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ABSTRACT 

WE STUDY diffusionless transformations in solids which involve a sudden change of shape at a certain 
temperature. We assume the existence of a free energy which depends on the local change of shape and 
the temperature. Properties of this function reflect the underlying symmetry of the parent and product 
phases and an exchange of stability from parent to product phase as the body is cooled through the 
transformation temperature BO, We concentrate on two questions : (i) How can loads be applied to cause 
the body to transform to a particular variant of the product phase at or above O,? (ii) Can the parent phase 
be recovered by applying some system of loads at or below 8,? 

Theory and experiment are compared for thermoelastic martensitic transformations in shape-memory 
materials and for the u-/l transformation in quartz. 

1. INTRODUCTION 

IN THIS paper we study the mechanical behavior of diffusionless transformations 
which involve a spontaneous change of shape of a crystal at a certain temperature. 
These transformations are termed martensitic in metals and polymorphic in other 
substances. Among the diffusionless transformations, “displacive” refers to trans- 
formations having a nonzero spontaneous change of shape with little hysteresis as the 
crystal is slowly cycled through the transformation temperature. “Reconstructive” 
refers to transformations having large hysteresis loops. On the molecular level, dis- 
placive transformations involve co-operative movements of atoms or groups of atoms 
which are not hindered by large energy barriers. Usually there is a change of symmetry 
in a displacive transformation; the higher symmetry usually occurs in the high tem- 
perature phase. While small hysteresis accompanies a displacive transformation, it is 
not necessarily true that the transformation strain or latent heat is small. Also, 
transformation temperatures may be altered hundreds of “C by the application of 
loads. 

The aim of this paper is to predict the effects of load and loading device on the 
transformation temperature and on the stability and arrangement of the phases in 
some simple loading devices. In general terms, our stability criterion and constitutive 
equations come from Gibbs’ (1875-1878) chapter on solids in contact with fluids. In 
this chapter Gibbs gives a finite deformation theory for the equilibrium of stressed 
solids in contact with fluids. He assumes that the internal energy per unit reference 
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volume and entropy per unit reference volume are functions of the deformation 
gradient, temperature, and the mass densities of the various constituents. Since we 
are concerned with diffusionless transformations, we omit dependence on the mass 
densities, and we reformulate the theory in terms of free energy. (A generalization of 
the Gibbs theory which focusses on the role of the mass densities has been considered 
recently by MULLINS and SEKERKA (1985).) We assume a form for the free energy 
which permits an exchange of stability between parent and product phases as the 
temperature passes through the transformation temperature. 

We find necessary and sufficient conditions that certain piecewise homogeneous 
deformations are stable in a dead loading device. Here, “certain” refers to a topological 
restriction on the arrangement of the phases which simplifies the calculations but 
which we do not otherwise understand. The solution of this stability problem leads 
directly to the notion of a transformation surface: a surface which is the boundary 
of a convex region X0 in the set of deformation gradients. The transformation surface 
is uniquely determined by the symmetry of the parent phase and the transformation 
strain. Roughly speaking, stress-induced transformation near the transformation tem- 
perature can only occur by passing out of the “corners” of CZO. Widely different 
mechanical behaviors can be expected depending on which deformation gradients are 
on the boundary of ZO. We completely determine the structure of X0 for a crystal 
with a cubic parent phase, in which case the trace of the transformation strain assumes 
a special importance. 

It is found that the nature of the loading device, not just the stress produced, has an 
effect on stress-induced transformation. Thus, while 2; governs some transformations 
induced by applying dead loads, completely different transformation surfaces are 
appropriate for harder loading devices. We give examples in Sections 7 and 8 illus- 
trating some of the possibilities. 

Theory and experiment are compared for two transformations for which there are 
well-characterized material properties : thermoelastic martensitic transformations in 
shape-memory materials and the sl-/I transformation in quartz. We describe X0 in 
both cases. Theory and experiment are compared on the following observations: 
the variants observed and their arrangement under no loads at the transformation 
temperature, the variant which is stable under loads near the transformation tem- 
perature on specimens of shape-memory material in simple tension which had several 
different initial orientations relative to the tensile axis (the stable variant is different 
in each case), the change of the transformation temperature with pressure and with 
uniaxial compression parallel and perpendicular to the optic axis of the quartz crystal. 

Displacive transformations are often responsible for novel electromagnetic pro- 
perties. For example, piezoelectricity in quartz is limited by the E-B transformation 
(only a-quartz is piezoelectric). Similarly, ferroelectric phases are often produced by 
cooling through a displacive transformation (DEVONSHIRE, 1954); one of the best 
studied ferroelectrics is BaTiO, which undergoes three displacive transformations in 
the sequence cubic --f tetragonal + orthorhombic + rhombohedral as it is cooled. 
Only the cubic phase is not ferroelectric. KINDERLEHRER (1984) treats the ferroelectric 
transition in Rochelle salt with a theory closely related to the one presented here. 
DEVONSHIRE’S (1954, Section 3.7) discussion of clamped and free susceptibilities 
appears to be releated to the loading device effects mentioned above, but we would 
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have to consider the effect of imposed electric fields to make a clear connection with 
his remarks. 

2. KINEMATIC PRELIMINARIES 

We are concerned with transformations in a crystalline body which are accompanied 
by a change of shape but which do not involve diffusion. The change of shape 
associated with the transformation as well as any changes of shape of the phases 
themselves will be described by a deformation y(x), defined for all x in a reference 
configuration R, which gives the position y(x) occupied by the particle x. 

A schematic picture of a transformed body is shown in Fig. 1. This picture could 
represent the appearance of a body which has been cooled to its transformation 
temperature. After transformation, the material line 1 is bent sharply at various 
interfaces which represent phase boundaries. The notion of a “coherent trans- 
formation” is that although I bends at the phase boundaries, it does not break. We 
shall call a deformation coherent if it is continuous on R and its gradient is piecewise 
continuous on R. 

Not all displacive transformations have the property that both phases co-exist at 
the transformation temperature in an unstressed body (see Section 9 for examples of 
both kinds). This is because the strains which correspond to zero stress may or may 
not be compatible across a surface of discontinuity of the deformation gradient. In 
particular, suppose F, and F, denote limiting values of the gradient of a coherent 
deformation y(x) at a surface of discontinuity ~7 of the deformation gradient. Then, 
a result from the theory of shock waves shows that there are vectors a and n such that 

F2-F, = a@n (2.1) 

n being the normal to the surface yb in the reference configuration which is mapped 
into the discontinuity, 

Yml) = 9. (2.2) 

FIG. 1. Deformation of a material line (dashed) in a transformed body. 
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3. FREE ENERGY FUNCTION FOR MATERIALS WHICH UNDERGO 
DISPLACIVE PHASE TRANSFORMATIONS 

Displacive phase transformations have the property that the transformation is 
accompanied by a change of shape. Therefore, we shall assume that the free energy 
function depends upon the local change of shape and the temperature : 

4F, 0). (3.1) 

Here F is the deformation gradient measured from a reference configuration R, and 
4 represents the free energy per unit referential volume. 

While the assumption (3.1) is sometimes associated with “thermoelasticity”, it is 
not true that total mechanical energy is conserved for all isothermal motions of a 
body described by (3.1). That is, the rate of change of total kinetic and potential 
energy, less the power supplied to the body, is not generally zero ; specifically, in the 
absence of body forces, 

PO I Y(x, t) I * d v+ 
s 

R +(VY(X, t), 0) d v 

- s jr@, 0’ MVY(X, 0, Qn dA < 0 (3.2) 
JR 

is satisfied for some isothermal motions y(x, t), 0 = const, having moving dis- 
continuities of deformation gradient. A characterization of the isothermal motions 
which obey the condition (3.2) is given by KNOWLES (1979). In rough terms, the 
assumption (3.1) allows energy to be dissipated in an isothermal motion, but only via 
the movement of discontinuities which we interpret in this paper as the phase bound- 
aries. Similar statements apply to adiabatic motions. 

The free energy is subject to the condition of Galilean invariance, i.e. the restriction 

4(QF, 4 = 4F> ‘3 (3.3) 

holds for all rotations Q, for all Fin the domain of 4, and for all relevant temperatures 
8. We shall be concerned with crystalline materials, and we shall interpret the reference 
configuration as the undistorted parent phase just above the transformation tem- 
perature. With R having this interpretation, we assign a point group P’, of order v, 
and assume that 

4(FR, 0) = 6(F, ‘J) (3.4) 

holds for all appropriate F and 0 and for all R in 9’. The group 9’” represents the 
symmetry of the parent phase. 

The assumption (3.3) implies that 4 can be expressed as a function of FTF and 8 
only : 

cj(F, 0) = &C, O), C = FTF. (3.5) 

Since C is unaffected by changing F to -F, no further restrictions on 4 result from 
the inclusion of improper orthogonal tensors in the group Y’“. Thus, we shall assume 
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that 9” consists of rotations only. This assumption reduces the number of distinct 
point groups to the 11 Laue groups (THLTRSTON, 1984, p. 174). For example, if R 

represents an undistorted fee or bee parent phase, v = 24 and 6Pz4 consists of the 24 
rotations which map a cube into itself. 

A free energy function which has been used to simulate the change of phase of a 
“lattice element” is shown in Fig. 2. Three potential wells are drawn ; the middle one 
is associated with the parent phase. Above the transformation temperature, the well 
associated with the parent phase is lowest, which indicates that the parent phase is 
stable at these temperatures. At the transformation temperature 8,, the three wells 
are the same depth and we are equally likely to find the lattice element in the unsheared 
configuration, sheared to the left or sheared to the right. Below the transformation 
temperature, the sheared phases are equally stable and the parent phase is metastable. 
If a constant shear force t is applied to the element, the total free energy is modified 
by the addition of a linear function ry, which shifts the potential wells up or down. 
For example, if 0 > 6” and z is positive and sufficiently large, the right hand potential 
well of the modified free energy drops to the y-axis. We would interpret this result by 

saying that the shear force z causes the element to transform at the temperature 6. 
The analog of P’” for the lattice element is the group { - 1, l}, since 4(--y, 0) = 4(y, U). 
A statistical theory of MijLLER and WILMANSKI (1980) for martensitic transformations 

Stable 
Shapes 

FIG. 2. Free energy of a lattice element. 
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delivers curves like the ones shown in Fig. 2 and also gives a basis for the treatment 
of fluctuations. 

