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Summary

A linear, finite-dimensional plant, with state-space parameter dependence, is controlled using a
parameter-dependent controller. The parameters whose values are in a compact set, are known in
real time. Their rates of variation are bounded and known in real time also. The goal of control is to
stabilize the parameter-dependent closed-loop system, and provide disturbance/error attenuation
as measured in induced Ly norm. Our approach uses a bounding technique based on a parameter-
dependent Lyapunov function, and then solves the control synthesis problem by reformulating
the existence conditions into an semi-infinite dimensional convex optimization. We propose finite
dimensional approximations to get sufficient conditions for successful controller design.

Keywords: Gain scheduling, linear parameter varying systems, linear matrix inequalities, affine
matrix inequalities, control system design.



1 Introduction

In this paper, we consider an approach to reduce the conservatism in quadratic stability analysis
of systems with known bounds on the parameter’s rate of variation. Owur technique is loosely
based on the ideas in [26] and [32]. We apply the analysis technique to the design of parameter-
dependent controllers for parameter-dependent systems and obtain generalizations of the results in
[5], [3] and [2]. A similar method for analysis of parameter-dependent systems has been addressed
independently by [10]. Closely related synthesis methods have been developed in [36] and [39].
Different approaches to analyze parameter-dependent systems are derived in [13]. It will be useful to
see if those methods can also be used to derive parameter-dependent controller synthesis procedures.

The implication that parameter-dependent systems theory has for gain-scheduling is obvious,
since gain-scheduling conceptually involves a linear, parameter-dependent plant. The parameter-
dependence can arise in a linear model [32], or in a parametrized family of Jacobian linearizations
[33], or from exact linearization techniques [29]. This approach allows us to treat gain-scheduled
controllers as a single entity, with the gain-scheduling achieved entirely by the parameter-dependent
controller.

The main motivation for our work lies in [16], [15], [32], [34], [33] and [29]. These discuss linear,
parameter-varying systems (LPVs) and their importance in gain-scheduling design. Specifically,
[16] studies factorizations and realizations of systems over rings. This class of systems includes
linear, time-invariant, parameter-dependent systems. In [15], control of time-invariant parameter-
dependent systems is considered. The theorems are concerned with the parameter-dependent sta-
bilization, observation and control, and concentrate on the parameter-dependence that is necessary
in the controller’s state-space entries. Gain-scheduling for linear, parameter-dependent systems
is treated in [32]. They derive sufficient conditions for the existence of a parameter-dependent
controller which guarantees stability for classes of time-varying parameters. Theoretical issues as-
sociated with controlling nonlinear systems using a gain-scheduling perspective are studied in [34].
Several heuristic rules-of-thumb about gain-scheduling are given theoretical interpretation and jus-
tification. In [33], a special class of nonlinear systems called “quasi-LPV” are introduced. These
types of nonlinear systems can be made to look like linear, parameter-dependent systems using
a global diffeomorphism. Finally, [29] is an overview of the extended linearization approach to
gain-scheduling.

2 DMotivating Example

Consider the parameter-dependent system (modified from [22]) @(t) = A(p(t))z(t) + Bu(t), where

a1 a1z cos(p) sin(p) 0 0
| az1 agz —sin(p) cos(p) oo | e e
A(p) = 0 o . 0 , B := 0 A= 4y (2.1)
0 0 0 -7 0 7

This represents a 2-input system with identical actuator dynamics, a time-varying coupling matrix,
and 2nd order plant dynamics. The parameter-dependent state-feedback, quadratic stabilization
problem is: find a continuous function F(p) and a matrix P € $*** P > 0 such that

[A(p) + BF(p)]" P + P[A(p) + BF(p)] < 0



for all p € [—m, 7]. If such matrices existed, then the parameter-dependent state-feedback law
u(t) := F(p(t))z(t) would render the closed-loop system exponentially stable for any trajectory
p(-). Unfortunately, if the constant matrix 4,; is unstable, then the system is not quadratically
stabilizable by parameter-dependent state feedback-control. To see this, suppose such matrix F(p)
exists, then the inequality must hold for p = 0 and p = 7. Adding these two inequalities gives

