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Abstract

®

CrossMark

In this paper we continue the formal analysis of the long-time asymptotics
of the homoenergetic solutions for the Boltzmann equation that we began
by James et al (2019 J. Nonlinear Sci. 29 1943-73). They have the form
fx,v,t) =g —L()x,1) where L(f) = A(I +tA)"' where A is a constant
matrix. Homoenergetic solutions satisfy an integro-differential equation which
contains, in addition to the classical Boltzmann collision operator, a linear
hyperbolic term. Depending on the properties of the collision kernel the col-
lision and the hyperbolic terms might be of the same order of magnitude as
t — 00, or the collision term could be the dominant one for large times, or the
hyperbolic term could be the largest. The first case has been rigorously stud-
ied by James et al (2019 Arch. Ration. Mech. Anal. 231 787-843). Formal
asymptotic expansions in the second case have been obtained by James et al
(2019 J. Nonlinear Sci. 29 1943-73). All the solutions obtained in this case
can be approximated by Maxwellian distributions with changing temperature.
In this paper we focus in the case where the hyperbolic terms are much larger
than the collision term for large times (hyperbolic-dominated behaviour). In
the hyperbolic-dominated case it does not seem to be possible to describe in
a simple way all the long time asymptotics of the solutions, but we discuss
several physical situations and formulate precise conjectures. We give explicit
formulae for the relationship between density, temperature and entropy for these
solutions. These formulae differ greatly from the ones at equilibrium.
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1. Introduction

In this paper we continue the study of the long time asymptotics of the homoenergetic solutions
of the Boltzmann equation which do not exhibit self-similar behaviours. We began this analy-
sis in [18] where the self-similar case was considered and, in [19], where solutions behaving
asymptotically as Maxwellian distributions with changing temperature were studied.

The class of solutions under consideration is motivated by an invariant manifold of solutions
of the equations of classical molecular dynamics with certain symmetry properties ([10, 11]).

We shortly recall the main properties of this manifold (we refer to [18] for a more detailed
description). Suppose that we consider a matrix A € M3.3 (R), satisfying det(/ + tA) > 0 for
t € [0,a) with @ > 0, and the orthonormal vectors e, s, e3 in R>. We consider M simu-
lated atoms with positive masses my, . . ., my; subject to the equations of molecular dynam-
ics yielding solutions y(¢) € R3, 0<tr<a k=1,..., M. Moreover, we denote as Yui(D),
v = (11,1, v3) € Z3 the positions of the non-simulated atoms which are given by

Vor(t) = (@ + (I + tA)(vie) + es +13e3), v = (V1,113 €L k=1,..., M.
(1.1)

Fork=1,...,M we denote as f;:---R3 x R} x R?. .. — R the force on simulated atom k
which depends on the positions of all the atoms. Assuming that f; satisfies the usual conditions
of frame-indifference and permutation invariance [10] we have

MV = filo o Yot e VMo - -2 Yigda - o o2 Yo Ms -+ - )

w0 =y, w0 =v), k=1,..., M. (1.2)

Using (1.1) we can reduce (1.2) to a system of ODEs for the motions of the simulated atoms,
ey, k=1,....M.

It is shown in [10, 11] that in spite of the fact that the motions of the nonsimulated atoms
are only given by the formulae (1.1), the equations of molecular dynamics (1.2) are exactly
satisfied for each nonsimulated atom.

As discussed in [18], these results on molecular dynamics have a simple counterpart in
terms of the molecular density function of the kinetic theory. The classical Boltzmann equation
reads as

of +00f =Cf ). f=fxv)
crw = [ an /S B (n-w o) [£f - 1.1 (1.3)

where S is the unit sphere in R3andn =n(,v,) = =va) | ot he (v, v,) a pair of incoming

oo

velocities (see figure 1). The outgoing velocities (v, v,’) are given by the collision rule

V=04 (v, — V) w)w, (1.4)
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Figure 1. The two-body scattering. The scalar p € [—1, 1] is the impact parameter, and
0 = 0(p, |V|) is the scattering angle. The scattering vector of (1.4), (1.5) is the unit vector
w=w(,V).

v, = v — (v = V) - W w, (1.5)

where w = w(v, V) is the unit vector bisecting the angle between the incoming relative velocity
V = v, — v and the outgoing relative velocity V' = v,” — v’ as specified in figure 1.

We will use in the rest of the paper the standard convention f = f(t,x,v), fi =
fxv), f'=f(tx0), fl=f(tx0).

The collision kernel B (n - w, [v — v,]) is proportional to the cross section for the scat-
tering problem associated to the collision between two particles. We will assume that it is
homogeneous in [v — v, | and we will denote its homogeneity by v, i.e.,

B(n-wAv—uv])=XNB(n -wlv-uvl]), A>0. (1.6)

The homogeneity + is related to the properties of the interaction potential between particles.
We recall that in the standard literature in kinetic theory (see [25]), interaction potentials with
the form V (x) = ﬁ have homogeneity v = 2= for the kernel B.

Itis possible to find solutions of the Boltzmann equation (1.3) that have the same statistics as
the molecular dynamics simulation for discrete systems described above (see (1.1)). We refer
to [18] for details. Thus, the analogous of the ansatz (1.1) in terms of the particle velocities can

be written as:
ftx,v) =g (tv—Ad +1A) 'x). (1.7)

The term A(I + tA)~! arises from conversion to the Eulerian form of the kinetic theory.
An alternative way of deriving (1.7) is by means of the theory of equidispersive solutions
for the Boltzmann equation. These are solutions of the Boltzmann equation with the form

ftx,v)=gt,w) withw=v—E&(x). (1.8)
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Under mild smoothness conditions, solutions with the form (1.8) exist if £(7,x) = A(I +
tA)'x (see [18]). Formally, if fis a solution of the Boltzmann equation (1.3) of the form (1.7)
the function g satisfies

g — (L(Hw) - Dpg = Cg (w) (1.9)

where the collision operator C is defined as in (1.3). These solutions are called homoenergetic
solutions and were introduced by Galkin [13] and Truesdell [23] and later considered both
in the physical and mathematical literature. Most of the references in the physical literature
focus on the evolution of the moments for the homoenergetic solutions, assuming that they
exist, providing a large amount of information about quantities like the typical deviation of
the velocity and similar quantities. For instance, we refer to [13—15, 21-23], as well as to the
books [17, 24]. On the mathematical side, the well-posedness of solutions to (1.9) in an L
setting has been considered for a particular choice of the deformation matrix L(¢) in [6—8], or,
in the class of Radon measures, in [18]. Invariance properties of solutions to the Boltzmann
equation have been considered in [5] in two dimensions.

The properties of the solutions of (1.9) for large times ¢ depend greatly on the homogene-
ity 7 of the kernel yielding the cross section of the collision operator Cg. Some insights on
the role of v can be obtained in the following way. In systems subject to shear deformations
the average velocity of the particles tends to increase (due to heating effects). Therefore, the
role of the collisions becomes more relevant for larger times if the homogeneity of the kernel
~ is positive and less relevant if v is negative. On the contrary, expanding gases (under dilata-
tions) cool down and thus the average velocity of the particles in the gas decreases. Then,
for v < O the role of collisions becomes more important and vice versa for v > 0. This
behaviour of the collision term must be weighted in against the behaviour of the hyperbolic
term L (f) w - O, g in order to determine which is the dominant effect for long times.

In [18] we have focused on the analysis of solutions of (1.9) for which the terms L () w - 0,
and Cg (w) are of the same order of magnitude. We have rigorously proved in [18] the existence
of self-similar solutions in the class of homoenergetic flows when the collision kernel describes
the interaction between Maxwell molecules, which corresponds to homogeneity v = 0. In
all the cases when such self-similar solutions exist, the terms L (¢) w - 9,,¢ and Cg (w) have
a comparable size as r — co. We remark that the existence of self-similar solutions has been
obtained also for Boltzmann equations related to the theory of granular gases. See for instance
[16].

In [19] we considered the case in which the collision terms are the dominant ones as ¢t — co.
The solutions obtained in that paper are approximately Maxwellians, with a time dependent
temperature whose evolution is obtained using a suitable adaptation of the standard Hilbert
expansion.

