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Introduction 

Nearly  every material, when subjected to sufficiently large force, will change 
its phase. The phenomenon  of  change of  phase is an intricate one, the general 
definition of  phase itself being especially elusive. If the change is p roduced  by 
deformat ion alone, which is the si tuation envisaged herein, large changes of  
shape or volume usually accompany  the t ransformation.  Consequently,  a l though 
the phenomenon  is well known through  observation,  careful experiments that  
isolate and quantify it are quite rare. 

Most  con t inuum theories also have failed to embody  changes of  phase;  
many  specifically forbid it. Aside from the original work by GIBBS [1], a general 
approach  to change of  phase is absent. Special problems, however, have been 
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successfully treated. The recent papers by ANTMAN [2], ANTMAN & CARBONE 
[3], cast within the framework of elastic rod theory, and the paper by ERICKSEN 
[4] on elastic bar theory, show that the phenomena of necking, change of phase, 
permanent deformation, hysteresis and yield are predicted by pure elasticity 
theories. 

Motivated by the example of the van der Waals gas, and a calculation done 
some years earlier by DAFERMOS [5] which suggests that asymptotic limits of 
dynamic viscoelastic solutions may not be smooth, ERICKSEN relinquishes the 
belief that the constitutive relation must be convex. He works within the limits 
of elastic bar theory and he uses the criterion of least energy to assess the 
stability of equilibrium configurations. For a bar held in a hard loading device, 
he suggests that the notion of solution should also be generalized to allow for 
discontinuities in the strain. The approach is rather different from that of 
ANTMAN & CARBONE, who assume ellipticity and seek smooth solutions. Since 
rod theory allows the possibility that the constitutive function depend upon the 
configuration itself, as well as its derivative, instability of equilibrium solutions 
can result despite the assumption of ellipticity. After fixing end conditions 
appropriate for a straight rod extended by a dead load parallel to the axis of the 
bar, ANTMAN shows that, for sufficiently high loads, the obvious homogeneous 
deformation ceases to be even infinitesimally stable. Moreover, an absolutely 
stable, smooth solution is possible at these severe loads; that solution is periodic 
along the rod and has regions of reduced thickness or "necks". 

KNOWEES & STERNBERG [6, 7, 8] have founded an entirely different 
approach on the observation that the differential equations of equilibrium 
change character from elliptic to hyperbolic as a consequence of a loss of 
ellipticity of the constitutive relation. Their motivation arises on the one hand 
from an attempt to describe the formation of Liiders bands in static experiments, 
and on the other from a critical study of a special constitutive relation proposed 
by BLATZ • Ko. They observe that if the constitutive function fails to be elliptic, 
stationary shock surfaces may exist in a static solution. It is clear from their 
analysis [12; p. 2, 42, 53, 54] that they envisage solutions which have, at least on 
one side of the shock surface, deformation gradients at which ellipticity fails. We 
note that such solutions cannot be stable according to the energy criterion for 
stability. Though this observation casts some doubt on the applicability of 
KNOWLES & STERNBERG's results to the Ltiders band phenomenon, especially 
for their Material 1, which has a convex domain of ellipticity, their general 
methods apply to stable solutions. 

On the experimental side, the evidence shows that a variety of materials may 
undergo changes of phase involving permanent deformation. The polymers show 
less intricate behavior in this respect than metals. An elementary exposition of 
the observations may be found in HOLLIDAY & WARD [10]. In a uniaxial 
tension test the specimen appears to stretch more or less homogeneously until a 
certain value of the extension is reached; rather suddenly one or more (usually 
two) discontinuities form in the material. These boundaries move through the 
specimen as the load is increased, converting regions of moderate stretch into 
regions of high stretch. In a hard device a concomitant drop in load is observed 
as soon as the boundaries appear. In a soft device the load is maintained nearly 
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constant or slightly increasing (KELLER • RIDER [11]) while the discontinuities 
are present. Relaxation of the load causes the boundaries eventually to stop, and 
permanent deformation results. Increased extension of polymer specimen causes 
the regions of high stretch to prevail; successive boundaries either coelesce, then 
disappear, or run to the edge of the specimen. Then increased extension of 
the material causes again a smooth deformation. 

In metals, the observations are more difficult to assess, though the qualitative 
observations of the Savart-Masson effect are somewhat similar to those in the 
polymers. A description of the work of the poineers, as well as later experiments 
on the Savart-Masson effect, may be found in the article by BELL [9]. In a dead 
loading device, stress-extension curves have a staircase structure, the horizontal 
portion of the step being traversed rather quickly at constant load until the 
corner of the stair is reached, at which time the deformation halts until the load 
is increased. Creep appears to be absent when the load is held constant on the 
rising part of the stair, as long as the load is sufficiently below that which 
corresponds to the succeeding step. 

Experiments in hard loading devices produce a sawtooth curve, the stress 
alternately rising and falling with abrupt changes of slope at the points of the 
sawteeth. 

SHARP's [12] study of the effect in aluminum shows that stress-extension 
curves are reproducible for variable specimen diameters. He concluded that the 
Savart-Masson effect is caused by a material instability. 

The original experiment by MCREYNOLDS [13] on dead loaded aluminum 
bars, and a later study by PHILLIPS, SWAIN & EBORALL [14] on aluminum- 
magnesium alloys, confirm that the deformation across the step is accompanied 
by the appearance of a slow, rather sharply defined wave, which passes through 
the specimen at the same time as the horizontal part of the stair is being 
transversed. 

Here, I propose to study the problem of the stability of co-existent phases 
within the context of the theory of nonlinear, one dimensional elastic bars. The 
development rests upon a class of constitutive relations, each having a bounded 
domain and lacking invertibility. I allow for rather severe inhomogeneity 
resulting from variations in the cross-section or the material properties. The 
choice made for the constitutive class forces a specific choice for the underlying 
function space appropriate to the problem. 

A definition of stability is given, based upon traditional ideas. A certain 
loading device, which can be hard or soft, is applied at one end of the bar, the 
other end being fixed. Body forces delivered by a potential are allowed. 

The Weierstrass condition emerges as a necessary condition for metasta- 
bility. The condition is not viewed as a restriction upon the constitutive 
function, but on the configurations which can be metastable. A weak form of the 
Euler equation is satisfied by metastable solutions in this function space. 
However, even if the constitutive function happens to be analytic, solutions of 
the Euler equation can be extremely rough. The bar can have stationary 
boundaries lying on any set of measure zero contained in the bar, a discon- 
tinuity in the strain occuring across each boundary. 

A comparison of the latter result with common experimental observations 
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prompts the question: Under what conditions do solutions have only a few 
discontinuities? I address this question by looking at the conditions under which 
most experiments on bars occur. Typically, the bar is inhomogeneous, usually 
because of a non-uniform cross section, and a gravitational body force is 
present. I find that such body forces and inhomogeneities tend to cause the 
absolutely stable solutions to display only a finite number of phase boundaries. 
For  example, the absolutely stable solution for a bar shaped like the standard 
specimen for a uniaxial tensile test will contain exactly two phase boundaries. 
The region between the boundaries will be a region of high stretch, as compared 
with the region between each boundary and the end nearest to it. If the load is 
increased to a higher value, the boundaries will tend to reequilibrate further 
apart. For the most stable solutions, the positions of the phase boundaries 
corresponding to a given applied load are calculated. 

1. Theory of Static Elastic Bars 

A one dimensional elastic bar is described by a single material co-ordinate 

Xe[0,L], (1.1) 

L being the length of the undeformed bar, [0, L] the bar interval. A placement of 
the bar is given by a function 

y(X)~IR a , Xe[O, L], (1.2) 

which assigns the position y(X) to the point X. For now, so as to introduce 
terminology, we are loose about domains of functions and assumptions of 
smoothness. A prime shall denote the derivative with respect to X. We call u 
=y ' (X) the deformation and y ' (X)-1  the strain at X. A strain energy function 
W(u, X) will be prescribed. The stress may then be defined by 

r=~ w (y'(X), x). (1.3) 

We shall also assume that a potential P(y, X) delivers the body force b according 
to the rule 

b= -O--~(y(X),X ), belR 1 . (1.4) 

The bar may be inhomogeneous, as reflected by the explicit dependence of W 
upon X, for two reasons. Either cross-sections of identical size and shape at 
different points have different elasticities, or cross-sections with identical elasti- 
cities have different sizes or shapes, or some combination of these is present. 

One end of the bar shall always be held fixed, 

y(0) =0, (1.5) 
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whereas we allow the possibility that the other end be placed in a loading 
device. In a hard device the position y(L)= l is assigned: all possible placements 
y(X) are required to satisfy this restriction. A soft device produces a load at l 
given by 

ao(/), (1.6) 

a o being an assigned continuous function with a sufficiently large domain to 
include all possible end positions of the bar. When ao=COnst, the device is 
termed a dead loading device. 

Formally, the total energy for the soft device is defined by 

L y (L) 

EsEY] - I {W(y'(X), X) + P(y(X), X)} d X -  S ~o(s) ds, (1.7) 
0 L 

while for the hard device 

L 

 .Ey] --- f {W(y'(X), x) + P(y(X), x)} dx. (1.s) 
0 

In the latter the function y(X) must satisfy y(L)= 1. Customarily, the placements 
y(X) admissible for E s are not required to satisfy an additional end condition. 

2. Specification of the Constitutive Function, Body Force Potential, 
and Loading Device 

The constitutive function, body force potential, and loading device will now 
be described. Explicit smoothness assumptions will be deferred until the de- 
scription is complete.  

1 1 Let C~x, C~x,/?x, fix be assigned functions on [0, L] which satisfy 

0 < c  l < e x < e 1 < f ~ < ~ x < c 2 < o %  (2.1) 

for some constants c I and c 2. For fixed X the function ~ W ( ' , X )  will be defined ~u 
on [C~x, fix], and will be assumed 

strictly increasing on [C~x, e~], 

strictly decreasing on [~,/3~], 

and 

strictly increasing on [/~,/~x]- (2.2) 

~P 
The body force function -@..(y,X) will be an assigned function of (y,X) 

defined on [-0, oe] • [-0, L]. 
~ y  

If the bar is placed in a hard device, a constant l, the length of the deformed 
bar, will be assigned. If the bar is loaded in a soft device, a function ao(S) 
defined on [-0, ~ ]  will be given. By combining the assumptions on the domains 
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of W, P, and a o it follows that the domain of the total energy functionals Es[. ] 
and E n [ .  ] is the set of all placements y(X) such that the inequalities 

~x < y'(X) < fix (2.3) 

hold wherever y'(X) exists. 
A function of two variables is termed a Carath6odory function if it is 

continuous in the first argument for each fixed value of the second, measurable 
in the second argument for each fixed value of the first, and bounded. ROCKA- 
FELLAR [17, pp. 157, 174-175] deduces some properties of Carath6odory func- 
tions which will be useful here. The following smoothness assumptions are 
made: 

i) ~x, ~Jc, [3lx, fix are measurable functions of X. 

(? W (u, X) and ~P ii) ? ~  ?v(Y,X) are Carath6odory functions. 

iii) ao(S ) is continuous. 