T
lz‘ln 0] P—I—P[AHO <0

FO FO

(? means “dont’t care”) which implies that A;; must be stable. Hence, when A;; is unstable, all of
the methods in [5], [4], [3] and [2] are not applicable. The problem is that there are p(-) trajectories
which allow the upper (1,2) block of A(p) in equation (2.1) to switch between I and —I; arbitrarily
fast. So, regardless of the bandwidth 7 of the actuators, the rapidly varying parameter p(¢) do not
allow for parameter-dependent quadratic stabilization.

However, a simple singular perturbation argument suggests that the state-feedback
_ || cos(p) —sin(p) | __ - _
F(p):= H sin(p)  cos(p) (=7l — A11) 0O2x2

should work (i.e., exponentially stabilize) for p(-) trajectories satisfying max;>o |p(t)| < B(T), where
B(-) is some monotonically increasing function of 7. In other words, if there is a known rate-bound
on p(t), then exponentially stabilizing, parameter-dependent state-feedbacks do indeed exist. It is
possible (see Lemma 4.1) to produce a parameter-dependent Lyapunov function which demonstrates
this stability.

The purpose of this paper is to develop a useful, though somewhat ad-hoc and computation-
ally intensive approach to exploiting rate-of-variation information about the parameters, using
parameter-dependent Lyapunov function.

3 Induced L,-Norm Analysis

Let P C R® be a compact set and {v;}’_, are nonnegative numbers, then we can define parameter
v-variation set as

Fy = {p €CYR,R*): p(t) €P, |pi(t)| <vi, i =1,2,---,s, Vi€ R+}
where v =1y --- I/S]T. Consider the behaviour of the LTV system governed by

l (1) ] _ l A(p(1),p(1) B(p(t), i(t)) ] l 2(t) ] (3.1)

where p € 3, z,2 € R",d € R" and e € R". A: R* x R®* - R"*" is a continuous function,
and similarly for B,C and D. It is possible to bound the induced Lg-norm of this system using a
parameter-dependent Lyapunov function.



Lemma 3.1 Given a compact set P C R®, nonnegative numbers {v;};_,. If there erists a contin-
uously differentiable function W: R®* — 8"*" such that W(p) > 0 and

AT(p. YW (p)+ W(p)Alp. 5)+ Y- (B55) W(p)B(p.5) CT(p.5)

BT(p7ﬁ)W(p) _Ind DT(pvﬁ)
C(p, ) D(p,p3) —In,

<0 (32

forall p € P and |B;| < vi, i = 1,2,---,8, then there exists a scalar o < 1 such that for any
p € Fp, the LTV system governed by (3.1) is exponentially stable, and if d € Ly and z(0) = 0,
then el < o ldll-

Remark 3.1 The inequalities in (3.2) represent convex constraints on the set of continuously dif-
ferentiable functions mapping R* — S™*™. In section 5, we discuss some computational approaches
to determine the feasability of the infinite dimensional AMI’s the will arise our controller synthesis.
Those inequalities are similar (though simpler) to the inequality in (3.2).

Proof: Consider any trajectory of p(-), which satisfies p(¢) € P and |p;(t)| <v;,7=1,2,---,s for
all £. The inequality (3.2) gives

AT (0, W (p) + W(p) A7)+ 32 (5%) W(pB(p.3) CT(p.5)

BT(p,p)W(p) ~I,,  D%(p,p)
C(p,p) D(p, p) —In,

for all . By Schur complement, this means for such trajectories, the inequality
dw -1 T
AW WAL O+ (wB+c¢"D) (1-D"D) (WB+C"D) <0

holds for all £ > 0. Using the results in [35], [28] and [18], for trajectories p € Fp, the system (3.1)
is exponentially stable, and the induced Ls-norm from d to e is less than 1. |

As is customary, [31], [3], [4], [25], [1], [2], [9], [17], we now use this analysis test to derive conditions
for control design.