Notice that additional regularity and integrability assumptions on the collision kernel B
would be needed in order to make rigorous the formal asymptotics presented in this paper
and in [19]. For instance, precise assumptions on the collision kernel B which allow to prove
rigorously the existence of self-similar solutions, have been considered in [18].

Finally, it turns out that there are also choices of L(#) and collision kernels B for which
the scaling properties of the different terms imply that the hyperbolic terms are much more
important than the collision terms. This hyperbolic-dominated case is the one studied in this
paper. We emphasize that in this case there is a large variety of different asymptotic behaviours
for the homoenergetic flows.

For instance, in some particular cases discussed in this paper the effect of the collision terms
becomes negligible as # — oo and the distribution of particle velocities is asymptotically given
by the hyperbolic terms in (1.9), namely L () w - 0,,g. We will refer to this case as ‘frozen
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collision regime’. From a physical point of view in this regime one given particle collides only
a finite number of times as t — oo. However we will find also situations in which, in spite of
becoming increasingly small as t — oo, the collision term Cg (w) plays a crucial role charac-
terizing the distribution of velocities of the particles. This is due to the fact that the mean free
path increases to oo as t — oo but, at the same time, for each given particle the probability of
having infinitely many collisions in the time interval (0, co) is equal to one. This case is very
interesting, but it is also the case for which we have more fragmentary results (cf section 3).
In order to shed some light on the behaviour of the particle distribution g, we introduce in
section 3.5 a simplified model, which does not correspond to any Boltzmann equation, but
contains several of the main characteristics which can be found for homoenergetic solutions
in the case in which the hyperbolic terms are dominant. The behaviour of the velocity distri-
butions that we obtain in that case is quite different from the ones obtained in the previous
cases, since these distributions cannot be approximated by Maxwellians, but they are also not
self-similar.

We notice that similar situations in which the interactions between the particles become
negligible for large times, have been studied in several classes of kinetic equation ([1-3]).
In those papers the expansion of a finite amount of mass of the gas in the whole space is
considered.

The plan of the paper is the following. In section 2 we summarize the most relevant prop-
erties of homoenergetic solutions of the Boltzmann equation which have been obtained in [18,
19].

In section 3 we discuss several results that we have obtained about hyperbolic-dominated
homoenergetic flows. In particular, in section 3.5, we describe some results for a simple toy
model for which the long time asymptotics is hyperbolic-dominated. It is possible to obtain
analytically information about the long time asymptotics of the solutions of the toy model
and hopefully this could shed some light about the behaviour of more complex hyperbolic-
dominated fluxes. Section 4 contains formulae about the behaviour of the entropy for the
solutions derived here and in [18, 19]. This allows to estimate how far from equilibrium are
the asymptotics of the obtained solutions.

In section 5 we conclude presenting an overview of the results obtained in this paper as well
asin [18, 19].

2. Homoenergetic solutions of the Boltzmann equation
We assume that the molecular density function f (¢, x, v) satisfies (1.3), namely
Of +vof =Cf(v), [f=f@txv)
Cf ()= /R3dv*/s2de (n-w, =) [f'fl = ff].

Homoenergetic solutions of (1.3) defined in [13, 23] (see also [24]) are solutions of the
Boltzmann equation having the form

ftx,v)=g{t,w) withw=v—E&(x). 2.1

In order to have solutions of (1.3) with the form (2.1) for a sufficiently large class of initial
data we must have
9 .
o independentonx and 0,§ + £ - V& = 0. (2.2)

Xj
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The first condition implies that ¢ is an affine function on x. In [18, 19] we restricted to the
case in which ¢ is a linear function of x for simplicity. The general solution of this equation is

£(t,x) =L x+ B(1), (2.3)

where L () € M3,3 (R)is a3 x 3 real matrix and B(r) € R?. Then, the second equation in (2.2)
holds if and only if

dL(t

EO wwr =0 Lo=a 2.4)
for some initial condition A € M;5.3 (R), and

POy LoB0=0. BO=B, 2.5)

for some initial condition By € R3.
The unique continuous solutions of (2.4) and (2.5) are given by

Lit)y=(U+1A)'A=AU +1A)7", (2.6)

B(t) = (I +1tA) 'By = Bo(I + 1A)~! 2.7

defined on a maximal interval of existence [0, @). On the interval [0, a), det (I + tA) > 0.

We observe that the function g(z, w) solves (1.9) even if we choose &£(x, 1) as the affine
function (2.3).

We now recall the classification of homoenergetic flows which has been obtained in [18]
(cf theorem 3.1). More precisely, we describe the long time asymptotics of the linear term of
&(t,x),namely L (H)x = (I + tA)"'Ax (cf (2.3) and (2.6)). Notice that the linear part is the only
one which plays a relevant role in the long time asymptotics of the solution g(#, w).

It has been proved in [18] (cf theorem 3.1), using all the possible Jordan decompositions,
that for any matrix A € M3,3(R) such that det( + tA) > 0 for ¢ > 0 the possible long time
asymptotics of the matrix L(f) = (I + tA)"'A is one of the following:

Case (i) homogeneous dilatation:

L(t) = %1 +0 (%2) ast — 0o. 2.8)

Case (ii) cylindrical dilatation (K = 0), or case (iii) cylindrical dilatation and shear (K # 0):

1 0

1 K 1
Loy=-10 1 0| +0 <2> ast — oo. 2.9)
\o o o !
Case (iv) planar shear:
| 0 0 O |
Loy=-10 0 + 0 <2> ast — oo. (2.10)
"\o o 1 !
Case (v) simple shear:
0 K 0
LHy=10 0 0], K=#0. (2.11)
0O 0 0

3786



Nonlinearity 33 (2020) 3781 R D James et al

Case (vi) simple shear with decaying planar dilatation/shear:

0 K 0\ [0 KKs K .
=0 o ol+-{o o o +0<2>, K #0. (2.12)
o 0o o/ "\o k5 1 !

Case (vii) combined orthogonal shear:

0 Kz K, —1tKiK;3
LH=(0 0 K , KiK; #0. (2.13)
0 0 0

Remark 2.1. As we observed in [18] there are choices of A € M3.3 (R) for which L () blows
up in finite time, but we will restrict here to the case det(/ 4 rA) > 0 for all # > 0.

2.1. Hydrodynamical fields for homoenergetic solutions

We introduce the following quantities. The density p

p(t,x):/ f(t,x,v)dv, (2.14)
R3

the average velocity V at each point x and time ¢ by means of

pt,x)V(t,x)= / f (t,x,v)vdv. (2.15)
R3

and the internal energy ¢ (or temperature) at each point x and time ¢ by means of

pt,x)e(t,x) =/ [ (6,,0) (0 =V (t,x))dv. (2.16)
R3
We will denote as c:=wv — V the random or peculiar velocity, namely the deviation of the

velocity of a single particle from the average velocity. We define the stress tensor and the heat
flux in terms of ¢ and f as

M,,:/ cicjf(t,x,v)dv, i,j=1,2,3 (2.17)
R3

qi(t,x):/ cilePft,x,v)ydv i=1,2,3. (2.18)
R3

The Boltzmann equation (1.3) implies the following not closed system of five scalar
conservation laws (mass, momentum and kinetic energy). See for instance [9, 24].

@+ii( V) = 0; (2.19)
Bt = ij P e ’
Q( v-)+§:i( ViViE M) =0 i=1,2,3 (2.20)
atpl jZIaxjpl] 7] - l_ 9 ’ .