It is our purpose to formulate a three dimensional analog of the free energy of a 
lattice element. The subscripts p and t will be associated with the parent and trans- 
formed phases, respectively. 

For temperatures 8 greater than the transformation temperature B,,, we assign a 
function C,(e) which represents the Cauchy-Green strain tensor in the parent phase. 
We assume C,(8) is a strict minimizer of the function &C, 0) for each fixed 8 > do. 
These assumptions imply that the stress vanishes at C,(Q) and that RC,(B)Rr = C,(e) 
for each R in 9”. The special forms of C,(e) consistent with this invariance for all of 
the point groups are known (THURSTON, 1984, table 16.2). For example, if Pz4 
represents the cubic group and RC,(B)Rr = C,(B) holds for each R in P4, it follows 
that C,(e) = cr(Q)l. That is, a stable unstressed cubic crystal expands uniformly with 
changes of temperature. At the other extreme, C,(e) generally has distinct eigenvalues 
and e-dependent eigenvectors for a triclinic crystal. By our choice of reference con- 
figuration c,(e,) = 1. 

At the transformation temperature, we assume that there is another strain tensor 
C,(&,) # C,(&,) which has the same free energy as C,(&,) : 

6we,), 0,) = iWw,>, a = 0. (3.6) 

Without loss of generality, we have assigned the value 0 to the common free energy. 
The strains C,(&) and C,(&) are analogous to the shears y = 0 and y = y2 shown in 
Fig. 2. Equations (3.6) (3.5) and (3.4) imply that 

&RC,(Bo)Rr, 6,) = 0 (3.7) 

for each R in 9’. Thus, the v tensors RC,(&,)R“ also minimize the free energy at H,. 
These v tensors are associated with the “variants” of the transformed phase. They 
may not all be distinct.? 

For 0 d do we assume the existence of a function C,(e) whose value C,(&,) coincides 
with the one given above. We assume that the set of tensors (RC,(B)Rr} strictly 
minimizes the free energy at each t3 < &, in the sense that 

d(C, 0) > &C,(e), 0) (3.8) 

for each C which is not equal to RC,(B)Rr for any R in 9”. These assumptions 
represent a properly invariant three dimensional interpretation of the free energy of 
a lattice element shown in Fig. 2. 

A special case which is sometimes satisfied is the case where the transformation is 
stress-free and coherent at the transjbrmation temperature. By this we mean that there 
are vectors a and n such that 

c,(e,)) = (l+n 0 a)(lfa 0 n). (3.9) 

Besides the fact that a lattice element cannot experience three-dimensional or 
inhomogeneous changes of shape, there are two other ways in which the lattice element 

i_ See 9b for an example where v = 12 but these tensors are identical 
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oversimplifies displacive phase transformations. The first is that compatibility plays 
no role, whereas the results of the 3-D theory are highly dependent upon whether or 
not (3.9) is satisfied. Secondly, the 3-D theory permits an unloaded body to be 
internally stressed. 

We summarize the constitutive assumptions below. The rotations RI, . . , R,, 
comprise an enumeration of the point group Y’“. 

Summary 

e > f& &C,(d), 0) < &(C, 0) for all C z C,(0), C,(0,) = 1. (3.10) 

0 = 8, $(C,(&), 0,) = &I, 0,) < &C, 0,) for all C # I, 

R,C,(&,)RT,. . , R,C,(f&)R:. (3.11) 

8 < 8, &C,(0), 0) < $(C,8) for all C # R,C,(@RT, . . , R,C,(B)R,T. (3.12) 

In the following sections, we shall use the notation U,(e) and U,(0) for the positive- 
definite square roots of C,(e) and C,(e), respectively. We refer to U,(&) as the 
transformation strain. A deformation gradient F will be termed “in the parent phase” 
or “in the transformed phase” if FTF is near 1 or FTF is near RU:Rr for some R in 

Y”, respectively. We assume U,(0) and U,(e) can be continued for 0 < 8, and 0 3 Q,,, 
respectively, as relative minima. 

4. ANALYSIS OF PIECEWISE LINEAR DEFORMATIONS UNDER DEAD LOADING 

In this section we give necessary and sufficient conditions that certain piecewise 
linear deformations are stable in a dead loading device. The conditions apply to a 
slightly more general class of deformations than considered by JAMES (1982). 

If t(x) represents an assigned Piola-Kirchhoff traction applied to aR, the total free 

energy E[y ; 01 of a dead loaded body subject to a deformation y(x) is given by 

Ety ; 01 = 
s 

4(Vy(x), 8) dV- 
s 

t(x) * y(x) d/4. (4.1) 
R i;R 

Given a traction field t(x), a deformation f(x) is stable in a dead loading device at 
the temperature 8 = const. if it minimizes the total free energy; the inequality 

-Q ; 01 G E[Y ; 01 (4.2) 

holds for all suitable deformations. Here, “suitable” refers to various technicalities 
associated with smoothness and with the domain of definition of 4 ; for our purposes 
it would be sufficient to allow $(F, 0) to be defined for all F with positive determinant 
and have the property that 4 + co as det F + 0. The class of competing deformations 
is then the class of continuous, piecewise differentiable deformations whose gradients 
have positive determinant. In the following, this will be understood to be the class of 
functions which compete for the minimum of the free energy. The physical interpret- 
ation of a dead loading device is that the imposed force t(x) dA applied at y(x) 
maintains its magnitude and direction regardless of how the body deforms. 
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We shall consider piecewise linear deformations. To this end we divide R into n 
polyhedral regions R,, . . . , R,. A piecewise linear deformation is a deformation of the 
form 

y=~(x)=F,x+q forxERi, i= l,..., n. (4.3) 

Here F1,..., F, are constant tensors and cl,. . . , c, are constant vectors. If f(x) is 
continuous as well as piecewise linear, the arrangement of the Ri is severely restricted. 
Some special arrangements which are consistent with the continuity of y(x) are given 
by JAMES (1984). 

Suppose a piecewise linear deformation f(x) is stable. Several conditions that f(x) 
must necessarily satisfy are well-known. These are : 
(1) Equilibrium. If Ri borders on RI and the dividing plane has a normal n,, then 

g (F;, f3) - g (F,, 0) nii = 0. (4.4) 

(2) Local Stability of the Interface. If Ri borders on Ri, then? 

4(Fi, 0) - d(Fj, 0) - (F;-Fj) * &(F,, 0) = 0. (4.5) 

(3) Natural Boundary Conditions. 

g(Vj, 8)n = t on 8R. (4.6) 

These are proved directly from the definition of stability and they are true also in a 
wide variety of mixed loading devices. The condition (4.5) has been studied by 
ABEYARATNE (1983), GRINFEL’D (1980), GURTIN (1983) and JAMES (1981); it can be 
viewed as a consequence of another necessary condition for a minimum known as 
rank-one convexity (see GRAVES, 1939; BALL, 1977), and it has an intimate relation 
to J-integrals (see GURTIN, 1983; RICE, 1984). The three conditions (4.4), (4.5) and 
(4.6) also hold for general continuous, piecewise differentiable deformations with Fj 
and Fi interpreted as the limiting values of the deformation gradient at a surface of 
discontinuity. 

The condition (4.6) shows that f(x) cannot be stable unless the assigned traction 
agrees with the traction produced by f(x). Thus, from now on we assume that for x 
on JR n aRi, 

t(x) = t,(x) = $ (Fi, @n(x), (4.7) 

n(x) being the outward unit normal to aR at x. 
We now look for additional conditions which must be satisfied by the stable, 

piecewise linear deformation f(x). If y(x) is another suitable deformation, we have by 

t The dot product of two tensors is given by A. B = tr AB’ (= A,,B,, in rectangular Cartesian 
components). 
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assumption 

[WY, @-4(Fi, @I dv- s (4.8) 
aR,naR 

We apply the divergence theorem to the second integral in (4.8) and make use of (4.4) 
and (4.6). If we let 

denote the Piola-Kirchoff stress in region Ri calculated from the assumed minimizer, 
we can write (4.8) in the equivalent form 

j$, s, (4(VY, e)-~(Fj,e)-(VY-Fj)‘Tj} dv a 0. (4.10) 

At this point, a substantial simplification is achieved if we make an assumption 
about the way the regions R,, . . . , R, are arranged. To describe this assumption we 
use the phrase “Ri borders on Ry’ to mean that the intersection of aRi and aRj has 
nonzero two dimensional area. A piecewise linear deformation y(x) of the form (4.3) 
will be termed simple if for each i E { 1, . . . , n}, each member of the set of deformation 
gradients (F,, . . . , Fi_ 1, F,, ,, . . . , F,} is the def ormation gradient on some region 
which borders Ri. For example, if each region borders on every other region, then 
this assumption is fulfilled. Examples of continuous, piecewise linear, simple defor- 
mations are given in JAMES (1984). Figure 1 shows an example. 

We suppose that y(x) is simple. Let R, be a momentarily fixed region. Since every 
deformation gradient from the set (F 1, . . . , F,}, except F, itself, is defined on a region 
which borders R,, we can write down IZ - 1 versions of equation (4.9, with j taking 
onthevalues(l,..., m-l,m+l,..., n} but with i = m. Use each of these equations 
to eliminate the n - 1 terms 4(Fj, 0) from (4. lo), j # m. We get 

bKVY~ Q-dmm 0)-(Vy-F,)*Tj} dV 2 0, (4.11) 
I 

which must hold for all continuous, piecewise differentiable functions y(x). We now 
make the special choice y(x) = Gx, G = const for the competitor. With this choice, 
the integrand in (4.1 I) becomes a constant and can be integrated to yield 

(4.12) 
j=l j=l 

Vj being the volume of the jth region. The inequality (4.12) must hold for all choices 
of the constant tensor G. 

