
Journal of the Mechanics and Physics of Solids 141 (2020) 103961 

Contents lists available at ScienceDirect 

Journal of the Mechanics and Physics of Solids 

journal homepage: www.elsevier.com/locate/jmps 

Branching of twins in shape memory alloys revisited 

Hanuš Seiner a , Paul Plucinsky 

b , Vivekanand Dabade 

c , d , Barbora Benešová a , e , 
Richard D. James c , ∗

a Institute of Thermomechanics, Czech Academy of Sciences, Prague, Czech Republic 
b Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, USA 
c Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, USA 
d LMS, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, 91128, France 
e Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic 

a r t i c l e i n f o 

Article history: 

Received 21 October 2019 

Revised 11 March 2020 

Accepted 3 April 2020 

Available online 6 April 2020 

Keywords: 

Shape memory alloys 

Martensitic microstructures 

Branching 

Non-linear elasticity 

a b s t r a c t 

We study the branching of twins appearing in shape memory alloys at the interface be- 

tween austenite and martensite. In the framework of three-dimensional non-linear elastic- 

ity theory, we propose an explicit, low-energy construction of the branched microstructure, 

generally applicable to any shape memory material without restrictions on the symmetry 

class of martensite or on the geometric parameters of the interface. We show that the 

suggested construction follows the expected energy scaling law, i.e., that (for the surface 

energy of the twins being sufficiently small) the branching leads to energy reduction. Fur- 

thermore, the construction can be modified to capture different f eatures of experimentally 

observed microstructures without violating this scaling law. By using a numerical proce- 

dure, we demonstrate that the proposed construction is able to predict realistically the 

twin width in a Cu-Al-Ni single crystal and to estimate an upper bound to the number of 

the branching generations. 

© 2020 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

In shape memory alloys, the branching of the ferroelastic domains, called martensitic twins, typically appears close to

the interface between austenite and a first order laminate of two martensitic variants ( Fig. 1 ). While the gradual refinement

of the twins towards the interface reduces the elastic strain energy localized directly at the interface, coarsening of the

laminate farther from the interface leads to reduction of the surface energy in the crystal. As a result, the elastic energy

is partially delocalized from the interface into the branched structure, while the surface energy becomes partially localized

into the vicinity of the interface, which both may lead to reduction of the total energy. 

The theoretical framework for studying the branched microstructures in shape memory alloys was first established by

Kohn and Müller (1992, 1994) , and further developed by many others ( Capella and Otto, 2009; 2012; Conti, 20 0 0; Dondl

et al., 2016 ). These pioneering works always considered some simplified versions of the problem, mostly assuming lin-

earized elasticity and/or prescribing some artificial continuous displacement fields over the branched structure. Most re-

cently, the full vectorial problem, including invariance under rotations, was studied in two dimensions by Chan and Conti

(2014, 2015) , assuming specific forms of the deformation gradients representing individual variants of martensite. Although
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Fig. 1. An example of branching microstructure at the austenite-martensite interface. The photograph is about 0.5 mm in length. Courtesy of C. Chu. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

all these works provide a valuable insight into the scaling laws for energy of the branched structure, they are hardly acces-

sible for experimentalists, who would like get a direct understanding of the branching mechanism for a given, real material.

In this paper, we present a construction of branched microstructure at the austenite-martensite interface in a fully non-

linear, three-dimensional setting, and we show that branching using this construction leads to the expected reduction of

the total energy. In addition, this explicit construction enables us to discuss the character of the elastic strain field in the

branched microstructure, and to suggest strategies for reducing the energy stored in this microstructure. The main aim of

this paper is to provide a micro-mechanical model of branching in shape memory alloys, directly applicable to particular

shape memory alloys with experimentally determined material parameters. Let us point out that the energy calculated for

the construction presented in this paper is still just an upper bound to the energy of the real branched microstructure.

Similarly to ( Capella and Otto, 2009; 2012; Chan and Conti, 2014; 2015; Kohn and Müller, 1992; 1994 ), we do not require

stress equilibrium at the interfaces inside the construction, and the number of degrees of freedom of the construction is

relatively low. However, as all parts of the constructed microstructure represent either stress-free martensite or martensite

very close to the stress-free state, and as the geometric parameters of the construction are optimized in order to attain

a minimum of energy, it is justified to consider this construction as a good approximation of a real microstructure. This

assumption is tested in the final part of the paper on a numerical example, where we show that the simulation predicts

realistically the length-scales and morphology of an austenite-to-martesite interface in the Cu-Al-Ni alloy. 

2. Theoretical background 

2.1. A simple model of the austenite-martensite interface 

A widely accepted theoretical approach to martensitic microstructures ( Ball and James, 1987; 1992; Bhattacharya, 2003 )

takes the advantage of describing the diffusionless transitions in shape memory alloys within the framework of continuum

mechanics. In this theory, the austenite phase and the individual variants of martensite are represented by 3 × 3 matrices,

with the identity matrix I representing the austenite phase, and Bain matrices U i for the variants of martensite. U i are

calculated from the deformation gradients ∇y ( x ) that are related to the crystal lattices of the variants via the Cauchy-Born

hypothesis ( Bhattacharya, 2003 ). For ϕ( ∇y ) being the free energy density of the shape memory alloy crystal (occupying

some purely austenite domain � in the reference configuration), the theory predicts that the martensitic microstructure

forming at a given temperature and for given boundary conditions at ∂� corresponds to the minimum of the energy 

E = 

∫ 
�

ϕ(∇y )d x + E surf . [ y ] (1) 

over all continuous functions y ( x ), where the second term represents the energetic penalization for the interfaces between

the individual phases in the observed domain. The energy density ϕ( ∇y ) is typically considered to have a multi-well struc-

ture, with the respective multiple minima corresponding to the individual phases and variants; the depth of the energy

wells gives the chemical energy of the phases at the given temperature, and the derivatives ∂ 2 ϕ 
∂ F jk ∂ F lm 

evaluated at I or U i give

the elastic constants of these phases. At the transitions temperature, i.e., at the temperature where the chemical energy of
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the austenite and the martensite phases are equal, 

ϕ(∇y ∈ SO (3) ) = ϕ(∇y ∈ ∪ 

n 
i =1 SO (3) U i ) = 0 , (2)

where U i is the Bain matrix representing the i th variant of martensite from the total number of n possible martensitic

variants. 

The surface energy term E surf. [ y ] is more delicate. Several different expressions for this term can be found in the litera-

ture. A frequently used form is ( Barsch and Krumhansl, 1984; Dondl et al., 2016; Kohn and Müller, 1992; 1994 ) 

E surf . [ y ] = 

∫ 
�

σ |∇ 

2 y | d x , (3)

where σ has a meaning of the surface energy per unit area per unit jump of the deformation gradient over the interface.

Specifically, for a microstructure consisting of areas with approximately homogeneous deformation gradients separated by

sharp interfaces, the formula has the interpretation ∫ 
�

σ |∇ 

2 y | dx ≈ σ × ( “area of the interface”) × | “ jump in the deformation gradient”| . (4)

The minimum of (1) is then sought over all continuous y ( x ) with measurable (weak) second derivative. 

However, relating the value of the surface energy per unit area to the jump in the deformation gradient over the interface

does not have a clear physical justification. For example, in alloys undergoing cubic-to-orthorhombic or cubic-to-monoclinic

transitions, certain pairs of variants can form at the same time two different types of twins: Type I twins, where the twin-

ning plane is a low-index atomic plane, and the Type II twins, where the twinning plane is a general plane with irrational

crystallographic indices. As a result, the Type I interface can be atomistically sharp, while Type II interface can have a dif-

fused, or segmented nature ( Liu and Xie, 2006; Vronka et al., 2018; Xie and Liu, 2004 ). Hence, although the jump in the

deformation gradient over the twinning plane can be comparable for both twinning types 1 , the surface energy associated

with the twin can be very different due to the different structure of the interface. 

Another possible approach ( Ball and James, 1987; Capella and Otto, 2009; 2012 ) is to consider a fixed value σ 0 of surface

energy per unit area for a given twin, regardless of the jump in strain between the variants forming the twin. In this

approach, though, it is not clear how σ 0 evolves when the twinning plane becomes inclined, as in Fig. 3 . Again, inclining a

Type I interface, which is fixed to a crystallographic plane, could lead to a very different change of the surface energy than

in the case of Type II, which can slightly rotate without changing its structure. 

In this paper, we will use both these approaches, depending on the particular case. For the qualitative models of the sim-

ple laminate and of the branched structure (this section and Section 3 ), where the inclination of the twins can be neglected,

we will assume a constant surface energy per unit area. The fully-optimized construction of the branched structure used in

Section 4 for quantitative simulations of a real shape memory crystal requires, however, a treatment of inclined interfaces.

In this case, we will use the assumption (3) . 

Let U A and U B be two variants of martensite able to form a twin, i.e., able to border over a planar, kinematically com-

patible interface. This means that there exists a rotation matrix R and a non-zero vector ˆ a such that 

RU A − U B = 

ˆ a � n , (5)

where n is a unit vector perpendicular to the twinning plane. Let us further consider that a first order laminate of these

two variants is able to form a macroscopically compatible interface with austenite, i.e., that there exists a rotation matrix Q ,

a non-zero vector b and a volume fraction 0 < λ< 1 such that 

Q [ λRU A + (1 − λ) U B ] − I = b � m , (6)

where m is a unit vector perpendicular to the habit plane. (We will not discuss here the limiting cases λ→ 0 and λ→ 1,

where the compatibility conditions are approximately satisfied for a single variant of martensite ( Conti and Zwicknagl, 2016;

Zwicknagl, 2014 ).) By introducing a simplified notation A = QRU A , B = QU B and a = Q ̂

 a , we obtain the basic set of compati-

bility equations used throughout this paper: 

A − B = a � n , (7)

λA + (1 − λ) B − I = b � m . (8)

Consider now a simple AB laminate (without branching) forming a planar interface with austenite. The macroscopic

compatibility condition (8) ensures that the deformation gradient of the twinned martensite, in the limit of an infinitely

fine AB laminate, is compatible with the austenite phase. This property enables a nearly stress-free co-existence between

the austenite and martensite phases at a habit plane with normal m . However, the laminate cannot be infinitely fine, as fine

oscillations in ∇y would result in diverging surface energy. In contrast, any finite width d of a single AB twin introduces
1 This is true especially when the martensitic unit cell is approximately tetragonal, i.e. the monoclinic distortion is very small, such as in the broadly 

studied case of Ni-Mn-Ga ( Straka et al., 2011 ) 
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Fig. 2. Self-similar construction of the branched microstructure suggested by Kohn and Müller (1992, 1994) ; for simplicity, m is chosen perpendicular to 

n . The whole structure is composed of individual branching segments (one segment of the i th layer is shown on the right). A + 
i 
, A −

i 
, B + 

i 
, B −

i 
and B ∗

i 
, are the 

deformation gradients in the i th layer chosen such that the segments can be compatibly attached to each other and such that the compatible interfaces 

inside the segment are inclined as required. It is assumed that these deformation gradients differ from the deformation gradients A and B , respectively, just 

by small perturbations, such that resulting elastic energy is small. The deformation gradients can be homogeneous, which means the interfaces between 

them are planar (solid black lines), or heterogeneous, which may lead to curved interfaces (dashed red lines). (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

elastic strains to ensure compatibility at the austenite-martensite interface. Hence, the energy of such an interface is non-

zero and must be obtained from (1) by balancing the elastic and surface energy. 

