the pop-up threat. The two trajectories
are loaded from file during initialization, and the marching trajectory window, which specifies the
references for the next horizon in the RHC controller, fills up the RefTrajEast, RefTrajNorth,
RefTrajAlt variables based on the trajectory indicated by the pop-up flag. (Note that since
the circular no-fly-zones are defined as non-threat obstacles, the ObstacleAvailable method is
called at the beginning of the experiment even before the pop-up threat obstacle is sent using the

139

1Main
SFC 1

Set RHC

On

Set RHC

Off

Keep issuing

last cmd.

the Pop-Up Threat Trajectory
It is possible to book

up to this time (using SFC 3)

Set reference

Traj. 2

Keep issuing

last cmd.

2

1

3

STARTT2

T1

Fly to initial

conditions

Fly to initial

conditions

PHASE III
PHASE II

PHASE I

(Tolerance match) · (within engagement area)

T4 t/X4/Time1

7 6

End of experiment

8

End of experiment

T 1
5

T7

T 2
5

T6

X21 X20

T 2
3 Unsucc. engagement

4

5

T 1
3

0

Figure A.1: Main SFC (SFC 1).

Set Fault

Off

Set Fault

On

Fault button
SFC 2

FAULT-ON

10

T10

11

Reconfig.

RHC

FAULT-OFF Fault DetectedT 2
11T 1

11

Figure A.2: Fault on/off button (SFC 2).

140

Pop-up threat
SFC 3

POP-UP ON · X4

20

T20

21

Figure A.3: Pop-up threat SFC (SFC 3).

SFC 4
Reset button

30

T30

31

T32 1

Reset SFC 1

SFC 2, SFC 3

T31 RESET

32

1

Figure A.4: Reset button (SFC 4).

SND OBST button. Since a call to the ObstacleAvailable method sets the popup ON button flag
true, its value is always reset to false in the X3 state. The SND OBST button should only be used
in state X4 to send the pop-up threat obstacle, so the condition of being in state X4 is used as a
necessary requirement for transition T20. This avoids switching reference trajectories just because
the non-threat obstacles are displayed in the beginning of the experiment.)

Reset button (SFC 4)

Once the controller is started (START button press), pressing the RESET button resets the SFC 1,
the SFC 2, and the SFC 3 to the their initial phases, thus reinitializing the whole controller. The
pilot will be instructed to press the button only if the aircraft is in the Approach to Ingress Point
phase.

Status displays related to transitions of SFC diagrams

The messages listed in Table A.6 are displayed when the corresponding state-transitions occur.

Further information

The location and radius of circular no-fly-zones are given in Table A.5. These objects are defined
as non-threat obstacles in the Experiment Controller.

The list of user-defined buttons is the following

141

SFC 4

SFC 2SFC 1 SFC 3

SFC hierarchy

Figure A.5: Hierarchy of the SFCs. SFC 4 is the only one capable of resetting all the other SFCs,
by pressing of the reset button.

• START

• FAULT-ON

• FAULT-OFF

NFZ # Latitude Longitude Radius

1 34.927◦ −117.61◦ 0.047◦

2 35.042◦ −117.405◦ 0.047◦

3 35.078◦ −117.22◦ 0.053◦

Table A.5: No-fly-zone area definitions

142

SFC Transitions Status Display Message

State 1 (initialization) University of Minnesota / UC Berkeley
SEC flight demonstration.

T1 Commands initialized.

T2 Experiment started. Flying to initial condition.

T 1
3 Controller engaged. Phase I started.

T 2
3 RHC engagement unsuccessful. Disengage controller!

T4 UAV assigned to target. Phase II started.

T 1
5 Avoiding pop-up threat.

T 2
5 No pop-up threat invoked.

N/A Threat avoided. Continuing towards target.

N/A Target reached.

T6 Experiment ended. Disengage controller!

T7 Experiment ended. Disengage controller!

T10 Fault initiated. Phase III started.

T 1
11 Fault removed.

T 2
11 Fault detected. Controller reconfigured.

T20 Pop-up threat inserted.

T31 Experiment is reset.

T32 Controller is reinitialized.

Table A.6: Status display messages

143

UMN/UCB Capstone Demonstration Overview

1. Approach to Ingress Point

• Fly straight and level at 15K ft, 500 ft/s ground speed directly approaching from West.

2. Engagement of Controller

• En route to Ingress Point press CMD-ON button.

• The “SetAndHold’ commands issued by UMNUCBC for the autopilot are implemented
to fly to initial condition.

• Press START button at Ingress Point longitude to engage

– IF

∗ Aircraft autopilot maintaining flight condition up to ±15 ft/s in ground speed,
±0.1 degrees in heading angle and ±100 ft in altitude.