4 Output-feedback Synthesis

Given a parameter-dependent plant, the LPV Synthesis v-Performance/v-Variation Prob-
lem is to determine if there is a parameter-dependent controller and a parameter-dependent Lya-
punov function such that the analysis test described in Lemma 3.1 holds for the closed-loop system.
In this section we derive necessary and sufficient conditions for this to be possible.

The generalized plant takes on the usual structure, with some regularity assumptions

(1) Alp(t))  Bu(p(t) Bualp(t) Balp(t) | [ a(t)
ez(t) Clz(p(t)) 0 0 Inu dz(t) ’ )
y(1) Calpl()) 0 I,, 0 (1)



T T
where p € F3, and z,7 € R", [d? dg] € R"d, [e? eg] € R"%, uw € R™ and y € R™. The
matrix valued functions are of appropriate dimensions. Note that for simplicity of derivation, we
assume D11(p) = 0, Das(p) = 0 and D12(p), D21(p) have been scaled to the standard form. These
assumptions can be relaxed at the expense of more complicated formulae (see [38]). Suppose a
linear, parameter-dependent controller is used in feedback from y to u,

l (1) ] _ l Ag(p(t), (1)) Brc(p(t), p(1)) ] l 24(1) ] (4.2)
u(t) Ci(p(1), (1)) Drc(p(t), i) | | v(t) | '

Note that we allow the controller to depend explicitly on p and p. Define xzip = [;rT mg] The

closed-loop system can be written as

[ iclp(t) ] — [ Aclp(p(t)vp(t)) Bclp(p(t)vp(t)) ] l xclp(t) ] (4 3)
e(t) | Cap(p(t), A1) Dap(p(t), p(t)) a(t) |’ '
where
dnlop) = | 4(e) + Balo) Do 1Cale) Balg)Cilp ) ] 7 (4.4.2)
Bap(p.p) = BIB(:O) Bia(p) ;féf)')é?z{(p’ﬂ) ] 7 (4.4.b)
. L Cn(p) 0
Cap(p,p) = | Cuap) + Diclp 3)Colp) Crclp ) ] : (4.4.0)
Dap(p,p) = 8 DK(Op,p) : (4.4.d)

Definition 4.1 Given a compact set P C R®, nonnegative numbers {v;}._,, performance level
v > 0, the open-loop LPV system in (4.1). The LPV Synthesis y-Performance/v-Variation

Problem is solvable if there exrist an m > 0, a continuously differentiable matriz function W :
R* — Stm)x(ntm) - ound continuous matriz functions (Ak,Bk,Ck,Dk) : R* x R®* —» (R™*™,
R™X™y  RMX™ R X™ ) such that W(p) > 0 and

Aap(p,ﬂ)W(p)+W(p)Adp(p,ﬁHi(ﬂ%) W(p)Bap(p,8) CL(p.5)

Bl (p, )W (p) 11, DY (p,B)
Cclp(pvﬂ) Dclp(pvﬁ) _7Ine

forallp € P and |5;| < v;, i =1,2,---,s. Here the matrices Aayp, Bap, Cap and Dqyp, are defined

<0 (4.5)

Note that if LPV Synthesis y-Performance/v-Variation Problem is solvable, then induced
L;-norm of the closed-loop system in (4.3) is less than . This problem represents a generalization
of the standard sub-optimal H, optimal control problem (no parameter-dependence in plant, no
parameter-dependence in controller, constant W) and conceptually expands the applicability and
usefulness of the H,, methodology. Additionally, the solution can be put inside a larger design



iteration, such as a D — K iteration, to achieve robustness to other perturbations, such as unmodeled
dynamics.

We begin with a lemma that could be used to derive state-feedback synthesis result. In this paper,
this lemma is only used to prove the sufficient condition in Theorem 4.1.