Figure 1 shows an example of such a constitutive function and its domain. 
~W 

For a homogeneous bar the domain of 7 reduces to a rectangle and the 
cu 

functions ~x and fl~x become constants. Otherwise the bar may be severely 
(?W 

inhomogeneous, since ~u (u,-), ~., ~i,. fl~, and ft. are only assumed to be 
measurable. 

For sufficiently large deformation at X(y'(X)>fix ), or sufficiently small 
deformation at X(y'(X)<~x), the energy is undefined. Physically we have 
included the idea that for severe deformation the bar either breaks, or elasticity 
theory becomes an inadequate description. The constitutive function allows 
several possible values of the deformation y'(X) for a given stress at X, as long 

~TW X as that stress falls in the range of ?u ('' ). Also, inhomogeneity arising from 

abrupt changes in the cross-section of the bar or from lamination is allowed. 
No rational procedure seems to exist for choosing function spaces appropri- 

ate to problems in mathematical physics. Sometimes the choice is taken to be 
the function space that worked well for some associated linearized theory, where 
the domain of the operator was a linear vector space. Here, the definition of the 
constitutive equation suggests a more natural procedure. 

In order that the descriptions of the total energies E s and E ,  make sense, 
y'(X) must exist almost everywhere, and be measurable. Still, some possibilities 
are left open, depending upon the weakness of the derivative. On one hand, we 
must be cautious not arbitrarily to exclude any solutions, that is to say, 
arbitrarily exclude any possible physical behavior, by making y(X) too smooth. 
Hence, the set of piecewise differentiable functions, though kinematically ade- 
quate, might be unnecessarily restrictive. The road builder's problem described 
by YOUNG [15, w illustrates the danger. On the other hand, if we try to 
weaken the derivative too much by, say, choosing the class of monotone, 
continuous functions for y(X), then, though they are differentiable almost 
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Fig. 1. The constitunve equation and its domain. The independent variable u is the 

deformation. 

everywhere, we can find members  of that class which produce an arbitrarily 
large extension of the bar with essentially zero strain (i.e., y'(X) = 1 a.e., but y(L) 
is as large as desired). This is considered unreasonable. The reader is referred to 
HARDY, LITTLEWOOD & POLYA [16, p. 172, 173] and references therein for 
details. 

The best alternative seems to be the class of absolutely continuous functions. 
For  each absolutely continuous placement y(X), there is an integrable function 
f (X)  such that 

X 

y (X) = 5 f (Y)  d ]1, (2.4) 
0 

y'(X) exists almost everywhere and is integrable, and y'(X)=f(X), a.e. Inte- 
gration by parts is possible with these functions. 

In order that y'(X) lie in the domain of the total energy functional given by 
(2.3), we must have, 

~x < y'(X) < fix a.e., (2.5) 
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which we may integrate according to (2.4), to obtain 

X2 X2 

cc rd Y<y(X2 ) - y (X1 )<  ~ ~rdY,, VXI  < X  z in [0,L]. (2.6) 
X1 X1 

Conversely, if y(X) satisfies (2.6), then, because of the bounds given in (2.1), y(X) 
is absolutely continuous. Moreover, y'(X), wherever it exists, lies in the domain 
of the total energy functional, (1.7) or (1.8). Hence, two independent decisions led 
to the choice of function space, which we now write 

and 

Y -~ {y(X)[y(O) = 0 

X2 X2 

S ccYdY<y(X2) -y (X1)< ~ flrdY,, VX  1 < 2  2 in [0,L]}. 
XI Xl 

~,~ is now the domain of the total energy functional. 
The smoothness requirements set down for W(u, X), P(y, X) and o-0(s ) assure 

that total energy functionals E~t and E s are well defined for any of the 
placements in ~ .  Specifically, it follows from corollary 2B and proposition 2C 
in [17] that W(y ' (X) ,X ) i s  a measurable, bounded function of X. P(y (X) ,X) i s  
clearly integrable, and P(y,X) and ~r0(s ) have large enough domains to acco- 
modate any member of J .  

3. Definitions of Metastability, Infinitesimal, Neutral, and Absolute Stability 
and Necessary Conditions 

Suppose Es[Y] represents the total energy for a soft device. A placement 
y e Y  is termed infinitesimally stable in a soft device if there is a measurable, 
positive function e x such that 

i) y'(X) + e x < fix, y'(X) - ~x > ~162 a.e., and 
ii) Es[y] <Es[z] whenever z is absolutely continuous and 

[z ' (X)-y '(X)l  <~x a.e. (3.1) 

Note that because of (i), each z which satisfies (ii) belongs to ~ ;  therefore Es[Z ] 
is well defined. A placement y is termed metastable in the soft device if it is 
infinitesimally stable in that device, and the function e x is essentially bounded 
away from zero. A placement y is absolutely stable in the soft device if it is 
metastable in that device, and if 

Es[Y]<Es[z],  whenever zeo~ and z~gy. (3.2) 

A placement y is neutrally stable in the soft device if it is metastable and if 

i) Es[y]<Es(z  ) for all z e ~ ,  and (3.3) 
ii) Es[y]=Es[w ] for some we~,~, w~gy. 
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In these definitions z is termed a competitor. Definitions of kinds of stability for 
the hard device are the same as the corresponding definitions for the soft device, 
except that the competitors z must satisfy z(L)= y(L). 

The definition of metastability chosen is of fundamental importance for the 
theory, since the results of the theory are extremely sensitive to changes in it. If 
y has less total energy than each member of a set of competitors, it might not 
have less energy than each member of a larger set of competitors. Since I do not 
wish to exclude metastable placements that occur in nature, even though one 
might have to perform extremely careful experiments in order to observe them, I 
have used a strong norm to fix the nearness of the competitors to y in the 
definition of metastability. It might be objected that the set of competitors is still 
too large, e.g. that z should satisfy not only [z'(X)-y'(X)l"<e, but also z'(X) 
- y ' ( X ) e  Ct~o, Lr For the energy functional described in this paper, this alteration 
would make no difference; the definition of metastability given is equivalent to 
the same definition augmented by the condition that z'(X)--y'(X)ECt~o, L1. The 
proof of this statement follows from (3.1); since the competitor z is absolutely 
continuous and z'(X)<=~6x<c 2, then given ~ > 0  there is a Ct~O,L1 function p~(X) 
for which 

Ip~(X)- z(X)l < ~, 

Ip~(X)-z'(X)] < 6 except on a set of (3.4) 

measure < 6, p~(0) = 0. 

RUDIN [18, thm. 2.23] and the Weierstrass-Stone approximation theorem pro- 
vide the basis for a proof. Therefore, since W(-, X) and P(- ,  X) are continuously 
differentiable, E[z] can be approximated by E[pa]. 

The definition of metastability corresponds to the definition of a weak 
relative minimum [19, p. 48-56] in the calculus of variations. In this theory the 
weak relative minimum and the strong relative minimum (defined with the norm 
[z(X)-y(X)I < ~, X e[0, L]) are not equivalent. It will be shown that a large class 
of placements which are metastable by the present definition are not strong 
relative minima for the total energy. In particular, the drop in load that occurs 
for a homogeneous bar held in a hard device during a stress-extension experi- 
ment could not be produced by strong relative minima of the total energy E H. 

The definition of metastability has been framed so that the metastable 
placement cannot lie on the boundary of the domain of the total energy 
functional. That is, if y'(X) = ~x or y'(X) = o~ x on any set of positive measure, then 
y cannot be metastable. Here, our intention has been to regard the domain of W 
as the largest domain where elastic bar theory applies; to enlarge the domain 
would demand the use of a more general theory, perhaps one in which 
placements need not be continuous. If y ' (X )=~x  on a set of positive measure, 
for example, there are placements which lie arbitrarily close to y in the norm 
sup [z'(X)[ which are not governed by the present theory. 
[0, L] 

The homogeneous bar held by a hard device most clearly illustrates the 
difficulty. At the homogeneous placement y(X)=/~X the inequality 

E.[y] <<_E.[z] (3.5) 
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is trivially satisfied for all z ~  which satisfy the end condition z ( L ) = y ( L ) =  ilL. 
Simply, there are no other Jhnctions in ~ which satisfy the end condition. If there 
were one, say z, it would have to satisfy 

L 

z(L) - f lL = ~ (z'(X) - fl) d X  = O. (3.6) 
0 

But z 6 ~  implies that z ' (X)<f i  a.e., so from (3.6) z ' (X)=f l  a.e. That is, z - y .  
Hence, (3.5) indicates stability, but for an empty class of competitors. For these 
reasons, I have framed the definition of metastability so that metastable place- 
ments lie in the center of the set of competitors. 

We turn to the proof of the Euler and Weierstrass necessary conditions for 
metastability. Suppose y(X) is a metastable placement, and let Es[y ] represent 
the total energy for the soft loading device. Let 7(X) be a Lipschitz function on 
[0, L], with Lipschitz constant less than or equal to one. Suppose 7(0)= 0. Then, 
if Jc~ I <~, 

z~(X) =_ y(x )  + ,~ ,/(x) 

is a competitor in the definition of metastability. Hence the expression 

L 

Es(~) --- G [~3 = ~ { W(y'iX) + ~ 7'(x), x)  
0 

+ P(y(X)  + fi 7(X), X)} d X  
y(L)+~),(L) 

-- ~ ~o(S) ds 
L 

(3.7) 

is well defined for ~e,( - e, ~:). ~ (u, X) and 0', X) are Carathdodory functions 
CU c y  

by the assumptions laid down in Section 2. Hence, if the integrand of the first 
integral in (3.7) is viewed as a function of (6, X), it is a continuously differenti- 
able function of 6 for fixed X, and a measurable bounded function of X. 
Therefore, the right hand side of (3.7) is a differentiable function of 3 on ( -e ,e) ,  
and the derivative may be carried under the integral sign (see, for example, 
HOBSON [20, p. 355] for a proof). Since ~o(S) has been assumed continuous, the 
second integral is also differentiable and 

dEs(f) L 
t,u (y'(X), x)  ~,'(x) 

8 W  , ~P 

(3.8) 
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Due to the absolute continuity of 7(X), and the condition 7(0) = 0, the body force 
term may be transformed by parts to yield 

L W 
dEs(6) ! {~u (Y'(X),X)_ao(Y(L)) 

(3.9) L 8P } 
+ ~x 8Y (Y(Y)' Y)dY 7'(X)dX. 

Since Es(6 ) has a minimum for 8 = 0 by the definition of metastability, (3.9) 
leads to the result 

L 

g(X) 7'(X) dX =0,  (3.10) 
0 

L 8P 
g(Xl=O~f (y'(X),X)-ao(y(L))+ ! ~y (y(Y), YldY, 

which must be satisfied by all Lipschitz functions 7(X) having Lipschitz constant 
less than or equal to one, and vanishing at X =0. Following YOUNG ]-15, p. 19], 
we choose 7(x) belonging to the set of "stump-shaped" functions. Let A <B  be 

B - A  
two points in the bar interval [0, L], and suppose 0 < H < . Define 

2 

0 

X - A  
H 

7 ( X ) - [ B _ X  

on [0,A] 

on [A,A + H] 
on [ A + H , B - H ]  
on [B-H,B]  
on [B,L]. 