– ELSE

∗ Do NOT press START button.

∗ Disengage controller by pressing CMD-OFF button.

∗ Pilot in control of aircraft, return to Approach to Ingress Point (1).

– END

3. UMNUCBC tracking reference trajectory

• Between 0-450 seconds, can initiate pop-up threat by use of SND OBST button.

4. UMNUCBC tracking reference trajectory

• No POP-UP: track original reference trajectory to target.

• POP-UP: track modified reference trajectory around Pop-Up to target.

• Fly over target.

5. Initiate actuator fault

• After target fly over (i.e. within 0-30 seconds after “Target reached.” message is dis-
played), initiate actuator fault with FtSm-ON button. This automatically:

– Engages fault simulator.

– Activates fault detection logic.

– Detects fault, reconfigures UMNUCBC system.

– Disengages fault simulator.

6. Track return trajectory to Egress Point.

• Press CMD-OFF button to disengage UMNUCBC at Egress Point.

• Return control to Pilot.

7. Return to Ingress Point

• New test or land based on pilot/team decision.

144

Appendix B

DARPA SEC Capstone Demo
Description Experiment #2 Manual

145

DARPA SEC Capstone Demo Description
Experiment #2

University of Minnesota

June 15, 2004

This document describes the Experiment Controller set-up for Experiment #2 of the University
of Minnesota / UC Berkeley SEC Capstone Flight Demonstration. Section B.1 contains an informal
description of the anticipated sequence of events during the flight test. This will be used to specify
expected actions on the pilot cue-cards. Section B.2 provides a description of the experiment
controller logic using Sequential Functional Charts (SFC) [33]. In this document, the controller
software used by our team will be referred to as UMNUCBC.

Note that the second experiment plan differs from the first UMN/UCB demo in that Experiment
Phase III is extended and contains more events that increase the length of the overall test run.
Besides changes in the underlying algorithm, the most significant difference is the reconfiguration
of the RHC controller after a successful fault detection (as opposed to a complete fault removal
in Experiment #1), and the ability to invoke multiple pop-up threats in the path of the “faulty”
aircraft, while it’s “returning” to the Egress Point. Experiment #2 has the exact same sequence
of events in Phase I and Phase II as in Experiment #1 to minimize changes to the overall mission
setup. Those sections that remain unchanged from the aspect of experiment control, are marked
with a bar on the right margin of the document.

UMN/UCB Capstone Demonstration Experiment #2 Overview

A summary of the anticipated events planned for the UMN/UCB Capstone Flight Demonstration
Experiment #2 is provided as a two-page overview at the end of this document. A more detailed
description is provided in the following section.

B.1 T-33/UCAV actions

Approach to Ingress Point

After take-off, and any testing required by the Boeing Demo Description Document, the pilot will
be required to approach the Ingress Point of the test range from the west, flying straight and level
at a constant altitude of 15000 ft (WGS84) and ground speed of 500 ft/s, keeping the same latitude
as the Ingress Point location. In the meantime, UMNUCBC is issuing constant “SetAndHold”
commands to fly to the same flight condition, which are ignored by the autopilot at this stage.

Controller engagement procedure

While en route to the Ingress Point on an approach trajectory described above, the pilot shall
press the CMD-ON button to hand over control of the aircraft to the autopilot. The constant

146

Measurement Tolerance

Groundspeed ±15 ft/s

Heading ±0.1 deg

WGS-84 Altitude ±100 ft

Table B.1: Engagement tolerances

Corner Latitude Longitude

NW 35.112◦ −117.75◦

NE 35.112◦ −117.6998◦

SW 35.088◦ −117.6998◦

SE 35.088◦ −117.75◦

Table B.2: Engagement area definition

“SetAndHold” commands that are issued by UMNUCBC for the autopilot are implemented to
continue to fly at the initial flight condition. The command shall approximately correspond to the
actual flight condition of the aircraft.

When reaching the longitude corresponding to the Ingress Point, the pilot shall press the START
button to engage the RHC controller, if the following criteria are met:

• The autopilot has reached a steady state tracking status.

• Aircraft autopilot is maintaining the specified flight condition up to the tolerances defined in
Table B.1.

• The aircraft is within the designated “Engagement Area”, described in Table B.2 by the four
corner coordinates of the rectangular region.

If these criteria are not met, the pilot shall not press the START button. Instead, the pilot
shall disengage by pushing the CMD-OFF button, then take control over the aircraft and repeat
procedure from the approach to Ingress Point.

Remark: It is important to engage the RHC controller within the Engagement Area, otherwise
the reference trajectory, which starts relative to the position of engagement could violate test range
area limitations. Engagement outside the specified area is not allowed.