The left hand side of (4.12) is non-negative and it vanishes at G = F,. Thus, its 
derivative with respect to G evaluated at F, must vanish, viz., 

T,f v,- k I/,Tj=O. 
,=I j=l 

(4.13) 



368 R. D. JAMES 

Equation (4.13) shows that the Piola-Kirchhoff stress in the mth region is equal to 
the volume averaged stress. Since m is arbitrary, we have shown that 

T,=T=const .j= I ,..., n; (4.14) 

the Piolu-Kirchho~stress in each region is the same. Having derived (4.14), we now 
return to (4.12) and conclude that for all G in the domain of 4(*, 0), 

&G,8)-&F,,8)-(G-F,)*T 3 0, k = 1,. . . ,n. (4.15) 

Conversely, if (4.15) holds for all choices of G, it holds in particular for G = Vy(x), 
where y(x) is any competing deformation. Thus, the integrand of (4.11) is non- 
negative, so (4.11) is satisfied. Retracing the steps of the argument, we conclude that 
f(x) is stable in a dead loading device at the temperature 8. As a matter of terminology, 
FL will be called a point qf convex&v qf 4 if it satisfies (4.15). 

We have shown that the conditions (4.14) and (4.15) are necessary and sufficient for the 
stability of a simple piecewise linear deformation in a dead loading device. Now we shall show 
that they are sz@cient conditions for stability of (not necessary simple) piecewise linear 
deformations in a wide variety of mixed loading devices. Suppose a continuous piecewise linear 
deformation Jo of the form (4.3) has deformation gradients F,, , F, which are points of 
convexity of 4. Let aR be divided up into two disjoint parts aR , and aR,. Suppose dead loads 
t(x) given by equation (4.7) are assigned on i3R,. The total free energy for a body fixed on aR , 
and dead loaded on aR 2 is 

-CAY ; '3 = s ~(VY(X>, 4 d v- s t(x). y(x) dA. 
R JR2 

(4.16) 

All competitors for the minimum of E,,, must also satisfy the displacement boundary conditions 

y(x) = j-(x) forxcaR,. (4.17) 

We now prove that j(x) minimizes E,[y ; t3] among all deformations satisfying (4.17). By 
integrating the condition (4.15) over each Ri with G = Vy(x) and then adding up the results, 
we get (4.10). Now use the divergence theorem on the term (Vy -FJ * T, to get (4.8). The second 
integral in (4.8) reduces to an integral over aR,, by virtue of (4.17). Thus, f(x) minimizes E,. 

In this proof of sufficiency we did not assume that the minimizer is simple. However, 
even complicated continuous piecewise linear deformations whose gradients are points 
of convexity of 4 have a uniform Piola-Kirchhoff stress. That is, if Ri borders on Ri 
(so Fi = Fj+a @ n and Tin = Tjn) and if Fi and F, are points of convexity of 4, then 
Ti = Tj. To see this, we write the condition of convexity for Fi and we write condition 
(4.5) : 

4(G)-&F,)-(G-F,)*T, 3 0 for all G, 

d(Fi)-&F,)-(F,-F,)*T, = 0. 
(4.18) 

We have left 0 out of these equations to shorten the notation. In the last term of 
(4,l S)z we can replace Tj by T, because 

(F,-F,).T, = (a 0 n)*T, = a.T,n = a*T,n = (F,-F,)*T,. 

After this replacement, we add the two conditions in (4.18) and get 

4(G) - 4(F,) - (G -F,) * T, 3 0, 

(4.19) 

(4.20) 
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which must hold for all G. The left hand side of (4.20) is a non-negative differentiable 
function of G which vanishes at G = F,. Thus, its derivative at G = F, must vanish, 

which yields 

T, = T,. (4.21) 

Because of (4.21) points of convexity of C$ which arise from continuous defor- 
mations have a nice geometric interpretation due to GIBBS (1873). We view the energy 
function #(F, 0) with 6 fixed as a “surface” over the nine dimensional space of 
deformation gradients. A plane of slope T is pushed up against this surface from 
below so that it just touches it at various points. Suppose it touches the surface at 
deformation gradients F,, . . . ,F,. These are points of convexity of 4. If F,, . . . , F, are 
also gradients of a continuous piecewise linear deformation f(x) of R, then f(x) is 

stable in any mixed loading device in the sense discussed above. The content of Gibbs’ 
phase rule is that generically, the plane touches the surface at less than eleven points, 
just as an irregular rigid three dimensional object placed on a rigid plane usually sits 
on three points. Invariance groups like 9” can disrupt the rule; for example, the 
energy function summarized by (3.10) (3.11) and (3.12) has an infinite number of 
points of convexity at 8 = 8, corresponding to T = 0. 

In the rest of this paper, we study the points of convexity of a free energy function 
with the properties given in (3.10))(3.12) and relate the results to experiment. 

5. POINTS OF CONVEXITY OF THE FREE ENERGY 

To find points of convexity of the free energy function 41 corresponding to a fixed 
Piola-Kirchhoff stress T and fixed temperature 8, we simply minimize over F the 

excess function 

$(F, 8) -F - T. (5.1) 

The existence of minima is guaranteed by mild growth conditions on 4 which do not 
contradict any of the other assumptions on 4 we have made in Section 3. In this 
section we estimate the location of these points of convexity for various values of T 

and 0. 
We begin with the case 8 = e0 and T = 0. Then, the points of convexity are simply 

minima of 4(F, d,). By assumption (3.11) the minima are all deformation gradients 
of the form 

R or iiU,R, (5.2) 

where U, is the transformation strain, R and R are rotations, and R, is an element of 
9’“. By (3.1 l), there are no other points of convexity with T = 0 and 0 = f3,,. 

The existence of an infinite number of points of convexity at 0 = ~9~ corresponding 
to T = 0 suggests that we should observe a great number of variants in an unloaded 
body at the transformation temperature. Often, in metals, exactly v variants are 
observed bordering the parent phase. The reason for this is based on coherence and 
is explained in Appendix 1. 

The convex hull of the points of convexity corresponding to a fixed Piola-Kirchhoff 
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stress T plays a key role in locating points of convexity corresponding to nearby 
Piola-Kirchhoff stresses. Consider the case 6’ = 8,. Let X0 be the convex hull of all 
the points of convexity corresponding to T = 0. The theory of convex sets (see 
ROCKAFELLAR, 1970, for example) shows that any G in Z0 can be written as afinite 

convex combination of these points of convexity, viz., 

G = 1 &Qk + c LQ,U,R,, 
k Lm 

(5.3) 

where 

A, 3 0, 3”,, 3 0, (5.4) 

and 

Tj"k+ &&PI = l. (5.5) 

,In (5.3), the ok and QI are rotations and the R, are members of 9’. From the 
representation (5.3) it follows that both Z0 and 83/e, are mapped into themselves by 
transformations of the form Q . . R,. The boundary of X0 acts like a kind of yield 
surface? because of the following result : fP is a point of convexity qf cj and E is in 

SO then the stress vanishes at fi, 

(5.6) 

Therefore, the points of convexity corresponding to a loaded body will lie outside 
A$. For example, if we start with an unloaded, homogeneously deformed body in 

the parent phase (F = 1) at eO, and we apply dead loads so as to bring the body to 
another homogeneously deformed state with deformation gradient P, then E will lie 
outside of X0. It will turn out that the points of convexity corresponding to small 
non-zero Piola-Kirchhoff stresses will lie in cone-like regions emanating from the 
“corners” of A?(“. 

We note that there are some tensors in yi” which do not have positive determinants 
and therefore are not in the domain of 4. This does not invalidate any of our 
arguments. 

To prove the statement just before (5.6), we let E belong to both the domain of C$ and cris, 
so that we may assume F is given by the expression (5.3), which we write in the simplified form : 

P=-&I,Gk &>O, CA,= 1. (5.7) 
k k 

The G, are minimizers of qS(F, 0,) and are of the form (5.2). Since E is a point of convexity by 
assumption, 

~(G,.O,,)-s(e.o,,-(G,-P,.~(P.H,) 2 0. 

Multiply (5.8) by ILk and sum, using (5.7)? : 

(5.8) 

t In 6 we show that ,ZO has a non-empty interior. 
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If we now use (5.7),, together with the fact that 4(Gk,0,) is independent of k, we get from 
(5.9), 

@(Gk> 4) z 4@, 41). (5.10) 

But the G, minimize &F, f$,), so by (5.10) P must also minimize 4(F, B,,), which yields the result 
(5.6). In fact, because of assumption (3.11) on the free energy function, i? must either be a 
rotation or be of the form RU,(&)R,. 

Thus, points of convexity of 4 corresponding to loaded states (T # 0) must lie outside 
of X0. Recall that the existence of points of convexity corresponding to a given T is 
easily proved from mild growth conditions on 4-for example, 4 grows faster than 
any linear function of F as 1 F ) + co and Q, -+ a3 as det F + 0. To find these points of 

convexity while avoiding technicalities, let us assume that F(s) defined for 0 < s < j: 
represents a smooth curve of points of convexity of 4 which leads away from a point 
of convexity on a&$. Specifically, assume : (a) F(o) minimizes $(F, 13,) ; (b) F(s) is a 
point of convexity of 4 for 0 d s < 3. Let &(G, H) be defined by 

g(G, H) = b(G, ‘A) - $(H, ‘&) - (G -H) * MH, Q,>. (5.11) 

Note that if H is a point of convexity, then 

&(G, H) > 0 for all G. (5.12) 

& satisfies the identity 

b(G,H) = &(G,K)+&(K,H)+(G_K).C~,(K,8,)-~,(H,eo)l (5.13) 

for all G, H and K. 
In (5.13) let G be any point of convexity in X0, let K = F(o), and let H = F(s). 