(3.11) 

Upon substitution of this choice of 7 into (3.10), dividing the resulting equation 
by H, taking the limit as H ~ 0, and regarding A and B as any such points in 
[0, L], we find that g(X)=const ,  a.e. By replacing g(X) into (3.10) and using any 
choice for 7' that has a non-vanishing integral, we find that, in fact, 

g (X)=0  a.e. 

As a necessary condition for metastability in a soft device, a weak form of the Euler 
equation emerges: 

8u (y'(X),X)= - i  (y(Y), Y)dY+ao(y(L)) a.e.* (3.12) 
x 

Each metastable placement in ~ satisfies this equation. A similiar kind of 
argument shows that if y is metastable in a hard device, there is a constant c such 

* If the range of the mapping X,~u(U,X ) is closed, then it is possible to adjust 

the value of y'(X) on a set of measure zero, and thereby not alter the function y, so that 
(3.12) holds everywhere. The same remark applies to (3.13). 
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that 

~W (ytx),x)=-i y (y(Y),r)dr+c a.e. (3.13) 
du x 

The Weierstrass condition, suitably qualified, also emerges as a necessary 
condition for metastability. Let e be as in the definition of metastability and 
suppose that constants a I and a 2 are subject to the inequalities 

O < a l ~ e ,  
(3.14) 

0 < a 2 ~ g ,  

and let A be a point in [0, L]. Define, for H sufficiently small, 

0 ,  Xc [-0, A - H], 
a~(X+H-A), X~[A-H,A] ,  

a l  
7(X,H)=.az(A-X)+atH,  X~[A,A+~2H ], (3.15) 

a 1 

a 2 J 

Then the one parameter family of mappings z(X, H)=_y(X)+ 7(X, H) is a family 
of competitors for either the hard or soft device. Let E l ' ]  represent the total 
energy of the hard or soft device. If y(X) is metastable, 

E[z] - E[y] > 0 (3.16) 

for H sufficiently small. By expanding the inequality (3.16) and using (3.15) we 
obtain an integral inequality. This inequality is divided by H, and the limit as 
H --, 0 exists for almost every choice of A. By calculating this limit, we obtain the 
local inequality, 

W(y'(X) + a 1, X ) -  W(y'(X), X) >_ W(y'(X), X ) -  W(y'(X)- a2, X) 
_ , a . e .  ( 3 . 1 7 )  

al a2 

If we fix X and regard y'(X) as a point in the domain of W(.,X), then the 
inequality (3.17) is equivalent to the geometrical statement that the forward 
secant which connects Q={y'(X), W(y'(X),X)} to R = { y ' ( X ) + a l ,  W(y'(X) 
+ a  t, X)} has greater slope than the backward secant which connects P = {y'(X) 
-a2, W(y'(X)- a2, X)} to Q. Either from this interpretation, or analytically from 
(3.17) it is evident that with our assumptions concerning W ( ' ,X )  an equivalent 
statement is that the Weierstrass condition holds, viz. 

d W  
W(y'(X)+a,X)-W(y'(X),X)-a-~u(Y'(X),X)>O , a.e., VJa[ <e. (3.18) 

Geometrically, the curve W(.,X) lies above its tangent line at y'(X) on an 
interval of length 2e centered at y'(X). 
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It may be true that in addition to being metastable, y(X) may minimize E l - ]  
with respect to competitors y(X)+ y(X, H) with a I and a 2 unconstrained by the 
inequalities (3.14). Evidently, the Weierstrass condition would then hold for 
values of [a[ of magnitude larger than e. 

4. Analysis of the Weierstrass Condition 

The Weierstrass condition (3.18) has been shown to be necessary for meta- 
stability. Henceforth, sufficient conditions that a placement be metastable will be 
sought. Toward this end we analyze the Weierstrass conditions in light of the 
assumed form for the constitutive class. The Weierstrass excess function is 
defined as usual by 

g(v, u; X) = W(v, X) - W(u, X) - (v - u) ~ (u, X). (4.1) 

Plainly #(u,u;X)=O, but g(v,u;X) is not antisymmetric with respect to ex- 
~uW ~W (v, change of u and v, unless ( u , X ) = - ~ -  u X). We fix X throughout the 

discussion in this section. It follows from assumptions of smoothness on W that 

~W 
- (v  - u) ~--~u-(U, X), (4.2) ,~(v,u; X)=!-~u (~,X)cl~ 

so in order for g(v, u;X)> 0 it is necessary and sufficient that the area under the 

graph of ~ -u ( . ,X)  from u to v exceed the area of the rectangle of base (v-u) 

and height ~ (u, X). This geometrical interpretation of the excess function may 

ease the analytical treatment given below. 
We now regard u as fixed somewhere in the interval [C~x, fix]. We seek the set 

of values of v which make the Weierstrass excess function non-negative; in 
particular we check to see if all v in a neighborhood of length e centered at u 
make the excess function positive. 

I shall refer to the constitutive relation restricted to the domain (~x, ~ )  as 
the ~-branch, and the constitutive relation restricted to the domain (fl~, fix) as 

o n , ( .  X), regarded as a the ~-branch (see Figure 1). The constitutive function 0u ' 

function of u with X fixed, is invertible when restricted to either branch. 
The branch with domain [c~, fl~] will be called the unstable branch, because 

placements with values of their deformation in [ ~ ,  fl~] can never satisfy the 
1 1 Weierstrass necessary condition (3.18). That is, if u~[~x, fix], there is some ~>0 

such that either I-u, u + e] c [Cdx, flXx] or [ u -  e, u] ~ [eL, fl~]. Suppose the former 

~ w ( . , X )  is strictly decreasing and continuous on [u ,u+  el, the be true. Since gu 
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mean value theorem implies that 

"+~ ~?W ~W Y ~U~u(~,X)d~<a~(u,X), 
u 

0 <6 N e .  (4.3) 

Hence g(v,u;X)<O for 0 < ( v - u ) < e .  In the latter case the inequality (4.3) holds 
with - e <6_ <0 .  Therefore, the Weierstrass condition is violated on the unstable 
branch, 

The same reasoning shows that if u lies on the domain of the s-branch, or on 
the domain of the/?-branch, the inequality (4.3) is reversed; there is some ~,>0 
such that if u belongs to either the e- or/?-branch, 

~(v,u;X)>O, ve[u-~:,u+e], v+u. (4.4) 

Some of the constitutive equations in the constitutive class will have the 
property that 

0u (/~x, x) >__ i~ ,  x) 

and (4.5) 
0W 

GU CU 

For these constitutive relations the ranges of both the c~- and fl-branches contain 
the range of the unstable branch, or simply, the graph of the constitutive 
function forms a complete S. In practice, constitutive relations disobeying (4.5) 
are found [21], and a special analysis is required for those. The inequalities (4.5) 
provide sufficient conditions that the Maxwell line, which I shall describe 
shortly, can be drawn, and they ease other explanations which will follow. I term 
this subclass of constitutive relations the S-class. 

Consider a constitutive relation belonging to the S-class. Then, the in- 
tersection of the ranges of the c~- and /?-branches is an interval (el,a2). If 
aft(0.1,0"2) the equation 

~W 
d -u  (u, X) = a (4.6) 

will have unique, continuous solutions 

u=n~(0.) and u=~t~(a ) 0.~(0.1,0.2), (4.7) 

respectively, on the a-branch and fl-branch. The inverses (4.7) can be extended to 
the closed interval [0.1, 0.2] by continuity. The excess function g(g~(0.), g~(a); X) is 
a strictly decreasing, continuous function of a, as may be seen easily by 
differentiating it with respect to 0.. Also, 

~(~(0 .0 ,~(aO;X)>O and 

~~ (0.~), ~(0.2); x ) <  0. (4.8) 
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Hence  there is a unique value a* such that  

80zp(a*), G(a~) ;  X) = 0, (4.9) 

which, with (4.6) and the r emark  following (4.1), implies that  

g(G(a*) ,  np(a*); X) = 0. (4.10) 

I shall define c ~ ] - G ( a } )  and fl}-=nr162 The  line connect ing the points  P 

- (ax, ax) to Q = (fi}, o-}) in the plot  of  (u, X) vs. u (see Figure  1) is known  as 

the Maxwell line*. By virtue of  the in terpre ta t ion  given after equa t ion  (4.2), it 
follows that  the Maxwel l  line cuts off equal  areas of  the curve above  and below. 

Hav ing  const ructed the Maxwel l  line, one easily determines  the sign of 
~(v, u; X) for any values of  u and  v in [~x, fix]. The results are summar i zed  below 
without  proof.** 

a. As we have  already shown, if u lies on the c~- or fl-branch, there is a 
ne ighborhood  of u such that  if v belongs to this ne ighborhood ,  and v is 
unequal  to u, g(v, u; X) > 0. 

b. I f  u belongs to [~x, ct*) or  (fi*, fix], ~(v, u; X) is strictly posit ive for any***  
v=Cu. 

c. If u = a * ,  o~(v,u;X)>O unless v=u or v=fi* (recall that  g(]3y;,~*;X) 
=~(~},/~;x)=0). 

d. I f  u =/~*, g(v, u; X) > 0 unless v = u or v = e*. 
e. If  u belongs to (e}, c~), let v, and vr be the points  on the unstable  b ranch  

and the / / -b ranch ,  respectively, which satisfy 

~W 0W ~W eu (v"'x)=uYu %'x)=~d(u'X)" 

Then  there are unique points  ~e(v,,  v~) and ~ ( v ~ ,  fix) so that  ~ 

> 0  for va[C~x,V)w(r),Bx], 
g(v, u; X) < 0  for ve(~, ~). 

f. If  u belongs to (fl~,/~*)an ana logous  result holds. Let  points  v, and G on 
the unstable  and e-branches,  respectively, satisfy 

ew x) =~uw (u, ~u (v. X) = ~ u  w (v~, x). 

"~ MAXWELL [22] analyzed a non-invertible constitutive relation for the pressure as a 
function of density similar to one that had been introduced earlier by JAMES THOMSON 
[23]. From a thermodynamic argument he deduced that the pressure corresponding to 
this line would be the equilibrium pressure for the two phases. 

** The proofs of all of these assertions follow from (4.2) by use of the definition of the 
Maxwell line and the piecewise strict monotonicity of the constitutive function. 

*** v is assumed throughout this summary to belong to the basic domain [~x, fix]. 
The most useful of these inequalities is the second one, which shows that 

g(v~, u; X) <0. 



114 R. D. JAMES 

Then there are unique points v~[C~x,V=) and Fe(v~,t,u) such that 

>0  for ve[C~x,~W(~,flx], g(v,u;X) 
<0 for ve(~, ~). 