Lemma 4.1 Given a compact set P C R®, nonnegative numbers {v;};_,, a scalar v > 0, and
define Ap(p) := A(p) + B2(p)F(p), CE(p) := [ClTl(p) cLp) + FT(p)]. There exist a continuous
function F(p) and a continuously differentiable function S(p) such that S(p) > 0 and

A0S0+ S(e)ar0) + 2 (15

+5715(p) {Bnm)Bn(p) + Bia(p)Bly(p)| S(p) < 0 (4.6)

> ) 4571 CE(p)Cr(p)

l

for allp € P and |B;| < vi, 1 = 1,2,---,8 if and only if there exists a continuously differentiable
matriz function Y (p) such that for all p € P, Y(p) > 0 and

Y (p)AT (p) + A(p)Y (p) - Ei(uza ) = Ba(0)BY(p) Y(p)CTi(p) [Bua(p) Bua(p)
Cn(P)(Y)(P) I 0 <0,
B,
| 50 ] ’ -

where A(p) := A(p) — Ba(p)Cia(p).

Remark 4.1 The notation Y i, £ (-) in (4.7) indicates that every combination of + (-) and — (-)
should be included in the inequality. This means that the 3 x 3 “inequality” in (4.7) actually
represents 2° different inequalities which must be checked.

Proof: = Let Y(p) := S7!(p), pre and post-multiply the left hand side of equation (4.6) by Y (p),
then

Y (p)[A(p) + Bo(0) F(p)I" + [A(p) + Ba(p)F(p)]Y (p) - E @g_;’

+77¥ () [Chio) Chin)+ FT(p) [ ik ] Y (p)

+971 [Bui(p) BTy (p) + Bra(p) Bly(p)] < 0,

which is equivalent to

Y(p)AT(p) + Z ﬁz —vBy(p)B3 (p) + 17 'Y (p)CTi(p)C11(p)Y (p)

l

+q71 [Bn<p>Bn<p> + Bu<p>Bm<p)]

1 1 T 1 1
n [7—5(012(,0) + F(p))Y(p) + ﬁBZT(,o)] [7‘5(012(,0) + F(p))Y(p) + "/EBZT(,O)] <0.



Note that the left hand side is affine function of 3, so that

Y (p)AT(0) + A(p)¥ (p) = Y 4

i

—7Ba(p)B; (p) + 7Y (p)Cli(p)Cur(p)Y (p)

+571 [Bii(p)BLy(p) + Bra(p)Bhy(p)] <0
The above inequality is exactly the Schur complement of equation (4.7).
< Choose F(p) 1= — ["/Bg(p)Y_l(p) + Clz(p)] and S(p) := Y~'(p), then equation (4.6) follows
from inequality (4.7) by simple algebraic manipulations. |

We now state the main theorem for the LPV Synthesis y-Performance/v-Variation Problem.

Theorem 4.1 Given a compact set P C R®, nonnegative numbers {v;};_,, performance level
v > 0, and the open-loop LPV system in (4.1), the LPV Synthesis y-Performance/v-Variation
Problem is solvable if and only if there exist continuously differentiable matriz functions X : R® —
S™*" and Y : R* — 8"*", such that for allp € P, X(p),Y(p) >0, and

Y (p)A7(p) + Zi(wap)—wz(pwap) Y(p)Ch(p) Bilp) |
Cr(p)Y (p) L., o | <
B (p) 0 ~VIn,
(4.8.a)
AT(p)X (p) + X (p +Zi(ma,,)—fyc§<p>cz<p> X(p)Bu(p) CI(p)
< 0
Bﬂ<p>x<p) ALy O
Ci(p) 0 71, |
(4.8.b)
X(p) In
[ L, Y| ="
(4.8.c)
where

A(p) := A(p) = B2(p)Cralp),  Bi(p) = [Bii(p) Bialp)],
A(p):= A(p) - Bra(p)Calp),  CT(p) = [CTi(p) Chy(p)].