Following the approach of Ball and James (1987) , the minimization (1) for a simple laminate meeting with austenite

can be done quite easily: Whatever the elastic strain field is at the habit plane, the corresponding strain energy for one

twin approaching this interface scales as d 2 (due to the scale-independent character of the linear elasticity). The interfacial

energy is proportional to the number of twins. For 1/ d being the number of twins per unit length of the habit plane, and

for L being the distance between the habit plane and the free surface of the crystal (assumed parallel to the habit plane),

the total energy per unit length of the habit plane is 

E = 

1 

d 

(
G AB d 

2 + LσAB 

)
= d G AB + 

LσAB 

d 
, (9) 

where σ AB is a specific surface energy paid for a unit area of the twin interface, and G AB is a constant characterizing the

elastic energy paid for one twin with width d = 1 approaching the habit plane. This constant is, in principle, a combination

of the elastic constants of austenite and martensite, the transformation strains, the volume fraction λ and other geometrical

parameters of the habit plane. The optimal d for a simple laminate is then 

d = 

√ 

LσAB 

G AB 

, (10) 

i.e., d ∼
√ 

L which is in a good agreement with several experimental observations. The scaling of the energy (1) is then

E ∼
√ 

σAB L (which is vanishing in the limit σ AB → 0). The constant G AB can be obtained by numerical simulations, using, for

example, finite element calculations ( Stupkiewicz et al., 2007 ), or it can be estimated (or, more precisely, bounded above) by

constructing a piecewise homogeneous strain fields compensating the incompatibility at the interface ( Ball and James, 1987 ).

The second approach is more straightforward, and will be adopted in this paper not only for the closure domains, but for

the whole branched microstructure. 

2.2. The self-similar construction of branching of twins 

While the energy calculation for a simple AB laminate is instructive, many experimental observations reveal that lami-

nates at the austenite-martensite interfaces tend to branch into a finer and finer structure near the interface. The theoretical

treatment of the branched structure is obviously more intricate than for a simple laminate. In the branched structure, the

elastic strain energy is delocalized from the interface, as the branching requires slight inclinations of the twinning planes

from the stress-free orientations. In contrast, the surface energy becomes localized near the interface, as the number of

twinning planes increases with branching. Consequently, the simple scaling model presented above does not hold and a

more detailed construction is necessary. 

Here, we follow the ansatz of Kohn and Müller (1992, 1994) that the branched microstructure can be constructed in a

self-similar manner. This entails constructing first a branching segment (or a cell) that provides a refinement of the number

of twins per length of the segment from 1/ d to 2/ d , and then repeating this segment at finer and finer spatial scales in geo-

metric progression, until the required hierarchical structure is obtained. The energy (1) calculated for the resulting structure

is then the upper bound of the total energy of a real branched twins. 

The construction is outlined in Fig. 2 . The segment of length L i , width d i and unit thickness in the out-of-plane direction

provides the branching of the laminate such that the spacing of the twins on the left-hand-side boundary of the segment is
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Fig. 3. The proposed segment of the branched structure (segment in the i th layer; the borders of the unit cell repeating in the vertical direction are 

outlined by red lines). White color denotes variant B (stress-free), darker gray corresponds to variant A , which is, in some regions, slightly elastically 

strained ( A + δA i ). Notice that the sketch shows only one of two alternating connections of the branching segment to the (i − 1) th layer. In the second 

possible case, A and A + δA i are connected to A + δA i −1 instead of to A . This alternation is reflected by Eqs. (17) and (18) . (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

equal to λd i and the spacing of the twins on the right-hand-side boundary is λd i /2. The interfaces connecting the left-hand-

side and right-hand-side boundaries of the segment may be either planar (solid line in Fig. 2 ) or curved (dashed lines in

Fig. 2 ); in agreement with Kohn and Müller (1992, 1994) , we will consider planar interfaces for our construction. However,

as discussed in Section 3 , using curved interfaces does not lead to any significant reduction of the energy or any change in

the scaling laws. 

If we assume that there are 1/ d 0 twins per unit length of the habit plane far away from the interface (in the 0th layer),

then the i th layer of the branched structure of the same out-of-plane thickness consists of 2 i / d 0 branching segments, each

of width d i = d 0 / 2 
i and length L i as depicted in Fig. 2 . Strictly speaking, this construction may not be literally self-similar ,

as the d i / L i ratio may change from layer to layer (cf. Chan and Conti, 2014; Chan and Conti, 2015; Kohn and Müller, 1992;

Kohn and Müller, 1994 ). However, as the term self-similar construction has been introduced in ( Kohn and Müller, 1992 ) and

is commonly used for this type of construction, we will continue using it in this paper. 

Let L be the distance between the habit plane and the free surface of the crystal, as described previously. This distance

can be expressed as 

L = 

N ∑ 

i =0 

L i , (11)

where N is the total number of the branching generations. If E (i ) 
elast 

and E (i ) 
surf 

are, respectively, the elastic and surface energy

of one segment in the i th layer, then the total energy of the crystal is 

E = 

1 

d 0 

N ∑ 

i =0 

2 

i 
(
E (i ) 

elast 
+ E (i ) 

surf 

)
+ d 0 

G AB 

2 

N 
, (12)

where the last term represents the elastic energy localized at the habit plane. As the number of the branching generations

increases, this term goes quickly to zero since it is proportional to 2 −N . Consequently, the energy of branched structures

with several generations of branching ( N 
 1) can be very accurately approximated just by the sum of the energy of the

branching segments. According to the analyses by Kohn and Müller (1992, 1994) , this energy scales with the length of

the crystal as E ∼ σ 2 / 3 
AB 

L 1 / 3 , and the energy-minimizing width of the twins d ( x ) at the distance x away from the austenite-

martensite interface is d ( x ) ∼ x 2/3 . 

2.3. The scaling argument 

The simple constructions of microstructure at the austenite-martensite interface described above enabled ( Kohn and

Müller, 1992; 1994 ) to formulate the following fundamental scaling argument : As the scaling of the total energy for the

simple laminate is E ∼ σ 1 / 2 
AB 

L 1 / 2 , while the scaling for the branched structure with N 
 1 is E ∼ σ 2 / 3 
AB 

L 1 / 3 , the branching is

always preferred for L → ∞ or/and σ AB → 0, regardless of the prefactors for the scalings. 

Constructions by Capella and Otto (2009) and Chan and Conti (2014, 2015) with a more complete treatment of

the surface energy revealed that for a large but finite number of branching generations the correct scaling is rather
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E ∼ p 1 σ
2 / 3 
AB 

L 1 / 3 + p 2 σAB L (where p 1 and p 2 are properly chosen prefactors), which means that the scaling argument holds

for σ AB → 0 (with L finite), but not for L → ∞ (with σ AB finite). However, the limit L → ∞ is not very interesting from the

physical point of view, while σ AB → 0 can be a realistic description for some alloys. For example, the so-called a / b -twins

in the Ni-Mn-Ga shape memory alloy can have up to 10 3 times smaller surface energy than other twinning systems in the

same alloy ( Zelený et al., 2016 ) or twins in other alloys ( Shilo et al., 2007; Waitz et al., 2005 ). This may be the origin of

extensive coarsening of twins observed in the seven-layer modulated structure of Ni-Mn-Ga ( Kaufmann et al., 2011 ). 

Let us also point out that the energy scaling law may have a direct physical interpretation beyond that associated to

the length scales and coarsening of microstructure. In particular, Zhang et al. (2009) postulated that the energetics at the

austenite-martensite interface provide a significant energy barrier to nucleation of the phase-transition, and that this barrier

strongly influences the hysteresis of the material. In fact, they exploited a geometric sensitivity in these energetics to design

shape-memory alloys with extremely low hysteresis ( Cui et al., 2006; Song et al., 2013 ). These results suggest that a more

detailed analysis of the energy scaling law—one that gives the rigorously correct energy scaling in terms of fundamental

geometrical parameters, the interfacial parameter σ AB , and elastic constants—may provide further insight on the sensitivity

of hysteresis to these parameters. While this connection is an underlying motivation for the results developed below, we

leave it a topic of future research to apply these results to hysteresis. 

3. The self-similar construction in a full three-dimensional setting 

In this section, we will follow the approach of Kohn and Müller (1992, 1994) to construct an upper bound of the total

energy for a branched microstructure given a pair of variants satisfying Eqs. (7) and (8) . First, we will propose a continu-

ous displacement field providing a twin refinement towards the phase boundary. Then we will evaluate the energy of this

displacement field and discuss the scaling laws. Unlike in references ( Capella and Otto, 2009; 2012; Chan and Conti, 2014;

2015; Kohn and Müller, 1992; 1994 ), we will not do the construction by prescribing directly the displacement field y ( x ) over

the branched structure; instead, we will find a piecewise-constant deformation gradient F , such that the planar interfaces

between the regions where F is constant satisfy the kinematic compatibility conditions. This will ensure the existence of a

displacement field that is continuous on our simply connected region with ∇y = F almost everywhere. 

Following the approach of Kohn and Müller, we will also assume that the twin interfaces are approximately parallel to

the stress-free AB twins (i.e., perpendicular to n ), and we will assume that the surface energy can be expressed as σ AB times

the area of the interface. 

3.1. Construction of the deformation gradients 

Consider now A and B satisfying the compatibility conditions (7), (8) . The vectors n and m are now not required to be

perpendicular to each other, and the volume fraction 0 < λ< 1 is also general. Hence, our construction is applicable for any

symmetry class of martensite, and for any lattice parameters such that the conditions (7), (8) are satisfied. 

We propose a branching segment ( Fig. 3 ) consisting of five regions with homogeneous deformation gradients. These five

gradients are denoted as A 

+ 
i 
, A 

−
i 
, B 

+ 
i 
, B 

−
i 

and B 

∗
i 

in Fig. 2 . In the simplest case, we will assume that four of these deformation

gradients lie exactly on the energy wells; in particular, we assume that 

B 

+ 
i 

= B 

−
i 

= B 

∗
i = B (13) 

and 

A 

−
i 

= A (14) 

for all i , while the remaining one is slightly elastically strained, 

A 

+ 
i 

= A + δA i . (15) 

Due to this elastic strain, the interface between A 

+ 
i 

and B 

+ 
i 

= B 

∗
i 

is inclined, with the new orientation being given by a unit

vector n + δn i . To realize a continuous deformation from this strain field, the perturbations δA i and δn i are constrained by

additional compatibility conditions beyond (7) and (8) . The compatibility conditions at the inclined planar interfaces are 

(A + δA i ) − B = c i � (n + δn i ) , (16) 

and the compatibility conditions for connecting the i th layer with the neighboring layers are 

(A + δA i ) − A = δA i = d i � m (17) 

and 

(A + δA i ±1 ) − (A + δA i ) = δA i ±1 − δA i = d 

±
i 

� m (18)

for some vectors c i , d i , d 

+ 
i 
, and d 

−
i 

. 