Then, the left hand side of (5.13) is non-negative, and the first term on the right hand 
side vanishes. Thus, 

g(F(o), F(s)) + (G-F(o)) * [&W(O), 00) - MW, edl 2 0. (5.14) 

The left hand side of (5.14) is a non-negative smooth function of s defined for 0 < s < s^ 
which vanishes at s = 0. Therefore, its derivative with respect to s at s = 0 is non- 
negative, which yields 

(G -F(o)) * (~FF(WO)))F’(O) d 0. (5.15) 

Equation (5.15) restricts the directions F’(o) which lead away from Z0 along curves 
which consist of points of convexity. Notice that (5.15) holds not only for G in X0 
which are points of convexity, but also for any G in ZO. That is, (5.15) is linear in G, 
so if it holds for each of G = G,, . . , G,. It also holds for G = C&G, whenever A, > 0, 
X%,= 1. 

It is illuminating to express (5.15) in terms of tensors associated with the linearized 
theory. Consider a linearized theory of elasticity, linearized about the point of con- 
vexity F(o). F(o) generates a new reference configuration R” in the usual way: 
R” = F(o)R. Let the free energy function associated with the reference configuration 
R” be given by 

4”(F) = 98FF(o), 0,) (5.16) 
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and note that by Galilean invariance 4”(F) = 4”(U), U being the positive definite 
square root of F TF. The tensor of linear elastic moduli at B?” is 

(5.17) 

and the infinitesimal strain tensor based on displacements away from 9’ is 

E’ = 1/2[F’(o)F(o))‘+(F’(o)F(0))‘)~]. (5.18) 

With these definitions, the condition (5.15) becomes 

@-I)* L”E ’ < 0, (5.19) 

which must hold for all I? in a certain set 2;. & is the set of all symmetric tensors 
obtained by transforming each element G of Zoo according to the rule 

1/2[GF(o) - ’ + (GF(o) - ‘)‘I, (5.20) 

which accounts for the change of reference configuration. The restriction (5.19) 
describes a cone of directions shown schematically in Fig. 3; it is represented in 
the set of positive definite symmetric right stretch tensors based on the reference 
configuration R”. Therefore the function U(S) shown there is given by 

U ‘(s) = (F (s)rF (s))“?, (5.21) 

where 

F ‘(s) = F(.y)F(o) ‘. (5.22) 

$,, will typically have a corner at U” = 1 as shown. The restrictions (5.19) or (5.15) 
embody rules like “normality rules” and &0 is reminiscent of corner theories of 

FIG. 3. Schematic view of directions along which a loaded body can transform in the set of right stretch 
tensors. 
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plasticity (see CWRISTOFFERSEN and HUTCHINSON, 1979). Here, normality is expressed 
in terms of an inner product whose positive-de~nite metric is the tensor of linear 

elastic moduli evaluated at the particular variant which is stable under the imposed 
stress. The analogy with plasticity theories cannot be carried too far, because these 
results are highly dependent on the nature of the loading device. We shall not make 
any further use of the reference configuration R”. 

We now consider the behavior under dead loads of bodies near the transformation 
temperature. This behavior is essentially determined by Z0 and by the structure of 
4 near its v + 1 potential welfs. 

First, it is geometrically clear that if 1 is in the interior of RO, then for the 
temperatures below but near the transformation temperature, the homogeneously 
deformed parent phase cannot be recovered by applying any system of dead loads. 
In precise terms, if I is in the interior? of X0, then there are no points of convexity in 
a sufficiently small fixed open neighborhood of U,(B) for 8 less than ofi but sufhciently 
close to &. (Recall that U,(O) is the positive definite square root of the function C,(0) 
introduced in Section 3.) If there are no points of convexity near U,(B), then there are 
also no points of convexity near QU,(O) for any rotation Q, since QXoR, = %O. 

Second, it is geometrically clear that if IJ,(f&,) is in the interior of 26, then for 
temperatures above but near &, no homogeneously deformed variant of the trans- 
formed phase can be recovered by applying dead loads. The corresponding precise 
statement parallels the one given in the preceding paragraph. The proofs of both 
statements are given in Appendix 2. 

On the other hand. if any defo~ation gradient P is a point of convexity on (?$PO, 
we expect to be able to obtain some homogeneous deformation y(x) = Fx with F near 
E by a suitable application of dead loads in many cases. Study of these cases would 
lead into a somewhat more technical analysis. We hope it is clear from the analysis 
presented above that the geometric structure of &+-especially the points of convexity 
which lie on iM$-essentially determines the homogeneous deformations and the 
simple piecewise homogeneous deformations which are stable under dead loads near 
the transfo~ation temperature. 

We conclude this section with some additional information on points of convexity which 
clarifies their physical interpretation. Consider the following three possible expressions for the 
free energy, 

&F, @o) = &U, 6,) = &C, O,), (5.23) 

the three tensors being related through the polar decomposition by F = RU, U* = C. Consider 
the corresponding three excess functions 

F(F,,F,) = ~(Pz,8,)-~(F,,B,)-(F,-F,).cb,(F,,e,), 

&UzlU,) = FCU,,e,>-g(U,,e,)-(u,-U,,.~“(ul,e,), (5.24) 

&C,>C,) = ~(C,,B,)-;f,(C,,B,)-(C*-C,).~c(C,,e,,. 

The excess functions 8 and B are related by an identity. To describe it, let F, and F, have polar 
decompositions 

FZ = R& F, = R,U, (5.25) 

? Recall that 1 belongs to *y% by definition. 
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and let C, be the Cauchy stress at U, : 

Let 

U= U2LJ;’ and Q = RTR2. (5.27) 

Then, an easy argument yields the identity 

&(FZ,F,) = &U2,U,)+(I-Q)U.Z,. (5.28) 

If we put Q = I in (5.28) we see that $‘F, is a point of convexity $&F, 0,) then U, is a point 
of convexity qf$(U, 0,). The identity (5.28) shows that the converse is not true. Also, it is easy 
to show that F, being a p_oint of convexity of 4(F, (3,) neither implies nor is implied by C, being 
a point of convexity of&C, H,,). Thus, while it would be easier to describe the analog of X0 in 
U or C space, these analogs are not related to stability in a simple way. For some necessary 
conditions like (5.19) a U-space representation of P0 is useful. 

If we now assume F, is a point of convexity, and put U? = U, in (5.28) we get 

(I-Q)*C, b 0, (5.29) 

which must hold for all rotations Q. It is known that the inequality (5.29) asserted for all 
rotations Q is equivalent to the conditions 

a,+02 3 0, 

g3+03 3 0, (5.30) 

0, + gj 3 0. 

01, 02, g3 being the eigenvalues of Z;, (principal stresses). Thus, homogenous deformations 
under compressive loadsP“compressive” interpreted in the sense of the failure of (5.30)-are 
not stable in a dead loading device. This is easy to understand in that homogeneous defor- 
mations which do not satisfy (5.30) buckle by flipping over. Compressive loads, which arise 
often in experiments on displacive transformations in minerals, are treated in Section 8. 

6. ANALYSIS OF THE TRANSFORMATION SURFACE i3uic, 

The purpose of this section is to describe 2,. We give a complete analysis for the 
case in which the parent phase is cubic. We begin with results which hold for all the 
point groups. 

Since all rotations are contained in A$, the convex hull of the rotation tensors is 
contained in ZO. Let +ZO denote this convex hull. If G belongs to %YO, G can be 
represented in the form 

where 

k 

and the R, are rotations. Some G given by (6.1) have negative determinants. To 
find those with positive determinants, assume that det G > 0. If G has the polar 
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decomposition Ra, then from (6.1) 

where 

Rk = iiTRk. (6.4) 

We first show that if A,, A2 and ,I3 are the eigenvalues of u (i.e. the principal 
stretches), then 

Ai+/Ij-I, < 1 (6.5) 

holds for (ijk) equal to any permutation of (123). The set of three inequalities and the 
conditions I, > 0, 1, > 0, and A3 > 0 imply that the principal stretches of every 
deformation gradient in V0 lie in the six-sided polyhedron shown in Fig. 4. To prove 
(6.9, we note that the left hand side of (6.5) can be written 

tr CJ - 2ek - Uek (no sum), (6.6) 

ek being the kth eigenvector of 0. Using (6.3), the expression (6.6) becomes 

c pi(tr ii, - 2ek ’ ii&k) 
I 

(6.7) 

which is a convex combination of numbers. Since this convex combination is bounded 
by the largest of these numbers, we now consider for a fixed unit vector e the value 

rn,“” (tr R - 2e - Re), (6.8) 

FIG. 4. The deformation gradients in the convex hull of the rotation tensors are those with principal 
stretches in this polyhedron. 
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(the maximum taken over all rotations) which equals 

- rnin (-tr R+2e*Re) 

= - rnjn [tr (R( - 1 + 2e 0 e))]. 
(6.9) 

Since - 1 + 2e 0 e is just a 180 rotation and the trace of a rotation can be always 
written 1 + 2 cos 8, the value of (6.9), is simply 

-mjn(l+2cos8) = 1. (6.10) 

Thus, we have proved that the expression (6.6) is less than or equal to 1, which 
establishes (6.5). 