If the conditions are satisfied, then by continuity and compacitness, it is possible to perturb X such

that the three LMIs (4.8.a)-(4.8.b) still hold and (X — Y1) > 0 uniformly on P. Define Q(p) :=
X(p) = Y~Yp), F(p):= — [vBI(p)Y " (p) + cmm} JL(p):= — [yX"Yp)CL(p) + Bra(p)]. Let

H(p,p) = - [Ava(p)Y‘l(p) +Y7! p)+ E( 1) +77'CE(p)Cr(p)
+97'Y " (p)Bi(p) B (p)Y—l(p)] ,

with Ap(p) = A(p) + Ba2(p)F(p) and CL(p) := [C’lTl(p) cLip)+ FT(p)]. One n-dimensional,

strictly proper controller that solves the feedback problem is defined as:

Ak(p.p) = A)+77 [Q7 (D)X (D) L(0)BE(p) + Bi(0)BY ()] Y (p)



+ B2(p)F(p) + Q™ (p)X (p)L(p)Ca(p) = Q™" (p)H(p. p) (4.9.a)
Bi(p) = —Q '(n)X(p)L(p) (4.9.h)
Ck(p) = Flp) (4.9.c)
Dg(p) = o. (4.9.4)

Proof: = Let W: Rf — S(ntm)x(ntm) Lo the continuously differentiable, parameter-dependent
Lyapunov function that satisfies the analysis test in Lemma 3.1 for the closed-loop system. Hence,
W is bounded and uniformly positive definite over P. For each p € P, define Z(p) := W1(p).
Clearly, Z is also continuously differentiable, bounded and uniformly positive definite over P.

[ x x [y v
W_leT Xs]’ Z_leT YS]’

where X : R* = 8"*" YV : R°*—8™"*", and X3: R*—=8™*X™ and Y3: R®*— 8§™*X™,

Partition W and Z as

By the matrix inversion lemma, it follows that for all p € P

To show necessity of inequalities (4.8.a) and (4.8.b), write the left hand side of the closed-loop LMI
in (4.5) as
Glp,B) = R(p.B) + U(p)E(p. SV (p) + V(p)E(p, 5)U" (p),

where
[T 47 o 40 : B B cT T,
7 AW 17 11 12 11 12
[ 0 O]WJFH[O 0]—1_;(/))’591) “[ 0 0 ] 0 0
T B _
R [BITI O]W, vI 0 00 ’
BT 0 0 —~I 00
Cll 0 0 0 —")/I 0
L Ciz 0 0 0 0 —I |
’W B, 0] ] rcl 07
0 I 0o I
00 0 0 D Cg
U .= V.= K =
00 7 I o}’ [BK Ax
00 0 0
I0 . 0 0]
Define
Y 0 0 0] T I 0 0 0]
Yy 0 0 0 0 00 0
. 0 I 0 0 0 I 00
U= o o0 I o0l YEE ~Cy, 0 0 0
0 0 0 I 0 0TI 0
| -BT 0 0 0| | 0 0 0 I |

Note that for all p € P, UTU = 0, VIV = 0, and [U UL], [V V.] are full rank. Since both
U, and V) are full column rank for all p € P, it is clear that if G < 0 for all p € P and
|Bi| <wvi,i=1,2,---,s then

UL(p)G(p,B)UL(p) <0 and VI (p)G(p,B)Vi(p) <0



for all p € P and |5;| < v, i=1,2,---, 8. This leads to

UL(p)R(p,f)UL(p) <0 and VI (p)R(p,B)Vi(p) <0

for all p € P and |5;| < v, 1 = 1,2,---, 8. Carrying out the algebraic manipulations for the first
inequality UT(p)R(p, 3)UL(p) < 0, it is equivalent to

Qp,B)  Bi(p) Y(p)Ch(p)

BT (p) —yI 0 <0 (4.10)
Cu(p)Y(p) 0 1
where
Q = YXAY +YATXY 4+ VAT X,V)F + Vo XTAY - ByCy,Y - YCL BT
6X2 axrt 0X3 T
E Y Y +Y —~vByB, .
+ Zﬂ ( ap; 1Y, ap; + ¥y ap; Y259
Differentiating W' gives 6—5 = —Zg—yZ, which has as its (1, 1) entry
0X 0X axT 0X Y
Y 2V, 4 Yt Y 4 Y,y = :
3,% 3,0 apz 3Pz 3Pi

