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Helical Miura origami

Fan Feng ®,' Paul Plucinsky,? and Richard D. James':*
'Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, Minnesota 55455, USA
2Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, California 90089, USA

® (Received 19 September 2019; accepted 19 February 2020; published 9 March 2020)

We characterize the phase space of all helical Miura origami. These structures are obtained by taking a partially
folded Miura parallelogram as the unit cell, applying a generic helical or rod group to the cell, and characterizing
all the parameters that lead to a globally compatible origami structure. When such compatibility is achieved, the
result is cylindrical-type origami that can be manufactured from a suitably designed flat tessellation and “rolled
up” by a rigidly foldable motion into a cylinder. We find that the closed helical Miura origami are generically
rigid to deformations that preserve cylindrical symmetry but are multistable. We are inspired by the ways atomic
structures deform to develop two broad strategies for reconfigurability: motion by slip, which involves relaxing
the closure condition, and motion by phase transformation, which exploits multistability. Taken together, these
results provide a comprehensive description of the phase space of cylindrical origami, as well as quantitative
design guidance for their use as actuators or metamaterials that exploit twist, axial extension, radial expansion,

and symmetry.
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I. INTRODUCTION

Origami is the ancient Japanese art of paper folding. In
recent years, this art form has been appreciated not only
for its aesthetics [1], but also for its potential functional-
ity [2]—including in space technologies [3,4], transforming
architectures [5,6], multistability and topological properties
[7-9], biological structures [10-12], deployable antennas
[13,14], metamaterials [15-17], and mechanical properties
[18-20]. Origami design utilizes the shape change induced
by piecewise affine isometric deformations (i.e., folding along
creases)—from, say, an easy-to-manufacture flat reference
sheet with a predesigned folding crease pattern—to achieve
a desired configuration in three-dimensional (3D) space. We
call such designs rigidly foldable if each panel can rotate
along the folding crease lines and remain rigid (without stretch
or flexure) during the folding process. The classical Miura
origami pattern [21] is the simplest example of this type, and
its generalizations lead to the study of systems of equations
that are highly nonlinear and geometrically constrained. As
a result, characterizing global properties of broad classes of
origami structures—such as whether they are rigid, multi-
stable, or rigidly foldable—is a challenge that has attracted
significant research interest. One way to study this problem is
by using iterative algorithms that enforce a certain topology
and foldability [20,22-24]. Another approach is to focus on
patterns consistent with a certain symmetry.

In this work, we follow the symmetry approach to charac-
terize, in a quite general way, helical Miura origami (HMO).
These are cylindrical-type origami obtained by repeated appli-
cation of a helical or rod group to a partially folded unit cell,
which we call a Miura parallelogram. In this procedure, the
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parameters are kept completely general and on full display,
and we are able to address the global problem of closing the
cylinder by a straightforward numerical algorithm. In group
theory language “closing the cylinder” is ensuring the group
is discrete. As a result, we can completely characterize the
phase space of all HMO, i.e., all cylindrical origami consistent
with helical or rod symmetry and the Miura parallelogram
as the unit cell. By exhaustive numerical treatment, we find
that HMO are generically rigid to deformations that preserve
cylindrical symmetry but multistable. This rigidity is not all
that surprising; the well-known cylindrical origami are either
rigid (for example, the Yoshimura pattern [25,26] and Kres-
ling pattern [27]) or they lose the cylindrical symmetry while
folding [28]. Nevertheless, we show that reconfigurability can
be achieved. Inspired by atomistic theory [29], we discuss two
strategies for doing so: one involving motion by slip and the
other involving phase transformation.

II. THEORY
A. Characterization of a Miura parallelogram

We begin by analyzing the kinematics of parallelograms
with a degree-4 vertex satisfying Kawasaki’s condition,
“opposite sector angles sum to 7.” To fix a terminology, we
call such cells Miura parallelograms, as they are a special
class of degree-4 origami unit cells for which the five vertices
[Fig. 1(a)] all lie in a plane, satisfy the angle condition
XXXy + £X4X0X3 = 7 [30], and satisfy the side length

condition |X4 —X3| = |X; — Xo| and |x; — X4| = |X» — X3].
Here 0 < Zx;x;x; < mw denotes the angle between x; — X;
and x; — X;.

The choice of unit cell here is dictated by the construction
of the HMO. We will apply rotations and translations to the
partially folded cell that map one of its sides to its opposite

©2020 American Physical Society
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FIG. 1. The reference geometry of a Miura parallelogram.
(a) The boundary of the parallelogram is parameterized by » and /
(up to a uniform rescaling). (b)—(d) The admissible curves on which
the interior vertex satisfies Kawasaki’s condition are shown in red.
There are three cases, each parameterized by a A taking values in the
interval (0,1). Specifically, the figures (b), (c), and (d) correspond to
the formulas (i), (ii), and (iii), respectively.

side. This requires the side length condition for consistency,
and it leads to a parallelogram boundary for the cell. In
addition, we assume Kawasaki’s condition as a simplification
to best illustrate our group theory approach to origami design.
We note that the constructions of cylindrical origami outlined
here can be applied to any degree-4 vertex cell that satisfies
the side length condition above. However, this generalization
increases the dimensionality of the phase space and leads to
cumbersome formulas for the rigid-folding kinematics. So we
leave it as a direction for future research.

