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Abstract

We propose a weak condition of compatibility between phases applicable to cases exhibiting full or partial coherence and Wid-
manstätten microstructure. The condition is applied to the study of Sb2Te3 precipitates in a PbTe matrix in a thermoelectric alloy.
The weak condition of compatibility predicts elongated precipitates lying on a cone determined by a transformation stretch tensor. Com-
parison of this cone with the long directions of precipitates determined by a slice-and-view method of scanning electron microscopy com-
bined with focused ion beam sectioning shows good agreement between theory and experiment. A further study of the morphology of
precipitates by the Eshelby method suggests that interfacial energy also plays a role and gives an approximate value of interfacial energy
per unit area of 250 dyn cm�1.
� 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

In martensitic phase transformations it has been appre-
ciated since the 1950s that elastic compatibility plays an
important role in determining the morphology of micro-
structure resulting from the phase transformation [1–4].
Recently, new links have been established between condi-
tions of compatibility and other properties of transforming
materials, such as thermal hysteresis [5,6], thermal stability
and fatigue under repeated transformation [7], magnetoca-
loric properties [8] and energy conversion efficiency [9,10].
For example, in TiNiCuPd alloys whose composition has
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been tuned to satisfy the special compatibility condition
k2 = 1, where k2 is the middle eigenvalue of the transforma-
tion stretch matrix [2,5], it is found that the thermal hyster-
esis drops precipitously from about 60 K to near zero as
k2! 1. From a physical viewpoint the condition k2 = 1
implies that the austenite fits perfectly onto the martensite,
or, more precisely, a part of the austenite can transform to
unstressed martensite while remaining perfectly matched
with the martensite at an interface. Mathematically, k2 is
the middle eigenvalue of the positive-definite symmetric
matrix C = FTF, where T denotes the transpose and F is
a linear transformation that maps a suitable unit cell of
the austenite lattice to the corresponding unit cell of the
martensite lattice (see [5] for further details). In TiNiPd
the existence of the corresponding compatible interface
between austenite and a single variant of martensite was
confirmed [11] by high-resolution transmission electron
microscopy. Other examples of a significant relation
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between k2 � 1 and properties are emerging in Heusler
alloys [12,13], oxides [14], multiferroic materials [15], bat-
tery materials [16] and oxyacid materials used in fuel cells
[17].

Diffusional phase transformations, particularly those
which show clear evidence of dislocations at the boundary
of precipitates and therefore are considered semicoherent
at best, are not thought to be influenced by conditions of
elastic compatibility. We explore in this paper a weaker
condition of compatibility between phases than k2 = 1 in
the context of a diffusional phase transformation in the
thermoelectric system PbSbTe. In this system Sb2Te3 Wid-
manstä tten type precipitates grow in a PbTe matrix [18]. A
typical lattice mismatch is 6.2%. Thermoelectric composites
with microstructures having small length scales are
expected to exhibit reduced lattice thermal conductivity
due to the scattering of long mean-free-path phonons at
interfaces [19]. Low lattice thermal conductivity has been
observed [20] in composites containing nanoparticles (�5
nm) but also in samples with micron sized (�2 lm) parti-
cles [21] similar in size to those studied in this work. Con-
trol of both carrier type and concentration as well as
thermal conductivity is critical in thermoelectric materials.
Phonon scattering at interfaces is believed to be important,
leading to lowered thermal conductivity while not compro-
mising electrical properties. It has also been demonstrated
in superlattices that the density of coherent interfaces plays
an important role in reducing thermal conductivity [22].

The condition k2 = 1 is necessary and sufficient for the
two unstressed phases to coexist across an interface, after
a possible rigid body rotation of one of the phases. In
the context of geometrically nonlinear theories of elastic
phase transformation [2], k2 = 1 is equivalent to a “rank-
one connection” between energy wells: two deformation
gradients on different wells differ by a rank-one matrix.
The weaker condition of compatibility we study in this
paper is equivalent to a “rank-two connection”. This con-
dition predicts the elongation of precipitates during coars-
ening. In the present case the long direction of these
precipitates is predicted to lie on one of four crystallo-
graphically equivalent cones. The angle of these cones is
predicted from the lattice parameters of the two phases.