5. Analysis of the Equilibrium Equation 

A weak form of the Euler equation emerged as a necessary condition for 
metastability of a placement in Z .  As in the discussion of the preceding 
section, we aim for sufficient conditions for metastability. The Euler equation 
and the Weierstrass condition will turn out to form the basis of those conditions. 

a. Soft Device 

For the soft device the equation of equilibrium is 

e~-W (/(X),  X)=  0P 
-jx~yy O,(Y), Y)dY+~o(y(L)) a.e. (5.1) 

The bar is conceived as pinned at X = 0 ,  loaded at X=L with a stress ao(y(L)) 
which depends on the length of the bar, and pulled in the direction [0,L]  by a 

body force per unit length - ~ ( y ( X ) ,  X). 

Solutions of (5.1) are sought from among placements in Z .  For each of the 
placements in ~,~, the terms in (5.1) are well defined almost everywhere. It is 
evident from the assumptions on P(y,X) that a necessary condition for a 
placement to satisfy (5.1) is that the stress derived from it be an absolutely 

~W u, 
continuous function of X, even though y ' ( ' )  and -~-u ( .) need only be 
measurable. 

Since placements with values of y'(X) in the domain of the unstable branch 
can never be metastable, we shall only look for solutions with deformations on 
the :r or fl-branches. If on a subinterval of the bar an equilibrium solution has 
values of its deformation on the a-branch (//-branch) only, then we shall say that 

subinterval is in the a-phase (//-phase). Suppose ~-Wu-(U," ) is a smooth the 

function of X. The argument put forth in the preceding paragraph combined 
0w( 

with the invertibility of ~ ",X) on either branch by itself shows that in a 

particular phase, y(X) possesses an absolutely continuous first derivative. 
For  simplicity, the constitutive function will be taken from the S-class (see 

equation (4.5)). 
The general proof of existence for (5.1) proceeds by inversion of the left hand 

side and then integration. The inversion problem can be solved in simple cases, 
and then can be generalized to handle (5.1). Since the simple cases hold some 
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interest by themselves, and the proof is not essentially lengthened by considering 
them, we adopt a method of proof which proceeds by solving successively more 
difficult problems. 

The first problem has been solved by ERICKSEN [4]. The bar is assumed 
homogeneous, the loading device dead, and the body force null. The problem 
reduces to finding solutions of 

dW 
du (Y'(X))=a~ (5.2) 

dW 
d-~-(" ) is continuous on [~,fl] and the constant a o is assigned. If a o does not 

belong to the range of dW ('), there is no solution. Assume a o belongs to the 
du 

dW dW 
range of ~ u  ('). At ao, ~ u ( '  ) may have a single or double valued inverse. In 

the former case, there is one and only one value y6[cr fi] such that 

dW 
du (7)=a~ (5.3) 

The unique solution of (5.3) which lies in ~- is the homogeneous placement y(X) 
=yX.  In the latter case, there are exactly two values #<v that satisfy (5.2). 
Therefore, every solution has the property that 

X~St~, S ~ S p  = [0, L], (5.4) 

S~ and Sa being disjoint subsets of the bar. In order that y ~ ,  it is necessary and 
sufficient that S, and Sp be measurable sets. Every solution may then be written 

y(X)= ~ #dX + ~ vdX. (5.5) 
[0, X] nS~ [0, X] ~St~ 

A given stress, therefore, corresponds to a continuum of solutions. 
The bar will now be assumed inhomogeneous and the body force gravi- 

tational, but the loading device shall remain dead. The equation of equilibrium 
becomes 

(y'(X), X) = ~ p(Y) g dY+ a o - B(X, ao). (5.6) 
X 

The right hand side of (5.6) is denoted by B(X, ao) , g is a non-negative constant, 
and the bounded measurable function p(Y) is essentially bounded away from 
zero. Again looms the possibility of non-existence. Solutions will exist if and 

B(X, ao) belongs to the range ~-W (- ,X)  for almost all X~[0 ,L] :  only if 
u u  

8W (ax,X)<=~p(Y)gdY+ao<= (fix,X) a.e. (5.7) 
~u x 



116 R.D. JAMES 

Assuming (5.7) to hold, we define sets ,~ and c@ by 

~c/~- { X e[O, L J[B(X, ao) < ~W~-(Cdx, X)}, 
~W ~={X~[O,L][B(X, ao)>~u(/3x, X)}. (5.8) 

Since the set on which a measurable function is positive is measurable, then 
these sets are measurable, and from (5.7) their union is the interval [0, L]. On 

dW 
the inverse of ~u ( ' '  X) corresponding to the a-branch may be used, and on ,~ 

the inverse corresponding to the /?-branch may be used. Typically ~ n ~ : # g ,  
and so we define S = ~ m @ .  On S we have an ambiguous choice for an inverse, 
either the ~- or/?-branch will do. Hence we arbitrarily divide S into two disjoint, 
measurable sets" 

S=S~wSt~, S~c~St~=fJ. (5.9) 

On ( ~ - S ) u S ~  the inverse for the a-branch will be used, and on (~-S)wSt~ the 
inverse for the/3-branch will be used. 

We now construct those inverses. Over the domain of the a-branch, 
?W 
? ~ ( . , X )  is invertible; its inverse will be called G(a,X). It is not hard to prove 

that G( ", ") is a Carath6odory function. G is clearly continuous in a for fixed X, 
and bounded. It remains to prove that G(u, .) is measurable. For this proof it is 

~W 
convenient to extend the domain of c~u-(-,X) momentarily to all of Ilt l and 

6W 
then to invert. That is, we attach linear increasing functions at (c~ x, X) and at 
~W ?W ~ (?u ~u (~;,X) to construct a Carath6odory function T(u'X)vu defined on ]R 1 

~?W", 
• [O,L]. The restriction of ~ - ( ' , X )  to the domain (ax,~Jc) is the :~-branch. 

~W ~ 
, e , Then we invert ~ ( .  X) and call its inverse G ( , X ) .  If n~(u,-) is measurable, 

C U 

then so is G(u,.).  But 

{Xl~z~(a'X)>c}={ OW" } x ~ ( c , X ) < a  , 

and the second set is measurable by definition. Hence the first is also measur- 
able. This completes the proof that G is a Carath6odory function. The Car- 
ath6odory function ~ (a ,  X) is defined to be the inverse of the/3-branch. 

Solutions of (5.6) may now be constructed. Define 

"X' f~(B(X, r x e( ,%- s)ws =, 
(5.1o) 

x ~ ( ~ - s ) u s p ,  
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and integrate to obtain a solution y ~ .  As in the case of the homogeneous bar 
with null body force, there are, typically, many solutions corresponding to a 
given load. Unless the bar has some peculiar kind of inhomogeneity, S will not 
be null. Any two disjoint, measurable subsets of S will determine a solution. It is 
evident by reversing the proof that every solution of (5.6) must be delivered by 
(5.10) for some choices of S~ and S~. 

With these results in hand extracted from special cases, it is possible to 
tackle the general problem (5.1). 

Theorem 1. Suppose that for every y e ~  satisfying 

Cl X ~y(X)<=c2X VXe[0 ,L] ,  

L ~p 0W 
~W - ! ~ y  (Y(Y)'Y)dY+a~ (flx'X) (5.11) 

for each Xe[ 0 ,L ] .  Then (5.1) has a solution y(X) which belongs to f t .  
A sketch of the proof  is provided in the appendix. 

b. Hard Device 

For  a bar loaded in a hard device, a constant 1 is assigned. A solution of the 
equation of equilibrium is a placement ys~"  which satisfies both 

and 

y(L)=l (5.29) 

~w (y'(X), x )  = ~ eP gu -~x~y (y(Y),Y)dY+e a.e. (5.30) 

for some constant c. We regard c as disposable; if a constant c can be found so 
that (5.29) and (5.30) hold for y e ~ ,  then y is a solution. Again, we only seek 
solutions whose values of y' lie on tile domains of c~- and/?-branches. 

The simple case of a homogeneous bar acted upon by a null body force will 
be treated first. The appropriate equation is 

dW 
du (y'(X))=c. (5.31) 

I shall drop X from the notation whenever dependence upon it is trivial; for a 
homogeneous bar ex, c~Ic, fix, etc. become c~, el,/?, etc. If the assigned length l is 
too large or too small, no solutions will exist. Explicitly, if 

or, equivalently, if 

t>/?L, (5.32) 

L 

(y'(x)-~) dX > 0 (5.33) 
0 
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then y'(X)>fl  on a set of positive measure, which contradicts the assumption 
that y e f f .  Hence, no solutions are possible if l>fiL.  The same conclusion 
follows if l<  eL. Henceforth we assume that 

c~L <l < flL. (5.34) 

It will be useful for the present discussion to name two additional points in 
the domain of the constitutive function. Let d and fi be the unique points which 
satisfy 

d w  
du (~)= (fix), ~#:fll, 

(5.35) 
dW (fl) =@uW (ax)' du fl~=al. 

It has been tacitly assumed that the constitutive function belongs to the S-class. 
We distinguish several possible assignments of l: 

1. f i L < l < f l L .  In this case 

L 
~ y ' ( X ) - f l d X  >O, (5.36) 
0 

so that y'(X)> fl on a set of positive measure. This fact and the equilib- 

rium equation (5.31) imply that c > (fl). But then 0u has a unique 
inverse at c, 

dW 
d--u(V)=C, fl< v< fl. (5.37) 

Therefore the unique solution of (5.31) is the homogeneous placement 
l 

y(X) = vX, in which v =-- .  
L 

2. a L < I < ~ L .  This case is completely analogous to the preceding one. 
There is only one solution, 

y ( x ) = l x .  (5.38) 

3. EL < l < ilL. Here y'(X) < fl on a set of positive measure, and y'(X) > ~ on a 
set of positive measure, so (5.31) implies that 

dW dW 1 
(/~1) ~ C ~ ( ( ~  ). (5.39) 

du 

The inequalities (5.39) assure that every solution of (5.31) may be para- 
meterized by c: 

XeSp.  
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S, and Sa are disjoint, measurable subsets of [0, L]. Let the measures of S~ 
and Sp be denoted by m, and rnp, respectively. By virtue of (5.40), the 
condition y(L)= l becomes 

7z~ (c) m~ + ~p(c) rnt~ = l, (5.41) 

in which 

m,+ ma = L. (5.42) 

The equations (5.41) and (5.42) comprise a linear system of equations for 
m, and rnr to which must be adjoined the inequalities m~>0 and ma>0. 
The constants l and L are given, whereas the constant c may be adjusted 
within the limits imposed by (5.39). The determinant of the system is tea(c) 
-7~(c) which can never be zero, so the system has the unique solution, 

1 
- L -  1), 

1 (5.43) 
L). 

The measures rn  and rna are non-negative if and only if 

7r~(c) L < l < 7rp(c) L. (5.44) 

Still regarding l as assigned gives (5.44) as a condition on c such that (5.43) 
corresponds to a solution of the problem. Since max n,,(c)<minrta(c), 

(5.44) is satisfied by a closed interval of values of c. That interval reduces 
to a single point if l=f lL  or l=SL,  but, otherwise, it has a non-empty 
interior. If it happens that ~1L < 1 < fll L, that interval will be the entire set 
defined by (5.39). To each c in this interval corresponds a solution 
given by 

X 

y(X) = ~ {n~(c) Zs. + tea(c) Zso} dX, (5.45) 
0 

The measures of S, and Sa satisfy (5.43). 
In Case 3, non-uniqueness arises from two sources. First, any value of c 

in the appropriate interval produces a solution. Once c has been chosen, 
the measures of the sets S~ and Sa, but not the sets themselves, are fixed by 
the equations (5.43). Cases 1, 2 and 3, above, deliver all solutions to the 
problem (5.31). 