The parallelogram condition and Kawasaki’s condition
constrain the four creases x; — Xg. As a result, the unfolded
Miura parallelogram (denoted by €2 in sequel) is completely
parameterized by three independent variables—up to a trivial
rescaling, rotation, and translation—as follows: We assume
|xo — x| = |x4 — x3] = 1 without loss of generality [31], and
we introduce the angle between X, — x; and x4 — X; as
(where 0 < n < ) and the length |x4 — X;| = |X3 — Xp| =
! > 0. This completely parameterizes the boundary of the
parallelogram [Fig. 1(a)]. Additionally, we show in the Sup-
plemental Material [32] that the creases satisfy Kawasaki’s
condition if and only if the vertex X, lies on one of two curves
in the interior of the parallelogram pictured in red in Fig. 1.
These curves are parameterized as follows:

(i). Case!l > 1: The two curves are given by Xo(A) = X1 +
A(xXy — X)) + fE(A)(x4 — X;), where 0 < A < 1 and the two
functions f* satisfy

soy= Ly [1( 1Y 181 1
f(k)—zi\/lz(k 2)*12 — o

(ii). Case I < 1: The two curves are given by Xo(A) =
X; + A(xs — X1) + g5 (L)X — x1), where 0 < A < 1 and the
two functions g* satisfy

1 1\ 1-12
_ - 2 _ 2
gi(k)_zi\/l (/\ 2) + I 2

(iii). Case [ = 1: The two curves are given by Xo(A) =
AXo 4+ (1 — A)xg and xo(A) = Axy + (1 — M)x3for0 < A < 1.

As there is an underlying 180° rotation symmetry to the
geometry of these curves, we are free to restrict our attention
to either the + or — case in (i)—(iii) without loss of generality.
This fully defines the crease pattern of a Miura parallelogram.

The kinematics of a degree-4 vertex satisfying Kawasaki’s
condition are well known to the origami community
[23,24,28], and an early derivation employing spherical
trigonometry can be found in Ref. [33]. Here we provide
a description of the kinematics through distance-preserving
deformations whose gradients are piecewise constant and
rank-one compatible across creases.

To begin, we fix one of the panels by setting y(x;) =
x;, i =0, 1, 2, without loss of generality. In our notation y(x)
represents the deformation from the flat state in Lagrangian
form (see the Supplemental Material [32]). The kinematics of
this pattern (i.e., its deformation gradients) are then described
by a composition of 3 x 3 rotation matrices R;(y;) whose
axes are tangent to the crease pattern X; — X in flat state
[34]. Specifically, the necessary and sufficient condition for
isometric origami is

Ri(yDR2(v2)R3(y3)R4(ys) = L. 3)

Note that the solutions of this equation describe a folding
where panels deform as depicted in Figs. 2(a) and 2(b). Fur-
ther, a positive folding angle describes a valley and a negative
a mountain here [red and blue, respectively, in Fig. 2(b)].

The full kinematics of the Miura parallelogram are ob-
tained as the characterization of folding angles that solve
(3). Generically, the solutions are described by a continu-
ous one-parameter family for which the four folding angles
(v1, v2, V3, ya) are given by the following expression:

(@B #(5.5)

yi=—0p (W), »=o0w, y3 =935 (0), s = o,

(01—cqcp)Cw + SuSp }

73 (@) = sgn(ca — ocp)w] arccos [(0 I—cqcp) + SaSpCo

— ifa=g
ceA={+ ifa=x-p ) 4)
+ fa#B,a#r—8

Here o € A denotes one of the (at most) two branches of
solutions corresponding to different mountain-valley crease
assignments, the folding angles are parameterized by —m <
o < m, and we employ the shorthand notation ¢y = cos(9),
sg = sin(@), o = £x1XoX; and B = £XpXox3. The familiar
remaining cases of Miura parallelograms describe folding in
half along a single crease:

ifa =g
ifoa=m—p (5)

Nn=yv=0m=wnu=o
Vvi=y;=w, »n=y3=0
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FIG. 2. The folding kinematics of Miura parallelograms. (a) The
crease pattern prior to folding. (b) The kinematics are described by
a deformation y? (£2) whose gradients are as depicted, i.e., rotations
of the panels along the creases that are subject to the compatibility
condition (3). (c) There are exactly two continuous one parameter
families which take the Miura parallelogram from flat (w0 = 0) to
folded flat (w = =) as rigidly foldable origami. The two branches
correspond to distinct mountain-valley assignments, as indicated
witho = +.

for the folding parameter —7 < w < 7. In the cases de-
scribed by (5), we can clearly append another folding of the
same type on the unfolded crease (“folding in half again”);
we do not describe these as they are not relevant for the
construction of an HMO.

Importantly, the parametrizations highlight two universal
features of kinematics: There are always two branches of
solutions o = % corresponding to the different mountain-
valley crease assignments, and each branch is described by a
single folding parameter w. Accordingly, the explicit folding
deformation is a continuous piecewise rigid deformation y? :
Q — R? with deformation gradients as shown in Fig. 2 for
Y1.2.3.4 = V1.2.3.4(w, 0) satisfying one of the parametrizations
in (4)—(5). This furnishes the deformed unit cell y (£2) with
corner positions y; = y2 (x;), i = 1, 2, 3, 4 after folding [35].
This explicit characterization of the deformations is important
for our purposes in what follows.

To summarize, the parameters (I, n, A, w, o) given above
completely characterize all possible Miura parallelograms—
up to trivial rescaling, translation, and overall rigid rotation—
and all possible ways of folding origami using these parallel-
ograms.

B. HMO are objective structures

We now define precisely what it means for a structure to
be HMO, and we discuss the implications of this definition
as it relates to characterizing all such structures. The line of
thinking here is based on a systematic and complete char-
acterization of helical and rod symmetry that we developed
for an analogous problem: describing all possible phases in
nanotubes [29]. To avoid being redundant, we simply borrow

(and state without proof) ideas from this work that are used in
the constructions here.

Briefly, we define an HMO as any compatible origami
structure obtained by a suitable group action G (see below) on
the partially folded Miura parallelogram y¢ (£2). The groups
we consider are discrete, are Abelian (i.e., the elements com-
mute), contain only isometries, and have an orbit {g(x) : g €
G} for each point x € R? that gives a collection of points that
all lie on a cylinder. (The cylinders can be different for differ-
ent choices of x.) This means that every Miura parallelogram
in the structure “sees the same environment” [36], which is the
natural generalization of periodicity to cylindrical origami.