These ideas can be critically examined owing to recent
advances [23,24] on the slice-and-view method of scanning
electron microscopy (SEM) combined with focused ion
beam (FIB) sectioning. In the present case we used this
method to reconstruct the 3-D morphology of the Sb2Te3

precipitates in a (5 lm)3 box. When the end-to-end vectors
of 27 of the larger precipitates were plotted in 3-D, we
found they were close to the predicted cone, with a stan-
dard deviation of 2.94�.

While the largest precipitates were needle-like, the med-
ium-sized precipitates, besides being elongated, were also
flattened in a perpendicular direction. Small precipitates
were primarily flattened, with little elongation, and the
smallest precipitates were approximately spheroidal. This
motivated a finer analysis using the Eshelby method in
the geometrically linear context, together with an interfa-
cial energy. This shows qualitative agreement with the sec-
ondary aspects of the morphology of the precipitates. It
also suggests an approximate value for the interfacial
energy constant in this material, 250 dyn cm�1. We care-
fully describe the transition of geometrically nonlinear to
geometrically linear theory in this context, which involves
the determination of a certain free angle.

The fact that the rank-two connection predicts well the
overall morphology of the two phases suggests that any
method that alters the lattice parameters of the two phases
so as to modify the undistorted cone will influence the mor-
phology. For example, heat treatment under stress is sug-
gested by the present study and earlier studies on related
precipitation reactions [24]. This also affects the Eshelby
calculation, and therefore the flattening normal to the axis
of elongation. These predictions can therefore provide sim-
ple guidelines for heat treatment procedures that place a lot
of interfacial area of highly coherent interfaces perpendic-
ular to the eventual direction of heat flow, therefore
improving the thermoelectric effect.

In this paper tensors (matrices) are written as uppercase
bold letters, and vectors as lowercase, italic, bold letters.
The notation a � b denotes the tensor with components
aibj, written in the basis for which a has components ak

and b has components bk. I is the identity matrix.

2. Experimental methods and characterization of the

geometry of the precipitates

An alloy with nominal composition (PbTe)0.94

(Sb2Te3)0.06 was prepared by melting Pb, Sb and Te
(99.999% purity) for 600 s in fused quartz tubes and homog-
enizing by annealing at 570 �C for 7 days. To induce precip-
itation, the sample was annealed at 450 �C for 38 h, followed
by water quenching. The details of the sample preparation
procedure are described elsewhere [25].

This PbTe/Sb2Te3 sample was prepared for study using
a dual beam focused ion beam/scanning electron micro-
scope (DB FIB/SEM) with serial sectioning as described
in detail in Ref. [23]. The bulk sample was placed at the
eucentric point of the stage where the Ga+ ion and electron
beams converge. A 5 lm � 5 lm � 5 lm sample box sur-
rounded by a U-shaped open region was defined by etching
with Ga+ ions. During this preliminary excavation, the top
surface was protected by a Pt coating. Subsequently, the
box was sliced by etching with focused Ga+ ions, each slice
having a thickness of 25 nm, for a total of 200 slices. The
slices were viewed sequentially by optimized secondary
electron (SE) imaging. The precipitates showed good con-
trast on the freshly exposed surfaces, making pixelization
easy. The 3-D microstructure of the whole box was recon-
structed as shown in Fig. 1.

In order to quantify the shapes of the precipitates for
further analysis, we fit the shapes of a subset of precipitates
to ellipsoids in the following way. For each chosen precip-
itate we first identified the pixels on the boundary of the



Fig. 2. Plot of the directions of elongation of 27 precipitates together with
a cone having a half-angle of 49.30�, as predicted by theory.