Now we show that in fact Fig. 4 completely defines the set of tensors with positive 
determinant in V0 ; every deformation gradient with principal stretches in the indicated 
polyhedron is in GK,. To show this, notice that 1 and the 180’ rotation - 1+ 2e @ e, 
1 e 1 = 1 are in VO. Thus, 

e@e=il+i(-1+2eOe) (6.1 1) 

is in go. Also, 0 is in %,, because it can be written in terms of an orthonormal basis 
{e,) as the convex combination 

o=~(-1+2e,~e,)+~(-l+2e28e2)+~(-l+?e;8e3)+~1. (6.12) 

Given an orthonormal basis {e,}, we have shown that the five tensors 

I, el 0 e,, e, 0 e,, e, 0 e3, 0 (6.13) 

are in gO. These represent the five vertices of the polyhedron shown in Fig. 4. 
By taking convex combinations of these five tensors, we can obtain any positive- 
semidefinite tensor with eigenvalues in the convex hull of these vertices, that is, in the 
polyhedron shown in Fig. 4. Since R%Yo = GZo for any rotation R, then the deformation 

gradients in VO are precisely those with principal stretches in the polyhedron shown in 
Fiy. 4, excluding the faces in the co-ordinate planes.7 This result shows that g0 and 
therefore X0 has a non-empty interior in [WY. 

A slightly more sophisticated version of the argument presented above would show 
that the symmetric tensors in q0 are precisely those with eigenvalues in the tetrahedron 
with corners at (1, 1, l), (- 1, - 1, l), (1, - 1, - 1) and (- 1, 1, - 1). The polyhedron 
in Fig. 4 is the intersection of this tetrahedron with the positive quadrant. 

Suppose the transformation strain U,(Q,) has eigenvalues in the interior of this 
polyhedron. Then, clearly, yi”o = VO. In this case the homogeneously deformed trans- 
formed phase is not stable under any system of dead loads at the transformation 
temperature. In summary, regardless of the point group P”, if the principal trans- 

t Because deformation gradients have positive determinants. 
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formation strains 2; , Ai and 2; satisfy the inequalities 

311 

then ZO = %TO. 

If (6.14) is not satisfied by the principal transformation strains, then U, (and 
therefore every tensor of the form RU,RJ is on 8X0. This follows from theorems in 
convex analysis; first that each “extreme point” of X0 (Rockafellar, 1970, p. 162) is 
of the form R or of the form RU,R, (Rockafellar, 1970, Cor. 18.3.1) ; second that y% 
is the convex hull of its extreme points (Rockafellar, Cor. 18.5.1); and third that the 
extreme points of y% are on 8X0. 

We have established that %0 looks schematically like one of the diagrams in Fig. 
5. In the case that (6.14) is not fulfilled, it remains now to distinguish between b and 
c in Fig. 5. Whether or not 1 is on as0 in the case that (6.14) fails depends on a delicate 
relation between the point group and the transformation strain. The diagrams in Fig. 
5 should not be taken too seriously, since the basic fact RXORi = Z0 is not 
represented. For the cubic point groups (23) or (432), we now determine whether or 
not 1 is on a&& 

We assume that (6.14) is not satisfied by the principal transformation strains, since 
this case has already been covered. We first show that if tr U, f 3, then 1 is on a&$. 
Assume that tr U, < 3. Consider the expression (5.3) for any C in X0. The trace of 
(5.3) is 

trG=C~ktrQ,+C;l,,tr?,U,R,, 
k 1.m 

(6.15) 

and 

Also 

trQ,=1+2COS8,<3. (6.16) 

tr [Q,U,R,] = tr [Q,R,R,W,R,,,] d m;x tr [R(R,TU,R,)], (6.17) 

the maximum taken over all rotations. In Appendix 3, we show that this maximization 

problem is solved by R = 1, implying that 

tr [Q,U,R,] d tr (RzU,R,) = tr U, < 3. (6.18) 

If we bound the convex combination (6.15) using (6.16) and (6.18), we get 

trG Q 3. (6.19) 

We conclude that if tr U, < 3, then tr G < 3 for every G in ZO. Since there exist 
tensors arbitrarily close to 1 with trace greater than 3, then I belongs to a&& Hence, 
if A’, + 2: + 2: d 3, then 1 is on &%& This result holds regardless of the point group. 
Its converse is true for point groups in the cubic system. 

To see this, assume that tr U, > 3 and consider the following “average” over the 
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b) 

c) 

0 ’ 4 :I parent 

“t R4 “t 
U. 

FIG. 5. Schematic pictures of 2,. (a) The transformation strain satisfies (6.14). (b) and (c) The trans- 
formation strain does not satisfy (6.14). These pictures ignore some symmetries of Z,,. Without loss of 

generality we have put R, = I. 

cubic symmetry group : 

M = ;zR,IJ,R:. (6.20) 
I 

These averages are studied by Weyl (1946, p. 185). In (6.22) v is either 12 (point 
group 23) or 24 (point group 432) and R, , . . , R,, is an enumeration of either of these 
point groups. Since 9” is a group, we have 

R,MR,T=M, i= l,..., v. (6.21) 

It is known that the only such invariant tensors under the cubic point groups are 
dilatations. Thus 

M = cd, (6.22) 
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for some scalar IX. To evaluate CI, we take the trace of (6.20) and get 

319 

1 
cc=jtrUI> 1. (6.23) 

Also, notice that M belongs to X0 because the right hand side of (6.20) is a convex 
combination of tensors in X0. In Fig. 4, M is represented by a point in the positive 
octant on the line passing through (0, 0,O) and (1, 1,l) which is not in the polyhedron. 
The point (1, 1, I), which represents the tensor 1, lies in interior of the convex hull of 
the point representing M and the polyhedron. Thus, every symmetric tensor in a 
sufficiently small neighborhood of 1 can be written as a convex combination of M 
and members of gO. Hence, 1 is in the interior of X0. In conclusion, ij 
AI + & + 2; > 3, then 1 is in the interior of X0 for crystals with a cubic parent phase. 

7. CONTRAST OF THE RESULTS WITH THE EFFECT 

OF AN HYDROSTATIC PRESSURE 

Consider a body described by the free energy function given in Section 3 in a 
pressure vessel so large compared with the size of the body that any change of shape 
of the body produces a negligible change of the pressure p. This physical situation is 
modelled by a total free energy of the form 

&[Y; 01 = s ~(VY(X>> 0) dv+p VOW), 
R 

(7.1) 

which can also be written 

= RM(V~@), Q+P det VYWI dV. s (7.2) 

It should be noted that this kind of total free energy may not be a good model for 
experiments in the diamond cell apparatus, in which a nearly incompressible fluid of 
small volume may confine a sample of relatively large size. 

Since the total free energy (7.2) is really a special case of (4. l), the preceding results 
for unloaded bodies can be adapted to the hydrostatic case. We replace q5 by ~#+p 

det F and note that the augmented potential shares the invariance of the original 
potential. Stable, continuous, piecewise linear simple deformations have deformation 
gradients which are minimizers of 4 +p det F. These deformations are also stable in 
appropriate mixed loading devices as discussed in Section 4. Geometrically, it is 
convenient now to think of the supporting plane for the modified free energy surface 
as always having zero slope, while the surface itself changes shape with p. The 
transformation surface a&$ has the same significance as before, but it depends on the 
pressure p. 

Consider a crystal with a cubic parent phase at the temperature 8, and a trans- 
formation strain U, satisfying tr U, > 3. Then, according to the results of Section 6, 
1 is in the interior of ZO. Thus, the homogeneously deformed parent phase cannot be 
recovered by applying any system of dead loads ; for a broad class of realistic energy 
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functions, one of the variants is stable under small dead loads which are compatible 
with a homogeneous deformation. With tr U, > 3 we can have either det U, > 1 or 

det U, < 1. (We note that a linearized theory would mask these differences, but both 
alternatives are possible in the nonlinear theory, even with U, arbitrarily close to 1.) 

If det U, < 1, then under tensile pressures 0, < 0) none of the homogeneously deformed 
variants are stable; homogeneous deformations y = Fx with F sufficiently close to 1 

can always be made to have less energy. If det U, > 1, then compressive pressures will 
cause the variants to lose stability. In both of these situations (det U, < 1 and p < 0 
or det U, > 1 and p > 0) it is possible to construct free energy functions for which the 
stable homogeneous deformations are dilatations in the parent phase, and these energy 
functions appear to be typical. This is a simple example of the effect of the loading 
device mentioned in the Introduction. 

8. STATES OF NONHYDROSTATIC COMPRESSION 

Since experiments on displacive transformations in minerals are almost always done in 
compression, it is essential to have some results for a loading device which may accommodate 
nonhydrostatic, compressive stress. Here, we arc thinking of situations where at least one of 
the inequalities in (5.30) fails. For example, one might consider a loading device consisting of 
two parallel well lubricated rigid plates which confine a cylindrical specimen. Even this kind 
of loading device (which allows homogeneous equilibrium states) is extremely difficult to 
analyze, because instabilities like ordinary buckling compete with phase transformation. 
Although for short, thick specimens it should be possible to rule out buckling, no analytical 
methods of doing this are available, and computational methods for minimizing non-elliptic 
functionals do not exist. In this section we find some idealized loading devices which suppress 
buckling but which accommodate nonhydrostatic homogeneous states of compression. 

Essentially, our methods of Section 4 work if the energy of the loading device is expressible 
as an integral over R of a continuous function of the deformation gradient only. If we confine 
attention to loading device energies having the same value for all deformations y(x) which 
leave ay( R) fixed, we may utilize a known result (BALL, 198 1) which states that all such energies 
are integrals over R of null Lugrangians. A null Lagrangian is a function L of the form 

L = p det F+(det F)S*FmT-T-F, (8.1) 

p, S, T being constants. It has the property : 

LdV=pVol(y(R))+ 
s 

x*STnda- y*Tn dA. (8.2) 
JY(R) s JR 

We have already analyzed the special cases of this loading potential in which S = 0 and either 
p = 0 or T = 0. Unlike p and T, S does not appear to have a simple interpretation in terms of 
a stress. With appropriate choices of p, S and T, minimizers of 4 + L have principal stresses 
which do not satisfy (5.30), as shown in the preceding section. 