An isometry is simply a map g = (R|c) defined by g(x) =
Rx + ¢, where R is a 3 x 3 orthogonal matrix and ¢ € R3.
Below we use O(3) to denote the 3 x 3 orthogonal matrices,
and SO(3) to denote rotations [i.e., the subset of O(3) with
determinant +1]. One can multiply isometries g; = (R;|¢)
and g, = (Ry]|cy) using the standard rule g;g> = (RiRy|e; +
R;cy). Under this rule, the collection of all isometries forms
the Euclidean group on R3, and it has many subgroups.
Thus, one might worry that the aforementioned—and rather
general—family of groups lacks meaningful structure. Strik-
ingly though (and this is made precise in Ref. [29]), discrete
and Abelian isometry groups subject to the stated cylinder
condition are quite restrictive. They must be described as the
product of powers of two generators on the set of pairs of
integers Z2,

G={gigh: (p.q) € 2%}, (©6)

in which the generators of the group g, and g, are two screw
isometries

gi = [Rglrie+ T —Ry)z], i=1,2, (7

with parameters Ry, € SO(3), —7 < 0, <7, 7; € R, e € R?,
lel =1, and z € R?, z-e =0 characterizing the rotation,
rotation angle, translation, rotation axis, and origin of the
isometry, respectively. These parameters are subject to a dis-
creteness condition

ptu+qgn=0
PO +4q'0, =2n ¥

for some pair of integers (p*, ¢*) € Z?. For origami structures
generated by groups, discreteness of the group is extremely
important. If the group is not discrete, then application of the
group to a unit cell will necessarily produce origami structures
with infinitely many self-intersections.

Technically, we should also enforce 112 + 122 > 0, as the
violation of this condition results in a flattened ring rather
than a cylinder. However, we avoid this restriction since
the flattened ring is of technological interest: the folded flat
portion of the Kresling pattern in Fig. 9(d) is one example.

Finally, we should point out the groups G in (6) are not
uniquely described by a single parametrization satisfying (7)—
(8). This should not be unexpected. In periodic structures,
there are many equivalent choices of lattice vectors which
generate the same lattice. In fact, the degeneracy here—much
like the two-dimensional (2D) lattice—is fully characterized
by a u € GL(Z?). Here GL(Z?) is the set of 2 x 2 matrices
with integer entries and determinant &=1. That is, for any group
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G satisfying (6)—(8), we can replace the parameters by a linear
transformation

0 0 T T P _r(p*
() = 1) () () (@) e ()
®)

and generate the same structure (i.e., G = G,)if p € GL(Z?).

Thus, the aim in what follows is to characterize the sets
of parameters (n, [/, A, w, 0,012, 712, €, Z, p*, ¢*) [up to this
trivial degeneracy u € GL(Z?)] that lead to a fully compatible
cylindrical origami structure. This then captures the phase
space of all HMO.

C. Design equations for HMO

The design equations for HMO are obtained systematically
by satisfying all compatibility conditions, i.e., the conditions
under which the folded tiles of the structure fit together
perfectly without gaps. For developing these ideas, we find it
convenient to introduce the tessellation 7Q = {g(2) : g € T}
for the translation group 7 = {tt] : (p, q) € Z?*} such that
1 = (Ix; —x4) and t, = (I|x, — Xx;). Since

Hxy) =x1, 1(x3) =X,

(10
h(X1) = X2,

1 (X4) = X3,

this gives a tessellated plane in R3 of Miura parallelograms
prior to folding. Suitably defined strips of this tessellation will
be used to construct the HMO from this easy-to-manufacture
flat state (e.g., Fig. 4).

We begin with local compatibility: Consider a partially
folded Miura parallelogram y¢ (€2) with its corners denoted
as'y;, i =1,2,3,4 [Figs. 2(a) and 2(b)], consider a group
G satisfying (6)—(8), and consider the structure Gy?(2) =
{87¢5(y2(R)) : (p, q) € Z?}. The nearest neighbors to y7 ()
on the structure are, therefore, obtained by the application
of group elements to this domain. Without loss of general-
ity [37], we assume the neighbor to the “left” of the unit
cell is g2(y?(€2)) and the neighbor “above” the unit cell is
g1(y5,(€2)). Then one condition of compatibility is that the unit
cell is connected to its neighbors; particularly, to its neighbor
on the left along the line £33 = {8y, + (1 —§)y; : 0 <5 < 1}
and to its neighbor up above along the line £1; = {8y; + (1 —
8)y2 : 0 < & < 1}. This gives four restrictions on the group
elements:

g1(y3) =y2,
82(ys) =y3,

g1(ys) =y1,

(11
g(y1) =y,

which we term local compatibility.

The reason for the terminology is that (11) is a discrete
and symmetry-related version of the local curl-free and jump
compatibility conditions that indicate whether a prescribed
deformation gradient can describe a continuous deformation
on a simply connected domain. Indeed, g; and g, commute
(i-e., g182 = g»g81) under the multiplication rule g;g,(x) =
g1(g2(x)). This means that g; and g, satisfy the loop con-
dition g;g2(y;) = g281(y;). As a result, the four nearest-
neighbor Miura parallelograms y? (2), g1(y5,(€2)), g2(y2 (2))
and g182(y2(R2)) = g281(y,(€2)) fit together automatically
whenever (11) holds. Combining (10) and (11), it then follows

that the induced deformation given by

v 0) = g5 (vox), VxeQ, (p.g) €2 (12)

is a continuous isometric origami deformation that maps the
tessellated plane to the origami structure. This is the key
advantage of bringing out the group structure: simply solve
the four equations (11), and the entire structure (12) fits
together perfectly without gaps.

Typical examples of final folded structures given by this
method are shown on the right of Fig. 4 for the helical
groups. Notice that, from a classical origami viewpoint, these
structures can be considered mixtures of four-fold and eight-
fold crease patterns that fold to cylindrical structures without
gaps or slits.