The last condition (18) is, in fact, redundant. Indeed, if (17) is satisfied for each i , then 

δA i ±1 − δA i = (d i ±1 − d i ) � m , (19) 
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which means that (18) is satisfied with 

d 

±
i 

= d i ±1 − d i . (20)

Consequently, the existence of the vectors d i directly implies the existence of the vectors d 

±
i 

. 

Our aim then is to find a perturbation δA i such that these compatibility conditions are satisfied for prescribed δn i (i.e.,

for a prescribed inclination of the interface). As the vectors n , m and (n + δn i ) are necessarily coplanar, but n and m are

never collinear, there always exists a scalar parameter εi such that 

n + δn i = 

n + ε i m 

| n + ε i m | . (21)

The parameter εi has also a direct geometrical interpretation. It can be easily shown that 

ε i = 

(1 − λ) 
√ 

1 − (m · n ) 2 d i 

L i 

def . = 

(1 − λ) αd i 
L i 

, (22)

i.e., that εi determines the ratio between d i and L i . 

To satisfy the condition (16) , it is then sufficient to take 

d i = ε i a . (23)

Indeed, utilizing (7) , 

(A + δA i ) − B = (A − B ) + δA i = a � n + ε i a � m = a � ( n + ε i m ) , (24)

which is a rank-one matrix. By taking 

c i = | n + ε i m | a , (25)

we obtain exactly (16) . 

In summary, we have shown that the branching segment sketched in Fig. 3 represents a continuous displacement field if

the small perturbation of the deformation gradient in one of the regions is 

δA i = ε i a � m . (26)

Then, the resulting inclination of the twinning planes encapsulating the elastically strained region is 

δn i = 

n + ε i m 

| n + ε i m | − n , (27)

and the d i / L i ratio is given by (22) . The segments can be used to construct a fully compatible, three-dimensional branched

structure, as each layer of the structure inherently satisfies a macroscopic compatibility condition with austenite. In partic-

ular, the macro-scale deformation gradient in the i th layer of the structure is 

λA + (1 − λ) B + 

λ

2 

δA i = I + b � m + 

λ

2 

ε i a � m = I + 

(
b + 

λ

2 

ε i a 

)
� m , (28)

which is compatible with austenite over a planar interface perpendicular to m . 

Before discussing the energy of the proposed construction, let us mention that the branching segment in Fig. 3 is very

similar to the real geometry of the branching points observed in shape memory alloys. In Fig. 4 , two examples of such

observations are seen. Fig. 4 (a) shows a branching point in a Type-II laminate in a Cu-Al-Ni single crystal observed by

white-light interferometry (see Seiner et al., 2011 for more details on the experiment), and Fig. 4 (b) shows a branching

microstructure in ten-layer modulated (10 M) martensite in a Ni-Mn-Ga single crystal ( Bronstein et al., 2019 ). In both cases,

the branching appears to be provided by planar interfaces, with (approximately) one half of the original twin band of the

minor variant remaining straight and the second half becoming tilted beyond the branching point. 

3.2. Energy considerations 

The energy of the microstructure consists of the elastic energy of the branching segments, the surface energy of the twin

walls, and the energy of the closure domains ( G AB , see (9) and (12) ). For the self-similar construction, we will assume that

the energy of the closure domains is negligible (a similar result is obtained if this energy is comparable with the energy of

the last layer of the branched structure Chan and Conti, 2014; Chan and Conti, 2015 ); this assumption will be discussed in

more detail in Section 4 . The elastic energy of the branching segments is simple to express. In a given segment, the elastic

energy is located only in the region with the deformation gradient A + δA i = (I + δA i A 

−1 ) A . The elastic energy density in

this region is 

ϕ E = 

1 

(
sym δA i A 

−1 
)

: C : 
(
sym δA i A 

−1 
)
, (29)
2 
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Fig. 4. Experimental observations of the morphology of the branching points: (a) White-light interferometry image of a single branching point in a Cu-Al- 

Ni single crystal; the orientation of the fine interference fringes correspond to the tilt of the observed surface, and the twin interfaces are seen as sharp 

changes of this orientation. The arrangement of the twin interfaces read from the micrograph is shown below the image; the dashed lines are parallel to 

the upper interface. (b) Optical micrograph of several branching points in a Ni-Mn-Ga single crystal (courtesy of E. Bronstein; see Bronstein et al., 2019 for 

more details on the experiment.). 

 

 

 

 

 

 

 

 

where C is a tensor of elastic constants for the martensite phase (with major and minor symmetry), and sym B 

def . = 

1 
2 (B + B 

T )

gives the symmetric part of a tensor B . Using (26) , this expression simplifies to 

ϕ E = 

1 

2 

ε 2 i (sym a � A 

−T m ) : C : (sym a � A 

−T m ) 
def . = 

1 

2 

Cε 2 i , (30)

where C collects the dependence on elastic constants and the geometry of the twins through the vectors a and m and the

transformation tensor A . The elastic energy of one segment is then 

E (i ) 
elast . 

= λ
L i d i 
2 

Cε 2 i = λ
(1 − λ) αd 2 

i 

2 

Cε i . (31) 

As the i th layer consists of 1 /d i = 2 i /d 0 segments, the total elastic energy of the branched structure per unit length of the

habit plane is 

E elast . = 

1 

d 0 

N ∑ 

i =0 

2 

i E (i ) 
elast . 

= λ(1 − λ) Cαd 0 

N ∑ 

i =0 

ε i 
2 

i +1 
. (32) 

Provided that the inclinations are very small ( εi � 1, d i � L i ), we can approximately assume that σ AB is a constant and

that the twin interfaces are all parallel to the stress-free twinning plane. Then, the surface energy of one segment is 

E (i ) 
surf . 

= 4 σAB 

L i 
α

= 4 σAB (1 − λ) 
d i 
ε i 

, (33) 

and the total surface energy in the branched structure per unit length of the habit plane is 

E surf . = 4 σAB (1 − λ) 
N ∑ 

i =0 

1 

ε i 
. (34) 

The convergence of this sum for N → ∞ requires 

lim 

i →∞ 

ε i = ∞ . (35) 

Then, however, as N becomes very large, the assumption that d i � L i is violated, and the surface energy term cannot be

expressed by (33) . Nevertheless, if d 0 � L 0 , and if εi does not grow too fast, the approximation (33) is sufficiently justified.

For the purpose of the construction in this section, we will assume that N is large enough to make the energy of the closure
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domains negligible, while ensuring d i � L i remains fulfilled. Such an assumption allows us to follow the original construction

of Kohn and Müller; the other cases will be discussed in Section 4 . 

The total energy of the branched structure can be expressed as 

E = (1 − λ) 
N ∑ 

i =0 

[ 
λCαd 0 

ε i 
2 

i +1 
+ 

4 σAB 

ε i 

] 
(36)

and can be minimized with respect to εi for fixed d 0 , which is equivalent to minimizing with respect to 1/ d 0 for fixed L

as done in ( Chan and Conti, 2014; 2015; Kohn and Müller, 1992; 1994 ). Since εi appears only in the i th term, minimization

with respect to this parameter is relatively simple and the minimum is reached for 

ε i = 

√ 

8 σAB 

λCαd 0 
( 
√ 

2 ) i . (37)

As expected, εi rapidly increases to reduce the growth of the surface energy (33) . After substituting (37) into (36) , the total

energy is 

E = (1 − λ) 
√ 

2 σAB λCαd 0 

N ∑ 

i =0 

1 

( 
√ 

2 ) i 
def . = 

[ 
(1 − λ) 

√ 

2 σAB λCαd 0 

] 
a N , (38)

and the length of the martensite part of the crystal is 

L = 

N ∑ 

i =0 

L i = 

N ∑ 

i =0 

(1 − λ) αd 0 

2 

i ε i 
= (1 − λ) α3 / 2 d 0 

3 / 2 

√ 

λC 
8 σAB 

N ∑ 

i =0 

1 

(2 

√ 

2 ) i 

def . = 

[ 

(1 − λ) α3 / 2 d 0 
3 / 2 

√ 

λC 
8 σAB 

] 

b N , (39)

where we introduced partial sums 

a N = 

N ∑ 

i =0 

1 

( 
√ 

2 ) i 
and b N = 

N ∑ 

i =0 

1 

(2 

√ 

2 ) i 
. (40)

Regardless of the number of the branching generations, (39) clearly gives the scaling d 0 ∼ L 2/3 predicted by Kohn and Müller

(1992, 1994) . According to (36) , the energy scales as E ∼
√ 

d 0 . Consequently, the scaling of the energy with respect to the

length is E ∼ L 1/3 , which is again in agreement with ( Kohn and Müller, 1992; 1994 ). Finally, by expressing d 0 from (39) and

substituting it into (38) , we can confirm that 

E ∼ σ 2 / 3 
AB 

C 1 / 3 L 1 / 3 (41)

as also predicted in ( Kohn and Müller, 1992; 1994 ). The explicit formulas for d 0 and E are 

d 0 = 

(
8 σAB 

λC 

)1 / 3 L 2 / 3 

α(1 − λ) 2 / 3 
b −2 / 3 

N 
(42)

and 

E = 2 

[
λ(1 − λ) 2 

]1 / 3 
σ 2 / 3 

AB 
C 1 / 3 L 1 / 3 a N b −1 / 3 

N 
. (43)

3.3. Generalizations of the construction 

In this subsection, we will propose three modifications of the construction outlined above, and discuss which of these

modifications leads to a decrease of the energy for the construction, i.e., an improvement of the upper bound. The aim of

this discussion is to show that our construction is sufficiently versatile to capture various effects that may appear in real

branched microstructures. 

• Delocalization of the elastic energy in the branching segment – One of the obvious unrealistic assumptions of the

above construction is that the elastic strains are localized only in the A 

+ 
i 

region while the rest of the branching seg-

ment is strain-free. For example, if we take a homogeneous deformation gradient δB i and assume that the deformation

gradients in the branching segment are (see Fig. 5 (a)) 

A 

+ 
i 

= A + δA i + δB i , (44)

A 

−
i 

= A + δB i , (45)
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Fig. 5. Modifications of the construction of the branching segment: (a) delocalization of the elastic energy; (b) curved interface with δA ′ 
i 

and δA ′′ 
i 

being 

the elastic strains in different parts of the layer of variant A , and δn ′ 
i 

and δn ′′ 
i 

being the respective inclinations of the twinning planes. Borders of the unit 

cell repeating periodically in the vertical direction are outlined by the solid red line.. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and 

B 

−
i 

= B 

+ 
i 

= B 

∗
i = B + δB i , (46) 

the orientations of the twinning planes inside the branching segments (i.e., the geometry of the segment) remains un-

changed. If, furthermore, 

δB i = δi a � m , (47) 

where δi is some scalar parameter, also the compatibility with the (i − 1) th layer and the (i + 1) th layer remains unbro-

ken. The elastic energy of branched structure is minimal if 

δi = −λ

2 

ε i , (48) 

and the total energy (43) is then reduced (1 − λ
2 ) 

1 / 3 times. 