We now treat the case of an inhomogeneous bar pulled by a gravitational 
body force. The equation of equilibrium may be written 

8W L 
8u (y'(X)' X) = ~ p(Y) g d Y+ c =- B(X, c); (5.46) 

x 

B(X, c) denotes the right hand side, and c can be adjusted to secure existence. 
Solutions will exist only if I has certain values, and only if the body force is 
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sufficiently weak. Recall that p(Y) is a positive, measurable, bounded function 
which is essentially bounded away from zero. We assume that 

~W L f aW L 
esssupT(C~x,X)-S p(Y)gdY<essin ~ ( f l x , X ) - ~  p(Y)gdY. (5.47) 
X~[0, L] CU X X~[0.L] UU X 

Let a 1 and cr 2 be the values of the left hand side and of the right hand side of 
(5.47), respectively. A necessary condition that there be a solution of (5.46) is 
that ce[a 1, a2]. 

Rather than prescribe the length of the bar beforehand, we shall describe the 
set of all solutions and, then, examine the possible lengths which can be 
produced. Let CE[O'I,O'2] and define 

~( c) = { X[B( X, c) < ~ (oetx , X) }, 

,~(c)= f XIB(X ' ~'W l ) (5.48) c) > (/~x, x)~. 

It follows from (5.47), (5.48) and the definition of the constitutive function that 

5~(c) u ~ ( c )  = [0, El. (5.49) 

Following the notation already introduced, we define 

S(c)- ~(c)n~(c). (5.50) 

On 5~ the inverse ~z~ may be used, and on ~ the inverse n~ may be used. There 
is an ambiguous choice of inverse on the set S(c). S(c) is divided into two 
arbitrary, disjoint measurable subsets, 

S(c) =S=wS~, (5.51) 

and the solution corresponding to this choice is given by 

f~=(B(X, c), X) X+C%- S)uS~ 
y'(X) = [rc~(B(X, c), X) X ~(5'~ - S)uS~. (5.52) 

If we forget momentarily the end condition y(L)= l, equation (5.52) delivers 
all solutions of (5.46). Therefore each end position which belongs to a solution is 
produced by the formula 

(B(Y,, c), Y)dY+ ~ (B(Y,, c), Y)dY=I, (5.53) 
( ~  - S )  t~S~ (5~t~ - S ) u S ~  

for some choice of c, and for some partition of S(c) into sets S o and Sr To 
characterize the set of all end positions which correspond to solutions of the 
problem, we examine (5.53). First, we note that rc=(#,X)<rc~(v,X) no matter 
what be the values p and v, as long as they are chosen to lie in the appropriate 
domains. If 0" 1 ~ C < C ~ O ' 2 ,  then 5~(~) ~ 5~=(~) and J~(~) =~(~) .  Hence, for any 

c+ [al ,  a2], 5 ~(a2) ~ 5~(c) ~ (~(c)  -- S(c))~SI~. 
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It follows that the maximum value of (5.53) is given by 

121 

It remains to ascertain whether any le[lmi .,/max] determines a solution. The 
definitions (5.48) o f ~ ( c )  and :.c~(e) show that, given e.>0 and given ce[al,a2] 
there is a 8 > 0  such that if 

1~-c1<8, then ~ m { ~ ( 8 ) -  ~(c)} <e,  (5.56) ~m{~(~)- ~(c)} < ~, 

in which m denotes Lebesgue measure. Since 

s(~) - S(c) = [ ~ f f )  ~ ~ ( c ) ]  - [G(c)  n ~ ( c ) ]  

---- [(~(~) n~(8)) - 5P~(c)] w [(,~(8)n~(~)) - ~(c)] (5.57) 

[G(~) - G(c)]  u [ ~ ( ~ )  - ~ (c)], 

then whenever 16- el < 8, 

max fro{S(8)- S(c)}, m{S(c)- S(8)}] < 2~. (5.58) 

We shall use the notation m{IS(8)-S(c)[} to denote the left hand side of (5.58). 
Let R~(c) and Re(c ) be a pair of one parameter families of disjoint, measurable 
sets such that R~(c)~Re(c ) = [0, L]Vc. Suppose the families R~(c) and Re(c ) satisfy 

[ e - c ] < 6  ~ m{lR~(~)-R~(c)l} <~ and m{IRe(~)-R~(c)]} <~, 
Re(a1) = O, R~(az) =~3. (5.59) 

We shall choose 
S~(c) - R~(c) n S(c), 

S e ( c ) - R e ( c ) n S ( c ) ,  

so that S~(a~)=S and Se(a2)=S. With these choices of S~ and S e, l becomes a 
function of c. Also 

[ ( ~ r  s r  - [ ( ~ ( c ) -  S(c) )~s~(~)]  
[5P~(~) - 5P~(c)] u [S(c) - S(~)] u [S~(8) - S~(c)]. (5.60) 

It follows from (5.56), (5.58) and (5.59)1 that 

m{[[(gP(8)-S(~))uS~(8)]-[(S~(c)-S(c))uS~(c)]]}<6a. (5.61) 

The construction of S~ and S~ just outlined insures that l(c) is a continuous 
function on [a~, a2], which assumes its extremes at al  and a2. Therefore, every 

/max = ; G(B(Y,,a2),Y)dY+ ; ~a(Ea2) Y)dY. (5.54) 
5'~ (0"2) -- S(o'2) ~-<g~ (o'2t 

By similar reasoning, 

Imin = ~ n,(B(Y, al),Y)dY+ ~ ne(B(Y, aal, Y)dY. (5.55) 
5#~(a i) 5r -S(al) 
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value of ce[~r,,a2] produces a solution. Typically, many solutions correspond to 
each value of c. 

If the end position is regarded as disposable, the general proof of existence 
for the soft device may be used for the hard device. A continuous dependence 
theorem, like the one that has just been demonstrated in the special case of a 
gravitational body force, appears difficult. 

6. Existence of Metastable Solutions 

Having collected equilibrium solutions in the preceding section, we now 
select the metastable ones. Suppose y(X) is one of these equilibrium solutions. 
We assume, as before, that y'(X) is contained in the domain of the ~- or fl- 
branch. The set of values of v which makes the excess function g(v ,y ' (X) ;X)  
positive can be found in Section 4. The ~- and fl-branches were defined on open 
intervals; hence, given any y(X)  with y'(X) belonging to the a-branch or the fl- 
branch, there is a positive, measurable function e x such that 

g(v ,y ' (X) ;X)>O for [v -y ' (X)[<e  x. (6.1) 

If the body force potential and loading device do not promote instability, a 
notion that will be made precise shortly, y(X)  will be proved infinitesimally 
stable. If, additionally, ess infe x > 0, y(X)  will be proved metastable. 

Xe[0 ,  L] 

However, the placement y(X) may be metastable under weaker conditions. 
Certain well behaved constitutive functions, for example, may insure the meta- 
stability of a placement when, otherwise, the body force and loading device 
would tend to deny it. The classical methods of JACOBI will be used to explore 
sufficient conditions for metastability. 

It is convenient to introduce excess functions for the body force and loading 
device, by analogy to the Weierstrass excess function: 

#P 
M( z, y; X)  - P( z, X)  - P(y, X)  - ( z - y) ~fy (y, X), 

(6.2) z 
• ( z, y) - ~ a o(S ) ds - ( z - y) a o(y ). 

Y 

Suppose y(X)  is a solution of the equation of equilibrium (5.1) for the soft 
device. Let z e ~ .  Then the difference Es[z ] - E s [ y ]  is given by 

L 

Es[z] - Es[y] = j" {8(z'(X), y'(X); X) 
0 

+ ~(z(X) ,  y(X); X)} dX - ~(z (L) ,  y(L)). (6.3) 

The integration by parts involved in this calulation is justified for the functions 
considered. If w and y belong to ~ ,  w(L)--y(L),  and y is a solution of the 
equilibrium equation (5.30) for the hard device, then it follows by similar 
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reasoning that 

L 

E n [w] - En[y ] = ~ {r y'(X); X) + r y(X); X)} dZ. (6.4) 
O 

Strong sufficient conditions for infinitesimal stability are now evident; sup- 
pose that the inequalities 

N(z(X) ,y(X);X)>O and s (6.5) 

hold for all z satisfying t z ' (X)-y ' (X){<e x a.e. Then from (6.3) and (6.4), y is 
infinitesimally stable in the hard or soft device, according to which equilibrium 
equation it solves. Of course, the first inequality in (6.5) need only hold for such 
z that satisfy the end condition, in the case of the hard device. If, in addition to 
(6.5), both of the conditions 

(i) essinfex=e >0  
Xe[O, L] 

and 

(ii) y'(X) - z > ~x, y'(X) + e < fix 

are fulfilled, then y is metastable. 
Body forces and loading devices which fail to satisfy (6.5) are not exceptional, 

although the common examples of gravitational body force and dead loading 
device satisfy (6.5) with equality. If a loading device satisfies (6.5)2 with strict 
inequality, a reversal in sign of the function ~o(S), i.e. a reversal in the direction 
of the end load produces one which causes (6.5)2 to fail. Likewise, the body force 
produced by rotating the bar with constant spin about an axis perpendicular to 
the bar, which passes through the point X = 0 ,  will never satisfy (6.5)1. However, 
the bar may be metastable under the influence of such body forces and loading 
devices, as we shall show presently. 

Of course, we cannot weaken the Weierstrass condition, g(z'(X), y'(X): X)>  0, 
no matter what body force and loading device we choose since it is a necessary 
condition for metastability. In fact, it must be slightly strengthened in order to 
incorporate a larger class of body forces and loading devices than allowed by 
(6.5). We shall say that a placement y(X) promotes stability if there is a 
continuous function s(X)> 0, such that 

(y'(x) + 

6 > s(X) a.e., (6.6) 

whenever 6 e [ - e , e ] .  Here, e is a constant independent of the choice of X. It 
follows by integration of (6.6) with respect to 6 that if y promotes stability, then 

~5 2 
g(y ' (X)+6,y ' (X);X)>s(X)-2- ,  6~[ -e , e ] ,  a.e. (6.7) 

The geometrical meaning of (6.6) is plain: in particular, the deformation y'(X) 
cannot equal ~ or fl~, except on a set of measure zero, if y promotes stability. 
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The following main theorems on metastability show that an equilibrium 
solution y(X) which promotes stability can be metastable under a larger class of 
body forces and loading devices allowed by (6.5). 