In the Supplemental Material [32], we solve the condi-
tions of local compatibility (11) explicitly. To explain the
parametrization obtained, we assume the Miura parallelogram
is partially folded (i.e., —m < w <7 and w # 0), and we
let the side length vectors be given by u, =y3 —y4, U, =
Y2 — Y1, Vo = ¥1 — ¥4, and v, = y» — y3. We can then always
define the right-hand orthonormal frame {f;, f;, f3},

_ u; +u,
|ua +ub|’

u, X up u, —u

f, y=
|uu_ub|

2=, (13)
|ua X ub|

Necessary and sufficient conditions for local compatibility in

this setting are

e = e’ (w, ¢) = cofi + s,f2,

-P
0, = 07 (w, ¢) = sgnle - (u, x u,)]arccos Ua* Telly ,
|Peua|2

v, - Pevy
0, = 05 (w, ¢) = sgnle - (v, x vp)]arccos | ——— |,
|Pev,|?

(14)

n=r(wp)=eV, D=7(0,¢)=e- u,

z=17"(w,9) = (I— Ry +e®e) "Pe(y2 — Ry y3),

where P, = I — e ® e denotes the linear transformation that
projects vectors onto the plane with unit normal e, the angle
—n/2 <@ <7m/2, and —m < w < 7 satisfies w # 0. The
fully folded cases w = £ and fully unfolded case w =0
are given by different formulas included in the Supplemental
Material [32]. Examples of these exceptional cases are fully
degenerate cylinders (w = 0) or flattened ring structures
(w=m).

The kinematic freedom in (14) is —7 <w <mw, W #
0, —7/2 < ¢ <7m/2, and 0 = £. Recall that w parameter-
izes the folding angles. The geometric interpretation of ¢ is
given in Fig. 3. We utilize this freedom of w and ¢ to solve
the discreteness condition (8). Satisfying discreteness, in turn,
is equivalent to closing the cylinder as explained below and
illustrated in Fig. 4.

Given integers (p*, g*), not both zero, we observe that
the discreteness condition (i.e., p*t; + ¢*t, = 0) uniquely
determines the angle ¢ under the parametrization (14). The
explicit form is

—f - (PVa + g*u,) ] (15)

¢ = ¢ (w) = arctan [
£, (Ve + qua)
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FIG. 3. The coordinate system {f, f>, f3} and rotation axis e con-
structed according to Eqgs. (13) and (14). Left: side view. Right: view
from f,. The isometries g;, g> that solve local compatibility in (11)
have an axis of rotation e that lies in the plane perpendicular to f5. The
angle ¢, as depicted, therefore serves to parametrize an admissible
axis.

(This parametrization is always well-defined: see the Supple-
mental Material [32].) We then substitute (15) into (14), to get
the final form of the discreteness condition,

POy [w, 7 ()] + ¢°67 [w, ¢ (w)] = 27, (16)

which is to be solved for w. This we evaluate numerically by
cycling through the folding parameter w # 0, — 7 < w < 7.
The solutions then correspond to parameters that give a HMO
structure. Specifically, consider the chiral vector C,, = p*a; +
q*a, [see Fig. 4(a)], i.e., the widely used descriptor of chirality
in carbon nanotubes [38,39]. Upon substituting ¢ = ¢? (w)
into the group parameters (14), and using these to generate
an origami structure (12) from the flat tessellation, we make
the striking observation related to C;: as @ monotonically
increases (or decreases) from zero, the structure is simply
“rolling up” as rigidly foldable origami, with the line traced
by C,, deforming effectively as a singly curved arc. Further,

A\

<\

\

4

\

%)

\

4§

W
4

A

the points of w at which O and A connect perfectly during
this rolling up process are exactly the points w = ¢ such that
(16) holds. Finally, because of the underlying symmetry of
the group G, the boundaries of a suitable C;, tessellated strip
[Fig. 4(b) and 4(c)] connect perfectly if and only if (16) holds.
Thus, (16) is the necessary and sufficient condition on the
kinematic parameters for closing the cylinder and generating
a HMO with Cj, chirality.

III. THE PHASE SPACE AND
RECONFIGURABILITY OF HMO

A. The phase space

The design equations above lead to a comprehensive and
explicit recipe to determine all HMO:

(1) Fix the reference geometry of the Miura parallelo-
gram and chirality by assigning (I, n,A)as/ > 0,0 < n < m,
and 0 < A < 1, and by assigning a nonzero pair of integers
r*, q").

(2) Assign the group parameters by the design equations
in (14)—(15).

(3) Cycle through the folding parameter —7 < w < 7,
o # 0, and solution branch o = %+ to numerically compute
all solutions w = w{ to the final design equation (16). This
closes the cylinder and generates a HMO with the parameters
n, 1, X, p*, g* and group parameters (14)—(15) for w = ?.

(4) Cycle through the reference geometry (/,n, ) and
chirality (p*, ¢*) in Step 1 and repeat Steps 2 and 3 for each
case to determine all HMO structures.

A natural design tool for HMO solutions is to fix the
discreteness (p*, q*) and cycle through reference parameters
(I,n, 1) to create a 3D phase diagram. In Figs. 5 and 6,
we present two examples for illustrative purposes. These
describe 2D slices of such phase diagrams at A = 1/2 [40].
In the diagrams, the coloring scheme is in accordance to the
number of HMO configurations [solutions to (16)] for a fixed
mountain-valley assignment (o = + for the left diagram and
— for the right diagram in the figures). We also highlight
examples of HMO in each of the respective regions.

4

J &QXL
%

Y
Y
SISIINNNY

FIG. 4. Constructing a HMO from a flat tessellation. (a) Each HMO is characterized by a chiral vector C, = (YA) = p*a; + g*a,, which is
a linear combination of the side length vectors a; = x; — X4 = f;(X4) — X4 and a, = X3 — X4 = fh(X4) — X4. This describes a (p*, ¢g*) building
block for the structure. (b)—(c) In extending this building block to a tessellated strip in the “vertical” (b) or “horizontal” (c) direction, a HMO
structure is achieved by a rigidly foldable motion that connects the points O and A at w = w{ [i.e., the angle(s) solving (16)].
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(p*aq*a)‘aa-) = (37 75057+) (p*,q*,)\,g) = (3,7,05,—) # Sol.