If the engagement procedure is unsuccessful after pushing the Start button (e.g. because the
aircraft leaves the Engagement Area without satisfying flight condition tolerances), a disengagement
message is displayed and the experiment has to be repeated from the beginning.

147

Parameter Value

Latitude 35.149◦

Longitude −117.289◦

Radius 0.014◦

Table B.3: Target definition

Pop-up threat name Latitude Longitude Radius

POP-UP1 34.97◦ −117.29◦ 0.04◦

POP-UP2a 35.105◦ −117.597◦ 0.035◦

POP-UP2b 35.04◦ −117.608◦ 0.02◦

Table B.4: Pop-up threat definitions

Experiment Phase I

After a successful engagement, UMNUCBC starts tracking a reference trajectory, which leads to
the vicinity of a predefined target. Currently the target has predefined parameters described in
Table B.3.

There is a window of opportunity within 0−450 seconds after the engagement to initiate a pop-
up threat along the route to the target by pushing the SND OBST button and selecting POP-UP1.
After this time-frame, initiating the pop-up threat will have no effect.

Experiment Phase II

After 450 seconds have passed since the time of engagement, the controller will track an approach
trajectory to the target, which is dependent on whether the pop-up threat obstacle POP-UP1 has
been sent using the SND OBST button in Phase I. Pushing the SND OBST button and sending
the pop-up threat obstacle called POP-UP1 in this phase of the experiment will not have any effect
on the reference trajectory. When the aircraft has finished avoiding the pop-up threat, a message is
displayed and it continues flying towards the target. This second phase of the experiment ends with
flying over the target. The location of the POP-UP1 threat is predefined according to Table B.4.

Experiment Phase III

After passing the target the aircraft should be flying straight and level. The pilot is expected
to push the FAULT-ON button when the “Target reached” message is displayed or the aircraft
leaves the target circle, but no later than 30 seconds after the target is reached. This initiates the
corruption of controller signals with the output of the fault simulator, and the observing of the

148

Fault Detection filter output. As soon as the fault is detected, the RHC controller is reconfigured
and continues tracking the reference trajectory with the “faulty” aircraft model. The trajectory in
this phase of the experiment leads back the aircraft to the vicinity of the engagement area if no
other pop-up threats are invoked.

En route to the Egress Point, two different pop-up threats can be sent to obstruct the path of
the “returning” aircraft. These are called POP-UP2a and POP-UP2b with parameters described
in Table B.4. The threat called POP-UP2a can be invoked only within 0-110 seconds after the
“Target reached” message is displayed.

After 110 seconds have passed since the target was reached, the controller will continue to
track a trajectory to the Egress Point, which is dependent on whether the pop-up threat obstacle
POP-UP2a has been sent using the SND OBST since the target. Pushing the SND OBST button
and sending the pop-up threat obstacle called POP-UP2a outside the specified time interval will
not have any effect on the reference trajectory.

The pop-up threat called POP-UP2b can only be invoked if POP-UP2a was already sent, and
the aircraft is avoiding it. The threat called POP-UP2b can be invoked only within 0-400 seconds
after the “Avoiding POP-UP2a” message is displayed. After 400 seconds have passed since the
aircraft began to avoid POP-UP2a, the controller will continue to track a trajectory to the Egress
Point, which is dependent on whether the pop-up threat obstacle POP-UP2b has been sent using
the SND OBST. Pushing the SND OBST button and sending the pop-up threat obstacle called
POP-UP2b outside the specified time interval will not have any effect on the reference trajectory.

Figure B.1 illustrates the alternative mission trajectories and the approximate “decision” points
until which the corresponding pop-up obstacles have to be invoked. These approximate location
of the “deadline” points are indicated by black arrows. The figure depicts the aircraft trajectory
at the end of the experiment in case all the pop-up threats were invoked. Please note again that
POP-UP2b can be invoked only after the aircraft starts avoiding POP-UP2a.

Independent of the number of pop-up threats invoked during the experiment, the reference
trajectory leads the aircraft back to the Engagement Area, where the pilot should disengage by
pushing the CMD-OFF button and taking control over the aircraft to leave the flight test area,
either for landing or a rerun.

Disengagement can be initiated based on the pilot’s decision, once the aircraft is back in the
engagement area, or after the status display: “Experiment ended. Disengage controller!”.

If the controller is deviating “significantly” from the reference trajectory after the initiation of
the fault, the pilot can also take control by pushing CMD-OFF.

Reset functionality

The RESET button should be pushed only if the aircraft is in an approach to the Ingress Point.
The procedure described in the “Approach to Ingress Point” section should be repeated after the
RESET button is pushed.

B.2 Explanation of SFC diagrams, further remarks

General remarks

Goal of the SFC design is to simplify the experiment control logic by relying on pilot to execute
actions and button-presses in the right order, according to the specified sequence and criteria.

