On motions which preserve ellipsoidal holes

R.D. JAMES
Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, MN 55455, USA

Received 10 February 1986

Let \mathscr{E} be an ellipsoid in \mathbb{R}^{3} contained in a region Ω. Suppose one body occupies the region $\Omega-\mathscr{E}$ in a certain stress-free reference configuration while a second body, the inclusion, occupies the region \mathscr{E} in a stress-free reference configuration. Assume the inclusion is free to slip at $\partial \mathscr{E}$. Now suppose that by changing some variable such as the temperature, pressure, humidity, etc., we cause the trivial deformation $y(x)=x$ of the inclusion to become unstable relative to some other deformation. For example, the inclusion may be made out of such a material that if it were removed from the body, it would suddenly change shape to another stress-free configuration specified by a deformation $y=F x, F^{T} F=C, C$ being a fixed tensor characteristic of the material, at a certain temperature. However, with an appropriate material model for the surrounding body, we expect it will resist the transformation, and both body and inclusion will end up stressed.

In a recent paper, Mura and Furuhashi [1] find the following unexpected result within the context of infinitesimal deformations: certain homogeneous deformations of the ellipsoid which take it to a stress-free configuration also leave the surrounding body stress-free. These are essentially homogeneous, infinitesimal deformations which preserve ellipsoidal holes. In this paper, we find all finite homogeneous deformations and motions which preserve ellipsoidal holes.

1. Deformations which preserve ellipsoidal holes

Let an ellipsoid \mathscr{E} in \mathbb{R}^{3} be given by

$$
\begin{equation*}
\mathscr{E}=\{x \mid x \cdot C x \leqslant 1\} \tag{1.1}
\end{equation*}
$$

C being a constant positive-definite tensor. We will say that a homogeneous deformation

$$
\begin{equation*}
y(x)=F x \tag{1.2}
\end{equation*}
$$

$F=$ const., det $F>0$, preserves the ellipsoid \mathscr{E} is there is a symmetric tensor C^{\prime} of the form $R C R^{T}$ for some rotation R such that $\mathscr{E}^{\prime}=y(\mathscr{E})$ can be written

$$
\begin{equation*}
\mathscr{E}^{\prime}=\left\{y \mid y \cdot C^{\prime} y \leqslant 1\right\} . \tag{1.3}
\end{equation*}
$$

Note that \mathscr{E}^{\prime} uniquely determines C^{\prime} by (1.3).

Theorem. Let the ellipsoid \mathscr{E} be given by (1.1) and let U be the positive definite symmetric square root of C. The homogeneous deformation $y(x)=F x, F=$ const., $\operatorname{det} F>0$ preserves the ellipsoid \mathscr{E} if and only if there are rotations \bar{R} and \hat{R} such that

$$
\begin{equation*}
F=\hat{R} U^{-1} \bar{R} U \tag{1.4}
\end{equation*}
$$

Proof. Without loss of generality, write F in the form

$$
\begin{equation*}
F=H^{-1} U \tag{1.5}
\end{equation*}
$$

$H=$ const., det $H>0$. Let $x \in \mathscr{E}$ so that

$$
\begin{equation*}
x \cdot C x \leqslant 1 . \tag{1.6}
\end{equation*}
$$

The vector $y=F x$ then satisfies

$$
\begin{equation*}
y \cdot F^{-T} C F^{-1} y \leqslant 1 \tag{1.7}
\end{equation*}
$$

that is,

$$
\begin{equation*}
1 \geqslant y \cdot H^{T} U^{-1} C U^{-1} H y=y \cdot H^{T} H y \tag{1.8}
\end{equation*}
$$

Because of the uniqueness of the representation (1.3), there is a rotation \hat{R} such that

$$
\begin{equation*}
H^{T} H=\hat{R} C \hat{R}^{T} \tag{1.9}
\end{equation*}
$$

By the polar decomposition theorem, there are rotations \bar{R} and \hat{R} such that

$$
\begin{equation*}
H=\bar{R}^{T} U \hat{R}^{T} . \tag{1.10}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
F=\hat{R} U^{-1} \bar{R} U \tag{1.11}
\end{equation*}
$$

The converse follows immediately by inserting (1.11) into (1.7).
All homogeneous motions which preserve ellipsoids are obtained by allowing \hat{R} and \bar{R} to depend upon time. For these to be dynamically possible motions in a homogeneous elastic body with no body force, they must also be accelerationless.