As δi is proportional to εi , and εi increases as ( 
√ 

2 ) i , the homogeneous shear strains must increase in the branched struc-

ture in the vicinity of the interface. This may be the reason why the branching laminates in Fig. 1 appear slightly curved

when approaching the habit plane. This, however, does not mean that the interfaces are curved inside of the branching

segments (as discussed in the next point), rather it implies that the planar interfaces in the individual segments are

getting more and more inclined in the deformed configuration, as the shear strains increase. 

An even more significant delocalization of the elastic energy appears if we allow all the interfaces to tilt. As shown in the

detailed construction given in the Appendix and discussed in Section 4 , such a delocalization may lead to a significant

reduction of the elastic energy. However, all these modifications of the branching segment just reduce the total energy

of the branched structure by a scalar prefactor, i.e., they do not affect the scaling laws. It is also interesting to note that

the tilting of all interfaces does not seem to occur for the experimentally observed branching, Fig. 4 . Possibly, this aspect

of real branched microstructures results not only from requirements of energy minimization, but also from requirements

of kinematics and energy dissipation (cf., Seiner et al., 2011 ). Such a discussion, however, falls beyond the scope of this

paper. 

• Curved interfaces – Another obvious simplification of our construction is that we assume planar interfaces. However, as

δA i = ε i a � m , the parameter εi can vary spatially within each segment, provided that the resulting strain field with this

variation is a gradient field and that the connection to the (i + 1) th layer at the right-hand-side edge of the segment

remains unchanged, as sketched in Fig. 5 (b). For example, it is possible to consider the variation ε i (x ) = ε 0 
i 

+ δε i (x ) for

0 ≤ x ≤ L i . (Indeed, notice that this variation is the gradient of the map [ 
∫ x ·m 

0 (ε i (x ) + ε 0 
i 
)d x ] a .) The elastic energy of the

branching segment is then 

E (i ) 
elast . 

= 

λd i 
2 

C 
∫ L i 

0 

(
ε 0 i + δε i (x ) 

)2 
d x. (49) 

However, due to the condition ∫ L i 

0 

δε i (x )d x = 0 , (50) 

it can be easily shown that the elastic energy is minimal for δεi ( x ) ≡ 0 for all x . The surface energy is also minimal for

δε ( x ) ≡ 0, since the planar interface has the smallest area. Hence, we can conclude that the energy (36) of the proposed
i 
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Fig. 6. The branched structure after releasing the elastic energy from the 0th layer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

construction is minimal for planar interfaces. This is in a good agreement with experimental observations ( Fig. 4 ), where

the interfaces appear to be tilted but not curved. 

• Volume fraction variations – Since the total energy of the branched structure depends on λ as 
[
λ(1 − λ) 2 

]1 / 3 
, it is

obvious that this energy is very sensitive to small variations of λ, especially for λ close to 0 or 1, where the derivative

∂ E / ∂ λ goes to ±∞ . This means that the energy release due to making λ slightly closer to 0 or 1 may be much larger

than the elastic energy to be paid for violating the macro-scale compatibility condition (8) . Using a similar construction

as in Section 3.1 , one can show that compatibility for perturbed λ can be achieved when the elastic energy density in the

branched structure is increased by a term proportional to ( δλ) 2 . Due to geometry reasons, this energy increase cannot

be localized just in the vicinity of the habit plane. Instead, it must be spread over the whole martensite region. In other

words, the variation of the volume fraction may be beneficial only for small L . 

4. Discussion beyond the self-similar concept 

4.1. Motivation 

The construction presented above gives a simplified approximation of the real branched microstructure and was done

under several assumptions that need to be discussed in more detail. In this section, we comment on these assumptions and

propose a modification of the construction to make the model mimic real microstructures more accurately. 

The first questionable point in the self-similar construction is that it does not take into account the specific conditions

in the 0th layer. This layer does not need to have the same topology as the following layers, as it is not connected to any

preceding layer. Hence, as also noted by ( Chan and Conti, 2014 ), it can consist of just a simple laminate with the width of

the twins equal to d 0 ( Fig. 6 ). By realizing that the 0th layer need not have elastic strains, the total energy is significantly

reduced. 

The second questionable point relates to the number of the branching generations. As mentioned in Section 3.2 , the

scaling laws ( (42),(43) ) and the simple energy balance for branching microstructure (36) are only meaningful for a certain

range of branching generations N . This range is bounded below by the minimal number of generations needed to justify

neglecting the energy of the closure domains, and bounded above by the maximal number of generations for which the

inclinations are small (i.e., each ε i < . . . < ε N should be � 1 so that the surface energy (33) is justified). Whether the latter

is larger than the former, so that there is a range of validity for this energy balance, depends on the detailed parameters.

Let us notice that the εi increases as ( 
√ 

2 ) i , which means by three orders of magnitude for 20 generations of branching, so

the upper bound of the range can be very restrictive. 

At the same time, the number N is not an a priori known material parameter, and so verifying that it falls into the

certain range for the given set of the material parameters is obviously a very questionable approach. Chan and Conti (2014,

2015) solved this problem in an elegant manner by considering the branching to stop once d i / L i ≈ 1, i.e., when the interfaces

are inclined by a certain angle. 2 Then, the energy of the closure domains can be, up to a scalar factor, absorbed into the

sum of energies of the branched structure. 
2 This condition can be modified to d i / L i ≈ c , where c is a small constant, to keep the assumption εi � 1 satisfied. Such a modification does not qualita- 

tively affect the result of Chan and Conti (2014, 2015) . 
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Fig. 7. Ansatz for the construction of branching microstructure in the numerical model. (a). Each branching layer is constructed with all the interfaces 

slightly tilted using the perturbations δA i = ε i a � m . The magnitude and sign of this perturbation in each layer is chosen to give the compatible piecewise 

homogenous deformations gradients with the smallest energy density E (i ) 
elast . 

; (b). The geometry of a closure domain of arbitrary length L c > 0. This has a 

deformation gradient C ( Zhang et al., 2009 ) that is simultaneously compatible with A along v , B along w , and I along m 

⊥ (in the plane spanned by m and 

n ); (c) placements of (a) and (b) segments in the construction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From a more physical point of view, however, one expects the number of generations to arise from an energy balance

comparing the branched structure to that of closure domains, and not from a purely geometrical condition (like the one put

forth in Chan and Conti, 2014; Chan and Conti, 2015 ). If εi stays reasonably small, E elast . + E surf . increases with the increasing

number of branching generations, while the energy of the closure domains decreases. Apparently, there might be an opti-

mum number of branching generations, and optimum twin width d 0 such that the total energy is minimal. Nevertheless,

this minimum may not arise in the region of validity of the approximation (33) . As a result, a more detailed model with an

improved surface energy term is needed. 

Let us notice that the need for finite N and the limited validity of (33) is not particular to any specific material parame-

ters. It is geometrically impossible to construct an infinitely fine branching structure ( N → ∞ ) that does not cause the total

length of interfaces in the structure to grow to infinity. 3 Due to (7) and (26) the strain jump between A + δA i and B is equal

to a � (n + ε i m ) , and so it cannot diminish to zero for any εi , i.e., the interfaces are never smoothed out, which means

there is always some non-zero surface energy associated with the interface. Hence, due to the length of interfaces going to

infinity, the surface energy must diverge in the limit N → ∞ . As a consequence of this, there indeed should exist a minimum

of energy corresponding to a specific number of the branching generations. 

4.2. The extended model: main properties and a numerical test 

The above motivation suggests that a more realistic construction of the branched structure should take into account

releasing the elastic energy from the 0th layer, and the number of branching generations N in this construction should be

finite and should follow from energy minimization. To enable a realistic determination of N from energy minimization, the

current construction must be extended in two respects. First, we need to propose an upper bound estimate for the energy

of the closure domains G AB depending on the same material parameters as used for calculating the energy of the branched

region. Second, we need to capture the increase of the surface energy in the branched structure in the limit N → ∞ , i.e., with

increasing εi . With these two extensions, and allowing the 0th layer to be unbranched, the construction becomes involved.

Gaining any direct analytical insight into the properties of the energy minimizers of the construction becomes difficult, and

numerical simulations are needed. Below we present an example of such a numerical simulation. A detailed description of

this simulation is provided in the Supplementary material. Here we summarize only the main assumptions of the model

underlying the simulation and discuss the results with respect to experimental observations. The assumptions are (again,

see the Supplementary material for details): 

1. The elastic strains at the interface appear only in the martensite part of the crystal, and the elasticity is fully described

by one isotropic elastic constant, which is the shear modulus μ. The multi-well energy density ϕ( ∇y ) is then assumed

to be composed of two isotropic quadratic energy wells corresponding to the variants A and B . This elastic energy

density is used for calculating both the elastic energy of the branched structure and of the closure domains. 

2. The surface energy terms are given by (3) ; the constant σ is assumed as universal, i.e. it applies both for the interfaces

between the variants A and B and for the interfaces between these variants and the closure domains. 

3. The elastic energy in the branching segment is delocalized in a specific way ( Fig. 7 (a)) such that the jumps in the

deformation gradient across all interfaces are the same, which simplifies significantly the analysis of the model. At
3 Indeed, the total length of interfaces is always greater or equal than 
∑ N 

i =1 L i /d i , and this sum is divergent unless L i / d i → 0. As L i / d i → 0, however, the 

interfaces between A + δA i and B become more and more parallel to the habit plane, the length of the interfaces in one branching segment of the i th layer 

becomes proportional to d i , and the total sum of the length of interfaces grows to infinity. 
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the same time, this leads to tilt of all interfaces and to heterogeneous strains in the region B 

∗
i 
. Notice that such a

modification of the branching segment is completely in line with the possible generalizations of the construction

discussed in Section 3.3 , i.e., it does not change the energy scaling for the branched structure. 

4. The closure domains are triangular domains ( Fig. 7 (b)) with a homogeneous deformation gradient, connected compat-

ibly to the stress-free austenite and the branched microstructure over planar interfaces. This form of closure domains

was introduced by Zhang et al. (2009) , and it is implemented here for simplicity. In contrast, we generally expect the

closure domains of real branched microstructure to have a (complicated to model) heterogenous elastic field; also,

recent experimental observations of Bucsek et al. (2019) indicate that the austenite phase near this interface can be

significantly elastically strained, and this is not modeled here. For these reasons, it is likely that our construction

provides only an upper bound estimate on the optimal number of branching generations. In particular, this num-

ber achieves its optimum when the energy of the final branching layer is approximately the same as the energy of

the closure domain. Thus, a more realistic closure domain, as discussed, will have lower energy per unit length; so

branching refinement can be halted sooner for the optimum, potentially lowering the optimal number of branching

generations. This should be taken into account when interpreting the results of this construction. 