149

Main Sequential Functional Chart (SFC 1)

This SFC defines the experiment control logic around the Receding Horizon Controller (RHC) from
engagement until the end of the experiment.

The notation t/Xi/Ti represents the value of a boolean variable that becomes true when the
time Ti elapses after the activation of the state Xi, i.e. it represents a timer which starts when the
state Xi is activated. This notation is used to define time windows during which the pop-up threat
indicator values can be set.

After the experiment has ended by completing the trajectory, UMNUCBC stops sending Set-
AndHold commands (i.e. the last ones issued remain valid) at the end of the trajectory and a
disengagement message is displayed. The pilot shall disengage by taking control (CMD-OFF) and
exit from the test area. The controller could be restarted by following the Approach to Ingress
Point procedure and pushing the RESET button.

Fault Simulator / Detection button (SFC 2)

The fault simulator and the fault detection filter are started when the application starts up and
stopped if the engagement procedure was unsuccessful or when the aircraft reaches the end of
the reference trajectory (“End of experiment” condition). This SFC represents three logical states.
These determine whether the output of the fault simulator should be added to the controller output
for implementation, whether to interpret the output of the fault detection filter or to reconfigure
the RHC controller. The transition between the first two states can be initiated by pressing the
FtSm-ON and FtSm-OFF buttons. Once the fault has been initiated, the value of the fault detection
flag, which is set based on the output of the fault detection filter, can lead to the reconfiguration
of the RHC controller when the fault is detected. Note that after the detection of the fault, the
fault simulator cannot be removed, it continues corrupting the turn rate output of the controller
until the end of the experiment. Reconfiguration is performed by switching to a second instance of
the RHC controller with modified prediction model and constraints.

Pop-up threat (SFC 3)

This SFC for pop-up threat is used to indicate which trajectory to follow from six alternatives,
depending upon which pop-up threats have to be avoided. The alternative trajectories are similar
up to the points of avoiding the pop-up threats. The trajectories are loaded from file during initial-
ization, and the marching trajectory window, which specifies the references for the next horizon in
the RHC controller, fills up the RefTrajEast, RefTrajNorth, RefTrajAlt variables based on the
trajectory indicated by SFC 3. (Note that since the circular no-fly-zones are defined as non-threat
obstacles, the ObstacleAvailable method is called at the beginning of the experiment even before
any pop-up threat obstacle is sent using the SND OBST button. Within the ObstacleAvailable

method, the location of the received obstacle is used to determine which pop-up threat was invoked
and athe corresponding flag is set to true. The SND OBST button should only be used in states
X4, X8, X9, X12, X14 to send the corresponding pop-up threat obstacle, so the condition of being in
these states is used as a necessary requirement for transitions T 1

200, T202, T203. This avoids switching
reference trajectories just because the non-threat obstacles are displayed in the beginning of the
experiment or any other unforeseen events such as sending obstacles at incorrect times.)

150

Reset button (SFC 4)

Once the controller is started (START button press), pressing the RESET button resets the SFC 1,
the SFC 2, and the SFC 3 to the their initial phases, thus reinitializing the whole controller. The
pilot will be instructed to press the button only if the aircraft is in the Approach to Ingress Point
phase.

Status displays related to transitions of SFC diagrams

The messages listed in Table B.6 and B.7 are displayed when the corresponding state-transitions
occur.

Further information

The location and radius of circular no-fly-zones are given in Table B.5. These objects are defined
as non-threat obstacles in the Experiment Controller.

The list of user-defined buttons is the following

• START

• FAULT-ON

• FAULT-OFF

NFZ # Latitude Longitude Radius

1 34.927◦ −117.617◦ 0.04◦

2 35.054◦ −117.417◦ 0.047◦

3 35.078◦ −117.22◦ 0.053◦

4 35.183◦ −117.677◦ 0.057◦

5 35.1◦ −117.46◦ 0.02◦

Table B.5: No-fly-zone area definitions

151

SFC Transitions Status Display Message

State 1 (initialization) University of Minnesota / UC Berkeley
SEC flight demonstration.

T1 Commands initialized.

T2 Experiment started. Flying to initial condition.

T 1
3 Controller engaged. Phase I started.

T 2
3 RHC engagement unsuccessful. Disengage controller!

T4 UAV assigned to target. Phase II started.

T 1
5 Avoiding POP-UP1 threat.

T 2
5 POP-UP1 threat was not invoked.

N/A Threat avoided. Continuing towards target.

T6 Target reached.

T7 Target reached.

T 1
10 Avoiding POP-UP2a threat.

T 2
10 POP-UP2a threat was not invoked.