Fig. 1. Reconstruction of precipitates. The inserts show large (inset, top) and small (inset, bottom) precipitates. The large one is of the type used in the
statistical analysis.
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precipitate, labeled by position vectors xi, i = 1, 2, . . ., m.
Denoting the mean position by �x ¼ 1

m

Pm
i¼1xi, we con-

structed a positive-definite symmetric tensor B using the
formula:

B ¼ 3

m

Xm

i¼1

ðxi � �xÞ � ðxi � �xÞ ð1Þ

The ellipsoid given by the equation ðx� �xÞ � B�1ðx�
�xÞ ¼ 1 then gives an approximate representation of the pre-
cipitate. Equivalently, the set of points of the form Vxþ �x
where jxj = 1 and V ¼

ffiffiffiffi
B
p

describes the same ellipsoid.2

The unit eigenvector corresponding to the largest eigen-
value of B (or V) is used below to define the direction of
elongation. B was calculated for each of 27 of the larger
precipitates and the corresponding directions of elongation
are plotted in Figs. 2 and 3. The cones shown in these fig-
ures are explained below.

3. Determination of the transformation stretch tensor

The hypothesis of this paper is that suitably chosen
sublattices of PbTe and Sb2Te3 are related by a deformation,
and some aspects of the morphology of the precipitates are
determined by a weak compatibility condition based on this
deformation. To our knowledge, there is no systematic pro-
cedure for obtaining this deformation. There are an infinite
number of possible choices, given that any such deformation
can be preceded by a lattice-invariant deformation of one
lattice and followed by a lattice-invariant deformation of
the other. Beginning from the known structures [26], our
procedure was to consider a large finite number of not-
too-rare Te Bravais sublattices (as Te is contained in both
phases) and to compare first their unit cell volumes, and then
their detailed structures. The choices of sublattices were also
2 V is the unique positive-definite tensor satisfying V2 = B.
guided in part by Ikeda et al. [27,18], where orientation rela-
tionships are given as ð0001ÞSb2Te3

j f1 11gPbTe and h11�20
iSb2Te3

j h110iPbTe [18]. The resulting transformation stretch
tensor U is illustrated in Fig. 4. It has the smallest value of
jU � Ij among those examined.

The resulting deformation can be described as follows:
every 6th stacking layer of {111}PbTe is translated along
its normal to coincide with a ð0 001ÞSb2Te3

plane, and
shrunk equally on two orthogonal directions in the
{111}PbTe plane (Fig. 4). The sublattice correspondences
between face-centered cubic (fcc) and hexagonal are:



Fig. 3. The four crystallographically equivalent cones shown with 27 precipitates selected from the sample box, i.e. 17, 21, and the negatives of 27 and 24,
match the ½�111� cone variant, while the negative of 17 also matches the ½11�1� cone variant.
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Referred to an orthonormal basis parallel to the cubic axes
of PbTe, the transformation stretch tensor is:

U ¼ 1

3

2k1 þ k3 k3 � k1 k3 � k1

k3 � k1 2k1 þ k3 k3 � k1

k3 � k1 k3 � k1 2k1 þ k3

2
64

3
75; ð3Þ

where

k1 ¼ k2 ¼
ffiffiffi
2
p

a
a0

¼ 0:938269; k3 ¼
z1c

2
ffiffiffi
3
p

a0

¼ 1:07786 ð4Þ

and from Villars [26]: a0 = 6.429997 Å, a = 4.2665024 Å,
c = 30.498837 Å, z1 = 0.78719 Å.

