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Let ~ be an ellipsoid in R 3 contained in a region fL Suppose one body 
occupies the region fl - ~ in a certain stress-free reference configuration while 
a second body, the inclusion, occupies the region ~ in a stress-free reference 
configuration. Assume the inclusion is free to slip at ~ .  Now suppose that by 
changing some variable such as the temperature, pressure, humidity, etc., we 
cause the trivial deformation y ( x ) =  x of the inclusion to become unstable 
relative to some other deformation. For example, the inclusion may be made 
out of such a material that if it were removed from the body, it would 
suddenly change shape to another stress-free configuration specified by a 
deformation y = Fx, F r F =  C, C being a fixed tensor characteristic of the 
material, at a certain temperature. However, with an appropriate material 
model for the surrounding body, we expect it will resist the transformation, 
and both body and inclusion will end up stressed. 

In a recent paper, Mura and Furuhashi [1] find the following unexpected 
result within the context of infinitesimal deformations: certain homogeneous 
deformations of the ellipsoid which take it to a stress-free configuration also 
leave the surrounding body stress-free. These are essentially homogeneous, 
infinitesimal deformations which preserve ellipsoidal holes. In this paper, we 
find all finite homogeneous deformations and motions which preserve el- 
lipsoidal holes. 

1. Deformations which preserve ellipsoidal holes 

Let an ellipsoid d' in R 3 be given by 

e =  { x l x .  Cx < 1}, (1.1) 

C being a constant positive-definite tensor. We will say that a homogeneous 
deformation 

y ( x )  = Fx,  (1.2) 

F = const., det F > 0, preserves the ellipsoid 8 is there is a symmetric tensor 
C '  of the form R C R  r for some rotation R such that ~ '  = y ( g )  can be written 

e ' =  { y l y .  C'y<~ 1}. (1.3) 

Note  that N '  uniquely determines C '  by (1.3). 
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THEOREM. Let the ellipsoid 8 be given by (1.1) and let U be the positive definite 
symmetric square root of C. The homogeneous deformation y(  x ) = Fx, F = const., 
det F > 0 preserves the ellipsoid ~ if  and only if  there are rotations R and R such 
that 

F = RU-1RU.  (1.4) 

Proof. Without loss of generality, write F in the form 

F = H - I u ,  (1.5) 

H = const., det H > 0. Let x ~ g so that 

x .  Cx ~< 1. (1.6) 

The vector y = Fx then satisfies 

y .  F - T C F - ' y  ~< 1, (1.7) 

that is, 

1 >~y. H r U - I C U - a H y  = y .  HrHy.  (1.8) 

Because of the uniqueness of the representation (1.3), there is a rotation /~ 
such that 

H r H  = R C k  r. (1.9) 

By the polar decomposition theorem, there are rotations R and R such that 

H = RrURr.  (1.10) 

ThUS, 
F = R U - I R U .  (1.11) 

The converse follows immediately by inserting (1.11) into (1.7). [] 

All homogeneous motions which preserve ellipsoids are obtained by allow- 
ing k and R to depend upon time. For these to be dynamically possible 
motions in a homogeneous elastic body with no body force, they must also be 
accelerationless. 

2. Properties 

All homogeneous deformations which preserve ellipsoids are isochoric. That is, 

det F =  (det u ) - l ( d e t  U)  = 1. (2.1) 

Generally, a six parameter family of deformations preserve ellipsoids, although 
three of these parameters are associated with rigid rotation. However, only 
rigid motions preserve spheres (see Mura [2]). That is, if U--  0.1, then 

F = / } ~ .  (2.2) 
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We can derive the conditions on /~ and R which reduce y = Fx to a rigid 
motion by writing 

1 = VrF = URrU - 1Rr_RU- 1~ U = UR- T U - 2 R U ,  (2.3) 

which yields 

C -- RrCR. (2.4) 

Hence, a motion y - - F x  with F given by (1.4) is rigid if and only if the 
rotation R leaves the eigenspaces of C invariant. 