The numerical procedure determines, for each given set of the most basic material parameters ( A , B , μ and σAB = σ | a | )
and the length of the martensite part of the crystal L , a set of optimized parameters d ∗

0 
(twin width in the 0th layer), L ∗

0
(length of the 0th layer) and N 

∗ (the energy-minimizing number of branching generations). 

For the numerical test, we study the branched microstructure shown in the optical micrograph in Fig. 1 . The sample is

a Cu-Al-Ni alloy (Cu 69 Al 27.5 Ni 3.5 ) undergoing the cubic-to-orthorhombic phase transformation, and the observed microstruc-

ture is a habit plane between austenite and a laminate of Type II twins. 

From the lattice parameters of this alloy and the corresponding Bain matrices ( Bhattacharya, 2003 ), the input parameters

for the numerical procedure were calculated as 

A = 

( 

1 . 0412 0 . 0468 −0 . 0204 

−0 . 0541 0 . 9154 0 . 0538 

−0 . 0159 −0 . 0464 1 . 0411 

) 

, B = 

( 

0 . 9150 −0 . 0793 0 . 0215 

0 . 0689 1 . 0385 0 . 0129 

−0 . 0198 −0 . 0503 1 . 0424 

) 

, (51)

which resulted in 

n = 

( 

0 . 6884 

0 . 6884 

−0 . 2286 

) 

, m = 

( 

0 . 2611 

0 . 7274 

−0 . 6346 

) 

, a = 

( 

0 . 1833 

−0 . 1788 

0 . 0057 

) 

, λ = 0 . 6992 , α = 0 . 5642 . (52)

From the angle between the traces of the habit plane and the twining planes observed in the micrograph (approximately

53 ◦), the cut plane was identified as p = (0 . 0404 , 0 . 9986 , −0 . 0340) in the reference configuration. This is in a good agree-

ment with the assumption that the crystal was cut approximately along the principal planes. 

For the material parameters we note that the shear modulus in Cu-Al-Ni is strongly anisotropic and varies from 10 GPa

to 100 GPa depending on the loading direction. As a realistic estimate for the characteristic shear modulus of martensite,

we take μ = 70 GPa. The interfacial parameter σAB = σ | a | is less certain: published results include 70 mJ.m 

−2 ( Shilo et al.,

2007 , Cu-Al-Ni, curvature measurement), 187 mJ.m 

−2 ( Waitz et al., 2005 , Ni-Ti, first-principle calculation) and 530 mJ.m 

−2

( Seiner et al., 2011 , Cu-Al-Ni microstructure scaling). In addition, the total length of the martensite band can vary from a

few microns to several millimeters. Thus, we take μ = 70 GPa, σAB = 100 mJ.m 

−2 and L = 5 mm for an explicit calcula-

tion of the laminate microstructure. For these material parameters, the optimized energy of the configurations E ( N ) with

N = 0 , 1 , . . . , 25 branching generations was calculated with the result provided in Fig. 8 (a). This gives N 


 = 11 as the optimal

number branching generations in the construction. The energy per unit depth and width for this energy minimizing config-

uration is E 
 = E (N 
 ) = 52 . 6 J/m 

2 , the ratio of the unbranched length to total length is L 
 0 /L = 0 . 66 , and the twin width of

the unbranched segment is d 
 
0 

= 101 . 1 μm. 

As seen in Fig. 8 (a), the minimum corresponding to N 


 is very shallow. The energy E ( N ) sharply decreases from N = 0

to approximately N = 6 , but the difference in energy between N = 7 and N = 11 is almost negligible by comparison. As

discussed above, a more realistic closure domain layer can change the energy balance between the closure domains and the

branching structure; particularly, in such a way that is likely lead to a significant reduction of the energy-minimizing number

of the branching generations due to this saturation of the E ( N ) curve. Consequently, N 


 should naturally be interpreted as an

upper bound to the real number of branching generations. 

At the same time, however, we can conclude that the total energy of the interface predicted by the model, E 
 ∼ 53 J.m 

−2 ,

is probably nearly unaffected by the specific ansatz for the closure domains. That is, E 
 likely gives a good approximation of

the total energy for any construction with a lower number of generations and more realistic shape of the closure domains. 4

The value of the energy E 
 itself is an important physical parameter. As discussed in detail by Zhang et al. (2009) , this energy
4 Consider a microstructure consisting of a branched structure with N − n generations of total length 
∑ N−n 

i =0 L i and a closing layer of length (
L c + 

∑ N 
i = N−n +1 L i 

)
for some 1 < n < N , where N and L c are the number of the branching generations and the length of the closing layer in our numeri- 

cal model, respectively. Then, the energy of such a closing layer is bounded from above by the energy of the last n branched layers plus the energy of 

the triangular closing domains of our model. As the deformation gradients in the branched structure in the last n layers are typically all very close to the 

energy wells and as the length L c of the triangular closing domain is typically small, this upper bound is generically a very good approximation. 
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Fig. 8. Modeling the branched microstructure of CuAlNi (micrograph courtesy of C. Chu). (a) The energy of branching microstructure for μ = 70 GPa, 

σAB = 100 mJ.m 

−2 , L = 5 mm, and for a given number of branching generations. The minimum is achieved at 11 branching generations. This minimum 

yields the one-to-one model and experiment comparison in (b-c). The parametric study in (d-e) reveals that the energy collapses to the Kohn and Müller 

scaling over four orders of magnitude in geometric and material length scales. 

 

 

 

 

 

 

 

strongly affects the height of the energy barrier for nucleation, and, consequently, the hysteresis of the phase transition. For

this reason, the fact that our model is able to reliably enumerate E 
 is a significant achievement. Furthermore, our model

enables a deeper insight into the energy partitioning in the martensitic microstructure: from E 
 only approximately 3 J/m 

2 is

stored in the surface energy of the twins of the unbranched 0th layer, i.e., nearly 95% of the total energy of the martensite

phase is localized close to the interface. This means that the branching primarily localizes the total energy closer to the

interface when compared to a simple laminate microstructure. 5 However, the branching is obviously strongly energetically

preferred over the simple laminate microstructure, as the E ( N ) sharply decreases from 0 (a simple laminate) to N 


 in Fig. 8 (a).
5 The optimal d for a simple laminate calculated via (10) leads to equipartitioning between the surface energy of the twins and the elastic energy of the 

closure domains. Hence, only one half of the total energy is localized at the interface, and more than 30% of the total energy is stored in the region [0; 

0.66 L ], which is ten times more than for the calculated branched structure. In other words, the localization of the surface energy due to branching is much 

stronger than the delocalization of the elastic energy. 
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Table 1 

A parametric study of energy-minimizing constructions of branching in Cu 69 Al 27.5 Ni 3.5 in 

geometric lengths L and material lengths σ AB / μ. The outputs of the study are the following 

optimized parameters: twin width in the unbranched region d 
 0 , the relative length of the 

unbranched region L 
 0 /L, and the number of branching generations N 
 . For each optimized 

construction, also the resulting energy E 
 is shown. 

L = 10 4 nm L = 10 5 nm L = 10 6 nm L = 10 7 nm 

σAB 

μ = 10 −4 nm d 
 0 = 0 . 7 μm d 
 0 = 3 . 1 μm d 
 0 = 14 . 3 μm d 
 0 = 66 . 1 μm 

L 
 0 
L 

= 0 . 66 
L 
 0 
L 

= 0 . 66 
L 
 0 
L 

= 0 . 66 
L 
 0 
L 

= 0 . 66 

N 
 = 8 N 
 = 10 N 
 = 12 N 
 = 14 
E 
 

μ = 0 . 02 nm 

E 
 

μ = 0 . 03 nm 

E 
 

μ = 0 . 07 nm 

E 
 

μ = 0 . 16 nm 

σAB 

μ = 10 −3 nm d 
 0 = 1 . 4 μm d 
 0 = 6 . 7 μm d 
 0 = 30 . 4 μm d 
 0 = 142 . 5 μm 

L 
 0 
L 

= 0 . 65 
L 
 0 
L 

= 0 . 66 
L 
 0 
L 

= 0 . 66 
L 
 0 
L 

= 0 . 66 

N 
 = 6 N 
 = 8 N 
 = 10 N 
 = 12 
E 
 

μ = 0 . 07 nm 

E 
 

μ = 0 . 16 nm 

E 
 

μ = 0 . 35 nm 

E 
 

μ = 0 . 75 nm 

σAB 

μ = 10 −2 nm d 
 0 = 3 . 0 μm d 
 0 = 14 . 5 μm d 
 0 = 66 . 5 μm d 
 0 = 307 . 4 μm 

L 
 0 
L 

= 0 . 67 
L 
 0 
L 

= 0 . 65 
L 
 0 
L 

= 0 . 66 
L 
 0 
L 

= 0 . 66 

N 
 = 3 N 
 = 6 N 
 = 8 N 
 = 10 
E 
 

μ = 0 . 34 nm 

E 
 

μ = 0 . 74 nm 

E 
 

μ = 1 . 61 nm 

E 
 

μ = 3 . 47 nm 

σAB 

μ = 10 −1 nm d 
 0 = 6 . 3 μm d 
 0 = 29 . 9 μm d 
 0 = 144 . 9 μm d 
 0 = 665 . 3 μm 

L 
 0 
L 

= 0 . 68 
L 
 0 
L 

= 0 . 67 
L 
 0 
L 

= 0 . 65 
L 
 0 
L 

= 0 . 66 

N 
 = 1 N 
 = 3 N 
 = 6 N 
 = 8 
E 
 

μ = 1 . 44 nm 

E 
 

μ = 3 . 39 nm 

E 
 

μ = 7 . 44 nm 

E 
 

μ = 16 . 16 nm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Finally, a direct one-to-one comparison of the numerical model for these parameters and the experiment is given in

Fig. 8 (b–c). It can be concluded that the characteristic width of the twins in the distance ∼ 0.25 mm from the interface is

strikingly similar in the optimized model (12.63 μm, which corresponds to d 
 
0 
/ 8 ) and in the experiment (14.93 μm, recalcu-

lated from the given cut). And also the aspect ratio d i / L i of the branching segments, i.e., the number of refinements per unit

length appears to be very similar in the model and in the experiment, although the agreement cannot be reliably quantified

due to irregularity of the experimental pattern. This is a remarkable result when taking into account the fact that neither

the twin width nor the aspect ratio were fitted parameters in the model. The refinement of twins seen in the observed area

in the micrograph corresponds to approximately 3 branching generations, which is also the number of generations visually

distinguishable from the calculated pattern. For the assumed total length of L = 5 mm and L 0 /L = 0 . 66 , one can expect that

the unbranched laminate in the 0th layer is still much coarser (the model predicts 3 more branching generations further

away from the interface). Hence, there are at least 4 or 5 branching generations in the experiment. The model suggest that

there might be also at least 1 or 2 more branching generations hidden due to the resolution of the micrograph, as the calcu-

lated energy steeply increases below N = 6 . Taking the upper bound N 


 into account, we can estimate that the real number

of branching generations may be 6 ≤ N ≤ 11, i.e., much smaller than what can be predicted based on the purely geometric

condition ( Chan and Conti, 2014; 2015 ), or than N → ∞ as considered by Kohn and Müller (1992, 1994) . 