We note that U describes the stretch of the PbTe lattice.
There is expected also to be a superimposed rigid rotation
of the PbTe lattice. This rigid rotation is partly determined
by the compatibility condition formulated below.
By symmetry, the elongation shown in Fig. 4 can occur
along any of the family of [111]PbTe directions.
4. Formulation of a weak compatibility condition

Given two lattices related by a positive-definite symmet-
ric stretch tensor U having ordered eigenvalues
k1 6 k2 6 k3, a necessary and sufficient condition for the
existence of an undistorted plane separating the lattices is
that k2 = 1 [5]. Mathematically, if k2 = 1, then there is a
rotation tensor R and vectors a, n such that
RU � I = a � n. The geometric interpretation is the follow-
ing: R is the rotation needed to bring the distorted lattice
into coincidence with the undistorted lattice on the plane,
n is the normal to the plane, and a describes the shear of
the lattice undergoing distortion and rotation. The sublat-
tices of PbTe and Sb2Te3 related by the stretch tensor (3)
do not have such an undistorted plane, because none of
the eigenvalues of U given in (4) is near 1.

Instead of RU � I being a rank-one matrix a � n as
above, we explore the condition that it is a rank-two
matrix:

RU� I ¼ a1 � n1 þ a2 � n2; ð5Þ



Fig. 4. The hypothesized transformation stretch maps the Te sublattice of
PbTe (red) to a corresponding sublattice of Sb2Te3 (green) by elongation
along [111]PbTe. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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for some vectors a1, n1, a2, n2. This condition also has a
convenient interpretation in terms of matching of the lat-
tices. The condition (5) says that the distorted lattice, after
a suitable rigid body rotation R, has a single direction e
that is undistorted. That is, a direction in the original lat-
tice is mapped to a parallel direction by the linear transfor-
mation RU and undergoes no lengthening or shortening.
The vectors n1,n2 can be taken as orthonormal without loss
of generality, and they have the geometric interpretation as
vectors perpendicular to the undistorted direction e. The
vectors a1 and a2 describe the shear in the planes spanned
by n1, e and n2, e, respectively. A condition on U that is
equivalent to (5) is that e, jej = 1, satisfies:

RUe ¼ e: ð6Þ
In turn, a necessary and sufficient condition on U that there
is a rotation tensor R and unit vector e satisfying (6) is that
the largest and smallest eigenvalues of U satisfy
k1 6 1 6 k3. The latter can be easily seen geometrically.
The eigenvalues k1, k3 of U describe the least and greatest
stretch experienced by lines in the reference lattice (in the
case above, PbTe). If k1 6 1 6 k3, then by continuity there
must be a line that undergoes no stretch, jUej = jej = 1. R

can then be used to rotate Ue into e. Conversely, if 1 is not
between k1 and k3, then all lines are either shortened or
lengthened, and there can be no vector e – 0 such that
jUej = jej.

We remark that the condition RU � I = a � n has a
macroscopic interpretation. It is necessary and sufficient
that there is a continuous deformation y(x) having gradi-
ents $y = RU for x � n > c and $y = I for x � n < c. Because
of this fact, “rank-one connections” arise naturally in con-
tinuum theories of coherent phase transformations. Under
the weaker compatibility condition RU � I = a1 � n1 +
a2 � n2 with the nondegeneracy conditions n1,n2, a1,a2,
there is no continuous function y(x) satisfying $y = RU
for x � n > c and $y = I for x � n < c. Thus, under the
weaker compatibility condition there is necessarily an elas-
tic transition layer (not involving the deformation gradi-
ents RU and I) or possibly discontinuities. The latter
indicate the presence of interface dislocations at the atomic
level, which are seen in the present alloy [28].

If (6) holds for some e as discussed above, the rotation R

is not unique. Geometrically, the axis of R must be on a
plane that bisects e and Ue but it can be any vector on that
plane. In the generic case Ue,e there is clearly one param-
eter of freedom of R. A convenient way to quantify this
nonuniqueness is to observe that if a rotation R satisfies
RUe = e, then so does RhR, where Rhe = e and Rh has
angle of rotation h. Later, we will have to determine h by
energy minimization.