T 1
11 Avoiding POP-UP2a threat.

T 2
11 POP-UP2a threat was not invoked.

T13 Experiment ended. Disengage controller!

T15 Experiment ended. Disengage controller!

T 1
16 Avoiding POP-UP2b threat.

T 2
16 POP-UP2b threat was not invoked.

T 1
17 Avoiding POP-UP2b threat.

T 2
17 POP-UP2b threat was not invoked.

Table B.6: Status display messages

152

SFC Transitions Status Display Message

T18 Experiment ended. Disengage controller!

T19 Experiment ended. Disengage controller!

T20 Experiment ended. Disengage controller!

T21 Experiment ended. Disengage controller!

T100 Fault initiated. Phase III started.

T 1
101 Fault removed.

T 2
101 Fault detected. Controller reconfigured.

T 1
200 POP-UP1 threat inserted.

T202 POP-UP2a threat inserted.

T203 POP-UP2b threat inserted.

T301 Experiment is reset.

T302 Controller is reinitialized.

Table B.7: Status display messages (cont’d)

153

UMN/UCB Capstone Demonstration Experiment #2 Overview

1. Approach to Ingress Point

• Fly straight and level at 15K ft, 500 ft/s ground speed directly approaching from West.

2. Engagement of Controller

• En route to Ingress Point press CMD-ON button.

• The “SetAndHold’ commands issued by UMNUCBC for the autopilot are implemented
to fly to initial condition.

• Press START button at Ingress Point longitude to engage

– IF

∗ Aircraft autopilot maintaining flight condition up to ±15 ft/s in ground speed,
±0.1 degrees in heading angle and ±100 ft in altitude.

– ELSE

∗ Do NOT press START button.

∗ Disengage controller by pressing CMD-OFF button.

∗ Pilot in control of aircraft, return to Approach to Ingress Point (1).

– END

3. UMNUCBC tracking reference trajectory

• Between 0-450 seconds, can initiate pop-up threat POP-UP1 by use of SND OBST
button.

4. UMNUCBC tracking reference trajectory

• No POP-UP: track original reference trajectory to target.

• POP-UP: track modified reference trajectory around Pop-Up to target.

• Fly over target.

5. Initiate actuator fault

• After target fly over (i.e. within 0-30 seconds after “Target reached.” message is dis-
played), initiate actuator fault with FtSm-ON button. This automatically:

– Engages fault simulator.

– Activates fault detection logic.

– Detects fault, reconfigures UMNUCBC system.

6. Track return trajectory to Egress Point.

• Between 0-110 seconds after the target, can initiate pop-up threat POP-UP2a by use of
SND OBST button.

– No POP-UP2a: track original reference trajectory to Egress Point.

– POP-UP2a: track modified reference trajectory around Pop-Up to Egress Point.

154

– Between 0-400 seconds after POP-UP2a avoidance started, can initiate second pop-
up threat POP-UP2b by use of SND OBST button.

• Aircraft eventually returns to Engagement Area after avoiding pop-ups.

• Press CMD-OFF button to disengage UMNUCBC at Egress Point.

• Return control to Pilot.

7. Return to Ingress Point

• New test or land based on pilot/team decision.

155

−1
17

.5
−1

17
34

.7
5

34
.8

34
.8

5

34
.9

34
.9

535

35
.0

5

35
.1

35
.1

5

35
.2

35
.2

5
Latitude [deg]

Lo
ng

itu
de

 [d
eg

]

U
M

N
−U

C
B

 C
ap

st
on

e
D

em
o.

 E
xp

er
im

en
t #

2
P

la
n

N
F

Z

N
F

Z

N
F

Z

N
F

Z

N
F

Z

T
ar

ge
t

P
O

P
−U

P
1

P
O

P
−U

P
2a

P
O

P
−U

P
2b

P
O

P
−

U
P

1
de

ad
lin

e

P
O

P
−

U
P

2b
de

ad
lin

e

P
O

P
−

U
P

2a
de

ad
lin

e

Figure B.1: Illustration of the reference trajectory in the flight test area with our desired target,
pop-up threat and no-fly-zone locations. The displayed trajectory corresponds to invoking all the
pop-up threats. Approximate locations of timeouts associated with invoking threats are indicated
with black arrows.

156

1Main
SFC 1

Set RHC

On

the Pop-Up1 Threat Trajectory
It is possible to book

up to this time (using SFC 3)

Keep issuing

last cmd.

Set reference

Traj. 27

Set reference

Traj. 22

Set reference

Traj. 21

Set reference

Traj. 11

Set reference

Traj. 12

Set RHC

Off

Keep issuing

last cmd.