For example, with p, S and T fixed, suppose P minimizes the function 0 + L. Then, the 
homogeneous deformation f(x) = Rx is stable in a loading device in which displacement is 
controlled on the entire boundary. That is, f(x) minimizes the total free energy 

s 
@Y, 0) d v (8.3) 

R 

among all deformations y(x) satisfying 

Y(X) = 9(x) (8.4) 

for all x on aR. It is possible to give realistic examples of free energy functions where some 
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deformation gradients in X0 are realized as minimizers of 4+L for some choices of p, S and 
T, but other deformation gradients in X0 are not realized as minimizers of 4 + L for any choice 
of p, S, T and in fact are not stable in a consistent fixed-displacement loading device. 

Circumstances under which the energy of the loading device can be put into the form (8.2) 
are the most general under which we have been able to prove a form of the Clausius-Clapeyron 
equation. Consider two smooth families of deformation gradients 

F,(e)> F,(Q) (8.5) 

which both minimize ++L at each 0 in some domain for appropriate choices of smooth 
functions 

P(B), S(e)> T(o). (8.6) 

As the temperature 0 changes, each of the homogeneous deformations y = F,(B)x, y = F2(Q)x 
is stable in the given loading device. (Furthermore, if for some function a(Q) and constant n, 
we have 

Fz(Q) = F,(O) + a(@) 0 n, (8.7) 

then the two deformations can co-exist stably in the same body at the temperature considered, 
but this will not be assumed.) Since F, (0) and F*(0) are both minimizers of 4 + L, we have 

In (8.8), L is evaluated at p(O), S(0) and T(0). If we differentiate (8.8), with respect to 0 and 
use (8.8),, we get 

g[det F>(8)-det F,(e)]+ $*[(det Fz(O>)F,(O>-r-(det F,(Q))F,(B)-‘1 

We make use of this generalization of the Clausius-Clapeyron equation in Section 9b. 
Evidently, a “principal of spite” as discussed for example by DUNN and FOSDICK (1980, eq. 
(5.32)) can be proved for loading devices generated by null Lagrangians. 

9. COMPARISON OF THEORY WITH EXPERIMENT 

We apply the theory to transformations in single crystals of shape-memory materials 
and to the a-/? transformation in crystalline quartz. In the first case (according to the 
theory presented here) 1 is in the interior of X0 while in the second case 1 is on the 
boundary of X0. 

a. Thermoelastic martensitic transformations 

SCHROEDER and WAYMAN (1977) and SABURI, WAYMAN, TAKATA and NENNO (1980) 
studied the behavior of loaded single crystals of 18R martensites in the Cu-Zn-Ga 
and Cu--Al-Zn systems. A single crystal of one of these alloys is cubic above the 
transformation temperature. If the crystal is cooled to the transformation temperature 
(- 35”C), needles and platelets of the martensitic phase grow into the crystal from its 
boundary. Schematically, a crystal at the transformation temperature looks like Fig. 
6. Extensive photographs of the variants are shown by SCHROEDER and WAYMAN 
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FIG. 6. Appearance of the specimen at the transformation temperature. 

(1977), SABURI et al. (1980) and SABURI and WAYMAN (1979). These martensites are 
internally faulted rather than internally twinned ; this refers to the microstructure of 
the variants of the martensite at the atomic level. Here, we compare theory and 
experiment at the macroscopic level. SABURI and WAYMAN (1979) discuss similarities 
between the structure and behavior of internally faulted (CuZnGa, CuZnAl, CuZn) 
and internally twinned (NiAl, AgCd, CuAlNi) martensites. To be definite we analyze 
the behavior of the alloy Cu-20.4Zn-12.5Ga (at. %). 

Referring all deformation gradients to the unstressed parent phase at the trans- 
formation temperature, the deformation gradient in one variant of the transformed 

phase is 

F, = l+a, On,. (9.1) 

The transformation strain U, is uniquely determined by a, and n, and is given by 

U, = (FfF,)“‘. (9.2) 

This transformation is stress-free and coherent at the transformation temperature (cf. 
(3.9)). We have chosen F, to correspond to the variant labelled I’( +) by SABURI et al. 

(1980). The vectors n, and a, can be obtained from table 2 of SABURI et al. (1980) 
and the first shape deformation matrix (which corresponds to the variant 1’(-)) in 
table 5 of SABURI and WAYMAN (1979). Referred to an orthonormal basis parallel to 
the crystallographic axes of the parent phase. the vectors a, and II, are given by 

a, = (-0.135,0.023,0.113). 

n, = (0.697,O. 143,0.703). 
(9.3) 

We have normalized a, @ n, by making 1 n, 1 = 1. These vectors were calculated from 
the crystallographic theory of martensitic transformations (see NISHIYAMA (1978) for 
a description of this theory). This transformation strain is nearly a simple shear with 
an angle of shear of about 10”. 

If this example is to match the theory presented here, there must be 24 variants 
with deformation gradients given by 

F, = R,F,R,T = 1+ R,a, @ R,n,, (9.4) 

Ri~P24. This agrees with observations. SABURI et al. (1980) have numbered the 
variants according to the scheme shown in Table 1, column 2. We have calculated the 
rotation Ri associated with each variant and these are given in column 4. The variants 
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are organized by plate group (discussed below). The four variants in each plate group 
are related by 180” rotations about orthonormal axes. 

In Appendix 1, we have analyzed degeneracies associated with variants Fi and Fj 
related by the equation 

Fi = RF,, (9.5) 

R being a rotation. It turns out-and it must be true if n, is irrational and there are 
24 rather than 48 variants-that the 24 variants given by (9.4) are pairwise related by 
an equation of the form (9.5). The notation + and - of Table 1 designates variants 
related by a rotation in this way. 

TABLE 1. Variants of the martensitic phase in Cu-Zn-Ga alloys numbered according 

to the scheme of Saburi et al. Rabc denotes a 180” rotation about the axis (a, b, c). 

Components are referred to an orthonormal basis parallel to the cubic axes of the 

parent phase. R”i2 is a rotation of z/2 about the axis (0, 0, 1) 

Group Variant Habit plane normal 

Rotation associated with 
each variant 

(F, = 1 +R,a, 0 R,n,, 
i= 1,...,24) 

I I’(+_) (0.697,0.143,0.703) R, = 1 

2(-) (-0.697,0.143, -0.703) R> = &I, 
5(-) (-0.703, -0.143, -0.697) RX = {,,I 
6’(+) (0.703, -0.143,0.697) R4 = R,o, 

II I’(-1 (0.697, -0.143, -0.703) R5 = lR,, 

2(+) (-0.697, - 0.143,0.703) R, = &mR,, (RI, = fi,,,) 
5(+) (0.703,O. 143, -0.697) R, = $iR,, 
6’(-) (-0.703,0.143,0.697) R, = RmRu 

III 3(-) (-0.143, -0.697, -0.703) Rg = l$,,, 
4’(+) (-0.143,0.697,0.703) R,, = $ooRm (Rm = kio) 
5’(+) (0.143,0.703,0.697) 
6(-) (0.143, -0.703, -0.697) 

RI, = $17 Rm 
R,, = Ro,,R,u 

IV 3(+) (0.143, -0.697, 0.703) 
4’(-) 

R,, = l-R,, 
(0.143,0.697, - 0.703) RM = $x,R,v (RN = R,“b:) 

5’(-) (-0.143, -0.703,0.697) RI, = $17 Rw 
6(+) (-0.143,0.703, -0.697) R,, = R,,,R,v 

V I(--) (-0.697, -0.703, -0.143) R,, = lR, 
2’(+) (0.697,0.703, -0.143) R,, = &o,Rv (Rv = &;;) 
3’(+) (0.703,0.697,0.143) R,, = RnoRv 
4(-) (-0.703, -0.697,0.143) Rx, = R,,,Rv 

VI I(+) (-0.697,0.703,0.143) 
2’(-) 

Rz = l-R,, 
(0.697, -0.703,0.143) Rz = $,o,Rv, (Rw = &,,) 

3’(-) (-0.703,0.697, -0.143) Rn = RiioRv, 
4(+) (0.703, -0.697, -0.143) RB = R, WRY, 
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Arrangements of the parent phase with two or more variants as shown in Fig. 7 
provide a visual test of calculated transformation strains. That is, if several variants 
co-exist in a coherent plate group, then the jump condition (2.1) must be satisfied 
across each interface; this leads to nontrivial restrictions on the strains present. For 
example, a collection of three phases in wedge-shaped regions meeting along a line 
(e.g. as shown in Fig. 7) with deformation gradients 1, 1 + a @ n, 1 + b @ m must have 
parallel amplitudes : a )I b. Similarly, two pairs of parallel planes bisected by a fifth 
plane as shown in Fig. 7 must have deformation gradients of the form shown in Fig. 
7a. For example, we can ask if plate group I, with variants determined by 

I’(+)a, = (-0.135,0.023,0.113) nl = (0.697.0.143,0.703), 

2(-) a, = (-0.135, -0.023,0.113) n, = (0.697, -0.143,0.703), (9.6) 

5(-) a3 = (0.113,0.023, -0.135) n3 = (0.703,O. 143,0.697), 

6’(+)a, = (0.113, -0.023, -0.135) n4 = (0.703, -0.143,0.697) 

can be coherent. By comparing Figs. 7a and 7b with the calculated vectors (9.6) it is 
clear that we do not precisely have coherence. On the other hand, if a, is replaced by 

(b) 

FIG. 7. (a) Forms of the deformation gradient imposed by conditions of coherence in a plate group. The 
plate group consists of two pairs of parallel planes bisected by a fifth plane. (b) Variants in plate group I 

(from SABURI et al. (1980, fig. 6)). 
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the nearby vector parallel to (- 1, 0,l) and n, is replaced by the very nearby vector 
parallel to (0.700, 0.143, 0.700), then this plate group is coherent. Since the photo- 

graphs clearly reveal needles like the tips of these plate groups, the calculation casts 
some doubt on the precise value of a, calculated by Saburi and Wayman. 