In order to explore the behavior of our construction, we also performed a parametric study for the ‘material length scale’

σAB /μ ∈ { 10 −4 , 10 −3 , 10 −2 , 10 −1 } nm and the geometric length scale L ∈ {10 4 , 10 5 , 10 6 , 10 7 } nm to address the entire range

of plausible parameters. The results, i.e. the optimized values of d 
 0 , L 

 
0 (normalized with respect to the total length), N 


 and

the resulting energy E 
 (normalized with respect to the elastic modulus) for each combination of parameters, are given in

Table 1 . 

The results in this table reveal several important properties of the optimized construction. Most importantly, the number

of branching generations stays within reasonable limits for the whole range of parameters. Just one generation of branching

is observed for the highest σ AB / μ ratio and the shortest geometric length, which is consistent with the assumption that the

branching becomes more and more energetically preferred with decreasing σ AB and increasing length. The highest number

N 


 obtained throughout the study is 14. The twin width for the same set of parameters is d 
 0 = 66 . 1 μm, which means that

the finest laminate at the habit plane has the width of approximately d 
 
14 

= 4 nm, i.e., still not below the lattice parame-

ters for typical shape memory alloys, which is about ten times smaller. This means that, even for the highest number of

branching generations, the continuum theory description may still be valid and well justified. 

The decisive factor for N 


 appears to be ratio between the material and geometric lengths, σ AB / μL . For example, all com-

binations of parameters with σAB /μL = 10 −8 give N 


 = 8 . This is a natural result, as the ratio σ AB / μL measures, in some

sense, how effectively the total energy is reduced with each branching generation. A more surprising result is obtained

for the length of the unbranched segment L 0 . We observe that, for the whole range of parameters explored, this length is

approximately equal to two thirds of the total length. This is consistent with the fact that branching is typically experimen-

tally observed just close to the habit planes, while many laminates in temperature-induced martensitic microstructures are

unbranched. 

In addition, we find that the data for the optimal unbranched twin width d 
 
0 

and energy E 
 / μ nearly collapse to constants

when these quantities are normalized by μ−1 / 3 σ 1 / 3 
AB 

L 2 / 3 and μ−2 / 3 σ 2 / 3 
AB 

L 1 / 3 , respectively ( Fig. 8 (d–e)). This observation sug-
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gests that the scaling laws for our construction are 

d 
 0 ∼ μ−1 / 3 σ 1 / 3 
AB 

L 2 / 3 , E 
 ∼ μ1 / 3 σ 2 / 3 
AB 

L 1 / 3 . (53) 

These nontrivial scalings agree with the results of Kohn and Müller in the simplified (non-vectoral) setting for σ AB → 0, but

Kohn and Müller’s derivation (and other derivations in this direction) made somewhat coarser approximations for upper

and lower bounds. 

We show in the Supplementary material that the energy of the construction used for the above numerical test is bounded

above as 

E 
 ≤ Cμ1 / 3 σ 2 / 3 L 1 / 3 , (54) 

where C is a constant dependent only on the crystallographic parameters (which means independent of μ, σ AB and L ),

and that this bound holds not only in the σ AB → 0 limit, but also for any σ AB < μL , i.e., whenever the material length

introduced above is smaller than the physical length of the martensite region. For σ AB ≥μL , i.e., for an extremely thin

region of martensite, the branched structure is not the energy minimizer for the given boundary conditions anymore (See

the Supplementary material for more details). Instead, the energy-minimizing solution is just one variant of martensite,

homogeneously elastically strained ( Chan and Conti, 2014; 2015 ). 

The fact that the rescaling of the results of the numerical test appears to collapse to nearly a constant, i.e., d 
 0 ≈
3 × 10 −5 μ−1 / 3 σ 1 / 3 

AB 
L 2 / 3 and E 
 ≈ 0 . 35 μ1 / 3 σ 2 / 3 

AB 
L 1 / 3 for the entire range of experimentally/physically relevant geometric and

material length scales, suggests that the energy of our construction may be close to the C μ1/3 σ 2/3 L 1/3 upper bound. In the

next section, we present an ansatz-free lower bound for the full three-dimensional setting, constructed in the same spirit as

( Kohn and Müller, 1992; 1994 ) and ( Chan and Conti, 2014; 2015 ). The result is that the energy of the branched structure for

σ AB < μL is bounded below by c μ1/3 σ 2/3 L 1/3 , where c is another constant, 0 < c ≤ C . This directly implies that, for σ AB → 0,

our construction gives the optimal energy scaling. Nevertheless, neither the upper bound nor the lower bound imply that

the energy of a real branched microstructure with finite N and small but finite σ AB should follow the μ1/3 σ 2/3 L 1/3 scaling. As

seen in Table 1 , only one generation of branching is optimal (within our ansatz) for σAB /μL = 10 −5 , i.e., in a setting where

σ AB �μL . For higher σ AB , one can expect the simple laminate microstructure with the closure domains to be the optimal

upper bound within our ansatz, and this simple laminate can be expected to exhibit the E ∼ σ 1 / 2 
AB 

scaling with σ AB → μL .

However, the lower bound still holds, which indicates that c and C must be relatively far away from each other, and so the

conclusion on the scaling can be drawn indeed only for σ AB → 0. On the other hand, the scaling argument as formulated

in Section 2.3 indeed holds: regardless of the prefactors, the branching construction is always energetically preferred over

a simple 1 - st order laminate in the σ AB → 0 limit. This is, however, not surprising, as σ AB → 0 implies N 


 → ∞ , and the

detailed construction becomes nearly identical to the simple construction presented in Section 3 , where N was considered

sufficiently large and the energy of the closure domains was neglected. 

5. The lower bound in a full three-dimensional setting 

We now turn to an ansatz-free lower bound on the energy. This lower bound gives the energy scaling ∼ μ1 / 3 σ 2 / 3 
AB 

L 1 / 3 in

the physically relevant regime of parameters, and thus, as discussed above, also the real microstructure can be expected to

adopt this scaling in the σ AB limit. 

5.1. Preliminaries 

The starting point here is the study of the elastic energy (1) after a convenient normalization and with some additional

assumptions on the reference configuration, deformation and the structure of the elastic energy density. Precisely, we study

the elastic energy 

E ˆ σ (y , �L,H ) 
def . = 

∫ 
�L,H 

(
ˆ ϕ (∇y ) + ˆ σ |∇ 

2 y | 
)

dx (55) 

under the following hypotheses: 

• The reference configuration- �L,H ⊂ R 

3 is a parallelepiped domain of square cross-section H 

2 and length L parallel to the

habit plane normal m ( Fig. 9 top-left). Without loss of generality, we take m = e 1 and m 

⊥ = e 2 for { e 1 , e 2 , e 3 } the

standard basis on R 

3 . 

• A normalization- The energy density ˆ ϕ (F ) 
def . = 2 ϕ(F ) /μ and interfacial parameter ˆ σ

def . = 2 σAB / (| a | μ) have been normalized

by the characteristic modulus μ of the martensite phase. 

• The crystallographic theory- The compatibility conditions (7) and (8) hold. In addition, we assume that the crystallographic

parameters satisfy the condition 

6 ( Id + b � m ) n 

⊥ · a � = 0 for n 

⊥ def . = −(n · e 2 ) e 1 + (n · e 1 ) e 2 . For future reference, we also

define the direction ν
def . = 

( Id + b �m ) n ⊥ 
| ( Id + b �m ) n ⊥ | . This is well-defined due to the added hypothesis here. 
6 This is a benign condition. Conventional shape memory alloys are nearly volume preserving, and the transformations A , B are ≈ I . Consequently, a 

should be nearly parallel to n ⊥ (see for example (52) ) and I + b � m = λA + (1 − λ) B ≈ Id . This yields the result that | (I + b � m ) n ⊥ · a | is to leading order 

≈ | a | in these alloys, which is far from zero. 
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Fig. 9. A change of variables which allows us to consider the energy minimization problem E 
 ( ̂ σ , L, H) amongst deformations which map from a rectan- 

gular prism reference configuration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• A two-well structure- We fix a temperature below the transition temperature and assume the energy density ˆ ϕ (F ) is

minimized and equal to zero on K 

def . = SO (3) A ∪ SO (3) B and satisfies ˆ ϕ (F ) ≥ dist 2 (F , K) . 

• Boundary conditions on the deformation- We study the energy (55) subject to continuous deformations with bounded

energy (i.e., y ∈ C( �L,H , R 

3 ) ∩ W 

2 , 1 (�L,H , R 

3 ) ) 7 In addition, we assume that these deformations satisfy the boundary con-

ditions on the left and right boundary: y (x ) = (I + b � m ) x for x · m ∈ {0, L }. We call this space of deformations M . 

We show rigorously in the next Section 5.2 that the infimum of this energy satisfies 

E 
 ( ̂  σ , L, H) 
def . = inf 

{ 

E ˆ σ (y , �L,H ) : y ∈ M 

} 

≥ cH 

3 min 

{ 

ˆ σ 2 / 3 L 1 / 3 

H 

, 
H 

L 
, 

L 

H 

} 

(56)

for some constant c ≡ c ( a , b , n , m , λ, α) > 0 that depends only on the crystallographic parameters. The proof of this result is

based in an essential way on the results of Chan and Conti (2015) , who studied an analogous two dimensional problem with

two energy wells and boundary conditions on all sides. Thus, as it relates to actual microstructure in bulk shape memory

alloys, there are limitations to this result that merit discussion. 

In particular, owing to the symmetry transformation from austenite to martensite, most shape memory alloys have more

than two martensitic wells below the transition temperature. However, our proof relies on the fact that we consider two

and only two wells. If one were to actually approach the lower bound using the correct number of energy wells, then

one would have to account for the possibility that the additional well(s) may lead to microstructure that reduces the over-

all energy—possibly to the point where the estimate (56) no longer applies. In addition, our proof relies on the fact that

we have boundary conditions (i.e., the austenite meeting the martensite) on two sides. In contrast, typical nucleation of

martensite occurs as propagation of a “front”. The martensite takes advantage of free-surfaces—at, say, corners, defects, or
7 It is possible to relax the interfacial energy studied here to include deformation gradients ∇y of bounded variation , i.e., those deformations gradients 

consistent with the formalism of our construction. However, rather than introduce the additional mathematical machinery of BV-functions, we simply note 

that the lower bound does not change under this relaxation. 
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grain boundaries—to propagate in a manner that usually avoids more than one austenite-martensite interface for the trans-

forming band. For these two reasons, our result here is far from the definitive characterization of the lower bound energy

of the austenite-martensite interface in bulk shape memory alloys. Nevertheless, we can use this estimate to derive that the

optimal construction satisfied E 
 ∼ μ1 / 3 σ 2 / 3 
AB 

L 1 / 3 in the σ AB → 0 limit. 