2. Properties

All homogeneous deformations which preserve ellipsoids are isochoric. That is,

$$
\begin{equation*}
\operatorname{det} F=(\operatorname{det} U)^{-1}(\operatorname{det} U)=1 \tag{2.1}
\end{equation*}
$$

Generally, a six parameter family of deformations preserve ellipsoids, although three of these parameters are associated with rigid rotation. However, only rigid motions preserve spheres (see Mura [2]). That is, if $U=\alpha 1$, then

$$
\begin{equation*}
F=\hat{R} \bar{R} \tag{2.2}
\end{equation*}
$$

We can derive the conditions on \hat{R} and \bar{R} which reduce $y=F x$ to a rigid motion by writing

$$
\begin{equation*}
1=F^{T} F=U \bar{R}^{T} U^{-1} \hat{R}^{T} \hat{R} U^{-1} \bar{R} U=U R^{-T} U^{-2} \bar{R} U, \tag{2.3}
\end{equation*}
$$

which yields

$$
\begin{equation*}
C=\overline{\mathbf{R}}^{T} C \bar{R} . \tag{2.4}
\end{equation*}
$$

Hence, a motion $y=F x$ with F given by (1.4) is rigid if and only if the rotation \bar{R} leaves the eigenspaces of C invariant.

This result suggests one kind of linearization. If C has distinct eigenvalues, (2.4) is satisfied by only $\bar{R}=1$ and $\bar{R}=-1+2 e \otimes e, e$ being an eigenvector of C. Putting aside the 180° rotation, we can linearize about $\bar{R}=1$ by writing

$$
\begin{equation*}
\bar{R} \cong 1+W, \tag{2.5}
\end{equation*}
$$

where W is skew. For simplicity put $\hat{R}=1$. Then, approximately,

$$
\begin{equation*}
F \cong 1+U^{-1} W U \tag{2.6}
\end{equation*}
$$

Thus, the small strain and rotation tensors are

$$
\begin{align*}
& \hat{E}=\frac{1}{2}\left(U^{-1} W U-U W U^{-1}\right) \tag{2.7}\\
& \hat{W}=\frac{1}{2}\left(U^{-1} W U-U W U^{-1}\right)
\end{align*}
$$

This is a disguised form of the expressions given by Mura [2, equation 36]. To see the connection, note first that (2.7) yields zero normal strains in the orthonormal basis (e_{i}) of principal axes of \mathscr{E} :

$$
\begin{equation*}
e_{i} \cdot \hat{E} e_{i}=0(\text { no sum }) . \tag{2.8}
\end{equation*}
$$

(The analagous equation with say $F^{T} F$ replacing \hat{E} does not hold for the finite deformations which preserve ellipsoids. In particular, $\operatorname{tr} F^{T} F$ can be made arbitrarily large for the finite ones, and the principal stretches can be made to take on any values consistent with det $F=1$. See $\S 3$ for details.) Let (λ_{i}) be the eigenvalues of U. From (2.7), the shear strains are

$$
\begin{equation*}
\epsilon_{i j}=e_{i} \cdot \hat{E} e_{j}=\frac{1}{2}\left(e_{i} \cdot W e_{j}\right)\left(\frac{\left(\lambda_{j}\right)}{\left(\lambda_{i}\right)}-\frac{\left(\lambda_{i}\right)}{\left(\lambda_{j}\right)}\right), \tag{2.9}
\end{equation*}
$$

while the components of infinitesimal rotation are

$$
\begin{align*}
& \omega_{i j}=e_{i} \cdot \hat{W} e_{j}=\frac{1}{2}\left(e_{i} \cdot W e_{j}\right)\left(\frac{\left(\lambda_{j}\right)}{\left(\lambda_{i}\right)}+\frac{\left(\lambda_{i}\right)}{\left(\lambda_{j}\right)}\right), \tag{2.10}\\
& (i \neq j)
\end{align*}
$$

If we eliminate $e_{i} \cdot W e_{j}$ between (2.9) and (2.10) and rearrange, we get

$$
\begin{equation*}
\omega_{i j}=\epsilon_{i j}\left[\frac{\lambda_{j}^{2}+\lambda_{i}^{2}}{\lambda_{j}^{2}-\lambda_{i}^{2}}\right], \tag{2.11}
\end{equation*}
$$

which is equation (36) of the paper by Mura [2], if we account for the notational changes $\omega_{i j} \rightarrow-\omega_{i j}, \lambda_{i} \rightarrow a_{i}^{-1}$.

3. Examples and conclusion

According to (1.9), the two ellipsoids \mathscr{E} and $\mathscr{E}^{\prime}=y(\mathscr{E})$ have the same principal axes if $\hat{R}=1$. Since \hat{R} is the first multiplier in the expression for F, and therefore only contributes a rigid rotation, we put $\hat{R}=1$ from now on. Thus, $\mathscr{E}^{\prime}=\mathscr{E}$.