There is also nonuniqueness of the undistorted direc-
tion. Supposing that the ordered eigenvalues of U satisfy
k1 6 1 6 k3 so there is at least one undistorted direction,
then the set of solutions jej = 1 of jUej = 1 lies on a (possi-
bly distorted) cone. This is easiest to see geometrically. The
set of points of the form Uv, jvj = 1, is an ellipsoid, the
strain ellipsoid of U. The condition jUej = jej = 1 says that
there is a point on this ellipsoid with length 1. The set of all
such points is the intersection of the ellipsoid with the unit
sphere, which is clearly a distorted cone. (This can be
proved analytically, and the equation of the cone is easily
determined.) In the degenerate cases k3 = 1 > k2 or
1 = k1 < k2 the intersection of the cone with the sphere
degenerates to two points.

In our case (3), (4) the cone has circular cross-section,
because k1 = k2 < 1 < k3. In fact, in our case U can be
written:

U ¼ k1Iþ ðk3 � k1Þe3 � e3; e3 ¼
1ffiffiffi
3
p ½111�: ð7Þ

By direct calculation, jUej2 = jej2 = 1 becomes:

e � e3 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

1

k2
3 � k2

1

s
ð8Þ

which describes a cone with a circular cross-section. The
half-angle of this cone is:



Fig. 5. Histogram of angles between the directions of elongation of the precipitates and cone axis â. The Gaussian fit to this data has average half-angle
47.20� and standard deviation 2.94�.

3 Write U = I + E, substitute into the condition e � U2e = jej2, and
neglect terms of order jEj2.
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w ¼ arccos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

1

k2
3 � k2

1

s
: ð9Þ

The crystallographically equivalent cones are obtained by
replacing [111] in (7) by, respectively, ½�11 1�; ½1�11� and
½11�1�.

Using the eigenvalues (4) measured from the crystal
structures, we calculate from (9) that the predicted half-
angle of the undistorted cone is w = 49.30�.

5. Structure of the precipitates and comparison with the weak

compatibility condition

We selected 27 of the larger precipitates from the recon-
struction shown in Fig. 1, determined their directions of
elongation by the method described after Eq. (1), and plot-
ted these principal axes in Fig. 2. On the same figure we
plot a cone with the half-angle w = 49.30� determined from
the weak compatibility condition. The axis of this cone was
allowed to vary so as to give a best fit to these directions.
This axis is in principle known from the stretch tensor.
An experimental determination of â was not possible as
the imaging procedures could not measure the absolute ori-
entation with sufficient accuracy.

The measured directions give reasonable agreement with
the cone, except for two of the precipitates labeled 17 and
21. A histogram of the angular deviations of the measured
directions of elongation and the cone axis is shown in
Fig. 5. This was fitted with a Gaussian distribution as
shown in Fig. 5, after omitting the precipitates 17 and 21.
The standard deviation based on this Gaussian is 2.94�.

The directions of elongation of precipitates 17 and 21,
and incidentally also the negatives of 24 and 27, agree well
with two of the other crystallographic variants as shown in
Fig. 3. Evidently, the abundance of directions
corresponding to just one crystallographic variant is
related to a collective effect known from elastic homogeni-
zation theory, in which energy minimization of periodic
distributions of precipitates often leads to alignment.

6. Analysis of the shapes of precipitates

We now explore the detailed shapes of the precipitates
using linearized elasticity theory. This has the advantage
of allowing the methods of Eshelby [29] to be used, but
the disadvantage of losing some accuracy due to its inher-
ent geometric approximations. However, geometric linear-
ization does preserve the rank-two compatibility condition
in the following sense: jUej = jej linearizes3 to e � Ee = 0,
where E is the infinitesimal strain tensor.