In this direction, notice that the elastic energy density ϕ( F ), for which we developed this construction (equation (S.2)

in the Supplementary material), is a linearized variant of an elastic energy density μ
2 dist 2 (F , K) under the assumption A ,

B ≈ I . While this energy density is not technically a μ
2 ˆ ϕ (F ) satisfying the above hypothesis, the distinction is for a range of

transformations A , B and perturbations δA , δB that are atypical of shape memory alloys. We treat the typical case below. 

The construction giving energy E 
 is of length L (parallel to the habit plane normal m ) and unit depth and width. It

is compatible with the austenite on one side, and, as it originates from the branching segment construction introduced in

Section 3 , it satisfies the macroscopic compatibility conditions everywhere in its interior. Thus, by taking this configuration,

adding an extra unbranched layer of length L and repeating the branching construction (using the same branching segments

and the same optimized parameters) in the reverse direction in this additional layer, we obtain a configuration of length

2 L (parallel to m ) and with energy 2 E 
 . This configuration satisfies the boundary conditions consistent with the hypotheses

for the above lower bound (i.e., this modification is now compatible with the austenite on both sides). Thus, we apply the

estimate (56) to the energy E 
 for typical shape memory alloys to obtain 

H 

2 E 
 ≥ μ

4 

E 
 
(

2 σAB 

μ| a | , L, H 

)
≥ cH 

3 min 

{ μ1 / 3 σ 2 / 3 
AB 

L 1 / 3 

H 

, μ
H 

L 
, μ

L 

H 

} 

(57) 

(recalling the normalization for ˆ σ ). Here, the first inequality is since the minimization for E 
 is ansatz-free whereas the

minimization for E 
 is not. In addition, the constant in the lower bound depends only on the crystallographic parameters

c ≡ c ( a , b , n , m , λ, α) > 0. 

Finally, in typical shape memory alloys, we expect the non-dimensionalized parameter 
σAB 
μL to fall between a coarse lower

and upper bound of 10 −11 and 10 −5 (see Tab.1). We further expect the aspect ratio H / L to not deviate significantly from being

O (1). In particular, we expect the inequality 
( σAB 

μL 

)2 / 3 ≤ min 

{
1 , H 

2 

L 2 

}
to hold trivially in these materials. As a consequence of

these expectations, minimization of the upper and lower bounds in (54) and (57) yields the scaling result 

cμ1 / 3 σ 2 / 3 
AB 

L 1 / 3 ≤ E 
 ≤ Cμ1 / 3 σ 2 / 3 
AB 

L 1 / 3 , (58) 

since 0 < c ≤ C are constants depending only on the crystallographic parameters. Hence, E 
 indeed follows the desired scaling

in the σ AB → 0 limit. 

5.2. The proof of the lower bound 

5.2.1. Formulation 

In this part, we prove the lower bound (56) for the energy E ̂  σ (y , �L,H ) in (55) under the stated hypotheses in Section 5.1 .

In what follows, we find it convenient to reformulate the energy minimization problem E 
 ( ̂  σ , L, H) so that the reference

configuration is a rectangular prism as show in the lower-left of Fig. 9 . Observe that by a uniform simple shear of �L , H , we

can achieve the rectangular prism R L,H depicted in the figure. The simple shear is given by 

F α
def . = Id − α−1 

(
n · m 

)
m 

⊥ 
� m , with F −1 

α = Id + α−1 
(
n · m 

)
m 

⊥ 
� m . (59)

Thus, we let z 
def . = F αx , and we associate to any deformation y : �L,H → R 

3 a function v : R L,H → R 

3 defined by v (z (x )) 
def .= 

y (x ) for x ∈ �L , H . Since det F α = 1 , this change of variables yields the identity 

E ˆ σ (y , �L,H ) = 

˜ E el (v , R L,H ) + 

˜ E ˆ σint (v , R L,H ) 
def . = 

˜ E ˆ σ (v , R L,H ) , (60)

where the elastic part and interfacial part, after the change of variables, take the forms 

˜ E el (v , R L ) 
def . = 

∫ 
R L,H 

ˆ ϕ 

(
(∇v ) F α) dz, 

˜ E σint (v , R L ) 
def . = ˆ σ

∫ 
R L,H 

√ (
v i,lm 

(F α) l j (F α) mk 

)(
v i,l ′ m 

′ (F α) l ′ j (F α) m 

′ k 

)
d z ≥ ˆ σ cα2 

∫ 
R L,H 

|∇ 

2 v | d z, (61) 

respectively. For the latter, the identity uses index notation with repeated indices summed, and the constant c > 0 in the

lower bound is universal. A proof of this lower bound is provided in Proposition 5.5 below. 

Hence, the variational problem E 
 ( ̂  σ , L, H) in (56) can be reformulated by studying the energy ˜ E ̂  σ (v , R L,H ) subject to

functions of the form 

M α
def . = 

{ 

u ∈ W 

2 , 1 (R L,H , R 

3 ) ∩ C( R L,H , R 

3 ) : u (z ) = ( Id + b � m ) F −1 
α z , z · m ∈ { 0 , L } 

} 

. (62)

Specifically, E 
 ( ̂  σ , L, H) is given equivalently by variational problem 

E 
 ( ̂  σ , L, H) = inf 

{ 

˜ E ˆ σ (v , R L,H ) : v ∈ M α

} 

. (63)
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5.2.2. Main result on the lower bound. 

The lower bound energy estimate in (56) is obtained as a consequence of the following theorem: 

Theorem 5.1. Assume the energy E ̂  σ (y , �L,H ) in (55) under the stated hypotheses in Section 5.1 . Then, there exists a universal

constant c 
 > 0 such that the minimal energy E 
 ( ̂  σ , L, H) satisfies 

E 
 ( ̂  σ , L, H) ≥ c 
 H 

3 min 

{ 

c̄ K 
ˆ σ 2 / 3 L 1 / 3 

H 

, ̂  c K 
H 

L 
, ̂  c K 

L 

H 

} 

(64)

for c̄ K 
def . = α10 / 3 c 4 / 3 

K 
, ˆ c K 

def . = α2 c 2 
K 

and for c K depending on the crystallographic parameters via 

c K 
def . = min 

G ∈ K 
max 

{ 

α
∣∣ν · Gn 

⊥ − | ( Id + b � m ) n 

⊥ | ∣∣, ∣∣ν · (G − Id ) m 

⊥ ∣∣, ∣∣ν · (G − Id ) e 3 
∣∣} 

> 0 . (65)

Remark 5.1 (On the lower bound parameters) . The constant c K is actually > 0 if and only if the crystallographic parameters

satisfy ( Id + b � m ) n 

⊥ · a � = 0 . Consequently, this hypothesis is required for the ˆ σ 2 / 3 L 1 / 3 scaling using our strategy of proof. 

The theorem follows from a series of propositions. We state the propositions below, and reserve proof for the coming

section. The first observation to make is that we can always isolate a strip S L,δ
def . = (0 , L ) × (s ′ , s ′ + δ) × (s ′′ , s ′′ + δ) ⊂ R L,H

and a cube inside that strip Q δ
def . = (s, s + δ) × (s ′ , s ′ + δ) × (s ′′ , s ′′ + δ) ⊂ S L,δ such the energy on these domains is no higher

than the average energy of the entire system: 

Proposition 5.1. Let v ∈ M α . For any δ ∈ (0, min { H , L }], there exists S L,δ and Q δ as above such that 

E σ (v , S L,δ ) ≤ c 
δ2 

H 

2 
E σ (v , R L,H ) , E σ (v , Q δ ) ≤ c 

δ3 

H 

2 L 
E σ (v , R L,H ) . (66)

Here, the constant c > 0 is universal. 

We now employ the Poincaré inequality on the δ-cube to relate the regions of average energy of v to the energy wells

given by K . For reference, for any Q δ = (s, s + δ) × (s ′ , s ′ + δ) × (s ′′ , s ′′ + δ) and u ∈ W 

1 , 1 (Q δ, R 

3 ) , the Poincaré inequality has

the form 

‖ u − ū ‖ L 1 (Q δ ) ≤ c 1 δ‖∇u ‖ L 1 (Q δ ) (67)

for (the average) and c 1 the uniform Poincaré constant on a unit cube. The δ-dependence in the

inequality here is key. 

Proposition 5.2. Let v ∈ M α, let δ ∈ (0, min { H , L }], and fix a δ-cube Q δ as in Proposition 5.1 . Then, there exists an F ∈ K and

d ∈ R 

3 such that ∫ 
Q δ

| v − FF −1 
α z − d | dz ≤ c 

α4 

(
δ5 

ˆ σH 

2 L 
E ˆ σ (v , R L,H ) + α3 δ4 

HL 1 / 2 

(
E ˆ σ (v , R L,H ) 

)1 / 2 
)
. (68)

Here, the constant c is universal. 

We now relate regions on which v has average energy to the hard boundary conditions on the left and right of the

domain. Here, we obtain a quantitative estimate on the closeness of v to a homogenous deformation ( Id + b � m ) F −1 
α z in

these regions. This makes use of the fact that we have hard boundary conditions on both sides. 

Proposition 5.3. Let v ∈ M α, let δ ∈ (0, min { H , L }], and fix a δ-strip S L,δ and corresponding δ-cube Q δ as in Proposition 5.1 .

Then, ∫ 
Q δ

| ν ·
(
v − ( Id + b � m ) F −1 

α z 
)| dz ≤ c 

α

(
δ3 L 1 / 2 

H 

(
E ˆ σ (v , R L,H ) 

)1 / 2 
)
. (69)

Here, the constant c is universal, and the direction ν ∈ S 
2 is as defined Section 5.1 . 

Finally, we can relate the two quantities being estimated in (68) and (69) via the inequality 

| ν ·
(
FF −1 

α z + d − (I + b � m ) F −1 
α z 

)| ≤ | ν ·
(
v − ( Id + b � m ) F −1 

α z 
)| + | v − FF −1 

α z − d | , (70)

and the former, integrated on a δ-cube, can be bounded from below. 

Proposition 5.4. Let δ ∈ (0, min { H , L }], Q δ = (s, s + δ) × (s ′ , s ′ + δ) × (s ′′ , s ′′ + δ) and ν as above. Then, ∫ 
Q δ

| ν ·
(
FF −1 

α z + d − (I − b � m ) F −1 
α z 

)| dz ≥ 1 

4 

c K δ
4 , ∀ F ∈ K, d ∈ R 

3 , (71)

for c K > 0 as defined in the theorem. 