1.0

(0.8,0.7,+) (0.8,0.7, ) (1.5,0.24, —) (1.2,0.22,+)
Monostable Bistable

-

(1.01,0.334, —) (1.167,0.283, —) (1.2,0.325)
Tristable Quadstable Degenerate

FIG. 5. Phase diagrams of HMO structures parameterized by the three parameters (/, 1, 1) of the Miura parallelogram unit cell, as well
as the mountain-valley assignment o € {£}. The slices of the phase diagrams displayed are taken at A = 1/2. The discreteness is given by
(p*, q*) = (3,7) in this case, and the coloring scheme is in accordance to the number of HMO solutions: 0 (purple), 1 (light blue), 2 (green),
3 (orange), and 4 (red). The curve in yellow indicates a degenerate HMO that is achieved for a fully unfolded Miura parallelogram. As such,
it is independent of A since the creases are not being utilized. Further, it always corresponds to a vertical interface. The examples below the
diagrams give HMO in the different regimes of stability and are parameterized by (/, n/m, o), as shown. Note that, as the most folded example
in the quadstable case shows, some of the solutions exhibit self-intersection (whereby the partially folded unit cells intersect with some of their
neighbors).

The first slice (Fig. 5) is a generic helical case in which ~ there are regions with no solutions (purple) and regions of
the discreteness is (p*, ¢*) = (3, 7). Notice the reference pa- multistability. The o = — case is particularly interesting,
rameters ([, n, A) typically furnish a single HMO solution as it has regions of bistability (green), tristability (orange),
for a fixed mountain-valley assignment (light blue). However, and quadstability (red). This is quite striking: by carefully
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sssasasssses
0.2 |sssasasassss
sssssassisssases

(1.5,0.5)
Degenerate

(0.275,0.4, +)

(0.275,0.4, —)
Bistable

(1.2,0.6,—) (1.2,0.6,+)
Monostable

FIG. 6. An example of ringlike structures given by fixing the
discreteness (p*, ¢*) = (8, 0). The characterization of the different
features in this figure is identical to Fig. 5.

designing reference parameters in the multistable regimes,
the HMO achieved by such design can transform from one
stable state to another by stress-induced twist and contraction
(or expansion). As evidenced by the examples, the induced
deformation for such transformation can be quite dramatic;
for instance, the tristable HMO above, when deformed from
its most unfolded state (with folding parameter w; ~ 0.057)
to its most folded state (w3 ~ 0.37x), contracts by a factor
Ty /Yo, = 0.7 along its radius and by a factor L, /L, =~
0.2 along its axial length. In addition, for the given 7 x 6
unit cells depicted, it experiences ~470° of twist under this
transformation.

The second slice (Fig. 6) is for discreteness (p*, g*) =
(8,0). This characterizes ring-type HMO described by a
closed ring of eight Miura parallelograms repeated along the
axis e in a periodic fashion. We again see that the reference
parameters (I, n, A) typically furnish a single HMO solution
for a given mountain-valley assignment (light blue), but there
are also regions of bistability (green). Interestingly, transfor-
mation between the two stable states in the bistable regime of
parameters induces axial contraction (expansion) and twist,
but no change in the radius. This means that each ring layer
can be transformed independently to form a structure which
is a mixture of the two different HMO states. This stands in
stark contrast to the generic case p*, g* # 0, where the entire
structure must fully participate in the transformation from one
state to the other [41].

Importantly, our exhaustive numerical treatment beyond
these examples suggests there are no parameters for which

HMO structures exhibit rigidly foldable motions that preserve
helical symmetry. However, large regions of multistability are
ubiquitous.

As a final comment before shifting viewpoints, we note
that one drawback of this design procedure is it does not
take into account self-intersection: it is actually possible for
the Miura parallelogram y¢(€2) and one of its neighbors
812(y2(€2)) to overlap in an unphysical way at large values
of |w| and still solve the condition (16). One such example
of self-intersection is the fourth and most folded configura-
tion (Fig. 5, the quadstable case). We did not exclude self-
intersection in the phase diagram, as it is far too numerically
laborious to do so while simultaneously exploring large re-
gions of the configuration space. So this procedure does, in
some cases, overestimate the number of stable HMO states
for a given set of reference parameters. Nevertheless, these
self-intersecting configurations may be relevant—in the sense
that, mechanistically, they suggest the possible existence of
a stressed but stable mechanical equilibrium described by a
tubular structure with the panels in direct contact.

Now, an alternative way to view this phase space is to fix a
tessellated strip and classify all the HMO that can be obtained
from this strip by the “rolling up” process (Fig. 4). For exam-
ple, consider the tessellation in the top-left corner of Fig. 7.
This has a width of |g*| = 7 Miura parallelograms that are
repeated along the length of the strip. The boundaries of this
tessellation can fit together to form a HMO in different ways,
in particular, in all the ways (p*, +7) for p* € Z that solve the
discreteness conditions in (15) and (16). This corresponds to
different points A; on the boundary that connect to O on the
opposite boundary.

To clarify this viewpoint, we have completely evaluated
the phase space—in this particular sense—for the tessellation
shown in Fig. 4. Strikingly, this tessellation admits a HMO
solution for all (p*,£7) and o € {£}, meaning that it can
be isometrically rolled up to form a HMO of arbitrary chi-
rality for either choice of mountain-valley assignment. This
is highlighted graphically in Fig. 7. Starting at p* = 0, the
solutions for increasing integer values of |p*| are plotted in the
(w, @) phase space. Physically, this integer increase describes
a shift in the structure by one Miura parallelogram along
the helical interface corresponding to the boundary of the
tessellation—a process completely encapsulated by a change
in both the folding parameter @ of the Miura parallelogram
and axis orientation ¢. We find it instructive to elaborate on
this diagram in detail, as it is a natural lead-in to a mechanism
for reconfigurability in HMO structures.