B S INNE /178

&(pe)Jr;a—xj (peVi+q;) +;;M,-,a—xj =0. (2.21)
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We now rewrite the quantities defined above in the case of homoenergetic flows (cf
(2.1)). We can assume without loss of generality (see remark 2.2 below) that the class of
homoenergetic solutions g(#, w) we consider satisfies ng g(t, w)wdw = 0. Then, we have

p(t):/ g(t, w)dw, (2.22)
]Rfi
V(t,x) =&, 1), (2.23)
P = / g (t, w) [w|*dw, (2.24)
2 R3
and
Mij(t) = / ww;gdw i, j=1,2,3 (2.25)
]R3
qi(t) = l/ wilwlgdw i=1,2,3. (2.26)
2 ]Rfi

Therefore, the conservation laws (2.19)—(2.21) become

200452 (oe) =0, @)
ot = ij / ’ '
Q(pmewii(p&f) =0 i=123 (2.28)
o oy o '
Q( (r))+§3:i( 6)+iiM~%—0 (2.29)
on I L W L M '

We notice that the equation for the average velocity does not depend on the stress tensor and
the equation for the internal energy does not contain the heat flux.
Using now (2.3), i.e. £ (t,x) = L (t) x + B(¢), in (2.27)—(2.29) we obtain

0
200+ p(0) TH(L1) = 0 (2.30)
D& o~ , OGi(0) .
t + i =0 =1,2,3 2.31
P | = ; o, i (231)
Oe(t S Oe(t
o023 £ SS My 0 = p0 DD L TMD@O) =0, (232)

i=1 j=1

where Tr(ML) = ng w - Lw g dw. We observe that (2.30) gives the evolution of the density in
time, (2.31) holds due to (2.2) and (2.32) yields the evolution of the internal energy.
Notice that (2.30) implies

p(®) = p(0)exp (—/[ Tr (L (s)) ds) . (2.33)
0
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which gives the evolution of the density in terms of the properties of the flow described by
L(#). On the contrary, we cannot compute the evolution of the internal energy ¢ () without
obtaining before some additional information concerning the velocity distribution function
g(t,w).

Remark 2.2. Multiplying (1.9) by wy, for k = 1,2, 3 and integrating with respect to w we
obtain

0
— (/ gwkdw> +Lk,j/ gw;dw +Tr(L)/ gwidw = 0,
ot \ Jg3 R3 R3

We can assume without loss of generality that fR3 gowrdw =0 at t=0 for k=1,2,3
changing, if needed, the value of By. This implies fR3 gwidw = 0 for any ¢ > 0.

3. Homoenergetic flows with hyperbolic-dominated behaviour for large t — oo

For some homoenergetic flows satisfying (1.9) and some choices of the homogeneity ~ of the
collision kernel B we can expect the hyperbolic term —L (¢) w - J,,g to be much larger than the
collision term Cg (¢, w) (cf (1.9)). The information that we have about those homoenergetic
flows is much more fragmentary than the one obtained in the cases in which the collision
terms are the dominant ones for large ¢ (see [19]) or in the case in which the hyperbolic
and collision terms have the same order of magnitude as  — oo (see [18]). In the first case
we have obtained that the asymptotics of the velocity distributions of the homoenergetic flows
are given by Maxwellian distributions with time dependent temperatures, whose evolution
in time is computed using suitable adaptations of the classical Hilbert expansions. In the
second case, we have proved in [18] the existence of non Maxwellian self-similar solutions
which describe the long time asymptotics of the particle distributions. Nevertheless, in both
cases, there is a time dependent characteristic velocity |w| & £ (f) which characterizes the scale
of velocities in which most of the particles of the system as well as the energy is contained at a
given time. More precisely, this means that if we denote by M(7), E(f) the mass and the energy
of the system respectively, we have

M(t) ~ / g(t, w)dw
e < w|< Fe)

and

E(r) :/ lw|*g(t, w)dw
SUDK w| < FHear)

for some § > 0 small enough.

In several of the cases dominated by the hyperbolic terms discussed in this section we will
argue that such scale /() containing most of the particles and the energy does not exist, or
there is no single time-dependent velocity scale that characterizes both mass and energy as
r— 0.

A feature that characterizes several of the homoenergetic flows dominated by hyperbolic
terms is the fact that the collisions term, in spite of the fact that it is formally very small as
t — 00, yields huge effects in the particle distributions. This feature can be understood in an
intuitive manner in terms of the trajectories of the particles which are described by the Boltz-
mann equation in homoenergetic flows. During most of the time the dynamics of the particles
is described by the hyperbolic flow, typically a shear flow, a dilatation flow or a combination
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Figure 2. Increase of average velocity due to the combined effect of shear and collisions.
The velocities v, v, are transformed into v, v, by the shear. Then the collisions transform
these velocities into v', v/,

of them. Rarely, the particle experiences a collision with other particles and this modifies dras-
tically the direction of the motion of the particle. Then the particle velocity evolves again
according to the hyperbolic flows and this results in an additional increase of the size of
the velocities. Therefore the iteration of this process yields a huge increase of the average
velocities and therefore of the ‘temperature’ of the system. Moreover, the effect of the colli-
sions in the long time asymptotics of the particle distribution is huge in spite of the fact that
they take place very rarely. See figure 2. This phenomenon will be studied in section 3.5 relying
on the analysis of a collisional model simpler than the Boltzmann equation.

As discussed above the information that we have obtained so far for these flows with domi-
nant hyperbolic terms is less detailed and more fragmentary than the one that we have obtained
in the collision-dominated case. We will describe below a few examples of these flows and we
will describe the dynamics of a simplified model which contains the combined effect explained
above (simple shear during large times combined with rare collisions). Hopefully some of the
ideas described in such simplified model might be useful to understand homoenergetic flows
for the Boltzmann equation dominated by hyperbolic terms.

3.1 Homogeneous dilatation: frozen collisions

We recall that the homoenergetic flows (2.1) in the case of homogeneous dilatation (i.e. L (7)
given by (2.8)) have been studied in [21, 22]. We observe that in these flows the average dis-
persion of the velocity of the particles decreases as % as t — 0o, something that it is just due
to the dilatation process of the gas with the collisions not having any meaningful effect on
this fact. The long time asymptotics of the distribution then depends on the behaviour of
the average time between collisions and this depends on the homogeneity of the collision
kernel B which we denote as . As it has been seen in [19] if v < —2 the effect of the col-
lisions is relevant in the long time asymptotics and the velocity distribution converges to a
Maxwellian distribution. If v > —2, we will obtain the behaviour that we will denote as frozen
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collisions as  — oo. Indeed, the effect of the isotropic dilatation is to reduce the average disper-
sion of the velocity of the molecules. Therefore, the effect of the collisions becomes negligible
for large times and the particle distribution g (#, w) converges asymptotically to a distribution
&~ (w) which depends on the initial particle distribution g¢ (w).

To be more precise, we consider the following equation which has been derived in
subsection 4.2.4 in [19]

0:G — 0 - (a(1)€G) = e *TTCG (&) (3.1)
where |@ (7)| < Ce™ " and G has been defined as
g(t,w) =LG(1,8), &=wt, T =Ilog(r). (3.2)

where g is a solution to (1.9) with L (¢) given by (2.8).
Looking at the new time scale

ds =e @t7dr
when v > —2, we then have (2 + ) > 0 and

o 1
2+

(1—e @),

Therefore (3.1) becomes

95G — ¢ - (k () £G) = CG (§) (3.3)

where s takes value in the interval [O, ﬁ) when 7 takes value in [0, c0). Moreover, k (s) is

bounded in the interval 0 < s < ﬁ Therefore, in order to compute the asymptotic behaviour
of the solutions of (3.1) as 7 — oo, we just need to compute the asymptotic behaviour of the
solutions G(s, w) of (3.3)as s — ﬁ Therefore G (s, w) does not converge to a Gaussian, but
to a limit measure G, (§) which depends on the initial value gy (w). Therefore (3.2) implies

that g(w, 1) ~ £ G (Wh).

3.2. Cylindrical dilatation: frozen collisions

We now consider (1.9) choosing L(¢) as in (2.9) with K = 0. We obtain the following equation

1
0ig — , (w10, + w20,,) g = /zdw*/zde (w, |lw—w.]) [¢'s. — g:8]
R’ s
(3.4)

when the kernel has homogeneity v > —2. We remark that the case of Maxwellian molecules
(i.e. v =0) has been considered by Galkin in [15] where formulae for the second order
moments of the velocity distribution have been computed using hypergeometric functions.

In order to rewrite the equation above in divergence form we use the change of variables:
g(t,w) = £G(1,w), log(r) = 7. Then, (3.4) becomes

1 00
0.G— 0, - (DwG)=¢e¢ "CG, with D=0 1 0. (3.5)
0 0 0
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We study under which conditions we can obtain solutions of (3.5) whose behaviour is deter-
mined for 7 — oo by the terms on the left-hand side. Suppose that we replace the collision term
e~ "CG on the right-hand side of (3.5) by 0. Then, the solutions by the method of characteristics
of the corresponding equation would be given by

G(r,w) = e Gy (eTwy, e wa, w3) (3.6)

where Gy is the initial distribution which we assume to be sufficiently smooth and exponentially
decaying as |w| — 0.