The use of linearized elasticity is justified under the
approximation that the deformation gradient is near I,
which in the present situation implies that jRU � Ij is
small. This has implications for the rotation R, which as
discussed in Section 4 is not unique. To examine this free-
dom, note that a natural choice of R has axis parallel to
Ue � e. Let R be the rotation with axis parallel to Ue � e
that satisfies RUe = e. Now, as discussed in Section 4, the
rotation is not unique, and RhRUe = e also holds, as long
as Rh has axis e. We claim that the choice of h that best jus-
tifies the linearized theory, i.e. that minimizes jRhRU � Ij,
is the choice h = 0, i.e. Rh = I. That follows because by
direct calculation:

jRhRU� Ij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2k2

1 þ k2
3 � 2k1ð1þ k3Þ cos h

q
; ð10Þ



Fig. 6. Contour plot of linearized energy density with respect to its eccentricities at different orientations of the ellipsoid. All ellipsoids have long axis
parallel to the e axis. See text.
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which is minimized at h = 0. The condition h = 0 also has
the pleasing interpretation from nonlinear theory that the
maximum displacement of points in the reference cubic lat-
tice to their positions in the deformed lattice is minimized.

For the purpose of linearized theory we make the obvi-
ous choice of eigenstrain:

EH ¼ U� I: ð11Þ
Eshelby’s method [29] delivers an exact solution of the
equations of linearized elasticity for an ellipsoidal inclusion
X in an infinite medium, satisfying continuity of displace-
ment and traction at the boundary of the inclusion. On
the inclusion, the stress–strain law is r ¼ CðE� EHÞ, while
outside the inclusion it is r ¼ CE, where C is the (fourth-
order) elasticity tensor of the material. Eshelby’s way [29]
of explaining the solution in a physical sense is to imagine
cutting out the ellipsoid X from the reference configura-
tion, to allow it to strain to a stress-free state with the
eigenstrain Ew, to force it back into the matrix satisfying
displacement continuity, and to allow both the inclusion
and surrounding matrix to relax. A necessary condition is
that the final stress and strain on the inclusion are con-
stants. Since the problem is linear and the strain on the
inclusion vanishes when the eigenstrain vanishes, the strain
on the inclusion can be expressed

EI ¼ 1

2
ðruþruT Þ ¼ SEH on X: ð12Þ

The fourth-order tensor S is known as the Eshelby tensor.
It only depends on the elastic constants and X, and it takes
a relatively simple form in the orthonormal basis of
eigenvectors of X for isotropic materials [30]. The stress
on the inclusion is rI ¼ CðSEH � EHÞ. The total energy
of the inclusion and its exterior also assumes the simple
algebraic form:

� volðXÞ
2

rI � EH ¼ volðXÞ
2

EH � CðEH � SEHÞ: ð13Þ

In the absence of measurements of the full set of elastic
moduli of either phase we chose the simple isotropic form.
For the calculations below we used the moduli estimated
from Ref. [31]: Young’s modulus E = 57 GPa, and Pois-
son’s ratio m = 0.26. We performed each energy calculation
given below on the basis of the principal axes of the ellip-
soid, in which the Eshelby tensor only depends on the elas-
tic moduli and two eccentricities k1 = a1/a3 and k2 = a2/a3,
where a1, a2, a3 are the lengths of the principal axes, with a3

the long principal axis, which was always taken to be in the
direction e.

We first examined the effect of orientation of the ellip-
soid. We rotated the principal axes of the ellipsoid around
its (fixed) long axis by angles 0�, 45�, 90�, 135�, 180�, 225�,
270�and 315� measured from Ue � e. For each such angle
we plotted the total energy (divided by vol(X)) as a function
of the two eccentricities k1 and k2. The results are shown in
Fig. 6. The eccentricities were taken to be in the domains
0 < k1 6 1 and 0 < k2 6 1. Experiments with larger values
of k1, k2 always resulted in higher energies, consistent with
the hypothesis that the long axis was e, as assumed. The
graphs at 90� and 270� are symmetry-related to the graphs
at 0� and 180�, respectively, the symmetry transformation
being the exchange of the principal axes 1 and 2 of the