For the first example, let $\left(e_{i}\right)$ be an orthonormal basis in \mathbb{R}^{3} and write

$$
\begin{align*}
& U=\sum \lambda_{i} e_{i} \otimes e_{i}, \\
& \lambda_{1} \leqslant \lambda_{2} \leqslant \lambda_{3} . \tag{3.1}
\end{align*}
$$

Let \vec{R} be a 90° rotation about e_{2} :

$$
\begin{equation*}
\bar{R} e_{2}=e_{2}, \quad \bar{R} e_{3}=e_{1}, \quad \bar{R} e_{1}=-e_{3} . \tag{3.2}
\end{equation*}
$$

With $\hat{R}=1$, it follows that

$$
\begin{equation*}
F=\frac{\lambda_{3}}{\lambda_{1}} e_{1} \otimes e_{3}+e_{2} \otimes e_{2}-\frac{\lambda_{1}}{\lambda_{3}} e_{3} \otimes e_{1} \tag{3.3}
\end{equation*}
$$

F has principal stretches $\left(\lambda_{1} / \lambda_{3}, 1, \lambda_{3} / \lambda_{1}\right)$ which can be made arbitrarily close to $(1,1,1)$ by an appropriate choice of ellipsoid. However, even with stretches nearly equal to 1 , the material in the ellipsoid experiences a large rotation since $\mathrm{Fe}_{3} \propto e_{1}$. This example may be significant because the crystallographic theory of martensitic transformations (see Wayman [4]) always delivers transformation strains which have one principal stretch equal to 1 . It also should be noted that many martensitic transformations have transformation deformations which are approximately simple shears of $0-10 \%$.

For the second example, let U be given by (3.1) and suppose \bar{R} permutes the $\left(e_{i}\right)$ in the following way:

$$
\begin{equation*}
\bar{R} e_{3}=e_{2}, \quad \bar{R} e_{2}=e_{1}, \quad \bar{R} e_{1}=e_{3} \tag{3.4}
\end{equation*}
$$

Then,

$$
\begin{equation*}
F=\frac{\lambda_{1}}{\lambda_{3}} e_{3} \otimes e_{1}+\frac{\lambda_{2}}{\lambda_{1}} e_{1} \otimes e_{2}+\frac{\lambda_{3}}{\lambda_{2}} e_{2} \otimes e_{3} \tag{3.5}
\end{equation*}
$$

so

$$
\begin{equation*}
F^{T} F=\left(\frac{\lambda_{1}}{\lambda_{3}}\right)^{2} e_{1} \otimes e_{1}+\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{2} e_{2} \otimes e_{2}+\left(\frac{\lambda_{3}}{\lambda_{2}}\right)^{2} e_{3} \otimes e_{3} . \tag{3.6}
\end{equation*}
$$

Since the coefficients in (3.6) can be made into any three numbers whose product is 1 by choice of the $\left(\lambda_{i}\right)$, the principal stretches can be made to have
any three values whose product is 1 by the choice of \mathscr{E}. Furthermore, the principal axes of strain can be made arbitrary since the replacements

$$
\begin{align*}
U & \rightarrow R U R^{T} \\
\bar{R} & \rightarrow R \bar{R} R^{T}, \tag{3.7}
\end{align*}
$$

simply rotate the (e_{i}) in the expression (3.6). Thus, every isochoric homogeneous deformation preserves some ellipsoid.

These results might be useful for experimental studies of displacive phase transformations. Isochoric transformation strains are encountered fairly often; twinning transformations and martensitic transformations in shape-memory materials provide examples. The essential difficulty in experiments, especially in multiaxial studies, is gripping the specimen so as to provide, say, uniform loads on a face of the crystal. As an alternative, an ellipsoidal body of shape \mathscr{E} could be coated with a nonbinding agent and then cast in a transparent block. If \mathscr{E} is designed to match the stress-free transformation strain according to the calculations given above, the ellipsoidal body could be made to transform, say by changing the temperature - while confined by a relatively hard device. (The effects of the hardness of the loading device on transformation temperatures have been noted in [5].) Transformation should be obvious by the large rotations involved. The device might provide a convenient means of applying small deformations to either phase.

References

1. T. Mura and R. Furuhashi: The elastic inclusion with a sliding interface. J. Appl. Mech. 51 (1984) 308-310.
2. T. Mura: General Theory of Inclusions: in Fundamentals of Deformation and Fracture (ed. K.J. Miller and J.R. Willis). Cambridge University Press (1984), pp. 75-89.
3. J.D. Eshelby: The determnation of the elastic field of an ellipsoidal inclusion, and related problems. Proc. Roy. Soc. A241 (1957) 376-396.
4. C.M. Wayman: Introduction to the Theory of Martensitic Transformations, Macmillan, New York (1964).
5. R.D. James: Displacive phase transformations in solids. J. Mech. Phys. Solids 34 (1986) 359-394.