2

1

3

STARTT2

T1

Fly to initial

conditions

Fly to initial

conditions

(Tolerance match) · (within engagement area)

T4 t/X4/Time1

T 1
5 T 2

5X201

T 2
3 Unsucc. engagement

4

5

T 1
3

0

9 8

T9 T8

6

T7 T6Target reached Target reached

11 10

t/X9/Time2 t/X8/Time2

End of Experiment EoEEoE EoE EoE EoE

14 15 12

1617

2120 18 19

13

22

X200

X203 X202X202X203

X203X204X203X204

t/X12/Time3t/X14/Time3

PHASE I

PHASE III

PHASE II

T 1
11 T 2

11

T14

T 2
17

T21 T15

T 1
17

T20

T 1
10

T12

T 1
16

T18

T 2
16

T19 T13

T 2
10

Figure B.2: Main SFC (SFC 1).

157

Set Fault

Off

Set Fault

On

Fault button
SFC 2

101

Reconfig.

RHC

FAULT-ON

100

FAULT-OFF Fault Detected

102

T100

T 1
101 T 2

101

Figure B.3: Fault on/off button (SFC 2).

Pop-up threat
SFC 3 200

POP-UP1 ON · X4

X6 OR X7 201

202

203

204

X6 OR X7

POP-UP2a ON · (X8 OR X9)

POP-UP2b ON · (X12 OR X14)T203

T202

T201

T 1
200

T 2
200

Figure B.4: Pop-up threat SFC (SFC 3).

SFC 4
Reset button

1

Reset SFC 1

SFC 2, SFC 3

RESET

1

300

301

302

T300

T301

T302

Figure B.5: Reset button (SFC 4).

158

SFC 4

SFC 2SFC 1 SFC 3

SFC hierarchy

Figure B.6: Hierarchy of the SFCs. SFC 4 is the only one capable of resetting all the other SFCs,
by pressing of the reset button.

159

Appendix C

UML essentials

In this appendix a brief explanation of the UML notations used in Chapter 7 is reviewed, however
the reader is referred to [34] for a more detailed introduction to the UML and to [35] for a complete
discussion of the notation, while [36] discusses the design of real-time systems using the UML.

The UML notation supports nine diagrams to reflect the various aspect of a software system
that needs to be specified formally. In a system specification it is not mandatory to use all the
diagrams, so in the following only a brief description of the notation associated with diagrams used
in this report is given:

• The use case diagram (described in Section C.1).

• The class diagram (described in Section C.2).

• The state-chart diagram (described in Section C.3).

C.1 Use case diagrams

The use case diagram is a technique for capturing the functional requirements of a system. Use
cases work by defining the typical interactions between the users of a system and the system itself,
providing a narrative of how a system is used. A scenario is a sequence of steps describing an
interaction between a user and a system, and a use case is a set of scenarios tied together by a
common user goal.

An actor initiates a use case. An actor is depicted as a stick figure on a use case diagram. The
system is depicted as a box. A use case is depicted as an ellipse inside the box. Communications
associations connect actors with the use cases in which they participate. Relationships among
use cases are defined by means of include and extend relationships. The notation is depicted in
Figure C.1.

C.2 Class diagrams

In a class diagram, classes are depicted as boxes (see Figure C.2) and the static relationships
between them are depicted as arcs. The following three main types of relationships between classes
are supported:

Associations An association between two classes, which is referred as a binary association, is
represented as a line joining two class boxes. An association has a name and optionally a

160

Actor

Use Case C

Use Case A

Use Case B

<< include >><< extend >>

System 1

Use Case

Figure C.1: UML notation for use case diagram.

+ publicAttribute : Type1 = initialValue1

protectedAttribute : Type3 = initialValue3

− privateAttribute : Type2 = initialValue2

+ publicOperation (argList) : returnType1

− privateOperation (argList) : returnType2

protectedOperation (argList) : returnType3

<< stereotype >>

Class Name

Figure C.2: A general class. A class has a name, sets of attributes and operations; optionally, it
can be stereotyped.

small arrowhead to depict the direction along which the association name should be read. On
each end of the association line joining the classes there is the multiplicity of the association,
which indicates how many instances of one class are related to an instance of the other class.
Optionally, a stick arrow may also be used to depict the direction of navigability 1. The
notation is represented in Figure C.3, and a simple example is reported in Figure C.4.

Aggregation and composition hierarchies These are whole/part relationships. The composi-
tion relationship (shown by a black diamond) is a stronger form of whole/part relationship
than the aggregation relationship (shown by a hollow diamond). The diamond touches the
aggregate/composite class box. A composition is a relationship stronger than the aggregation,
namely an object of a class that participates as a component in a composition association
cannot participate in any other composition association (see Figure C.5).