Fig. 7. Total elastic plus interfacial free energy contours as a function of the eccentricities k1 and k2 at three volumes: 8.44, 3.77 and 0.04 lm3 (left to
right). Two views of the shapes of the energy-minimizing ellipsoidal inclusions in each case are below the graphs. The red dots are experimentally measured
values of k1 and k2 for precipitates having volumes in the range (V � 1,V + 1) where V = 8.44, 3.77, 0.04 lm3, respectively. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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ellipsoid. The lowest energy among all the plots is found
very close4 to k1 = k2 = 0 in the 0� and 180� plots (and
by symmetry in 90� and 270�). This suggests the predomi-
nance of the elongated shapes. However, there is consider-
able asymmetry in these plots for small but nonzero values
of k1 and k2, suggesting also more of a ribbon-like shape.

These results suggest that interfacial energy is also play-
ing a role, both preventing the growth of extremely elon-
gated ribbons and possibly also significantly affecting the
shapes of small precipitates. Hence we consider both elastic
energy and interfacial energy. Denoting the elastic energy
(divided by vol(X)) determined above at angle 0� by /
(k1,k2), we now consider a total energy:

Eðk1; k2Þ ¼ /ðk1; k2Þ þ cAðk1; k2Þ ð14Þ
where A(k1,k2) denotes the surface area of the ellipsoid di-
vided by vol(X), and c is the interfacial energy per unit area.

Fig. 7 shows the total free energy density E of different
precipitates and their corresponding shapes at three
different volumes: 8.44, 3.77 and 0.04 lm3. To do this
4 The fact that it does not occur precisely at k1 = k2 = 0 is very likely due
to discretization error associated with ribbon-like ellipsoids.
calculation a particular value of c was needed and this
was adjusted to give reasonable agreement with the shapes
seen in the reconstruction above at the corresponding vol-
umes. The interfacial energy constant that gives the plots in
Fig. 7 is c = 250 dyn cm�1. There is signficant scatter in the
experimental values of k1 and k2 and the reconstructed
shapes are somewhat more flattened. However, we also
note that the calculated energy vs. eccentricity is very flat
near the minimum in all three graphs. The scatter could
easily be caused by the likely strong interactions between
precipitates, which is missed by the Eshelby calculation.
Other reasons for this deviation could be elastic or interfa-
cial anisotropy (which was not included), the differing elas-
tic tensors of the two phases, a possible lack of coherence
that is necessarily assumed by the Eshelby method, or
errors due to geometric linearization.
7. Conclusions and recommendations

In summary, we propose a simple, weak compatibility
condition for precipitation in Sb2Te3/PbTe thermoelectric
composites, which is expected to be applicable to the
growth of Widmanstä tten microstructure precipitates in
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general. This criterion is consistent with a partial lack of
coherence. The condition is expressed as a “rank-two”

connection between the identity and a deformation gradi-
ent tensor describing the transformation of a suitable sub-
lattice. In the case we studied, the weak compatibility
condition implies the presence of four crystallographically
equivalent cones, on which the long directions of the rib-
bon-like precipitates are predicted to lie. The shapes are
also compared to an Eshelby calculation that uses geomet-
rically linear theory and full coherence. This comparison
suggests an interfacial energy of 250 dyn cm�1 and a tran-
sition from sphere to flattened disk to ribbon to needle as
the precipitate grows larger.

Any influence that changes the deformation gradient
tensor will change the cone. Either flat or narrow cones
imply alignment of percipitates. The natural choice of
influence is stress. An estimate of how stress changes the
lattice parameters of the two phases is needed for a quan-
titative analysis.
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[5] Zhang Z, James RD, Mü ller S. Acta Mater 2009;57:4332.
[6] Cui J, Chu Y, Famodu O, Furuya Y, Hattrick-Simpers J, James RD,

et al. Nat Mater 2006;5:286.
[7] Zarnetta R, Takahashi R, Young ML, Savan A, Furuya Y,

Thienhaus S, et al. Adv Funct Mater 2010;20:1917.
[8] Sutou Y, Omori T, Kainuma R, Ishida K. Mater Sci Technol

2008;24:896.
[9] Srivastava V, Chen X, James RD. Appl Phys Lett 2010;97:014101.