‘We now check that the collision terms obtained with a function G of the form (3.6) will not
modify the form of the solutions obtained by the method of characteristics as 7 — oco. The rate
of collisions is given by

efT/ dw*/ dwB (n-w,|w —w.|) G(r,w,)
R3 $2

which can be estimated as
Ce’T/ dw,w — w,|"G (1, w,) . 3.7)
R3

We estimate the supremum in w of (3.7). If we assume that G has the form (3.6) we can
estimate this supremum, for |w| < C, by the value at w = 0. We then need to estimate

CefT/ dw,|w.|"G (1, w,) . (3.8)
R3

Due to the assumption we did on the initial distribution Gy it follows that G as well as the
moment fR3 dw*\w*\h‘G (w, 7) < oo for each 7 > 0. We consider separately the cases v > 0
and v < 0. If v > 0 and G has the form (3.6) we obtain that (3.8) is bounded by Ce™7, since
the mass of G is concentrated in the region where |w,| is bounded. Therefore, the rate of col-
lisions decreases exponentially as 7 — oo and we can expect the asymptotics (3.6) for G as
7 — 00. Suppose now that —2 < v < 0 and that G has the form (3.6). We then obtain, using
the change of variables £; = e"wy, &, = e”wy, the following estimate for (3.8)

CeJ/R;dﬁldﬁzdw3 (€77 (&) + (&) + (w3)?] %Go (&1, &, w3) .-

We assume that Gy satisfies (3.6) and contains most of its mass in the region |&;| + [&] +
|ws| < C. Performing then the change of variables w3 = e n|¢| with &€ = (£1,&) € R?, we
obtain an estimate with the form

i) dn

AeT bl

Ce—(Z—M)T/ dele|t =
B(0) G 2] 2

where A > 0.
We now have two possibilities. If 1 < |y| < 2, v < 0, the integral above is bounded by
Ce=@~hD7 If || < 1,y < 0, we obtain the estimate

Ce_T/ d¢ < Ce™".
B4 (0)
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If || = 1 we would obtain the estimate CTe™ 7 with similar arguments. Summarizing, if v >
—2 the collision rate decreases exponentially and we can expect to have an asymptotics for G
given by

G (1,w) = *" G (eTwy, € w), w3) (3.9)
where G, would depend on Gy. Thus, in the original variables we obtain

g(t, w) ~ G (twy, twy, w3).

Remark 3.1. It is interesting to remark that in [19] we have obtained that in the case of
cylindrical dilatation with kernels B with homogeneity v < —% there are homoenergetic solu-
tions for the Boltzmann equation described by means of Hilbert expansions and behaving
like a Maxwellian distribution with decreasing temperature. On the other hand we have
obtained in this subsection that a possible asymptotics of the homoenergetic solutions for the
Boltzmann equationis given by (3.9) if v > —2. The remarkable fact is that there is anon empty
interval of homogeneities v € (—2, —2) for which both asymptotics are possible. This sug-
gests that the homoenergetic solutions of the Boltzmann equation can have different behaviours
depending on the choice of initial data Gy if ¥ € (—2, —3 ). In one of the asymptotics the effect
of the collisions would be the dominant effect, while in the other one, the collisions would
have a negligible effect for large times. This is a remarkable phenomenon which deserves a
more detailed analysis, nonetheless we will not continue with the study of this case in this

paper.

3.3. Simple shear. Frozen collisions for v < —1

We consider homoenergetic flows (1.9) with L (¢) as in (2.11). Then g satisfies:
08 — Kwy0yu, 8 = Cg (w). (3.10)

We will show that if the homogeneity of the collision kernel B is smaller than —1 there
exist solutions of (3.10) for which the contribution of the collision term Cg (w) is negligible as
t — oo. For such solutions, a given particle would not collide with any other for large times,
and we might expect to have w, approximately constant and w; increasing linearly in ¢. This
suggests to look for solutions with the form

1 w [
gt,w) = ?G(T,g) , T=1log(®, & = ?l,gj:wj if j=2,3. (3.11)

Then, using the homogeneity of the kernel, we obtain that G satisfies
0:G — 0 - ([(&1 + K&) e1]G) = "TCG (©) . (3.12)

Notice that the collision kernel has been also rescaled, due to the lack of isotropy of the
change of variables (3.11).

The long time asymptotics of the hyperbolic equation obtained putting the right-hand side
equal to zero in (3.12) is much dependent on the regularity properties of the initial data Gy (&).
We will assume for the sake of simplicity that Gy € C*. The solution of the corresponding
hyperbolic equation follows using the method of characteristics
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G(1,8) =e"Go(&ie” + K& (e — 1), 6,8),
g (t,w) =1 Go (wi + Kwy (t — 1), wp, w3) . (3.13)

Suppose that Gy is compactly supported or decreases sufficiently fast as |w| — co. Then,
integrating with respect to £ against a smooth test function we obtain

G(1,8) — {/ Go (, fz,éz)dn} 0 (& +K&) as 7 — oo, (3.14)

o0

If vy < —1 it would follow that the contribution of the collision term ¢! V" CG (¢) decreases
exponentially as 7 — oo and it yields a negligible contribution as 7 — oo. In this case the
effect of the collisions becomes frozen for large times. The rigorous proof of the smallness of
this term would require some careful analysis of the collision term which will not be made in
detail in this paper. The intuitive idea behind the convergence (3.14) is that collisions, for long
times, take place so rarely that become negligible.

3.4. Combined shear in orthogonal directions

3.4.1. Derivation of a system of ODEs for the second order moments. We now consider the
homoenergetic flows (1.9) with L (7) as in (2.13). Then g solves

0ig — [Kzwy + (Ka — tK K3) w3] Oy, & — Kjw30,y,8 = Cg (w). (3.15)

It readily follows that 0, ( fR3 g, dw)) = 0. On the other hand, as we have seen in [19], for
homogeneity v > 0 the asymptotic behaviour of solutions of (3.15) is given by Maxwellian
distributions with time dependent temperature, obtained by means of suitable Hilbert
expansions. Such expansions do not exist for v < 0. Therefore we can expect the critical value
of the homogeneity at v = 0. We can obtain some insight about the asymptotics of g from the
asymptotics of the second moments M = ng wjwig (¢, dw). The asymptotic formulae we
obtain for the moments will rule out the possibility of self-similar behaviour.

We consider the evolution equation for the second moments M, = fR3 wjwig (¢, dw). From
(3.15) at v = 0 a straightforward computation yields

dM i
dr

= K361 My2 + [(Ky — tK1K3) 651 + Ki6j0] My + +K36,,1M 2
+ [(Ky — 1K K3) 0y + Ki0ka] M3 — 2b (Mg — mé ) (3.16)

fOI'j,k = 1,2,3, Mj,k = Mk,j, m = % (Ml,l +M2’2 +M3’3) and

1
b:37r/ B)x* (1 —x%) dx > 0. (3.17)
—1

The system of equations (3.16) is linear. Due to the assumption K;K3 # 0O there is a lin-
ear increase of the terms on the right-hand side of this system. It is then natural to derive
asymptotic formulae for its solutions using a WKB method (see for instance [4]). Indeed, these
methods are applicable for linear problems for which the terms multiplying the higher order
derivatives are asymptotically smaller than the terms multiplying lower order derivatives. We
will derive asymptotic formulae for six linearly independent solutions of (3.16). We make
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the ansatz Mj; ~ v;xe5 where v;; are functions behaving like power laws (perhaps contain-
ing logarithmic corrections) and S behaves like a polynomial. We first need to compute the
leading order of this asymptotic expansion. To this end we rewrite (3.16) neglecting the con-
tribution of the term K, in (K, — 1K K3) since it is lower order. With this approximation we
have

dm
dt“ = —2K3M 5 + 21K K3sMy 5 — 2b (My; — m)
dm
d;’z = —KsM> + tK1KsM>3 — KiMy 3 — 2bM 5
dm
d;,3 = ——I(§A423 %-11(1](3A433 — 2bﬂ4i3
dm.
dt“ = 2K M3 — 2b (May — m)
dM.
23 = —K1M373 — 2bM273
dr
dMs; 3
= = —-2b (M35 —
dr ( 3 m)
1
m= 3 (My1 + Ma, + Ms3) . (3.18)