The theorem follows from these estimates. 
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Proof of Theorem 5.1.. Let v ∈ M α . For any δ ∈ (0, min { H , L }], we obtain a δ-cube Q δ on which the energy is no more that

average ( Proposition 5.1 ). By the estimates of Propositions 5.2 and 5.3 on this δ-cube, by the inequality in (70) , and by the

estimate in Proposition 5.4 , we deduce the inequality: 

4 c 

 c K ≤ δ

ˆ σH 

2 Lα4 
˜ E ˆ σ (v , R L,H ) + 

1 

HL 1 / 2 α

(
˜ E ˆ σ (v , R L,H ) 

)1 / 2 + 

L 1 / 2 

δHα

(
˜ E ˆ σ (v , R L,H ) 

)1 / 2 
(72) 

for some universal c 

 > 0 and c K > 0 as defined in the theorem. Since δ ∈ (0, min { H , L }], the second term can be bounded

from above by the third, yielding the estimate 

2 c 

 c K ≤ δ

ˆ σH 

2 Lα4 
˜ E ˆ σ (v , R L,H ) + 

L 1 / 2 

δHα

(
˜ E ˆ σ (v , R L,H ) 

)1 / 2 
, ∀ δ ∈ (0 , min { H, L } ] . (73)

At least one of the two terms in the upper bound above is ≥ c 

 c K . Consequently, 

˜ E ˆ σ (v , R L,H ) ≥ c 
 H 

2 min 

{ 

c K 
ˆ σ Lα4 

δ
, c 2 K 

δ2 α2 

L 

} 

, ∀ δ ∈ (0 , min { H, L } ] (74)

for c 
 = min { c 

 , c 2 

 } . We are free to maximize this lower bound with respect to δ ∈ (0, min { H , L }] to make the inequality

sharp. We claim that 

max 
δ∈ (0 , min { H,L } ] 

min 

{ 

c K 
ˆ σ Lα4 

δ
, c 2 K 

δ2 α2 

L 

} 

= min 

{ 

c 4 / 3 
K 

α10 / 3 ˆ σ 2 / 3 L 1 / 3 , c 2 K α
2 H min { H 

L 
, 

L 

H 

} 
} 

. (75)

Indeed, the maximization has two possibilities: either it is obtained by making the two terms in the set in (74) equal for

some δ ∈ (0, min { H , L }); thus, giving the first term in the set on the right in (75) . Or this is impossible for a δ ∈ (0, min { H ,

L }) and it is obtained by evaluating the second term in (74) for δ = min { H, L } ; thus, giving the second term in the set on

the right in (75) . In either case, the maximization happens to be a minimize the set in (75) . It follows that 

˜ E ˆ σ (v , R L,H ) ≥ c 
 H 

3 min 

{ 

c 4 / 3 
K 

α10 / 3 ˆ σ
2 / 3 L 1 / 3 

H 

, c 2 K α
2 H 

L 
, c 2 K α

2 L 

H 

} 

. (76) 

The theorem follows after taking the infimum over all v ∈ M α for the above inequality. �

5.2.3. The proofs. 

We now turn to a proof of the propositions above. 

Proof of Proposition 5.1–2.2. The proof of these two propositions is adapted from the localization result in Lemma 3.1 of

Chan and Conti (2015) . This can be done via a very minor and straightforward modification of the original proof. As such,

we do not reproduce the argument here. �

Proof of Proposition 5.3. Let v , δ, S δ,L , Q δ, ν as defined in the proposition and β
def . = | ( Id + b � m ) n 

⊥ | . Since F αn 

⊥ = αm and

F −1 
α m = α−1 n 

⊥ , the boundary conditions for v ∈ M α provide that, in the direction ν (recall the definition in Section 5.1 ), ∫ 
S δ,L 

(
ν · (∇v ) F αn 

⊥ − β
)
dz = 

∫ s ′′ + δ

s ′′ 

∫ s ′ + δ

s ′ 

∫ L 

0 

(
∂ 1 

(
α( ν · v ) 

)
− β

)
d z 1 d z 2 d z 3 

= L 

∫ s ′′ + δ

s ′′ 

∫ s ′ + δ

s ′ 

(
α
(
ν · ( Id + b � e 1 ) F 

−1 
α m 

)
− β

)
d z 2 d z 3 = 0 . (77) 

Let f ±
def . = max { 0 , ± f } . Since the integration above vanishes, we also have the inequalities ∫ 
S δ,L 

∣∣ν · (∇v ) F αn 

⊥ − β
∣∣dz = 2 

∫ 
S δ,L 

(
ν · (∇v ) F αn 

⊥ − β
)

+ d z ≤ 2 

∫ 
S δ,L 

(| (∇v ) F αn 

⊥ | − β
)
+ d z 

≤ 2 

∫ 
S δ,L 

(| Gn 

⊥ | + | (∇v ) F α − G | − β
)
+ dz for all G ∈ K. (78) 

Further, | Gn 

⊥ | = β for all G ∈ K (due to the compatibility conditions (7) and (8) ), and so we conclude that ∫ 
S δ,L 

∣∣ν · (∇v ) F αn 

⊥ − β
∣∣d z ≤ 2 

∫ 
S δ,L 

dist 
(
(∇v ) F α, K 

)
d z ≤ c 

L 1 / 2 δ2 

H 

(
˜ E ˆ σ (v , R L,H ) 

)1 / 2 
. (79)

The latter is due to Hölder’s inequality, the lower bound on the energy density ˆ ϕ , and the first estimate of Proposition 5.1 .

Now, observe that ν · v (0 , z 2 , z 3 ) + α−1 βz 1 = ν · ( Id + b � m ) F −1 
α z since v ∈ M α . Consequently, ∫ 

Q δ
| ν ·

(
v (z ) − ( Id + b � m ) F −1 

α z 
)| dz = 

∫ 
Q δ

∣∣∣α−1 

∫ z 1 

0 

( ν · (∇v (s, z 2 , z 3 )) F αn 

⊥ − β) d s 

∣∣∣d z 
≤ δ

α

∫ 
S δ,L 

| ν · (∇v (z )) F αn 

⊥ − β
∣∣dz. (80) 

The estimate in the proposition follows by combining (79) with (80) . �
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Proof of Proposition 5.4. Let δ, Q δ and ν as in the proposition. To prove this result, we repeatedly use the fact the

inf η∈ R 
∫ s + δ

s | tξ + η| dt = 

δ2 

4 | ξ | . In particular, ∫ 
Q δ

| ν ·
(
FF −1 

α z + d − (I + b � m ) F −1 
α z 

)| dz 

≥
∫ s ′′ + δ

s ′′ 

∫ s ′ + δ

s ′ 
inf 
η∈ R 

∣∣α( ν · Fn 

⊥ − | ( Id + b � m ) n 

⊥ | ) z 1 + η
∣∣d z 1 d z 2 d z 3 

= 

δ4 

4 

α
∣∣ν · Fn 

⊥ − | ( Id + b � m ) n 

⊥ | ∣∣, (81)

and repeating this argument but exchanging the roles of z 1 and z i ( i = 2 , 3 ) leads to the other estimates in the set defining

c K in (65) . We then trivially conclude the lower bound (71) in the proposition for c K as defined. It still remains, however, to

prove that c K > 0 under the assumptions of the crystallographic theory with the additional hypothesis (I + b � m ) n 

⊥ · a � = 0 .

Since the minimization is over a compact set K , we need only to show that all three terms in the set cannot be zero

simultaneously. To this end, notice that the first term in the set for c K (i.e., the one reflected in the lower bound in (81) ) is

zero if and only if G ∈ K satisfies ν · G ∈ { ν · A , ν · B }. But, in assuming ν · G is one of these cases, we find that the second term

in the set for c K is non-vanishing since 

| ν · ({ A , B } − Id ) m 

⊥ | = |{−λ, 1 − λ} (a · ν)(n · m 

⊥ ) | � = 0 . (82)

Note, this quantity is non-zero since the crystallographic theory assumes λ∈ (0, 1), α � = 0, and the added hypothesis above

gives ( a ·ν) � = 0. Therefore, c K > 0 as asserted. �

We finally prove the lower bound in (61) with the following observation regarding tensor norms. 

Proposition 5.5. Let A = a i jk e i � e j � e k ∈ R 

3 ×3 ×3 represent a third order tensor (with repeated indices summed here and below

and for the orthonormal basis { e 1 , e 2 , e 3 } = { m , m 

⊥ , e 3 } ). Then, for F α as defined in (59) , (
a ilm 

(F α) l j (F α) mk 

)(
a il ′ m 

′ (F α) l ′ j (F α) m 

′ k 
)

≥ cα4 | A | 2 , (83)

where c > 0 is a universal constant. 

Proof. We let A i 
def . = a i jk e j � e k , and note that it is easy to explicitly verify that (

a ilm 

(F α) l j (F α) mk 

)
(a il ′ m 

′ (F α) l ′ j (F α) m 

′ k 
)

= 

∑ 

i =1 , 2 , 3 

| F T αA i F α| 2 . (84)

Thus, using a standard estimate for the normed product of matrices A , B ∈ R 

3 ×3 , i.e., | AB | 2 ≥ 1 
3 σmin (B ) 2 | A | 2 , we conclude

that (
a ilm 

(F α) l j (F α) mk 

)(
a il ′ m 

′ (F α) l ′ j (F α) m 

′ k 
)

≥
∑ 

i =1 , 2 , 3 

1 

9 

σ 4 
min (F α) | A i | 2 = 

1 

9 

σ 4 
min (F α) | A | 2 . (85)

Given the structure of F α , it follows that σmin (F α) ≥ cα for some universal c > 0 as desired. The proposition follows. �

6. Conclusions 

The main aim of this work was to construct a realistic model for the energy and length scales of a branched martensitic

microstructure, directly applicable to real shape memory alloys, and to study the properties of this model, mainly in terms

of its energy scaling. This required that the construction be done in a fully three-dimensional setting of non-linear elasticity.

Motivated by the classical approach of Kohn and Müller (1992, 1994) , we used a self-similar construction for the microstruc-

ture, and showed that the resulting energy upper bound gives the expected scaling E ∼ μ1 / 3 σ 2 / 3 
AB 

L 1 / 3 ; thus, the fundamental

scaling argument for small interfacial energy ( σ AB → 0) holds. Hence, the energy of the branched structures is, at least in the

limit, lower than the energy of a simple laminate – this result was expected from previous simplified constructions ( Capella

and Otto, 20 09; 2012; Conti, 20 0 0; Dondl et al., 2016; Kohn and Müller, 1992; 1994 ), but here we proved its validity for a

three dimensional construction applicable to real alloys. 

The proposed construction is versatile, enabling several additional features to be incorporated into the model. One ex-

ample is the more detailed construction introduced in Section 4 and developed in the Supplementary material; this con-

struction takes into account the fact that the 0th layer remains unbranched, does not neglect the energy of the closure

domains, and, most importantly, it anticipates that the number of branching generations follows from energy minimization.

Although this construction is still rather a rough upper bound, i.e., stress equilibrium is not imposed and the elastic strains

are piecewise homogeneous, we show that the geometric parameters – the width of the twins and the aspect ratios of

the branching segments – corresponding to the energy minimizer within the ansatz of the construction mimic very well

experimental observations, regardless of the rather oversimplified construction of the closure domains. This suggests that

the delicate balance between elastic and surface energies in the branched structure is the dominant mechanism for the ob-

served microstructures at the austenite-martensite interface in shape memory alloys. Our conclusions give insight on how

these structures can be manipulated. 
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The subsequent parametric study revealed that the detailed construction obeys relatively simple scaling laws for the

energy and the twin widths throughout a broad range of physically admissible parameters, which covers N 


 ranging from

1 to 14. This is a rather unexpected result, as the construction involves balancing of the energy between the branched

microstructure and the closure domains. 
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