Briefly, for the trajectory describing increasing |p*| in blue,
the shift simultaneously involves widening the radius and
contracting along the axis. Interestingly, the helical interface
traced out by this shift is gradually flattening out as |p*| —
oo. However, for reasons of discreteness, it cannot go com-
pletely flat since a horizontal interface can only exist for p* =
0 [42]. Instead, we see the emergence of an accumulation
point (limit as |p*| — oo) at roughly 7~ !(w, ¢) & (0, 0.13).
In contrast, the trajectory in purple is also for increasing
integer values of |p*|, starting from zero, but describes a shift
along the helical interface in the opposite sense, which takes
the interface ever more vertical. This involves extension along
the axis and contraction of the radius, a process that, evidently,

033002-7



FENG, PLUCINSKY, AND JAMES

PHYSICAL REVIEW E 101, 033002 (2020)

| o) —Ip’l
Reference tessellation %)06 .»\ Increasing
A3 Ag A; 2
...... T =
S TEE e <
7| = T R
\ Booccace Los
e 3
M-V Assign.
o=+
Ip*|
Increasing [
Ip*|
Increasing
-03  —02 -0l 00 o1 02 03
w/m (Fold parameter)

Reference tessellation %‘) 0.6.\ § [p*|
s A.‘i éo k‘Aﬁ E o 1 Increasing
‘q*‘ . $ ° i 8 \
............. N . _
Rk Lo @ 4o
[o) Y S .\ 3 {
M-V Assign. & o
o= — '}! |
1. 04
)\‘
; Ip*]
- Increasing
0.3
) \:
*
|| %
Increasing [
—_
R °
L 8 ’
° ‘p*‘
5 [ .
Increasing
—0.3 —0.2 —0.1 0.0 0.1 0.2 0.3
w/m (Fold parameter)

FIG. 7. A diagram describing all the ways the reference tessellation, i.e., an infinite strip with width |¢*| = 7 Miura parallelogram in the top
left corner, can be rolled up to form a HMO. These solve (15) and (16) for p* =0, ..., 150 and g* = 7 in blue, p* =4, ...,22 and g* = -7
in red, and p* = 23, ..., 150 and ¢* = —7 in green. The purple solutions depicted are obtained differently for aesthetic reasons: First, we
solve (15) and (16) for p* =1, 2, 3 and ¢* = —7. This yields the axis orientation ¢ = ¢? (w?) < 0. We then notice that, by replacing the axis
orientation with ¢ = ¢? (w?) + 7 and the discreetness (p*, ¢g*) with its minus, we achieve exactly the same structure. Note that the structure
does not jump in the transition from purple to red. This is a continuous transition of the geometry with ¢(w) + ¢(—w) passing through 7 as
w passes through zero. Note also, for all these solutions (blue/purple/red/green), there are also trivial solutions of mirrored chirality which
correspond to (p*, ¢*, w, ¢) — —(p*, ¢*, w, ). We do not plot these, as they do not provide any additional information. Finally, we halted the
calculation at |p*| = 150 since the accumulation points along the blue and green trajectories as |p*| — oo are evident.

cannot continue indefinitely. Instead, there is a transition in
the chirality from |p*| = 3 to |p*| = 4 (purple to red) that is
achieved by flipping each mountain and valley of the Miura
parallelogram, as indicated by the sign change in w. After the
transition, the trajectory for increasing |p*| in red describes
a shifting helical interface that goes ever more horizontal
again, resulting in expansion of the radius and contraction
along the axis. This also does not continue indefinitely, as
there is a final transition between |p*| =22 and |p*| =23
(red to green) which again flips each mountain and valley
of the Miura parallelogram. Along the green trajectory, we
can take |p*| — oo. The shifting helical interface is flattening
out giving, seemingly, the same accumulation point in the
phase space 7! (w, ¢) & (0, 0.13) as the blue trajectory, but
corresponding to solutions of the opposite chirality.
Importantly, these transitions—whereby w changes signs
and induces a flip in the mountain valley assignment—occur
exactly when one of the helical interfaces is nearly vertical.
Our musings in this direction, guided by further numerical
evidence, suggest this is an observation generic to all HMO
structures. Recall that vertical interfaces correspond to the
fully degenerate lines in the phase diagrams (Fig. 5) and
describe HMO solutions for which the Miura parallelogram
is completely unfolded (i.e., @ = 0). We observe that con-
figurations “above” the line and “below” the line correspond
to a change in the sign of w, and this is apparently what is
happening in the transition of |p*| = 3 to 4 and |p*| = 22 to
23 in Fig. 7. As a final comment related to the diagrams, it
is tantalizing to think that the solutions for the two mountain-

valley assignments can be directly mapped onto each other
by a linear transformation in the (w, ¢) phase space, as it
very much looks like the 0 = — solutions are related to the
+ solutions by a contraction of the folding angle w. Alas, we
have checked this carefully, and it is not the case.

In summary, we have presented a general framework to
investigate the phase space of HMO structures. Our numerical
efforts in this direction suggest that rigidly foldable motions
that preserve helical symmetry are impossible in such struc-
tures. Nevertheless, as the examples in Fig. 5 and 7 highlight,
multistability for a fixed discreteness (p*, ¢*) is a ubiquitous
feature, and a rich variety of configurations can generically
be achieved by rolling up a reference tessellation in different
ways. In what follows, we exploit these two features to discuss
approaches for making these structures reconfigurable.