3.4.2. Computations of the asymptotics for the second order moments. We can determine
the exponential behaviour of the coefficients using a graphic procedure. To this end we rep-
resent each of the variables M;; as the nodes of a graph. (See figure 3). We then include in
the graph a directed edge connecting each of the nodes appearing on the right-hand side of
(3.18) (including those on m) with the variable appearing under the derivative on the right-hand
side. We will assume that the directed edges are of two different types, namely thick and thin.
More precisely, we add an edge of type thin if the term appearing on the right-hand side is
multiplied by a constant, and we will assume that the edge is thick if the corresponding vari-
able on the right-hand side of (3.18) is proportional to ¢. Suppose that M;, is a variable at the
origin of one directed edge on the graph and M, is a variable at the end of one of such directed
edges. Then, the structure of the equations (3.18) implies the following rule to determine the
structure of the algebraic factors ;x

CixVik = (0iS) v, if the directed edge is thin,
(3.19)
CixtVjx = (0:S) vy if the directed edge is thick,

where c¢; is the multiplicative constant in front of the function M in (3.18).

We then look for circuits in the graph associated to the set of equations (3.18) having the
shortest length and the largest number of thick lines. More precisely, for any circuit connecting
anode M with itself, the set of rules (3.19) implies that

Covixt” = (O:5) v, (3.20)

where L is the total number of edges of the circuit and 7 is the number of thick lines on it. The
constant Cy is just the product of the coefficients c;; in the cycle.
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M 2

Figure 3. The graphic procedure for the WKB method.

We select the circuits for which the number %

% < 1. Then, the consistency of (3.20) yields

is the largest. Notice that by construction

\C0|%w
~ T
1+ 7

S M ast — oo (3.21)

where w is one of the L complex roots of the equation
whk = sgn(Cy).

The asymptotics (3.21) yields the leading asymptotic behaviour of L independent solu-
tions of (3.18). We can derive asymptotic formulae for additional solutions removing the
nodes which are at the basis of the thick lines contained in the cycles yielding contributions
to the asymptotics (3.21), if needed. In such a case, in order to obtain the asymptotics of
the additional solutions, we obtain formulae relating some of the asymptotic variables M;
removing the derivatives in the equations associated to the thick lines removed and find-
ing then asymptotic relations between the corresponding right-hand sides of the resulting
equations.

We apply the method explained above to the equations (3.18). The cycle yielding the
smallest value of T is

M171 — M373 — M173 —>Ml,1- (322)

Then, we obtain to the leading order
4b
(S} ~ ?(ﬂqz@)z ast — 0o

whence

1
3 /4b\ 3
S~ 5<3> (KiK3)3wi? ast — oo (3.23)

where w? = 1. We are interested in the value of w yielding the fastest growth of the solutions,
ie.w=1.
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We compute the remaining long time asymptotics of (3.18) as a consistency test. We
will impose that dﬁdlfz = dﬂ;’t"3 = dﬁdlt‘"‘ = 0 (or, more precisely, that the contributions of these

derivatives yield subdominant terms). We then need to solve the equations

dm
dtl’z = —K3Myp + tK1K3M> 3 — KiM 3 — 2DM »
dm
dt“ = —2K\My3 — 2b (Map — m)
™~ (3.24)
2 — _K\Mss —2bM3
dr
1
m=z (My1 + Mo + Ms3)
with the constraints
0= —2K3M1,2 + 2Z‘K1K3M1q3 —2b (Ml,l — m)
0=—KsMp3 + tK | KsM33 — 2bM | 3
0=-2b (A433 —-In).
Using the last equation we can write
(Myy —m) = (Myy —Ms3) + (M3 —m) = (Mg — Ms3),
whence
0= —-2KsM,» + 2tK\KsM,3 — 2b (Ml,l — M3q3)
0=—KsM3 + tK | KsM33 — 2bM | 3
0= 2M373 — M171 — Mz’z. (325)
Neglecting subdominant terms and using the first equation we obtain
I(éﬁllz + bﬁlll 1
M;=—">"——"+—. 3.26
13 KK p (3.26)
Plugging this into the second equation of (3.25) we obtain
M3 1  2b(KsMis+bMy,) 1
Mz; = —=— : L 3.27
¥R + (KiK:) p (3.27)
Notice that we have neglected the term —Zﬁft in (3.26). This would result in a term of

order O (%) in (3.27) which is lower order M3 3 compared to the term on the left of (3.27).

Therefore, we would neglect it. Inserting now this formula into the last equation of (3.25) and
neglecting small terms we obtain

2Mr3 1 4b (KM, +bMy ) 1

— =M, — My =0
K 1 (KK 2 T

2Mr53 1 4bK3Mi, 1
M, = =— 4+ = — — M. 3.28
1.1 Kt KK) 2 22 (3.28)
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Using this into (3.26), (3.27) and neglecting small terms we get

M1l 2bMys 1 bMy, 1
M= (222 e (3.29)
Kyt (K1)°K;5 ¢t K\ K5 t
Moz 1 2bKsMis 1 26°My; 1
M = 231 3M 2 22 (3.30)

Kt (KK 2 (KK)Y2

We can now use (3.28)—(3.30) to eliminate M, ;,M;3, M35 from (3.24). Eliminating
subdominant terms we obtain

dmM
dthz = —K3M,, + tK | KsM> 5 — 2bM, 5
dM,» 4b2K3M1 ) 1
2 — 2K \Mss — 2bMss + ——— 2 —
dr 13 2T 3K Ky 2
dm 2bK3M, 5 1 2b0°M, 5 1
2 K 2bMys. (3.31)
dr (K1K3) 2 (K1K3) 2

These equations have three independent solutions which decrease exponentially. More pre-
cisely, the asymptotics of these solutions can be computed with the same type of arguments
used above and the conclusion is the existence of three independent solutions having the
following asymptotics. Two of them behave like:

M = exp (—th:I: 1/ %t(l + 6j,k(t))> for (j,k) € {(1,2),(2,2),(2,3)} as t— 0
1
(3.32)

where €;(f) — 0 as t — oo, and the third one behaves like:

My =e Py for (jk) € {(2,3)}(j, k) € {(1,2),(2,2),(2,3)} ast— o0
(3.33)

K b .
where «y; are s.u.ch tha}t Yoo = [—lg, Y23 ~ ﬁv’z,z, Y2 ~ Kl—z.’hg ast— oo. Tl:llS means that we
have three additional independent solutions to the ones having the asymptotics (3.23), but we
will not give more details about them in what follows since we will not use them later.

The relevant asymptotics, which yields the behaviour of the functions M for generic initial

. s i 2 .. .
data is the one yielding S ~ 2 (%)% (KK3)3 13 as t — 0o. We can compute additional terms in
the asymptotics of the solutions Mj.