Furthermore ZW = I, it follows that Y X + Y2X2T = XY + X2Y2T = I. This simplifies Q to
%p. )= V() A7)+ A0V () - 3 (50 ) ~ 2Br) B ().
=1 Pi

Hence the condition in (4.10) is

5

Y(p)AT(0) + A(p)Y (p) = 3. (Bi2L) = vBo(p)BY(p) Bi(p) Y(p)Chi(p)

i=1 <0.  (4.11)
BT (p) -1 0
Cii(p)Y(p) 0 —I

As [ enters the left hand side of (4.11) affinely and |§;| <v;, i =1,2,--+,s,(4.11) is equivalent to
(4.8.a). Simpler manipulations show that VI'(p)R(p, 3)VL(p) < 0 is equivalent to (4.8.b).

< For sufficiency, the approach of [30] is adopted. We verify the controller given in (4.9.) satisfies
the LPV Synthesis y-Performance/v-Variation Problem using

B X(p) ~(X(p) =Y (p))
Wi(p) = —(X(p) =Y (p)) X(p)-Y p) ]

First, note that by Schur complements, W > 0 for all p € P. Define
o.0) = AR (B (0)+ W) danlo0)+ 32 (50 ) 97 ChloCanto)

+ 77" W(p)Bap(p) Bp(p)W (p) (4.12)

l

where the closed loop matrices Aqp, Beyp and Cgp are defined in (4.4.). We perform the following
matrix manipulations to verify I'(p, 3) < 0. Partition I' into n X n blocks I'y1,T12,T'22. Define a

10



I I

state-space data Aclp(p,ﬁ) =T " Aap(p, B)T, Bclp(p) := T~ 'Bap(p), and éclp(p) = Cap(p)T. Let
W(p) := TTW(p)T. Then TTT(p, 3)T < 0 can be rewritten as

transformation T := [ Lo ] , note I'(p, ) < 0 if and only if TTT(p,ﬁ)T < 0. Define transformed

AlLL(p, )W (p) + W(p)Aap(p, 3 +Z (ﬁz ) 77 Chu(p)Cap(p)
+ 77 W(p)Bap(p) Bl (p)W(p) < 0 (4.13)

Denote the left hand side of (4.13) as I and partition it into blocks T'y1, T2, e € R™*™. Verify
that

_H(p7ﬁ) _H(pvﬁ) ]

_H(paﬁ) rll_H(pvﬁ) ‘

Using Schur complements, T' < 0 if and only if T93(p, 3) — f{z(p,ﬁ)fl_ll(p,ﬁ)flz(p,ﬁ) < 0 and
—H(p,3) < 0. But,

T(p,B) = [

_ . ® oy ! _
—H(p,) = AF(P)Y '(p)+Y ' (p)Ar(p) + ) (ﬂz %, ) +77'CE(p)Cr(p)
=1 ?
+77'Y " (p)Bi(p) B (0)Y ' (p)
with Ap = A+ By F, C% = [C{‘q C’lT2 + FT]. So Ty is negative definite by Lemma 4.1. Also
Taa(p, B) — T1a(p, B)T5 (p, B)T12(p, 3)

= Tul(p,B)— Hip,B)+ H(p, 5)HE (p, )H(p, B)
= Tu(p,B)

= ALWX )+ XA + 3 () 427 T () +97 X () B BE ()X ),

with A; = A+ LCy, By, = [B11 Biz + L], which is negative definite by the dual of Lemma 4.1.