B. Motion by slip

One such means of reconfigurability is suggested by the
diagram in Fig. 7: A variety of HMO are achieved from
the same underlying tessellation by solving the discreteness
conditions (15) and (16) for different discrete values of p* € Z
(with |g*| = const a fixed integer describing the number of
unit cells along the width of the tessellated strip of interest).
However, notice that the parametrizations also make sense
when treating p* as a continuous parameter and solving these
equations. We simply “connect the dots” along a continuous
curve in the (w, ¢) phase space. While this continuation does
not give a HMO for noninteger values of p*, it does describe a
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FIG. 8. By treating p* as a continuous parameter in the design
equations, a rigidly foldable motion corresponding to slip along
a helical interface is achieved (left). This also induces a small
misfit displacement in the radial direction at the boundaries of the
tessellation (right). Here A indicates the maximum radial misfit
displacement as a function of p*.

rigidly foldable isometric origami motion of this tessellation.
Precisely, consider any continuous curve [., ¢] («7.)] that
solves (15)—(16) for p* in some connected interval of R.
Substituting this curve into the group parameters (14) and then
all the parameters into (12), we observe that the deformation
must describe rigidly foldable origami as a function of p* due
to the underlying continuity and distance-preserving nature of
all of these maps. In fact, there is a quite simple physical
interpretation; this is nothing but motion by slip along the
helical interface that connects the boundaries of the tessellated
strip in the HMO configuration.

An example to this effect is provided in Fig. 8. For the same
underlying tessellated strip, we vary p* continuously from two
to five to generate a continuous curve of solutions to (15)
and (16) in the (w, ¢) phase space. The origami structures
[obtained by substituting solutions on this curve into (14)
and (12)] are displayed at integers and half-integers. At the
half-integers p* = 2.5, 3.5, 4.5, the misfit is indicated by the
gap separating the red lines in the figure, and it is along a
single helical interface, exactly halfway between two HMO
structures p* &£ 1/2 (blue). This clearly indicates motion by
slip along the helical interface.

We should point out that this slip motion is by no means
special to the particular example shown but rather generic to
these origami structures. Thus, it would seem a natural means
of reconfigurability in engineering design: For example, one
could design a slider mechanism that attaches to the two
boundaries of the underlying tessellation. For the design, we
envision that, once the two sides are connected to form a
HMO, this slider would allow for easy motion along the
helical interface but would otherwise act as a linear spring
for distortion in the radial direction and be (ideally) rigid

for distortion normal to the radial and helical tangent direc-
tions. In this sense, then, the square of the max radial misfit
displacement (e.g., A% for A in the example Fig. 8) would
provide a reasonable proxy to the energy barrier to motion up
to, say, a constant depending only on the design of the slider.
Since the motion is otherwise rigidly foldable origami—
and, particularly, involves no change in the mountain-valley
assignment in most instances—it is reasonable that all other
sources of energy in the system (e.g., a “bending energy” of
the folds or friction in the hinges) could be made negligible
by comparison. As a result, we expect such designs to achieve
equilibrium states at exactly each discrete value of p* that
admits a HMO along a continuous path in the (w, ¢) phase
space. We also expect a modest energy barrier for transi-
tioning between these discrete states. Thus, reconfigurability
here would presumably involve an actuation or loading that
exceeds the energy barrier, thereby allowing the structure to
“jump” from one HMO to its neighbor.

C. Motion by phase transformation

Multistabilty is ubiquitous in mechanical systems [43,44],
and one can often leverage this to obtain overall motion by
transforming the system from one stable state to another. In
HMO, we have a generically multistable mechanical system
for a fixed discreteness due to the underlying constraints
imposed by cylindrical origami; there is typically a plus
phase and minus phase (sometimes multiple such states) cor-
responding to the two different mountain-valley assignments
for the Miura parallelogram (Fig. 5). We exploit this feature to
study coexistence of phases, i.e., whether the two phases can
exist as mixtures that result in cylindrical origami, with the
potential to produce overall motion. The line of thinking here
is inspired by geometric compatibility in martensitic phase
transformations [45-47] and its analog for discrete helical
structures [29].

To address coexistence of phases, the naive idea is to
transform one of the phases generating a HMO to an-
other via the propagation of geometrically compatible in-
terfaces, but there is admittedly some subtlety. We begin
by considering two locally compatible origami structures
generated by the same underlying tessellation: ng(ﬁ) =
FHEYIQ) () € 2%} and Gyl (Q) = {HFH Q) :
(p, q) € Z*}, where g; (respectively, &;) have group param-
eters as in (14) with (w,¢,0) = (o, ¢,d) [respectively,
(w, p,0) = (&, §, 6)] on the domain given above. Note that
we are not enforcing the discreteness condition (15)—(16),
as this will be relaxed since the origami here can involve
more than one phase. In fact, by arguing rigorously in the
Supplemental Material [32], we show that necessary and
sufficient conditions for a closed cylindrical origami of these
two phases are

7 (@, §) = 1] (@, ).

07 (5, ¢) = 05 (. §),

Pl (@, @)+ 8 (&, 9) + (¢* — 5 (@, 9) =0, (1)
POY (&, §) + 305 (&, 9) + (¢ — PO5 (&, §) = 2,
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FIG. 9. Phase transforming HMO. (a) Overall twist and extension obtained by transformation via a compatible horizontal interface. (b). The
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cylindrical origami with helical interfaces.

for some p*, 4, g* € Z with |G| < |¢*| and ¢g*G > 0. [Trivially,
we can also exchange the roles of (-), and (-); above.] We
focus on the system in (17) without loss of generality.

This system of equations, when solved, admits three types
of cylindrical origami depending on the values of the various
parameters: HMO (i.e., single-phased cylindrical origami),
those with horizontal interfaces, and those with helical inter-
faces. The former is obvious; if we set (@, ¢, ) = (®, @, 6),
then the system in (17) degenerates to the original discreteness
condition (8), which is solved via the procedure in (15)—
(16). Alternatively, horizontal interfaces correspond to g* =
Gg=0 and (@, ¢,5) # (&, ¢, 6). Finally, helical interfaces
correspond to everything else, i.e., ¢g*, § # 0 and (&, ¢, &) #
(&, §,6). In particular, the latter two formulas for helical
interfaces describe a p-averaged discreteness condition given
the former two. That is, these formulas can be written as
p*<rl>p + q*(f2>p =0and p*<01)p + q*<02)p =27 with p =
G/q* being the density of (*) phase. In this sense, we will show
that |G| and |¢*| — || are the number of rows of the (*) phase
and (*) phase, respectively, for this type of cylindrical origami
[e.g., Fig. 9(e)].