To this end we introduce the change of variables

1
4p\ 3
Mj,k — eSotHjx , So = %(;) (K1K3)%t% (3.34)

where the behaviour of the functions Hj; must be computed. By assumption |H ;| < 13 as
t — 0o. We will assume also that terms in the differential equations which are not associ-
ated to the nodes appearing in the cycle (3.22) yield negligible contributions. We will check
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then ‘a posteriori’ that these assumptions are satisfied in the derived asymptotic formulae for
Hj . We remark that the leading order asymptotics derived above imply

Hy3—Hy) 91So eff3s—His 91So efii—H3 3015

) ) . 3.35
2tK K3 tK K3 2b ( )

On the other hand, plugging (3.34) into (3.18) we obtain

OSo + OpHy = 2tK K331 — 2 Kgefa=tn — effia=ih
2b
3
S0 + OHy o = —Kse™27 M2 4 (1K Ky — Ky) e M2 — gefiata _p

(2 _ efh2—Hi1 _ eH3,3*H1,1)

6,5() + 8;H1,3 = tK; K3CH3’3 —Hiz _ K3CH2’3_H1’3 — K26H3*3_H1*3 —2b

2b

S0 + O,Hyp = —2Kef3ta _ (2 — efli—Hy _ eH3,3—H2.2)

3,50 + atH2,3 = —KleH3,3_H2,3 _ zb

2b

2b
S0 + OHy 3 = ?eﬂlwl—fhs -3 (2 — efr2tha) (3.36)

We first derive information about the asymptotics of the variables not contained in the cycle
(3.22). The equations for the variables H, », H,», H» 3 yield, neglecting lower order terms,

9,8 = _K3eH2,2*H1,2 + tK1K3eH2’37H1’2 _ KleH1,3*H1,2
Sy = _2K16H2_3—H2,2 4 %CHI,I—HZ,Z 4 %eﬂa,a—fh,z
3

8,8 = —KelBaths,

We can eliminate from these equations the variables H 3, H3 3 using (3.35) whence, after
neglecting small order terms and using that 0,5, scales like 13

0,8y = _K3eH2,2*H1,2 + tK1K3eH2,3*H1,z _ %CHLPHLZ
2K;t

Sy = _2K16H2_3—H2,2 4 %CHI,I—HZ,Z
3

MM

1=—
2tK5

We can then write all the differences of functions H in terms of differences (Hy, — H.1),
(Ha2> — Hy,) and (Hy3 — Hy ). Then, neglecting small terms as 7 — 0o, we obtain

0,8y = _K3eH1,1*H1,zeHz,2*H1,1 _ &eﬂl,rhﬁ,z

- 3 _
efli—Hyp Eatso , efhi—Hys — —2K;5t
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whence, after some computations,

efiths = oKy, effithe = ;—ba,so , etz — 2b3K (1 - 3:2) (D:S0)°.
3

(3.37)

Notice that the three functions 23, ef22, ef12 are smaller than ef1.! as t — co. Notice that
some of these functions can be negative, and therefore the corresponding function H;; would
have an additive complex factor ir.

We now compute the asymptotics of the functions H, j, H; 3, H33. Using the correspond-
ing equations for the derivatives of these variables in (3.36) and eliminating the variables
H,,,H,,, H>3 using (3.37) and neglecting small terms we obtain

4b

2b
O,So + OHy = 2tK Ksef3~Hir 4 ?e’ﬁﬁ—”h1 — Kyefa—Hur _ 3

1
Sy + 8;H1,3 = tK1K3eH3’3’H1~3 — K26H3’37H1’3 + Z—teH1'17H1’3 —2b

2
4 41 g

2b
.5, OHrn = —eha—M3 _ 2 77 ©
150 + O:H3 3 3 € 3 + 9 a;SOC

Using (3.35) to approximate the corrective exponential terms in these equations we obtain

4b
a[S() + atHLl - 2tK1K3eH1’37H1’1 — ?
0SSy + a;H1,3 = tK1K3eH3*3_H1"3 —2b
2b 2b
a[S() + a;H3,3 - ?CH1’17H3’3 — ?

Multiplying these equations, using |0,H ;x| < 0,5y and keeping the leading order terms
(using again (3.35) to approximate the exponential terms on the right-hand side) we get

R, ) =
atSO atSO atSO + + 3,S0 3,S0

8;1‘11,1 81H1,3 atH3,3 o <4b 2b> l 4b
3 3

whence, taking into account also that due to (3.35) we have H,; ~ H;3 ~ H33 as t — 00, it
follows, to the leading order

4b
Hiy ~H3~Hy3~ —?t as t — 0o.

‘We have thus obtained

1
3 (4b\ ¥ ab
SN§<?) Kikitt =21 as 150 (3.38)

3.4.3. The asymptotics of M; are not compatible with the self-similar behaviour for the velocity
distribution. 'We now analyse if the asymptotics (3.38) is consistent with some of the self-
similar behaviours described in [18], section 5. The asymptotics (3.38) for the tensor of second
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moments M;;, combined with the mass conservation property, suggests the following long time
behaviour for the solutions of (3.15)

BE), £=—— (3.39)

1
81 =50y 0

with

1
3 (4b)\3
log A (1) ~ — [ 22 ) (KiK3)363  as 1 — .
10\ 3
Plugging (3.39) into (3.15) and keeping the leading order terms we obtain the following
equation for ®

8;)\
_T(I) — [K36 + (Ky — tK 1 K3) &3] 05, ® — K1£30:, P = CO (§).

Since %X ~ 1(4) %(K 1K3)313 as t — oo it is not possible to have a balance between the
terms a’%@ (&) and (K K3t) £&30¢, ® unless O, & — 0 as t — oo. In that case ¢ would be approx-
imately independent on &, at least for a large set of values and this would be incompatible
with g having finite mass. Therefore, the long time asymptotics of the solutions of (3.15) can-
not be described by a self-similar velocity distribution at least with the simple structure in
(3.39).

3.5. A simple model with the hyperbolic terms much larger than the collision terms but
yielding infinitely many collisions for long times

3.5.1. Description of the model. We have seen in some of the previous examples, that for
some choices of the matrices L (f) and some homogeneities of the kernels B the collision
term becomes much smaller than the hyperbolic terms associated to the term L (f). However,
these collisions might yield huge deformations in the particle distribution. In this subsection
we consider a simplified model inspired by the dynamics of the homoenergetic flows in the
case of simple shear (cf (2.11)). We have seen in subsection 5.1 in [18] that in this case, if
the homogeneity v = 0, there are self-similar solutions for the particle velocities. If v > 0
we have obtained in [19] a long time asymptotics described by a Maxwellian distribution
with temperature increasing in time as a power law. In section 3.3 we have seen that forv < —1
the average velocity of the particles increases due to the shear, but therefore the collisions
become so small that they yield a negligible effect as t — oo. If v € [—1, 0) the description of
the particle distribution seems more involved.

The main difficulty to describe the distribution of particles in the case of simple shear
and v € [—1,0) is the following. The shear is the dominant effect and it tends to yield a
very elongated particle distribution, analogous to the one obtained for the case v < —1 (cf
(3.13),(3.14)). However, in the case 7 < —1 the collision rate decreases very quickly as t — oo
and a given particle eventually does not experience any collision for long times. On the con-
trary, if v € [—1, 0) the collision rate becomes small as r — oo, but each particle experiences
infinitely many collisions for long times, although increasingly spaced in time. The difficulty is
that the collision rule (1.4), (1.5) implies that the collision between two particles whose veloc-
ities are in a distribution much elongated along the axis e; get their directions deflected to an
essentially arbitrary direction (see figure 2). Therefore, in spite of the fact that the collisions
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preserve the energy of the particles, the component w, of the particle velocities increases in
a significant way for most of the collisions. As a consequence the increase of the velocities
in the subsequent evolution by means of the shear term becomes much larger than before the
collision.

We now introduce a simple model for the evolution of a particle system under the combined
effect of shear and collisions containing some of the main properties of the evolution described
above. The resulting model is simpler than the Boltzmann equation and it is possible to derive
asymptotic formulae for the behaviour of its solutions.

We will assume that the particles of a system can be characterized by two real variables,
namely ¢ > 1 and p > 0. We can think on ¢ as the component - Tl ,‘ of the velocity in the simple
shear case and p as the absolute value of the velocity |w|. We assume that between collisions
(¢ increases at a constant rate. Notice that we can think also on ¢ (more precisely (( — 1)) as
the time between collisions. On the other hand, we will assume that at the collision times the
particle jumps to a new value of p, denoted as p and given by p = p(. The new value of ( after
the collision is reset to ( = 1. The collisions take place with the rate € which typically will be
assumed to be time dependent.

The particle distribution f = f (z, p, ) is then given by

Of+0cf=—cW)f.C>1,p>0,1>0 (3.40)
fp )= 6(0/ ( C) dCC (3.41)

We will assume that the initial particle distribution is
F0,p,0) = fo(p)d(C—1). (3.42)

Notice that in this model we are implicitly assuming that the absolute value of the veloc-
ity for a particle characterized by the variables (p, () is p(. We will study the dynamics of
the model (3.40)—(3.42), in general with a time dependent €. However, we can also obtain a
nonlinear version of (3.40)—(3.42) in order to mimick the property of the Boltzmann equation
according to which for negative homogeneities of the kernel B the collision rate decreases for
large particle velocities. In such nonlinear version of the model we consider

Of +0f =—e)f . C>1,p>0,1>0 (3.43)
ftp 1) =e) / ( ) dCC (3.44)

with
£ (1) _/ dp/ ¢ (’aé';o, ae(,1). (3.45)

The case a € (0, 1) plays a role analogous to the homogeneity of the kernel v € (—1,0) in
the case of Simple Shear for the Boltzmann equation.