1In an association between two classes, navigability is used informally to suggest the direction along which the
association name should be read (like in Figure C.4), however at code implementation, the arrow indicates which of
the two classes is referenced by the other one (for instance by mean of a pointer, or in database design, by a key

field).

Class BClass A

Role A Role B

Association Name

Figure C.3: Association between two classes.

161

A_person
Teacher

Student teaches

1

1..*

Figure C.4: Association with role multiplicity example. A person with a role of teacher teaches one
or more persons with the role of students.

Car

Wheel

Team

4

1

0..*0..*

Figure C.5: Composition and aggregation example. A car is made up of four wheels, and a wheel
can belong only to one car; also a car can participate in a team of vehicles, but can be shared by
more than one team at the same time.

Generalization/specialization hierarchy This is an is-a relationship. A generalization is de-
picted as an arrow joining the subclass (child) to the superclass (parent), with the arrowhead
touching the superclass box (see Figure C.6).

Visibility refers to whether an element of the class is visible from outside the class as depicted
in Figure C.2. Representing visibility is optional on a class diagram. Public visibility, denoted with
a + sign, meaning that the element is visible from outside the class; private visibility, denoted with
a − sign, means that the element is visible only from within the class that defines it and is thus
hidden from other classes; protected visibility, denoted with a] sign, means that the element is
visible from within the class that defines it and within all subclasses derived from it.

A_person

A_student A_teacher
teaches

11..*

Figure C.6: Generalization example. This diagram represents the same concepts expressed in
Figure C.4 in a more expressive way. A student is a particular case of A person taught by an other
particular case of A person: A teacher.

162

State A

event[condition]/action

State B

Supestate A

entry/ action
do/ action
exit/ action

initial pseudostate

final pseudostate

Figure C.7: State-chart diagram notations.

C.3 State-chart diagram

In the UML notation, a state transition diagram is referred to as state-chart diagram, often called
simply state-chart. Within UML, states are represented by rounded boxes and transitions are rep-
resented by arcs among them. The initial state of a state-chart is represented by an arc originating
from a small black circle. Optionally, a final state may be depicted by a small black circle inside
a larger white circle. A state-chart may be hierarchically decomposed such that a superstate is
decomposed into sub-states. On the arc representing the state transition, the notation event [con-
dition] / action is used. The event causes the state transition. The optional condition must be
true, when the event occurs, for the transition to take place. The optional action is performed as
a result of a transition. Optionally, associated with a state, there may be

entry actions performed when the state is entered;

activities performed for the duration of the state;

exit actions performed on exit from the state.

The notation is represented in Figure C.7.

163

Bibliography

[1] L. Nguyen, M. Ogburn, W. Gilbert, K. Kibler, P. Brown, and P. Deal, “Simulator study of
stall/post-stall characteristics of a fighter airplane with relaxed longitudinal static stability,”
NASA Langley Research Center, Hampton, Virginia, Tech. Rep. 1538, 1979.

[2] T. Samad and G. J. Balas, Software-Enabled Control: Information Technology for Dynamical
Systems. Wiley Interscience – IEEE Press, 2003.

[3] H. Gill and J. Bay, Software-Enabled Control. Wiley Interscience – IEEE Press, 2003, ch.
The SEC vision, pp. 3–8.

[4] J. L. Paunicka, B. R. Mendel, and D. E. Corman, Software-Enabled Control. Wiley Interscience
– IEEE Press, 2003, ch. Open Control Platform: a software platform supporting advances in
UAV control technology, pp. 38–62.

[5] Object Management Group, “Realtime CORBA joint revised submission,” OMG Document
orbos, Tech. Rep. 99-02-12, Mar. 1999.

[6] D. Rosu, K. Schwan, S. Yalmanchili, and R. Jha, “On adaptive resource allocation for complex
real-time applications,” in Proceedings of the IEEE Real-Time Systems Symposium, Dec. 1997.

[7] C. D. Gill, D. C. Schmidt, and R. Cytron, “Multi-paradigm scheduling for distributed real-time
embedded computing,” in IEEE Proceedings Special Issue on Embedded Systems, 2002.

[8] B. S. Doerr, T. Venturella, R. Jha, C. D. Gill, and D. C. Schmidt, “Adaptive scheduling for
real-time, embedded information systems,” in Proceedings of the 18th IEEE/AIAA Digital
Avionics Systems Conference, Oct. 1999.

[9] M. Agrawal, D. Cofer, and T. Samad, Software Enabled Control. Wiley Interscience – IEEE
Press, 2003, ch. Real-Time adaptive resource management for multimodel control, pp. 85–103.

[10] M. Agrawal, D. Coffer, and T. Samad, “Real-time adaptive resource management for advanced
avionics,” IEEE Control Systems Magazine, vol. 23, no. 1, pp. 76–88, Feb. 2003.