[10] Srivastava V, Song Y, Bhatti K, James RD. Adv Energy Mater
2011;1:97.

[11] Delville R, Kasinathan S, Zhang Z, Humbeeck V, James R, Schryvers
D. Phil Mag 2010;90:177.

[12] Aksoy S, Posth O, Acet M, Meckenstock R, Lindner J, Farle M, et al.
J Phys: Conf Ser 2010;200:092001.

[13] Hu F, Wang J, Shen J, Gao B, Sun J, Shen B. J Appl Phys
2009;105:07A940.

[14] Fujino S, Murakami M, Anbusathaiah V, Lim S, Nagarajan V,
Fennie CJ, et al. Appl Phys Lett 2008;92:202904.

[15] Xie S, Li Y, Qiao Y, Liu Y, Lan L, Zhou Y, et al. Appl Phys Lett
2008;92:062901.

[16] Meethong N, Huang HS, Speakman SA, Carter WC, Chiang Y. Adv
Funct Mater 2007;17:1115.

[17] Louie MW, Kislitsyn M, Bhattacharya K, Haile SM. Solid State Ion
2010;181:173.

[18] Ikeda T, Ravi VA, Snyder GJ. Acta Mater 2009;57:666.
[19] Medlin DL, Snyder GJ. Current Opin Colloid Interface Sci

2009;14:226.
[20] Kanatzidis MG. Chem Mater 2010;22:648.
[21] Pei Y, Lensch-Falk J, Toberer ES, Medlin DL, Snyder GJ. Adv Funct

Mater 2010. doi:10.1002/adfm.201000878.
[22] Jeng M-S, Yang R, Song D, Chen G. J Heat Transfer

2008;130:042410.
[23] Cao S, Tirry W, Van den Broek W, Schryvers D. J Microsc

2009;23:6168.
[24] Cao S, Somsen C, Croitoru M, Schruyvers D, Eggeler G. Scripta

Mater 2010;62:399.
[25] Ikeda T, Marolf NJ, Bergumb K, Toussaint MB, Heinz NA, Ravic

VA, et al. Acta Mater 2011;59:2679.
[26] Villars P. Pearson’s handbook: crystallographic data for intermetallic

phases. Materials Park (OH): ASM International; 1991. vol. 4: 4897,
5195.

[27] Ikeda T, Collins LA, Ravi VA, Gascoin FS, Haile SM, Snyder J.
Chem Mater 2007;19:763.

[28] Heinz N, Medlin D, Snyder J. accompanied by HREM micrograph of
an interface dislocation at the PbTe–Sb2Te3 interface, personal
communication.

[29] Eshelby JD. Proc Roy Soc 1957;A241:376.
[30] Toshio M. Micromechanics of defects in solids. Dordrecht: Martinus

Nijhoff; 1987. p. 77.
[31] Ren F, Case ED, Sootsman JR, Kanatzidis MG, Kong H, Uher C,

et al. Acta Mater 2008;56:5954.

http://dx.doi.org/10.1002/adfm.201000878

	A weak compatibility condition for precipitation with application to  the microstructure of PbTe–Sb2Te3 thermoelectrics
	1 Introduction
	2 Experimental methods and characterization of the geometry of the precipitates
	3 Determination of the transformation stretch tensor
	4 Formulation of a weak compatibility condition
	5 Structure of the precipitates and comparison with the weak compatibility condition
	6 Analysis of the shapes of precipitates
	7 Conclusions and recommendations
	Acknowledgments
	References