A difference between the models (3.40)—(3.42), (3.43)—(3.45) and the dynamics of the par-
ticles for homoenergetic solutions of Boltzmann equation in the case of simple shear is that the
particles can move only in the direction of increasing ¢ while in the Boltzmann case w; can
be increasing or decreasing. Notice that the smallness of ¢ (and therefore the long free flights
between collisions) makes reasonable to assume that the particles jump after each collision
to ¢ = 1, because we assumed that the jump takes place within a radius of order p, since the
length of the flight immediately later is typically much larger than p.
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It is readily seen that the solutions of (3.40)—(3.42) (or (3.43)—(3.45)) satisfy

9, ( /0 Cdp /1 dCf(r,p,o) 0. (3.46)

It is worth to notice that the Jacobian % in (3.41) is due to the multiplicative structure of the
jumps. This Jacobian plays a crucial role in the derivation of the mass conservation property
(3.40).

The models (3.40)—(3.42) with ¢ (t) — 0 as t — oo or (3.43)—(3.45) have several analo-
gies with the homoenergetic flows for the Boltzmann equation. The most relevant one is the
existence of large particle flights which increase in a significant manner the energy of the
particle, followed by rare collisions which transport the particle to a new state where the
increase of energy due to long flights is much larger than before. We will describe some results
concerning the asymptotics of the solutions of the models (3.40)—(3.42) and (3.43)—(3.45),
which perhaps could shed some light about the type of behaviours arising in the homoener-
getic flows of the Boltzmann equation in the cases in which the rate associated to the collision
terms tends to zero but it is nonintegrable.

3.5.2. Reformulation of the model in an equivalent set of variables. We now reformulate the
models (3.40)—(3.42) and (3.43)—(3.45) in an alternative form which will make simpler to
study their long time asymptotics. We define G (¢, X, Z) by means of

£t p,¢) =exp (—/Ote(r) dT) Gt,X,Z) ,p=e", (=¢. (3.47)

Then (3.40)—(3.42) become
0G+e?0,G=0,Z>0,XeR (3.48)
G(t,X,O):s(t)/oooG(t,X—Z,Z)dZ (3.49)
G(0,X,Z) = Gy (X)5(Z). (3.50)

We can reformulate (3.48)—(3.50) as an integral equation for the function & (#,X) =
G (1, X,0). Integrating by characteristics (3.48), (3.50) we obtain

G(1,X,2) = (iof?(S(z —log(1+1)+G (1 + 1 —¢%,X,0)
= C,io_(:(t)é(Z—log(1+t))+<I>(t+1—eZ,X). (3.51)

Using this formula in (3.49) we obtain

e() [

X =117
0

Go(X —2)5(Z —log(1 +1)dZ

log(1+1)
+€(t)/ D(r+1-e"X—-2)dz
0

and using the change of variables e — 1 = ¢ we then obtain the integral equation

) ! d¢
<I>(t,X)_1—_HG0(X—log(1+t))+e(t)/0 <I>(t—§,X—log(1+§))m. (3.52)
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In the case in which € (7) is given by (3.45) we obtain, using (3.47)

t o0 o0
e () exp ( / 6(7’)d7’) = / el"9X4x / e 2G 1, X,2)dZ
0 —00 0

and using (3.51) we then obtain

t G > (1-a)X /t _ dg
s(t)exp (A 5(7)d7'> = (1 +l‘)a +[me dx A q)(t &X) (1 +§)a
(3.53)

where

Co = / Go (X)e!' " ¥dx. (3.54)

‘We have then reduced the models (3.40)—(3.42) and (3.43)—(3.45) to the models (3.52) and
(3.52)—(3.54) respectively. We now study the asymptotics of the solutions of these models. We
begin studying (3.52) with constant €.

3.5.3. The model (3.52) with constant =. The equation (3.52) can be explicitly solved using
Fourier and Laplace transforms if € (f) = < is a constant, i.e.

< tGo(X—log(1+t))+6/ @(t—f,X—log(1+§))1£ XeR,t>0.
0

(I>(t,X)21+ +¢

(3.55)

Actually we need to consider a more general class of problems. Given any 5 € R we define
functions

U(6,X)=Us(1,X) = 0@, X)X (3.56)

Then, formally, the functions ¥ solve the equations

€ ! d¢
(3.57)
forX € Rand ¢t > 0. Here
Hy (X) = Ho 3 (X) = Go (X)e™. (3.58)

We will assume that G, decreases fast enough as |X| — oo in order to guarantee the conver-
gence of all the integrals appearing later. We use the following form of the Fourier transform
in X

¥ (t, k) = \/% / h (1, X)e Mdx. (3.59)

Notice that the Fourier transform v (t, k) is defined if W (¢, X) does not increase exponentially
as |X| — oo. Itis well known that the Fourier transform can be defined in the class of tempered
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distributions. We will not make precise the spaces in which the functions W are, but this could
be made easily using the properties of Fourier and Laplace transforms in distribution spaces.
(See for instance [12]).

Taking formally the Fourier transform in X of (3.57) we obtain

e M- & kde
Y (t,k) = (1+t)1—5+ikh0(k)+5 A (1+§)l—8+ik

where hy is the Fourier transform of Hy. In order to solve (3.60) we take the Laplace transform
in time. We define the Laplace transform as

(3.60)

¥ (z,k) = / h W (t,k)e dr. (3.61)
0

Then using (3.60) and the properties of the Laplace transform of a convolution we obtain

D (z k) [1 — A (2, k)] = ehy (k) A (z, k)

where
o eTdde
Az k) =As(z, k) = —_—. 3.62
(k) = As @K /0 —— (3.62)
Therefore, as long as [1 — A (z, k)] # 0 we obtain
~ ho (k) A (z,k

1 —cA(z k)’

The Fourier modes with a given k € R* increase exponentially as exp (zo (k; ) ¢) where
70 (k; €) is the solution z of the equation

1—eA(z,k)=0 (3.64)

with the largest real part. We then need to understand the roots of the equation

1 *© e ddr
g:/0 T (3.65)

For any 8 > 0, there exists a unique root zo (0; ) € R of (3.65) for k = 0. This follows
from the fact that the function
e ddr

W , Z€ R+ (3.66)

z—)A(z,O):/
0

is decreasing in z and it converges to infinity as z — 0. Moreover, given any other root zy (k; )
of (3.65) with k # 0 we have Re (z9 (k; £)) < 20 (0; €). Indeed, if k #~ 0 we can write

00 efRe(zo(Oge))tdt 1 00 e~ 4ds 00 efRe(zo(kge))tdt
/0 +n"" e /0 (14! /0 (1407
and using the fact that the function defined in (3.66) is decreasing we obtain Re (zo (0;¢)) >

Re (2o (k; €)).
Moreover, we can compute the asymptotics of zg (0; ) using the asymptotics

0 —aqy 1 0 _Cd I
/ aeﬁ:_e/ - §_3~ éigﬂ)aszﬁ0+
0 + 1) Pl @+0 z

3805




Nonlinearity 33 (2020) 3781 R D James et al

whence
20:8) ~ ([T (B)e)F ase—0if3 > 0. (3.67)

If 8 = 0, we obtain that z9 (0; €) is exponentially small, due to the logarithmic divergence
of the integral in (3.66) as z — 07, but we will not need the detailed analysis of 3 in such a
case.

Notice that using (3.63) and (3.67) as well as the inversion formula for the Laplace transform
we obtain, for k = 0, the following approximation for small &

b (1,0) ~ h(;(go) exp ((r B) 6)}71‘) as £ — 00
where
. 00 —20(0:e)1

B:—w:/ e 17t5dt~ F(ﬂ+})5 = b T 11 as € — 0.