Theorem 2. Let e = const. > 0 be given. Suppose ye ,~  is a solution of the equation 
t~'equilibrium Jor the soft device such that 

y ' (X)+e<f ix  and y ' ( X ) - ~ > a  x a.e. (6.8) 

Assume y promotes stability, i.e. there is a continuous, positive junction s(X) Jor 
which 

>s(X)-Vd ~ [ - e ,  e]. (6.6)r 
6 

Suppose, in addition, that there is a continuous function p(X) and a constant k such 
that 

ao(Y(L) + It) - ao(Y(L) } < k (6.9) 
tt 

and 
~P ,JP 
= -  (y(X) + z, X) - Uy (y(X), x )  
vy >p(X)  (6.10) 

/- 

whenever tt~[ - e L ,  eL] and re[  - e X ,  eX]. Then (f Iz'(X) -y ' (X) l  <e, 

g(z'(X), y'(X); X) > s( f7  (z'(X) - y'(X)) 2, (6.7)r 

L~(z(L), y(L)) < ~ {z(L) - y(L)) z, (6.117 

d(z(X) ,  y(X); X) > P(~) (z(X) - y(X)) 2. (6.12) 

(i) Now suppose only that (6.7) r, (6.117 and (6.127 are satisfied Jor some given 
continuous Junctions s(X) > 0 and p(X), Jbr some given constant k, and Jbr et;ery 
Junction z(X) such that Iz ' (XT-y ' (X) l<e a.e. Let h ( X ) = z ( X ) - y ( X ) ,  
Xe[0 ,  LJ, and suppose fh'(X)l <g a.e. 

Then 
1 L 

E s [ z ] - E s [ y ] > - - y { s ( X ) h ' 2 - 2 k h h ' + p ( X j h 2 } d X .  (6.13) 
- 2  0 

(ii) Now assume only that (6.13) holds for continuous Junctions s(X) > o, p( X ) and a 
constant k, and Jor h(X) =- z(X) - y(X), Ih'(X)[ < ~ a.e. Let 

rain s(X) =- S, rain p(X) =- P. (6.14) 
[0, L] [0, L] 
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Then the placement y is metastable in the soft device if 

P = 0 and k < S/L, 

- ] / - S P  
P<O k<  

(6.15) 

For the hard device we have the corresponding theorem: 

Theorem 3. Let e>0  be given. Suppose y is a solution of the equation of 
equilibrium for the hard device which satisfies (6.8) and promotes stability. Assume 
(6.12) is satisfied for a continuous function p(X) and for lz'(X)-y'(X)[ < a a.e. Let 

P = rain p(X). (6.16) 
[0, L] 

Then the placement y is metastable in the hard device if 

P or ~ P <0 and 
>0 [ L ~ _ < n .  (6.17) 

Before constructing the proofs of these theorems, we note that they allow a 
larger class of body forces and loading devices than allowed by (6.5). This 
becomes evident when (6.11) and (6.12) are combined with (6.15); (6.15) allows k 
= 0 and p - 0 ,  but some positive values of k and some negative values of p(X) 
are included as well. It will be clear from the proofs of these theorems how the 
bounds (6.15) can be improved in special cases by numerical methods. 

The results of these theorems can be interpreted directly from (6.14), (6.15) 
and (6.17). One result of interest concerns the dependence on L. Suppose the 
sufficient conditions for metastability outlined in Theorem 2 are satisfied for one 
constant L. Let L be less than L, and consider the bar interval [0, L]. Suppose a 
new soft loading device applied at y(L) is given by 

ao(S) =,~o(S + y(L)- y(s (6.18) 

Also, let the constitutive function, body force potential and function space be 
restricted to the interval [0,s Then (6.15) shows that y(X), Xe[0,  L] is meta- 
stable in the soft loading device defined by (6.18). For the hard loading device, if the 
bar is restricted to the interval [0, L], and the position y(L) is held fixed for all 
possible competitors, then/)"(6.17) holds for the bar of length L, it will also hold 
for the bar of length L. We now turn to the proofs of these theorems. 
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Proof of Theorem 2. Let y e f f  be an equilibrium solution for the soft device 
which satisfies (6.8). Suppose z e f f  satisfies Iz ' (X)-y '(X)I<e a.e. Assume (6.6)r, 
(6.9) and (6.10) hold for continuous functions s(X)> O, p(X) and a constant k. By 
the same argument that produced (6.7) from (6.6), it follows immediately that 
(6.9) implies (6.11) and (6.10) implies (6.12). 

Now assume only that (6,7) r, (6.11) and (6.12) hold. When substituted into 
(6.3) these inequalities yield 

Es[z] _ Es [Y] _> 1_ i {s(X) h '2 - 2 k h h' + p(X) h z} dX. (6.19) 
- - 2  0 

We add the term (r(X)h2) ' to the integrand in (6.19), while insuring that the 
continuously differentiable function r(X) satisfies r(L)=O. Since the integral on 
the right hand side of (6.19) will thereby remain unchanged, we still have the 
estimate 

1 L 
E s [z] - E s [yq > ~ ~ {s(X) h '2 - 2 k h h'+ p(X) h2 + (r(X) h2)'} d X  

o (6.20) 
1 L 

= ~ ! {s(X) h '2 + 2(r(X) - k) h h'+ (p(X) + r'(X)) h 2 } dX. 

The integrand is a perfect square if 

(r(X) - k) 2 = s(X) (p(X) + r'( X)), 

in which case 

(6.21) 

1L r ( X ) - k  2 
E s [ z ] - E s [ Y ] > 2 ! s ( X ) [  h''~ s(X) h] dX>O. (6.22) 

If equation (6.21) has a continuously differentiable solution r(X), which is 
defined on [0, L] and vanishes at X = L, then, by (6.22), y(X) is metastable. 

Let u(X) be defined by the transformation 

f~: k - , - (Y) ,y ]  
u ( X ) = u ~  o s ( Y )  a ;,  (6.23) 

u o being a nonzero constant. Since s(Y) is positive and continuous if r(X) is 
continuous, then u(X) is continuously differentiable on [0,L]. In that case (6.23) 
implies that 

u'( 
-- s ( X )  ~ = r ( X )  --  k. (6.24) 

Suppose r(X) is a continuously differentiable solution of (6.21). Then, by the 
identity (6.24), (su')~C 1 u(X)eeO, and u satisfies the equation [O,L]' 

(s(X) u ' ) ' -p(X)  u = O, (6.25) 
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and the end condition 

, . , u ' ( L )  . 
stc~ u - ~  = ~:" (6.26) 

Conversely, if (s(X)u')EC~o,L 1, u(X)~0,  u satisfies (6.25) and (6.26), and r is 
defined by (6.24), then r(X) is a continuously differentiable solution of (6.21) 
satisfying r(L) -- O. 

Therefore the problem reduces to a determination of the zeros of solutions of 
(6.25) and (6.26). If (6.25) and (6.26) have a solution which does not vanish on 
[0, L], then the argument leading to (6.22) is justified, so y is metastable. The 
Sturm comparison theorems [25, Chapter  XI, Theorems 3.1 and 3.2] relate the 
existence of zeros on [0, L] to the values of the functions p(X) and s(X), and the 
value of the constant k. When these functions are known explicitly, a numerical 
procedure might well be more useful [26, Chapter 5, p. 122]. 

The terminology of HARTMAN [25] is adopted. Let S(X), P(X) be con- 
tinuous functions on N1. The equation 

(SU')'-PU = 0  (6.27) 

is called a Sturm majorant for (6.25) if 

s(X)>S(X) > 0  and p(X)>P(X). (6.28) 

. . . .  U ' ( L )  
We shall denote by K the value atL)u-U~-'  calculated for a solution of (6.27), by 

analogy with (6.26). We shall always assume K and k are finite constants, so that 
U and u do not vanish at X =L .  Suppose that 

k<K (6.29) 

and that (6.27) is a Sturm majorant  for (6.25). Then by Sturm's first comparison 
theorem* it follows that if U does not have a zero on [0, L-I, then u does not 
have a zero on [0,L].  Therefore if U does not have a zero on [0,L],  then y is 
metastable. 

Furthermore,  if (6.27) is a strict Sturm majorant  (P(X)>p(X), or 
s(X)>S(X)>O and P(X)+O for some X~[0,L]) ,  or if (6.29) holds with strict 
inequality, then the non-existence of zeros of U on (0,L] implies the non- 
existence of zeros of u on (0, L]. 

Now suppose (6.14) is satisfied, so that (6.27) is a Sturm majorant  for (6.25) 
and (6.27) has constant coefficients. Suppose that k < K. Consider first the case 
P >0.  The Sturm majorant  (6.27) has solutions 

U(X) = U a cosh (X - L) + U 2 sinh (X - L). (6.30) 

HARTMAN'S statement of the theorem may be adapted to the present situation by 
the change of variables X --, L -  X. 



128 R.D. JAMES 

Among them, the solutions 

U(X)= U, c o s h l / ~ ( X - L ) + ~ s i n h ] / > ( X - L  ) 
VSp  V a 

satisfy S _ _ ( ~ = K .  Let U 1:#0. Then U(X) has no zero in [O,L] 

metastable) if 

(6.31) 

(i.e. y is 

2 ~L - - e V s  +1 
K < lISP - - ) ,  -- (6.32) 

l 21/ /~ l e ~ s  -1  

Obviously, for k<O these sufficient conditions for stability are satisfied. Some 
positive values of k also permit y to be metastable. 

In the case P=O, the solutions of (6.27) which satisfy the end condition are 
given by 

Those solutions have no zeros in [0, L] if 

S 
K <--.  (6.34) 

L 

Again, some positive values of k are allowed. 
Finally, if P<0 ,  the solutions 

- P  K - P  

( V ~ 1 / - S P  V 

satisfy (6.27) and the end condition. A necessary condition that U(X) does not 
have a zero on [0,L] is that 

/ p 1/  
L ~ -  < ~z. (6.36) 

Suppose (6.36) holds. Then the interval [0, L] does not contain a zero of U if 

K <  - ~  
tan ( _ ] / / ~ p  L ) (6.37) 

/ 

 <L1/-P Here /--~D _ K  is always less than zero if 2 ] /  S <m However, if 

0 < L ] / - ~ < : ,  then some positive values of K are admitted by (6.37). 
V ~ z 
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Proof  of  Theorem 3. The procedure for the hard device is a classical one which is 
outlined in many books on the calculus of variations [27, for example]. We 
begin with (6.19) and complete the square as in (6.20). The calculation therein is 
justified with r(X) unrestricted by end conditions. The transformation (6.23) 
remains valid, so the problem reduces to the determination of the zeros of a 
solution u of 

(s(X) u')' - p(X)  u = 0. (6.38) 

Again, a numerical procedure may be used to locate these zeros in particular 
problems. For rough bounds on the positions of the zeros, STURM'S first 
comparison theorem, in conjunction with a Sturm majorant having constant 
coefficients, delivers the classical results. Those results may be extracted from the 
arguments put forth for the soft device. In particular, if S >0  and P > 0 (using 
the notation of (6.27) for the Sturm majorant), the placement y is metastable; 
this may be seen from the original argument summarized by (6.4) and (6.12), or 
from (6.36) with U2=0. If P <0, the estimate 

L V -  ~ < 7t, (6.36)r 

which also appears as the necessary condition (6.36), delivers the sufficient 
conditions. 