5 Computational Considerations

Several ad-hoc approaches to solve the LMIs in Theorem 4.1 can be proposed. For instance, let
{f,}f\il and {g,}f\il be user-defined sets of continuously differentiable functions from R* to R. For

any matrices {X;}~ ., X; € " and {Y;}X,, Y; € 8"*", the functions

N N
= Zfi(p)X,', Y(p):= Zgi(P)Y

are continuously differentiable on R® — 8™*™. So, once the basis functions f; and g; are chosen, we
can attempt to solve the synthesis equations (4.8.) by optimizing over the matrices X;,Y; € S"*".
The three conditions become (for space reasons, we have omitted the condition for (4.8.b) involving
Rx (X1, --,Xn,p) — it is similar to that for (4.8.a) and Ry defined below)

RY(Yla"'vyNap) =

11



i} , N .
gi(p (YAT +ApYi)— + [,y 2y,
Z (o) = 2% | zgl WCL() Bi(o)
—vBy(p)B] (p
N ? <0
Cu1(p)Y_gi(p)Yi ~7In, 0
i=1
I B (p) 0 I, |
(5.1.a)
N
Y filp)Xi In
Sxvy(Xq, XN, Yy, YN, p) =1 N >0
I, > 6i(p)Y:
=1
(5.1.¢)

with A, A, By, C; defined as in Theorem 4.1. This represents 257! + 1 Affine Matrix Inequalities in
the variables X;,Y; that must be satisfied for all p € P.

In order to solve this infinite dimensional convex optimization, we solve a slightly more stringent
problem over a finite set of pg. For simplicity of explanation, assume that P C R, and grid the set
P by L points {Pk}£:1- Pick a (large) number T > 0 and a (small) number 6§ > 0. Consider the
finite dimensional feasibility problem

Ry (Y1, -, Yn,pr) < =6 (5.2.b)

Rx (X1, -+, Xn,pp) < —6 (5.2.c)

Sxy(X1,- -, XN, Y1, Y, pp) > 6 (5.2.d)

IXill- <T, [l < T (5.2.¢)

(5.3.e)

fork=1,---, L. We now want to decide that how dense the points {pk}£:1 should be to guarantee

the global solvability of the LMIs over all p € P.

Lemma 5.1 Assume that all the state-space data are continuously differentiable and f;, g; are twice
continuously differentiable. Let

N AT N 2 T
d(g;A d*g; d(ByB
Amin = 6-min< |27 Y max M —I—Z/TEIIIaX —92 + v max (B25;)
— peEP dp P =1 peEP dp peEP dp P
-1
9:C{1) dB,
2T —_— 2 —
+Z%lé% p\wgmwv
N . 2 T
27T max (fl ) + I/TZIII&X d f + v max d(CZ Cz)
7 reP dp . dp pEP dp .
N -1
—I—QTZmaX M‘ 1 2max ﬂ
=1 pEP dp r pEP || dp P ’
N _1
df; dg;
[T max f + szax ] } .
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If |pr — prat| < Bomin for all k = 1,...,L — 1, and there erist matrices X;,Y; solving equation
(5.2.)—(5.2.d), then for all p € P

Ry(Yq,---,Yn,p) < 0 (5.4.2)
Rx(X1, -, Xn,p) < O (5.4.b)
SXY(Xh'"7XN7?17"'7YN7p) > 0. (54C)

Proof: The proof is based on norm triangular inequality and intermediate value theorem. For
details, see [38]. |

Since p C R?, it will require approximately L® points to grid P with approximately L points in
each dimension. So the optimization problem to determine appropriate X; and Y; is approximately
L# (25%1 4 1) affine matrix inequalities in the matrix variables (X1,Y1,..., Xy, Yy). The feasibility
of these finite number of inequalities can then be determined with several techniques [24], [23], [6],
8], [12].