[11] R. Jha, M. Muhammad, S. Yalamanchili, K. Schwan, D. Rosu, and C. deCastro, “Adaptive
resource allocation for embedded parallel applications,” in Proceedings of the 3rd International
Conference on High Performance Computing, Dec. 1996.

[12] D. Musliner, R. Goldman, M. Pelican, and K. Krebsbach, “SA-CIRCA: Self adaptive software
for hard real-time environments,” IEEE Intelligent Systems, vol. 14, no. 4, pp. 23–29, 1999.

164

[13] W. Koenig, D. Cofer, D. Godbole, and T. Samad, “Active multi-models and software enabled
control for unmanned aerial vehicles,” in Proceedings of the Association of Unmanned Vehicle
Systems International, July 1999.

[14] J. M. Maciejowski, Predictive Control with Constraints. Prentice Hall, 2002.

[15] T. Keviczky and G. J. Balas, “Receding horizon control of an F-16 aircraft: a comparative
study,” in European Control Conference, 2003.

[16] ——, “Software enabled flight control using receding horizon techniques,” in AIAA Guidance,
Navigation, and Control Conference, 2003.

[17] M. Huzmezan and J. M. Maciejowski, “Reconfiguration and scheduling in flight using quasi-lpv
high-fidelity models and MBPC control,” in Proc. of the American Control Conf., 1998.

[18] J. L. Paunicka, B. R. Mendel, and D. E. Corman, Software-Enabled Control. Wiley Interscience
– IEEE Press, 2003, ch. Software Architectures for Real-Time Control.

[19] J. Chen and R. J. Patton, Robust Model-Based Fault Diagnosis for Dynamic Systems. Kluwer
Academic Publishers, 1999.

[20] J. J. Gertler, Fault Detection and Diagnosis in Engineering Systems. Marcel Dekker, New
York, 1998.

[21] M. A. Massoumnia, “A geometric approach to the synthesis of failure detection filters,” IEEE
Trans. on Automatic Control, vol. 31, pp. 839–846, 1986.

[22] A. Emami-Naeini, M. M. Akhter, and S. M. Rock, “Effect of model uncertainty on failure
detection: The threshold selector,” IEEE Trans. on Automatic Control, vol. 33, pp. 1106–
1115, 1988, effectUncertaintyFaultDetection.pdf.

[23] J. J. Gertler, “Survey of model-based failure detection and isolation in complex plants,” IEEE
Control Systems Magazine, vol. 8, no. 6, pp. 3–11, 1988.

[24] W. H. Chung and J. L. Speyer, “A game theoretic fault detection filter,” IEEE Trans. on
Automatic Control, vol. 43, pp. 143–161, 1998.

[25] R. Mangoubi, B. Appelby, and J. Farrell, “Robust estimation in fault detection,” in Proc. of
IEEE Conf. on Decision and Control, 1992, pp. 2317–2322.

[26] H. Niemann and J. Stoustrup, “Filter design for failure detection and isolation in the presence
of modeling errors and disturbances,” in Proc. of IEEE Conf. on Decision and Control, Dec.
1996, pp. 1155–1160.

[27] A. Marcos, S. Ganguli, and G. Balas, “Application of h-infinity fault detection and isolation
to a boeing 747-100/200,” in AIAA Guidance, Navigation, and Control Conference, 2002.

[28] J. Stoustrup, H. Niemann, and A. la Cour Harbo, “Optimal threshold functions for fault
detection and isolation,” in Proc. of the American Control Conf., 2003.

[29] D.-S. Shim and M. Sznaier, “A caratheodory-fejer approach to simultaneous fault detection
and isolation,” in Proc. of the American Control Conf., 2003, pp. 2979–2984.

165

[30] R. Smith, G. Dullerud, S. Rangan, and K. Poolla, “Model validation for dynamically uncertain
systems,” Mathematical Modelling of Systems, vol. 3, no. 1, pp. 43–58, 1997.

[31] R. B. Davies, “Newmat library,” http://www.robertnz.net, 2002.

[32] A. Tanenbaum, Modern Operating Systems. Prentice Hall, 2001.

[33] R. David and H. Alla, Petri Nets and Grafcet: Tools for Modelling Discrete Event Systems.
Prentice Hall, 1992.

[34] M. Fowler and K. Scott, UML Distilled (3th Ed.). Addison Wesley Technology Series, 2004.

[35] G. Booch, I. Jacobson, and J. Rumbaugh, The Unified Modeling Language user guide, ser.
Technology Series. Addison Wesley, 1995.

[36] H. Gomaa, Designing concurrent, distributed, and real-time applications with UML. Addison
Wesley, 2000.

166