We now consider the behavior under loads. Without calculating U, we note that 
from Appendix 3 and equation (9.1) 

trU, 3 trF, = 3+a,*n, = 3.011 > 3. (9.7) 

Thus, according to the results of Section 6,1 is not on a&!,,. The results of Appendix 
1 and the fact that n, is irrational (Rn, # n, for all R in LYLE) imply that the transformation 
surface looks schematically like Fig. 8 : twelve loops surrounding the loop associated 
with the parent phase with two variants associated with each loop. Clearly, the 
homogeneously deformed parent phase is not stable under any dead loads. This agrees 
with experiments under simple tension performed by SABURI et al. (1980). They found 
that under simple tension, one of the variants consumed the others and filled up the 
whole specimen except near the grips. In tests on specimens of several different 
orientations, the variant which survived under the loads was the one which produced 
the greatest extension in the tensile direction. This result is consistent with the theory 
presented here, and can be obtained easily from formula (5.19); in particular, if we 
assume that a, en, = 0, let the index k be associated with the kth variant and put 
G = 1+ a, 0 ni in (5.20), then (5.19) becomes 

ak*SnkBa,-Sn,+(a;Sn,)(ak-n,) i= 1,...,24, (9.8) 

S being the Cauchy stress associated with small deformations superimposed on the 
(unstressed) kth variant. With S = oe @ e 0 > 0 and e appropriate to the experiments 
of Saburi et al., the last term of (9.8) is proportional to (a, ( 2 and can be neglected; the 
stable variant corresponds to the index i which maximizes (e - n,)(e * ai) which equals 

FIG. 8. Transformation surface for a shape-memory alloy. 
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e * F,e- 1, and this agrees with the observations of Saburi et al. The fact that a, *II, 
is not precisely zero has a negligible effect on (9.8). It seems likely that incomplete 
transformation near the grips is due to the fact that the loading device is not exactly 
a dead loading device. 

Somewhat different assumptions appear to be appropriate to the internally twinned 
thermoelastic martensites. For these, one variant can be deformed under small loads 
into another variant; during this process, the proportions of the fine twins in the plate 
of martensite change. Since unstressed twins have equal energy, the only change of 
free energy as the proportion of twins changes is due to the fact that the total 
area associated with twin boundaries changes as the proportion of twins changes. 
Associated with each twin boundary is small surface energy. For the purpose of a 
rough macroscopic theory, it would seem reasonable to neglect these contributions 
to the free energy. To account for the nearly isoenergetic shifts from one variant to 
another, we would replace the transformation strain U, by continuous families of 
transformation strains, say U,(z), a 4 z < 6, which represent all macroscopic strains 
obtainable by shifts in the proportions of the twins at zero macroscopic stress. The 
arguments given in this paper could be extended to cover this case ; So would contain 
v families of these points of convexity. At first glance, it would appear that the modified 
theory could account for the mechanical behavior of internally twinned martensites 
as discussed by SABURI and WAYMAN (1979) and B~TRKART and READ (1953). This 
approach would evidently imply that certain combinations of moduli associated with 
the parent phase are zero; having some moduli much smaller than others suggests 
that the material be treated as constrained. A theory of this kind for martensitic 
transformations in A- 15 superconductors is given by ERICKSEN (1985). 

b. The cc-j3 transformation in quartz 

The stable phase of crystalline quartz at room temperature and atmospheric pres- 
sure is a-quartz. If a-quartz is heated to about 574”C, it transforms to P-quartz. The 
change of symmetry is from trigonal (point group 32) to hexagonal (point group 622). 
If we take the reference configuration to be an unstressed crystal of P-quartz at the 
transformation temperature, the transformation strain is given by 

0 
0.9973 0 (9.9) 

0.9988 

according to BERGER (1965, 1966). Here, U, is measured relative to an orthonormal 
basis {et} with e, passing through the 6-fold symmetry axis of the P-quartz crystal 
(optic axis). The principal transformation strains satisfy the condition (6.14) so 2, 
looks schematically like Fig. 5a. 

We first note that this transformation is not stress-free and coherent at the trans- 
formation temperature. That is, from the form of U, it is clear that there are no 
solutions (a, n, R) of the equation 

RU,=l+a@n, (9.10) 
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R being a rotation. Thus, c1- and p-quartz cannot co-exist in an unstressed crystal 

according to the theory presented in this paper. We think that this is the origin of the 
fact that a 14°C temperature hysteresis accompanies the transformation. Roughly, 
it is necessary to heat the a-phase to 1 or 2°C above the transformation temperature 

to give it enough excess free energy to compensate for the free energy which arises 
from stress built up near the u-/I phase boundary as it propagates through the crystal. 
This idea suggests that different nonhydrostatic stress fields would cause different 
amounts of hysteresis (as measured by say, A@, and this is observed by COE and 
PATERSON (1969). It should be possible to eliminate the hysteresis altogether by a 
special loading device which allows the phases to co-exist in a stable stressed con- 
figuration at the transformation temperature ; insufficient data on material properties 

prevents the design of such a loading device. 
The theory presented in this paper must be modified to model the a-_B trans- 

formation in quartz for the following reason. Using an unstressed crystal of p-quartz 
at the transformation temperature as the reference configuration, let da(C, 8) be the 
free energy expressed as a function of the Cauchy-Green strain tensor C = FTF. 
Because of this choice of reference configuration, bs satisfies 

4dQcQ9 0) = &CC 01, (9.11) 

for all C and 0 and for all Q in the point group 622. We now change reference 
configurations to the unstressed a-phase at the transformation temperature. Relative 
to this new reference configuration the free energy 4,(C, 0) is given by 

4&C, 0) = 4a(UTCUt, 0). (9.12) 

However, notice that since QU,Q’ = U, for all Q in 622, @* now shares the same 
invariance as oat i.e. 

AAQCQ’, 0) = &dUTQCQTUt, 4 

= 4p(QUQ=QCQ=QUQ=, 0) 

= &dQWWQ’t ‘3 (9.13) 

= &(UTCU,, 0) 

= &(C, 0 

holds for all Q in the point group 622, which is too much symmetry for cc-quartz. The 
point is nontrivial because the invariance inherited by 4,(C, f3) implies that the linear 
elastic compliance S, ,23 vanishes in a-quartz, which is not even true near the trans- 
formation temperature according to measurements by MAYER (1960) and ZUBOV and 
FIRSOVA (1962). One can expect problems of this kind whenever the transformation 
strain U, is invariant under some or all members of the point group of the parent 
phase in the sense that QU,Q’ = U, and internal rearrangements such as shuffling 
occur which “break” the symmetry. 

Another related fact suggests that the free energy studied in this paper requires 
modification for the E-B transformation. When b-quartz transforms to g-quartz, the 
resulting crystal of a-quartz separates into domains known as Dauphin& twins. There 
is no jump in deformation gradient (measured relative to the unstressed P-quartz, say) 
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across the boundary between unstressed DauphinC twins. Because of this fact, no 
restrictions on the shape of the domains are imposed by coherence in the stress-free 
a-quartz crystal, and therefore the twin boundaries form as irregular surfaces. A 
theory for Dauphin& twinning has been given by THOMAS and WOOSTER (1951) and 
generalized by ERICKSEN (1982) ; see TULLIS and TULLIS (1972) for an explanation of 
the energy criterion used by Thomas and Wooster and see the remarks of RIVLIN 
(1982). As discussed by ERICKSEN (1982), the theory of Thomas and Wooster is based 
on the assumption that the free energy of a-quartz as a function of deformation 
gradient and temperature is double-valued, with the two branches related in a definite 
way (see below). 

A simple way to avoid the degenerate symmetry and also account for Dauphin& 
twinning is the following. We first regard the symmetry summarized by (9.11) as 
applying only to C in a sufficiently small neighborhood of 1. Near C = Uf we regard 
the energy function as double-valued, the two branches 4+(C, 0) and 4 -(C, 0) defined 
near C = U,’ and related by, 

4 (C, 0) = 4 +(QCQ’, 0 (9.14) 

0 being some fixed element of the point group 622 but not of the point group 32. 
Equation (9.14) applies to all C in a sufficiently small neighborhood of U:. Since all 
of the results of this paper apply only to strains near the potential wells, the definition 
given above is sufficient for our purposes. The transformation surface X0 for quartz 

is shown in Fig. 9. In summary, the free energy function 4(C, H), defined relative to 
the unstressed /I phase at the transformation temperature is given by 

ML @ = i 

$+(C. 0) or 4 (C, @, C near U,?, 

&(C, O), C near I, 
(9.15) 

where 4 + and 4 - are related by (9.14), each one of these functions invariant under 
conjugate representations of the point group 32, and 4,j invariant under the point 
group 622. Curiously, this modified free energy now allows the result of equation 
(9.13) to be satisfied in a certain sense; the Q’s which made that equation fail are 

FIG. 9. Transformation surface for quartz. The free energy is double-valued for deformation gradients in 
a neighborhood of the loop labelled u-quartz. 
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exactly the ones which convert 4’ into $-. A theory based on the free energy (9.!5) 
reduces to the theory of Thomas and Wooster when linearized about C = Uf and is 
properly invariant. The results of this paper can easily be adapted to account for the 
double-valuedness of 4. The free energy 4 given by (9.15) could also evidently be 
obtained by minimizing out an “order parameter” which would account for the 
internal structural changes accompanying Dauphini: twinning, as discussed in a 
different context by PARRY (198 1). 