Focusing first on simpler case of a horizontal interface (i.e.,
q* = g = 0), we see that (17) reduces to

T (&, ) = 1/ (@, §) =0,

oY (&, ¢) = pof (@, ¢) = 2, (18)

which is solved if and only if the parameters of the two
phases generate a ring-type HMO [i.e., solve (15)—(16) with
q* = 0]. The trivial equivalence here is due to a simple
geometric fact that ring-type HMO, for the same underly-
ing Miura parallelogram and discreteness |p*|, always con-
tain the same horizontal interfaces; that of regular |p*|-gons
with sides of length |x4 — x;|. Thus, different phases in this
setting can always be glued together at these coincident
interfaces. This is quite striking: As ring-type HMO solu-
tions typically come in pairs (a plus and minus phase, and
sometimes two each; Fig. 6), such structures can generically
form mixtures of the two (or four) phases along horizontal
interfaces.

One example, involving a change in the mountain-valley
assignment for the Miura parallelograms, is provided in
Fig. 9(a). Notice that, when a ring is transformed, it produces
an overall twist and extension of the structure: The parameters
01 and t; for the generators g; and g; are identical [as
they solve (18)], but their analogs 6, and 1, in g, and %
need not be. The overall twist and extension is simply the
manifestation of this difference. That is, whenever a single
ring is transformed, the magnitudes of overall twist and exten-
sion are A9 = |(é2 — 92)| and At = |T, — 1,|, respectively
[48].

As these quantities are often figures of merit in design,
it seems quite natural to address what ring structures (q* =
0) give the maximal overall twist or maximal overall ex-
tension when a layer is transformed. This can be done
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systematically. We first fix the boundary of the Miura paral-
lelogram. Then, as a function of the crease pattern parameter
0 < A < 1 defining the interior vertex, we compute the pa-
rameters that give a multistable HMO and find the maximum
difference At and A@ for this A dependence [Fig. 9(b)].
Finally, we cycle through the boundary parameters (/, ) and
repeat. The results of this procedure for p* = 8 are highlighted
graphically in Fig. 9(c) and 9(d) and are quite illuminating
for design. For ring-type HMO with horizontal interfaces, we
conclude:

(1) The transforming twist is largest in the triangular
region depicted in Fig. 9(c). These involve a twist with angle
X 7 per transforming layer.

(2) The maximal extension is unambiguously achieved as
(I, n,2) — (0414, /2, 0), which exactly corresponds to a
special Kresling pattern.

A transformation inducing the maximal twist (i.e., one
in the triangular region) and the special Kresling pattern
are also provided in the figures. The latter has the feature
that the Miura parallelogram—actually, the limit A — O of
Miura parallelograms—generates a HMO in the completely
unfolded and the fully folded-in-half states. Hence, the ex-
tension achieved is as large as can ever be expected, as it is
the full height of the layer itself. The former is one of many
examples for which a nearly degenerate HMO can transform
along the same mountain-valley assignment, inducing a twist
per layer that is essentially half the circumference of the
cylinder.

We end the discussion of compatible interfaces by briefly
introducing an example corresponding to the helical case
[Fig. 9(e)]. This is obtained by solving the system of equations
in (17) with § = 4, g* = 6, and p* = 8. We do not present here
a general strategy for solving this class of problems. Instead,
the solution is achieved by an iterative procedure involving
slight perturbations of both plus-phase and minus-phase HMO
with this discreteness. Observe that the perturbed phases are
such that a four-layered plus phase can connect to a two-
layered minus phase in such a way to be perfectly compatible
along two infinitely long helical interfaces. Additional per-
turbations are required to propagate the geometrically com-
patible helical interfaces (i.e., solve the system with different
g) and induce an overall motion (twist and extension). Such
change in solutions is significant, as it avoids the issue of
rigidity we observed with helical interfaces of two phases in
atomic structures [29].

IV. DISCUSSION

In this work, we have presented a thorough characterization
of the phase space of helical Miura origami. These results are
explicit and quantitative and yield a complete phase diagram
by numerical implementation. As such, this characterization
should make for an efficient design tool for the myriad of
applications seeking multifunctional and tunable structures:
The motion by slip, which induces expansion (or contraction)
radially in the structure, would seem a natural mechanism
in the design of medical stents [49]. The quadstable ring
structures—really their “fold-in-half” analogs—are already
being explored as a concept for deployable space structures
[19]. And the helical symmetry, which is on full display in this
methodology, has the potential to be exploited for the design
of novel electro-magnetic antennas [50], particularly, since
discrete symmetries can interact with Maxwell’s equations to
produce highly directionalized electro-magnetic profiles [51].
In fact, the helical interfaces are an interesting example in
this setting, as they involve both a short-wavelength helical
symmetry (the unit cell) and a long-wavelength symmetry
[e.g., a shift and potential twist of the eight layers along the
axis in Fig. 9(e)].

On the theoretical front, the abstraction underlying all the
results here is the following: discrete and Abelian groups of
isometries interact naturally with origami unit cells to produce
complex, interesting and useful structures. While we have cho-
sen to focus our attention on one type of unit cell (the Miura
parallelogram), the approach applies much more broadly. For
instance, Kawasaki’s condition can certainly be relaxed and
still yield an origami unit cell. In addition, advances in 3D /4D
printing and manufacturing make it sensible to also consider
(1) origami that is absent a flat configuration [52,53] and (2)
simple building blocks of nonisometric origami [54,55] made
of active materials. In all such cases, as long as the unit cell
has four and only four corners, the design equations for the
group parameters [i.e., the equations (14)—(16)] directly apply
to construct any helical origami. Thus, the group theoretic
approach to origami design would seem to have a broad and
remarkable scope.
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