6 Example

As a simple example, we return to the problem which motivated the rate-dependent stabilization.
We consider the output-feedback performance of this problem. The control problem involves sta-
bilization, tracking, disturbance rejection and input penalty. A block diagram of the generalized
plant is shown in Figure 1. The plant T, is governed by

Wy W,

1 r
> - ep
d—f> Wy f: To v Vo
U y n dy,

i) [075 2 cos(p(t)) sin(p(t) 0 0 0] xl(?
F2(1) 0 05 —sin(p(t)) cos(p(t)) 3 0 0 -362(75)
is() | | 0o 0 ~10 o 0 10 o ||
a0 | 7] 0o o 0 “10 0 o 10 || "W
v1(t) 1 0 0 0 0 0 0 lf(t)
Lw@®) ] L o 1 0 0 00 o0 | Z;Eg
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The weighting functions are as follows

10 10 1 20
MI& Wf =1, Wy=_—L, W,=
s+ 1000 s+ 0.2

W,=1I, W,= I,.

280
These roughly imply objectives of decoupled command response and disturbance rejection, with
tracking errors less than 1% of command, and control signals bounded by 280 times the size of y(t).

For this example, we pick N = 3, and basis functions

filp) = q1(p) :=1, fa(p) = g2(p) := cos(p), f3(p) = g3(p) := sin(p).

These seem natural, given the dependence of the plant on p. We choose a rather coarse gridding of
interval P := [—7, 7], namely 6 points, uniformly spaced (i.e., every 60°). First, using the optimal
output feedback synthesis [7], we determined that for fixed values of p, the optimal achievable v
level is approximately 0.80, and is independent of p (although the optimal controllers are strongly
dependent on p). Using LMIlab [11] with the 6-point gridding, we solved the LPV Synthesis
v-Performance/v-Variation Problem at various levels of v. The relationship between the
optimally achievable v and v are shown in the Figure 2.

1.15

1.1 b

1.05- b

0.85 * b

0.8¢ b

0.75
(0]

5
nu(rad/sec)
Figure 2: H,, performance v vs. bound of variation-rate v

Since the optimization only guarantees that the LMIs hold at the grid points, we further analyzed
the resulting solution at 360 points (every 1°). Plotting the eigenvalues of equation (4.8.c) and
(4.8.a)—(4.8.b) clearly indicate that the LMIs are indeed solved over the whole interval P.

A time-varying p(-) is also simulated. The trajectory considered is p(t) = 7sin(5¢/7). Note that
for this trajectory, p(t) € [-m, 7] and |p(t)| < 5. The simulation results for r(t) = [ry(¢) 0]7
where r; is given in Figure 3, f(¢) = (0.01)1(t), and n(¢) as uniformly distributed random process
in [—0.005, 0.005] are shown in Figure 3.

7 Comments and Conclusions

Many people will complain about the need to grid the P set. We too feel that this is a disadvantage
of the method. However in many gain-scheduling applications, the number of scheduling variables
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Figure 3: Reference & output channel 1; reference & output channel 2; controller input responses
for time-varying p(t) = 7 sin(2 t) with output-feedback controller.

is small, usually 3 or less. Hence the dimensionality of the gridding, while extremely cumbersome,
is not overwhelming. Of course, for a problem with many parameters, the gridding procedure
will become prohibitively expensive. This clearly indicates the drawbacks associated with using
Lemma 3.1 as a general robustness analysis tool for systems with time-varying real uncertainty.

Another significant problem is the complete lack of guidance provided by the theory to pick the
basis functions, namely, f; and ¢;. Hopefully additional study will yield some results along these
lines.

This method has been applied to an example where the results of [1], [2], [3], [25] and [5] will not
work. This is due to the bound on the rate-of-variation in the parameter. This is pointed out in
[14], where a difficult H., scheduled control law is designed for vertical short take-off and landing
vehicles is performed. It would be interesting to try to apply the results here to that specific
example. Also note that in Theorem 4.1, by restricting X,Y be constant, we recover the results of
[3], [5] and [2], where the quadratic performance problem is considered.

Acknowledgements We gratefully acknowledge helpful discussions with G. Balas, S. Boyd, J.
Doyle and S. Shahruz, and financial support from the National Science Foundation, awards ECS-
9096223 and CTS-9057420. Independent work with similar objectives is in progress at other insti-
tutions [10].
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