We can test the theory by comparing with the effects of nonhydrostatic stress on 
the E-/I transformation temperature measured by COE and PATERSON (1969). They 
find that the variation of the transformation temperature with hydrostatic pressure is 
very closely given by a linear relation with 

dI3 
- = 25.8 f 0.3”C/kbar 
dp 

(9.16) 

in the range 1 kbar <p < 5 kbar, which agrees well with measurements of other 
workers. Presuming that the assumptions leading to the Clausiussclapeyron equation 
(8.9) are met, i.e. that for each 8 there are smooth functions U,(Q) and U,(O) which 
minimize cj(U, f3) +p det U, we get 

$ (det U,(d) - det U,(Q)) = g (U,(d), 0) - g (U,(e), 0). (9.17) 

If we evaluate (9.17) at the stress-free transformation temperature 8,, and use (9.16) 
we obtain a value for the jump in entropy associated with the transformation : 

g (U,, 0,) - g (1, f3,) = 0.255 bar/C (9.18) 

Measurements of the compliance of c( and b quartz near the stress-free transformation 
temperature indicate that the tensor U,(d) - U,(d) is nearly independent of the trans- 
formation temperature over the range of transformation temperatures obtained by 
imposing pressures from 1 to 5 kbar. Since det U z 1 + tr U is a good approximation 
for the strains considered here and since dp/dtI is found in the experiments to be nearly 
constant, it seems reasonable to assume that equation (9.18) provides a good estimate 
of the jump in entropy at pressures near 3 kbar. We shall henceforth make this 
assumption. 

With this estimate for the jump in entropy for transformations near 3 kbar pressure, 
we can consider the effect of a superimposed nonhydrostatic stress. Coe and Paterson 
held the pressure at 3 kbar and superimposed a uniaxial compression first parallel 
and then perpendicular to the e3 axis. None of the loading devices considered in this 
paper precisely model their experiments, but we can find a loading device which 
produces the same state of stress as they produced by superimposing hydrostatic 
pressure and necessarily tensile (cf. equation (5.30)) dead loads. Thus, we can increase 
the pressure on a cylindrical sample and hold it at a certain value greater than 3 kbar, 
and then apply appropriate dead loads to the lateral faces of the cylinder to bring the 
lateral pressure back down to 3 kbar. Let p,, = 3 kbar and let B0 be the transformation 
temperature under the pressure po. If we increase the pressure to p, > p,,, the trans- 
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formation temperature will increase to 8, given by 

0,-e, = 25.8& ( 1 (PI -PO). (9.19) 

Now we hold the pressure fixed and apply uniform dead loads to the lateral faces of 
the cylinder. We can ignore the distinction between Piola-Kirchhoff and Cauchy 
stress for this particular calculation; even strains as severe as the transformation 
strain cause only a slight difference between these two stresses. To find how the 
transformation temperature changes from H,, we consider the Clausius-Clapeyron 
equation (8.9) with p and S held constant, and T given the form 

(9.20) 

relative to the basis (ei}. If we let U,(O) and U,(O) be the minimizing deformation 
gradients (which under mild hypotheses on $ can be shown to be symmetric and 
coaxial with T), we have the Clausius-Clapeyron equation (eq. (8.9)). 

(9.21) 

We evaluate this equation at 0 = Q,, use (9.18) to get the first two terms and estimate 
U,(0) -U,(O) by the stress-free transformation strain; we get 

(2)(0.002’7) $ = - 0.255 bar/‘C. (9.22) 

Thus, 

dz 
- = -47.2 bar/“C, 
d0 

(9.23) 

that is, 

z(e) = 47.2$ (e, -e). 
i > 

Thus, application of the lateral biaxial tensile dead loads will reduce the trans- 
formation temperature from 0,. To conform to the stress field of Coe and Paterson. 
we should increase 5 (and therefore decrease 0) to the point where 

PI -r(O) = PO? (9.25) 

which yields the following linear relation between 8, and ~9 : 

0, = 5.58(0-80)+B0. (9.26) 

The quantity measured by Coe and Paterson was the transformation temperature vs 
excess pressure on the ends of the cylinder, (e-0,) vs (p, -po), for various values of 
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pI. By combining (9.25) and (9.26), we calculate this relation : 
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(PI -Pd. (9.27) 

The corresponding relation measured by Coe and Paterson was also very nearly linear 
with a coefficient 5.0 k 0.4”C/kbar. 

For uniaxial tension perpendicular to the e,-axis, we obtain from the same cal- 
culation with 

(9.28) 

the result 

e-e0 = 10.5& ( 1 (PI --Pd. (9.29) 

The corresponding relation measured by Coe and Paterson was also linear with a co- 

efficient 10.6 f 0.4”C/kbar. 
The agreement with experiment is better than we would expect from the way the 

loading device was treated in this preliminary comparison. Our main conclusion in 
this paper is that the nature of the loading device, not just the stress produced, has 
an important influence on the stability of solid phases. We are not sure why we seem 
to be able to get away with this treatment. Granted the over idealized loading device 
used, we have also not proved the existence of the smooth fields which must exist in 
order to use the Clausius-Clapeyron equation, nor have we calculated which of 
the Dauphin& twins is stable in each case. COE and PATERSON (1969) treated the 
transformation as both a A-transition and as a first order transformation; our 
interpretation of the Gibbs theory is somewhat different from theirs. 

We note that since U, belongs to the interior of S0 for quartz, the application of 
dead loads (consistent with a homogeneous deformation) will decrease the trans- 
formation temperature, whereas the transformation temperature is increased by appli- 
cation of dead loads in the thermoelastic martensites. 
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APPENDIX 1. DESCRIPTION OF THE VARIANTS 

Here we summarize a result proved by JAMES (1982) on the number of variants which border 
the parent phase. 

Given a and n(a # 0, 1 n 1 = 1 and a * n > - 1) and the point group Y”, consider the equation 

R(l+a@n)R,= l+b@m, R,EB’, (A.1) 

which is to be solved for R and b @ m. If a is parallel to n, the only solutions are 

R=RT, b@m=R,?‘a@RJn, i= l,..., v. (A.2) 

If a is not parallel to n, the only solutions of (A.1) are the v solutions given by (A.2) as well as 
the v solutions given by 

R = RTQ, 

m = ~RT((2a*n+a~a)n+(2a*nL)n’), 

b = + ~R~((l/2(6’-(a~a)(2a~n+a~a)))n-((a~n~)(a~a))n~) i = 1,. . . ,v, 

where 

64.3) 

(A.4) 

6 = ((2a*n+a.a)*+(2a*n1)2)“2. 

Thus, we conclude that there are at most 2v variants which border the parent phase in our 
unloaded crystal at Q = &. In metals, exactly v are often observed (see SABURI and WAYMAN 
(1979), for example). The reason for this is that many transformations in metals are consistent 
with a crystallographic theory of martensitic described, for example by NISHIYAMA (1978). This 
theory is designed to predict a and n which are “K-degenerate” (WECHSLER (1959)). The 
meaning of K-degeneracy (in the present notation) is that the vectors b and m given by (A.3) 
are crystallographically equivalent to a and n, in the sense that 

b = R,a and m =R,n 64.5) 

for some R, in 8’. In this case, (A.3) just gives back the old set of variants listed in (A.2). The 
reason that not less than v variants are observed in many metals is that the same theory predicts 
than n is “irrational” in many cases, meaning that R,n # n for i = 1, . , v. 

This all presumes that only a single phase is present, in the sense that all variants are described 
as invariant transformations of 1 +a on. One can make similar statements if two or more 
phases are present. 

APPENDIX 2. SIGNIFICANCE OF tiO FOR TEMPERATURES OTHER THAN 

THE TRANSFORMATION TEMPERATURE 

Here we prove statements made in Sections 5. The two statements in question are the 
following : 
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(a) If 1 = UP(&) is in the interior of &, then there are no points of convexity in a fixed open 
neighborhood of U,(O) for 0 < B,, and 0 sufficiently close to 0,. 

(b) If U,(O,) is in the interior of X0, then there are no points of convexity in a fixed open 
neighborhood of U,(H) for H > H, and 0 sufficiently close to 8,. 

The same method of proof applies to both statements, so we consider (a) only. It follows from 
Caratheodory’s theorem (ROCKAFELLAR, 1970, p. 155 and Cor. 18.5.1) that if 1 is in the interior 
of X0, it can be represented in the form 

1 = f /i,G,(O,) 
k=i 

(-4.6) 

where 1, > 0, k = 1, , 10, Cl, = 1, each G,(e) is of the form 

RU,(@R, (A.7) 

R,E~“, and the G,(O,) are affinely independent (i.e. linear combinations of them generate UP). 
The representation (A.6) can also be written 

1 = i: i,(G,(Q,) - Gd41)) + Go(&) 
!%=I 

(A.81 

We can view (A.8) as a map from R9 to R9 which takes an open neighborhood of (A,, . , I.,) 
to an open neighborhood of 1, since the {G,(f?,) -G,,(H,J} are linearly independent. For 
small changes of 8, these tensors remain linearly independent and (AX) generates an open 
neighborhood M of 1 for 8 near Q,, and 0 < tIO. We now extend the definition of X0 to 
temperatures fI < 0, in the following way. We let X (0) be the convex hull of all tensors of the 
form RU,(B)R,, which from (3.10) minimize 4 for 0 < 0,. We have shown by (A.@ that an 
open neighborhood .,V of 1 is in the interior of X(H) for 0 < B0 and (3 near 8,. By equations 
(5.2) and (5.10) and the surrounding remarks, any point of convexity of 4(F, e) lying in .JV 
must be a minimizer of 4(F, 0). This is impossible by assumption (3.12) on the minimizers of 
@(F, 0) for e < O,,. We conclude that there are no points of convexity in J1’ for B -C &, and 0 
sufficiently close to 0,. 

APPENDIX 3. MAXIMUM OF RF OVER R 

In Section 6 we used the fact that 

rntx {tr RF} (A.9) 

(the maximum taken over all rotations) is attained by R = ii’, R being the rotation in the polar 
decomposition F = RD. This follows from the following calculation: 

rn,“” {tr RF} = my {tr Ql?> 

= rnp {ZI,e, * QeZ}. 
(A.10) 

Here, {I_} are positive eigenvalues of ij corresponding to orthonormal eigenvectors (e,}, and 
Q is a rotation related to R by the formula Q = RR. Since 

e.Qe d e*e, (A.11) 

the maximization problem given by (A. IO), is solved by Q = 1. 