The sufficient conditions for metastability cannot generally be made neces- 
sary, because if a placement z ~ -  produces equality in (6.6) when 6 is given the 
value z ' ( X ) - y ' ( X ) ,  that z will not generally produce equality in (6.8) and (6.9) 
when/~ is given the value z ( X ) - y ( X ) .  

7. Distribution of the Phases 

The methods of Section 6 do not lend themselves to the study of the absolute 
or neutral stability of equilibrium solutions, since they involve essentially local 
arguments. Furthermore, the distribution of the phases in the bar played no 
direct role in the stability analysis given there. For example, in treating the soft 
device and gravitational body force, the strong sufficient conditions for metasta- 
bility (6.5) were satisfied. However, the study of the corresponding equilibrium 
equation in Section 5 showed that an infinite variety of solutions was possible; 
some of those solutions could have an infinite number of subintervals of the bar 
arranged consecutively in the phases c~ fl ~ fi ~/3 .... 

Arguments of this section which use finite stability will show that in several 
important special cases the absolutely stable solutions contain only one or two 
phase boundaries. 

a. Soft Device 

The simplest case of a dead loaded, homogeneous bar with null body force 
shall be treated first. This problem has been solved by ERICKSEN [4]. As in the 
discussion of Section 5a (see equations (5.2) to (5.5)), we assume that a 0 belongs 
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dW dW 
to the range of ~ fu  (-). Two possibilities arise; either ~u-u (-) has a unique inverse 

at cr o or it does not. In the former case (5.3) applies, and the unique equilibrium 
solution is the homogeneous placement y (X)= 7 X. If 7 belongs to the open set 
(c~,fl), then this placement is absolutely stable. That is, from the summary in 
Section 4, the Weierstrass condition is satisfied with strict inequality. Hence, by 
equation (6.3), 

Es[z ] - E s [ y  ] >0, z ~ y ,  z ~ .  (7.1) 
dW( 

If d u  ") has a double valued inverse at ~r o, the equilibrium solution is given 

by equation (5.5): 

y(X) = ~ tx dX + ~ v dX. (7.2) 
[0, X]c~S~ [0, Xlc~St~ 

Here, S~ and S o are disjoint measurable subsets of [0, L], whose union is [0, L], 
and Ix and v are constants on the c~- and {/-branches, respectively, which 
correspond to the stress r o. I f / t  and v belong to the open set (c~,fl), then any 
solution of the form (7.2) is metastable. The total energy of y is 

EsCy j = ~ ( W ( y ) - ~ o y ) d X  + ~ ( W ( v ) - ~  o v)dX 
S~ S I~ 

= (W(y) - % #) m(S,) + W(v) - cr o v) m(Sv). (7.3) 

We seek absolutely stable solutions which correspond to the dead load cr o. In 
doing so, we encounter three possibilities: 

~-W (c~)<tro <a*. In this (i) case 

~(v,  ~) = W(v )  - w ( ~ )  - ~ro(V- ~) > o. 

It follows from (7.3) that Es[Y ] is minimized by the choice 

S~ = [0, L], S~ =~l. (7.4) 

For this choice of S, and S~, y is absolutely stable. The bar is homo- 
geneously deformed in the a-phase. 

(ii) tr* <ao  <~dWu-(fl). Here d~(#, v)>0, so Es[y] has its minimum value when 

s~=~, sp = [o,c] .  (7.5) 

This choice makes y absolutely stable; the bar is homogeneously deformed 
in the fl-phase. 

(iii) ao =tr*. Since g(#, v)=0, all measurable choices of S~ and Sp, in which m(S~) 
+m(Sp) =L,  yield the same value of the energy. Each solution of this kind is 
neutrally stable. The two phases may be distributed in any way whatsoever 
in the bar. 

The result summarized in (iii) is not indicative of the results that shall be 
deduced when a body force or inhomogeneity is present. The contrast can be 
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b) Dead load, gravitational body force, 
inhomogeneous bar (measure {XLB(X, ao) 

= o * }  = 0). 
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d) Hard device, gravitational body force, 
inhomogeneous bar (measure {XIB(X,c) 

=o~} =o). 
Fig. 2. Typical stress-extension curves plotted from theory. Wherever possible, the values 
have been calculated for absolutely stable solutions. If no absolutely stable solution exists 
for the data given, the values are plotted for a neutrally stable solution corresponding to 
that data, Dots or dark regions mark neutrally stable solutions. Open circles mark 

e -  y(L) 1 absolutely stable solutions. For the soft device = ~ -  and for the hard device e-=~. 

developed most clearly if we imagine that the bar is subject to a simple tension 
test, in which the corresponding placements are calculated from theory. Hence, 
we assume that the bar is successively dead loaded with an increasing sequence 
of stresses o.0<a 1 <o-2... <o.N, and that at each stress a t ( K =  1,2 .... N) the bar 
equilibrates in the most stable placement. Theory predicts that if e~ < a* the bar 
will be homogeneously deformed in the c~-phase; if o.K>o.* the bar will be 
homogeneously deformed in the fl-phase. If o.~u=o.* for some M, then the 
distribution of the phases will be indeterminate for a corresponding equilibrium 
solution. At this value of stress large regions of the bar could spontaneously 
jump from one phase to another, as far as static theory is concerned. The end 
position could change drastically during such a shift of phase. A typical stress- 
extension curve calculated from theory has been reproduced in Figure 2a. 

We now treat the case of an inhomogeneous, dead loaded bar pulled by a 
gravitational body force. The relevant equilibrium equation, which we have 
analyzed in detail in Section 5, is written 
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L 

OW (y'(X), X) = ~ ; (Y)  g dY+ ao - B ( X ,  ao). (7.6) 
~bl X 

Not all dead loads will produce solutions, so we consider only those that do, i.e. 
those that satisfy (5.7). Furthermore, we must strengthen that requirement by 
assuming that for some ~ > 0, 

0 W 
(ax, X) + e < B(X, ao) < 6W (fix, X) - e. (7.7) 

UU 

Then the solutions are given by 

' X (~ (B(X 'a~  X6(5~-S)wS~,  
y(  )=-~Tco(B(X, ao),X), X ~ ( ~ _ S ) u S o "  (7.8) 

Recall that S is the set of X on which either inverse can be used, S = S , ~ S ~  is an 
arbitrary, disjoint partition of S into measurable sets. Again, we seek absolutely 
stable placements. The definitions (6.2) show that for a gravitational body force 
potential and a dead loading device, the corresponding excess functions vanish. 
Therefore, if y is given by (7.8) and z e ~ ,  then 

E s [z] - E s [y] = S g(z'(X), Tc=(B(X, ao) , X);X) dX  

+ ~ g(z'(X), zco(B(X , a0) , X); X) dX. (7.9) 
( ~  - S) ~S~ 

Referring to Section4, we see clearly that both integrands of (7.9) are non- 
negative if S~ and S o are chosen as the sets 

S~ = {X[n~(B(X, ao), X )<  ~ }  mS, 

S~ = { X[~z~(B(X, ~ro) , X )>  fiE} c7S. (7.10) 

The equality sign in (7.10)1 can be switched to (7.10)2; in fact the set 
{XI~(B(X,  ao), X)=  a~} can be partitioned in any way whatsoever among S, and 
S o while preserving the non-negativity of (7.8). Neutral stability will always 
occur if {X[~(B(X, ao), X)=  ~*} has positive measure. A necessary and sufficient 
condition for the existence of an absolutely stable placement is that the measure 
of this set vanish. 

The results are best illustrated by some special examples, Suppose the bar is 
homogeneous, but a non-trivial gravitational body force acts upon it. Then, 
from (7.6), B(X, ao) is a strictly decreasing function of X. If B(0, ao)< a*, then the 
absolutely stable solution is determined by the choice ~ = S 0 = S = ~ ;  the bar is 
(inhomogeneously) deformed in the a-phase. If B(L, ao)> a*, then the choice 5~ 
= S, =S  =~  produces the absolutely stable solution; the bar is deformed in the 
fl-phase. Otherwise, B(X, ao)=a* has the unique solution X*. It follows from 
(7.9) that the absolutely stable solution is obtained from (7.8) by the choice 

( ~ - s ) u s  o = [0, x * ] ,  
(7.11) 

( ~  - S)uS~ = [X*, LJ. 
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In summary, there is an absolutely stable solution y(X), Xe[O,L];  on [0,X*] 
the bar is in the fl-phase, and on IX*, L] the bar is in the e-phase. The deformation 
y'(X) has a jump discontinuity at X* ; otherwise y'(X) is absolutely continuous. The 
position of the phase boundary X* is the unique solution of the equation B(X, ao) 
=a*. As the assigned dead load a o increases, X* increases, strictly and con- 
tinuously. 

In comparison with the dead loaded homogeneous bar, whose solutions 
at a o = a* could be extremely rough, here the slightest gravitational body force 
makes the absolutely stable solution piecewise differentiable. 

The absolutely stable solutions corresponding to a simple tension test for the 
homogeneous bar will be set forth. Let ao<a ~ <a2<. . .  <arc be a sequence of 
stresses, each satisfying the condition (7.7). Keeping in mind that B(X,a) is a 
strictly increasing function of a, we have the following possibilities: 

(i) B(0, ak) < a*, k = 0, 1 .. . .  , M - 1. 
The solutions are 

X 

Yk(X) = ~ ~r~(B( Y, ak) ) dY, (7.12) 
0 

which correspond to end positions 

L 

l(ak) = ~ n~(B(Y, ak) ) dY (7.13) 
0 

The function l(.) is a continuous, strictly increasing function of a k. 

(ii) B(0, ak) > a* and B(L, ak) < a*, 

k = M ,  M +  1,. . . ,P. 

The solutions are given by 

X*lak) X 

Yk(X) = ~ rra(B(Y,,crk))dY+ ~ 7r~(B(Y,O~k))dY, 
0 X*(ak) 

(7.14) 

if X > X*(ak), and are given by 

X 

yk(X) = ~ ~(B(Y, ak)) dY, 
0 

(7.15) 

if X < X*(a,). The corresponding end positions are 

X*(ak) L 

l(ak)-~ ~ r~(B(Y, ak))dY+ ~ n~(S(Y, ak))dY. (7.16) 
0 X*(ak) 

The function l(.) is strictly increasing, y'(X) suffers a single discontinuity in 
[0,L]. 
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(iii) B(L, ak) > a*, k = P + 1, P + 2,... N. 
The solutions are 

X 

yk( X) = ~ 7r~ (B( Y, ak)) d Y,, (7.17) 
0 

with end positions 

L 

tk(~k) = ~ ~ (B(Y, ~k)) d Y. (7.18) 
0 

Let a o and a L be the values of stress which solve X*(a )=0  and X*(a)=L, 
respectively, i.e. the two values of stress at which the phase boundary just enters 
and just leaves the bar. It is interesting to note that if we were to assume W(u) 
twice continuously differentiable, then the function l(a), defined as the composite 
of the functions (7.13), (7.16), and (7.18), would have a discontinuous derivative 
at a o and a t .  Figure2b depicts a typical stress-extension curve calculated from 
(7.13), (7.16), and (7.18). 