This result suggests one kind of linearization. If C has distinct eigenvalues, 
(2.4) is satisfied by only R = 1 and R = - 1 + 2 e ® e, e being an eigenvector 
of C. Putting aside the 180 ° rotation, we can linearize about R = 1 by writing 

R = 1 + W, (2.5) 

where W is skew. For  simplicity put k = 1. Then, approximately, 

F= 1 + U-1WU. (2.6) 

Thus, the small strain and rotation tensors are 

= ½(U-1WU- UWU-1)' (2.7) 

½(v- wv_ uwv- ). 
This is a disguised form of the expressions given by Mura [2, equation 36]. To 
see the connection, note first that (2.7) yields zero normal strains in the 
orthonormal basis (ei) of principal axes of g: 

e i • Eei = 0 (no sum). (2.8) 

(The analagous equation with say FrF replacing/~ does not hold for the finite 
deformations which preserve ellipsoids. In particular, trFrF can be made 
arbitrarily large for the finite ones, and the principal stretches can be made to 
take on any values consistent with det F = 1. See §3 for details.) Let ()~,) be 
the eigenvalues of U. From (2.7), the shear strains are 

(Xj) (Xi) ) (2.9) qj = e,. ff.ej = ½(e,- Wej) (X,) (Xj) ' 

while the components of infinitesimal rotation are 

°~iJ=e'" l~¢'eJ= ½(ei" ' I (hi) + (Xj) ]' (2.10) 

(i4=j). 

If we eliminate e i • Wej between (2.9) and (2.10) and rearrange, we get 

[x}+v,1 (2.11) 
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which is equation (36) of the paper by Mura [2], if we account for the 
notational changes ~o~j ~ - ~ i j ,  k~ ~ a~ -1. 

3. Examples and conclusion 

According to (1.9), the two ellipsoids g and g ' = y ( g )  have the same 
principal axes if R = 1. Since k is the first multiplier in the expression for F, 
and therefore only contributes a rigid rotation, we put k = 1 from now on. 
Thus, g '  = g. 

For the first example, let (ei) be an orthonormal basis in •3 and write 

U = E~kie i  ® ei,  

~kl ~< ~2 ~< ~3. (3.1) 

Let R be a 90 ° rotation about e2: 

R e  2 = e 2 ,  Re 3 = e 1, Re 1 = - e  3. (3.2) 

With k = 1, it follows that 

k3 ~1 
F =  ~-1el ® e 3 + e 2 ® e z - ~--~3 e3 ® e 1. (3.3) 

F has principal stretches (?~a/X3, 1, h3/~kl) which can be made arbitrarily 
close to (1, 1, 1) by an appropriate choice of ellipsoid. However, even with 
stretches nearly equal to 1, the material in the ellipsoid experiences a large 
rotation since Fe 3 ~ e 1. This example may be significant because the crystallo- 
graphic theory of martensitic transformations (see Wayman [4]) always de- 
livers transformation strains which have one principal stretch equal to 1. It 
also should be noted that many martensitic transformations have transforma- 
tion deformations which are approximately simple shears of 0 - 10%. 

For the second example, let U be given by (3.1) and suppose R permutes 
the (ei) in the following way: 

Re 3 = e2,  Re 2 -- e l ,  Re 1 -- e 3. (3.4) 

Then, 

~1 ~2 ~k3 
F =  ~--~3 e3 ® e I + ~-lel ® e 2 + ~--~2 e2 ® e3, (3.5) 

SO 

F T F =  ~ el ® el + ~ - 1  ] e2 ® e2 + ~2 } e3 ® e3" (3.6) 

Since the coefficients in (3.6) can be made into any three numbers whose 
product is 1 by choice of the (hi),  the principal stretches can be made to have 
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any three values whose product is 1 by the choice of ~. Furthermore, the 
principal axes of strain can be made arbitrary since the replacements 

U ~ R U R r  (3.7) 
~ R ~ R  r '  

simply rotate the (ei) in the expression (3.6). Thus, every isochoric homoge- 
neous deformation preserves some ellipsoid 

These results might be useful for experimental studies of displacive phase 
transformations. Isochoric transformation strains are encountered fairly often; 
twinning transformations and martensitic transformations in shape-memory 
materials provide examples. The essential difficulty in experiments, especially 
in multiaxial studies, is gripping the specimen so as to provide, say, uniform 
loads on a face of the crystal. As an alternative, an ellipsoidal body of shape 
could be coated with a nonbinding agent and then cast in a transparent block. 
If  ~ is designed to match the stress-free transformation strain according to the 
calculations given above, the ellipsoidal body could be made to transform, say 
by changing the temperature - while confined by a relatively hard device. (The 
effects of the hardness of the loading device on transformation temperatures 
have been noted in [5].) Transformation should be obvious by the large 
rotations involved. The device might provide a convenient means of applying 
small deformations to either phase. 
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