By comparing Figures 2a and 2b, it is clear that the character of solutions, in 
terms of absolute vs. neutral stability and in terms of the distribution of the 
phases, do not exhibit continuous dependence on the body force in the following 
sense: As g ~ 0 ,  the graph in 2b tends uniformly to the graph in 2a, the central 
portion in 2b approaching the horizontal. However, for any g>0,  there are 
absolutely stable solutions, which contain a single phase boundary. At g = 0  a 
great number of configurations have the same energy, and the distribution of 
phases among them may differ drastically. 

It is perhaps evident to the reader how (7.8) and the results of Section 4 may 
be used to construct absolutely stable solutions and stress-extension curves for a 
dead loaded bar acted upon by a gravitational body force. However, because of 
its intrinsic interest to experiments, I shall treat the example which corresponds 
to the most common simple tension experiment. Usually in such experiments, 
the bar has an hourglass shape to accomodate the application of grips at the 
ends; that shape is commonly produced by cutting the specimen out of a bar, 
which is homogeneous along its length. To represent this kind of bar, we assume 

( i )  * 1 ~. ~ C~o,Ll, p ( ' ) ~  C~0,L~, 
(ii) for some AE(O,L), a*. and p( . )  are strictly decreasing on 

[0, A] and strictly increasing on [A,L]. (7.19) 

These assumptions are not sufficient that the equation a~-B(X,  ao)=O have 
either zero, one or two solutions. However, they do imply that a~t-B(X, ao) is 
strictly increasing on [A, L], so that at most one zero of a* -  B(X, a0) can occur 
on [A,L]. Let [A,L]  be the largest interval on which a * - B ( X ,  ao) is strictly 
increasing. The constant A will depend upon g but not upon ao- In addition to 
(i) and (ii) above, we assume that 

d , 
(iii) A > 0  and ~ a x + P ( X ) g < O  on (0,.3). (7.20) 
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Condition (iii) may be regarded as an assumption of weak body force; it implies 
that a*-B(X,  ao)=0 has zero, one, or two solutions. Assumption (i) shows that 

< A, and that A tends to A as g ~ O. For sufficiently small values of a o (~o 0"~ 

L 
\ 

\ 

- S p(Y)g dY), no solutions will exist, and the absolutely stable solution will be 
r 

produced by the choice Sa=~l; the bar is deformed in the c~-phase. The/3-phase 
will first appear in an absolutely stable solution at the value of stress a0 = a* 

L 

- S P(Y) g dY. If a o is increased slightly, two phase boundaries, say at 41 and 42, 

will spread outward from A toward the ends of the bar, ~Zl I and -42 being the 
unique solutions of a * - B ( X ,  a0)= 0. The absolutely stable solution will be given 
by 

(5~p -- S) w Sp = [A i, A2], 

(Se~ - S)~S~ = [0, 41)w(A 2, L]. 
(7.21) 

By increasing Cro, the/3-phase will eventually fill the entire bar. The correspond- 
ing stress-extension curve will have the qualitative features of Figure 2b. 

b. Hard Device 

The homogeneous bar in the absence of a body force will be treated first. 
The equilibrium equation has been discussed in Section5b. We assume the 
necessary condition for existence, eL < l </~L, holds. From Sections 5b.1, 5b.2 
and 5b.3, we may deduce the following: 

1. fL<l</3L or ~L<l<~L. The only solution is the homogeneous place- 

ment y(X)= T. X. This solution is absolutely stable. That is, from the definitions 

(5.35) of fi and /~, it follows that ~ < e * ,  ~>/3". Section4 shows that 

z'(X), > 0, unless z'(X) = ~-. The estimate (6 .4) ,  E[z] - E[y] 

L (z,(X),~l) =! g dX, then implies that y(X)= L X is absolutely stable. 
v 

2. ~L<_l<fL. The analysis of (5b.3) shows that the set of possible solutions 
compatible with a fixed value of / can be parameterized by a constant c, which 
belongs to a certain closed interval. 

~. 1= fL .  The closed interval of possible values for c reduces to the point 

~?u (~1). Therefore, y '(X)=cd or y'(X)=f. From Section4, y is not meta- 

stable if y'(X)--~ 1 on a set of positive measure. Hence the only metastable 
solution, y(X)--fiX, is absolutely stable. 

•. l=~L. By similar reasoning as in 2~ above, the only metastable 
solution is y(X)= ~X, and it is absolutely stable. 
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7. ~L < 1 < c~* L. The constant c may belong to the interval 

- - - ~ , ~  , s o  c < o * .  ~ u ' '  ~u 

Therefore 

E[z] - E[y] = ~ g(z'(X), rc,(c)) dX + ~ o~(z'(X), Try(c)) dX (7.22) 
S~ St~ 

is positive for all z~Y,  not identically equal to y, satisfying the end condition 
z(L)=l, if St~--~. From (5.43), St~=~ if and only if l=~(c)L, which has a 

l 
unique solution ~. Therefore the absolutely stable solution is y(X)=~ X. 

6. fl*L<l<l~L. Similar reasoning as in part 2~ applies. The absolutely 

stable solution is y(X)=LX.  

e. ~*L<l<fl*L. Here the constant c always belongs to an interval which 
contains a*. The choice c = a *  always makes the right hand side of (7.22) 
non-negative. If /=~*L,  equations (5.43) show that St~=~. Similarly, if l 
=fl*L, S~=O. Therefore, both of the solutions y (X)=~*X and y(X)=fl*X, 

which correspond to end positions a*L and fl*L, are absolutely stable. On 
the other hand, if a*L<l<fl*L, the choice c=~r* implies that the measures 
of both S, and S~ are positive. Since those sets may be redistributed in any 
way whatsoever in the bar, as long as the redistribution is consistent with the 
condition (5.43) on the measures, then the solutions y(X) corresponding to c 
= t  r* are neutrally stable. No absolutely stable solutions exist when 
~*L <l<fl*L. 
The best way to compare these results with the results for the soft device is 

by comparing the corresponding stress-extension curves. For the hard device an 
increasing sequence of lengths ~L<l~ <l 2 <.,. <lu<flL is prescribed and the 
stresses for the most stable solutions are plotted using the results just deduced. 
A typical stress-extension curve for the homogeneous bar held in a hard device, 
acted upon by zero body force, is given in Figure2c. 

We now briefly consider the problem of the inhomogeneous bar held by a 
hard device, and subject to a gravitational body force. The solutions of the 
equation of equilibrium have been given special treatment in Section 5b. There, 
the minimum and maximum possible values of l were defined by (5.54) and 
(5.55). Every le[l . . . .  /mini is the end position of some solution. We proved that 
fact by constructing a family of solutions depending on the parameter 
cE[al ,  tr2]; in that construction the measurable sets R,(c) and R~(c) were defined 
such that 

R~(al) =O, R~(a2) =0, 

R~wRa = [0, L], R ~ R a  =0, 
S~ =- R~(c)r~S(c), (7.23) 

S~ - R~(c)c~S(c). 
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b. Hard device. Slight gravitational body force, or slight inhomogeneity, e -~- .  

Fig. 3. Typical stress-extension curves plotted from metastable solutions. The triangles 
represent metastable solutions. Open circles represent absolutely stable solutions. 

Let us consider the following choice of R,(c) and Ro(c): 

R~(c) = {X ~ [0, L] IB(X, c) < a}}, 

Ra(c) = {Xe[0,  L]}B(X, c) > a}}. (7.24) 

These sets satisfy the continuity requirement (5.59)1. If al<=~<c<=a2, 
Re(e ) ~ Ra(c) and R~(c)c R~(d). I assume, additionally, that 

Ra(o 1) = fJ, R~(o2) = ~. (7.25) 

This assumption restricts the constitutive function and body force potential. It is 
a mild assumption which allows the full set [lmln,/max] to produce at least 
neutrally stable solutions. If (7.25) is not satisfied, a special, but not difficult, 
analysis can be used to find neutrally stable solutions for a smaller set of values 
of I. 

In the definition (7.24), the set {XIB(X, c) = ~r*} can be partitioned in any way 
whatsoever among R~ and Ra, as long as they remain measurable, and neutral 
stability will be preserved. A sufficient condition that a solution corresponding 
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to a value of c be absolutely stable is that the set {XIB(X, c)= a~,} have measure 
zero. That this condition is not necessary follows from 2e, for example.* 

The summary of Section 4 and equation (6.4) imply that if y is an equilibrium 
solution, and if (7.24) and (7.25) hold, then 

~s~ (7.26) 
+ 

i.e. every le[lm~ ~, l ~ j  corresponds to a neutrally stable solution. Figure 2d is an 
example of a stress extension curve for this situation, in which {XIB(X, c)= a*} 
has measure zero. 

A great many metastable solutions are possible in this theory. However, a 
large class of them will produce stress-extension curves similar to those repre- 
sented in Figure 3. Generally, for sufficiently small extensions or stresses, or for 
sufficiently large extensions or stresses, absolutely stable solutions will prevail. It 
is possible to produce a large class of metastable solutions for the hard device 
which lead to an abrupt falling of the stress-extension curve. 

Appendix 

We shall here sketch the proof  of Theorem 1 of Section 5.** 

Proof  of Theorem 1. Let the region of the X - y  plane bounded by the lines y 
= s  and V=C2 X and the line X = L  be called ~ (see Figure 4). Assume R,  and 
R~ are disjoint, measurable sets, whose union equals [0,L]. Let a function yo(X) 
be defined on [L, L +el .  This function can be extended to the interval [ L - e ,  L 
+ e l  by, first, inserting the function Yo(" +e) into the right hand side of (5.l) and, 
then, by integrating (5.1) in the same manner  as was done for the gravitational 
body force. As with the gravitational body force, there may be a set S of points 
in [0, L] where there is an ambiguous choice of inverse; in that case, on Sr 
use the inverse of the or-branch and on Sc~R~ use the inverse of the fl-branch: 
This function, which we call y,(X), is again translated to the left by an amount e 
and inserted into the right hand side of (5.1), to extend its definition to the 
interval [ L - 2 e ,  L + 5]. Continuing in this fashion, the continuous function y~(X) 
will cross the boundary of ~ at a point X ~. By choosing the initial function 
yo(X) appropriately, it can be shown that for some choice of yo(X), the function 
y~(X) will pass out of ~ at X~=0, so that y(0)=0~ The function y~(X) 
constructed in this way will belong to ~ .  The family of functions {y~(X)} is an 

* The absolutely stable solution y=fl*X corresponding to the end position l=flL, 
and the condition g =0, has the property that {XIB(X, c)= 0*} = [0, L]. 

** Somewhat similar theorems are found in the literature (see KACZYIqSKI & OLECH 
[24]), although they apply only to equations of first order ((5.1) is an integrated equation 
of second order). The theorem also applies to the problem of the elastica with a non- 
convex energy function. 
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Fig. 4. Construction for the proof of existence for the soft device. 

equ icon t inuous  family, so there  is a un i fo rmly  convergent  subsequence  y~  ~ y as 
k r o e .  The  l imi t  funct ion y satisfies (5.1). 
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