0z o (1+09 (20 (0;e))'F T (B ' 7
(3.68)
Then

& (1,0) ~ (F(ﬁ%ho (0) exp ((r 8) 5)%) ast — 0o.

Using the definitions of the Fourier transform (cf (3.59)) and of the functions Hy, ¥ (cf
(3.56), (3.58)) we obtain

/oc O (1,X) e dX ~ W%)E exp ((P(ﬁ)g)éz) /oc Go(X)e™XdX ast — oo.

(3.69)

The formula (3.69) provides a large amount of information about the distribution of mass
of the function ® (¢, X) as  — oc. It is interesting to remark that the integrals [~ ®e’*dX
increase at a different rate for different values of 8. Due to the changes of variables in
(3.47) this would imply that different moments of fincrease at a different rate. As indicated in
previous subsections this is incompatible with a self-similar behaviour for f.

Actually, it is possible to obtain some additional information about the transport of mass
towards X — oo for the solutions of (3.57) deriving the asymptotics of zy (k; €) as k — 0 ssby
means of (3.65). This yields

20 (k) ~ 20 (0;€) + Afik — ASK>  as k — 0 (3.70)

for suitable real functions A, A5 > 0 depending on ¢ and /3. Using the formula for the inversion
of Fourier as well as (3.70) it is possible to obtain an expansion for ¢ (X, 7) with the form

gho (0) A (z0 (0;€), 0) exp (20 (0; €) t)Q X + A5t

B (0) Jagex g
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where

2
QA®:\2ew<—a)~

We want to give a more detailed expression of the formula (3.71).

We will derive the asymptotics for @ (¢, X) using (3.56), namely VU (z, X) = ® (7, X) e’ We
need to compute the asymptotics for W (7, X). To this end we invert the Laplace transform
1 (z,k) in (3.63), i.e. we compute

eho (k) A (z, k)

1 N
li — v d A ;.72
¢ (t, ) - i 71 - ( , L) € az ( )

There is a zero of (1 — A (z, k)) at z = z (k; €). We assume that:
1—eA(z,k)=B.(k)(z—z0(k;e)) [l +0(1)] asz—zo(k;e).

Thus, we can compute the integral in (3.72) using residues. We observe that there would be
additional contributions to the integral, but they are smaller as t — co. We then obtain the
asymptotics:

eho (k) A (zo (ks €) , k)

V(o) ~ B. (k)

exp(zo (k;e)t)  as t— oo. (3.73)

The function B (k) is obtained by means of the derivative of A (z, k) (cf (3.68) in the case k = 0).
The formula of B (k) is:

0o a2k
Bf k - 7l-dt-
€ ( ) /0 (1 + t)lfﬁJrlk

We are computing the asymptotics of the solutions as k — 0. We use the asymptotic formula
(3.70). If we fix € and we take kK — O we obtain that the function B. (k) is continuous in k (for
each € > 0 fixed) and we have lim;_ B- (k) = B- (0).

Therefore, taking the asymptotics k — 0, we obtain the following approximation for (3.73):

eho (0) A (z0 (05 ¢),0)

3. ©) exp ([20 (0; ) + Afik — ASK*] 1) (3.74)

Y (k) ~

where we use (3.70) in the approximation of the exponent. We assume also that /g is smooth
and £ (0) > 0.

‘We can obtain now the inverse of the Fourier transform to derive the asymptotics of ¥ (z, X)
and then & (¢, X) using (3.56). We have:

U(1,X) = \/%7 / h W (t, k) e dk.

We then obtain, using (3.74), the asymptotics:

1 ehy(0)A(z9(0;€),0) [

U (1, X) ~ NG 3. ) n exp ([20 (0;) + Afik — A5K*] 1) e"*dk
1 ehp(0)A(z0(0:¢),0) _ /OO _aer2p) k(X450
v B.(0) exp (zo (0;¢) 1) - exp ( ASk t) e dk
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and inverting the Fourier transform we get (3.71). Using this formula and (3.56) we obtain
(3.69).

Using these expansions for arbitrary values of /3 it is possible to derive a large amount of
information about the asymptotics of @ (¢, X) in different regions of the plane (X, ¢) as t — oo.
However, we will not use this type of detailed asymptotic formulae in this paper.

3.5.4. The model (3.52) with slowly changing e. 'We now examine the equation (3.52) assum-
ing that the function € (r) changes slowly. By this we mean that |0,e (f)] < € (¢). A typical
behaviour for ¢ () would be & () ~ *7‘ as t — oo for some constant A > 0. Suppose that for
any > 0 we define ¥ is as in (3.56). Actually, we are interested in the asymptotics of
ffooo W (t,X)dX = A(¢) = A3 (¢). Then, using (3.57) we obtain

Cse (1) A= 6dE
ANO=——=F5+e) | ——7 (3.75)
(1+0"7 o 1+
where
C = / Hy (X)dX.
We look for solutions of (3.75) with the form
t
A(t) = exp (/ z(7) dT)
0
for some suitable function z (7) to be determined. Then
Caz (¢ 4 d t exp z(T)dr ) d¢
| = CrE@en (- lfof(T) A ()/ Jie — ) . (376)
(1+09 (1498

The first term on the right can be expected to be exponentially small compared with the
second. On the other hand if € () changes slowly in the form indicated above we expect z (7)
to be approximately given by zp (0; € (¢)). Indeed, if we assume that z (1) changes slowly in 7
and we neglect the first term on the right-hand side of (3.76) we obtain the approximation

L ez
e Jo a+9"7

Suppose that z(f) — 0 as t — oo. We can then approximate the integral on the right-hand
side of (3.77) in the same manner as (3.65), i.e. we write

/exp( z(r)fs) /m xp(=y) 4 ] /°° exp(y) g ING))
o A+ Tz H’* @' Jo ¥ (z (1)’

de. (3.77)

”(I)

whence, arguing as in the derivation of (3.67),

2(0) ~ 20 0;6 (1) ~ (T (B)e(®)? ase—0if>0. (3.78)

In order to check the validity of the approximation we just need to check the assumptions
made in its derivation. The two assumptions made in the derivation of (3.78) are the following
ones:

Cpse (1)

W <K \(D) as t — oo (3.79)
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and

d¢  ast— oo. (3.80)

porCEnE  popans
0 1+ o 1+

The approximation (3.80) holds, assuming that z (f) behaves like (3.78) if € (£) ~ it‘ ast— 0o
and 3 > 1. Indeed, in that case we have

/, exp (= [/ cz(r)dr) o / exp (- (A [! 7 vdr)
0 0

f d
(1 + f)l_‘d (1 + 5)1—3 g
, exp (—(F(?i/‘{‘?ﬁ {(t)—rl#l (- 5)—%,+1D
- d
/0 (1 _|_£)l—8 5
o (0252054 [1— -]
= t/o (1 +”7)175 d’l7

and this integral can be approximated if # — oo, using the Laplace method (see [4]), by means
of the right-hand side of (3.80). On the other hand (3.79) holds in this case, since A (f) tends
exponentially to infinity.

Nevertheless, if 5 < 1 and ¢ (f) ~ /% as t — oo the solution (3.78) would not describe the
asymptotics of \ (f) because the approximation (3.79) would fail. In this case we will try a
solution of (3.76) with the form

A =0, (3.81)
We consider the case with & (f) ~ é. It will turn out that in this case we will not be
able to assume that (S:)?*)d <K A(t)as t— oo (see (3.79)). We have and we would have the

approximated problem

Cse (1) A /f exp(J(t—& —J(1) de. (3.82)
0

IRCEEOYOR: ¢v
We can obtain an approximate solution of (3.82) in the form
J () = —B [log(t + 1)] (3.83)
for some suitable B > 0. Then (3.82) becomes for large ¢

l_Cgs(t)(t+l)B A(H—I)B/t 1 1 &
A+ o &P —E+ 1)

If B > 1 we can approximate the right-hand side of this equation as

CsA(t+1DE A+ 1)8 L/’ 1 g — ACy(t + 1)®
A R N ) e
and then we obtain a possible solution of (3.82) if B =2 — 3 which is larger than one, and

therefore gives a consistent asymptotics. Notice, however, that the determination of the multi-
plicative constants, in particular Cy requires a more careful analysis, because this quantity is
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really determined by the values of A (f) with ¢ of order one. A more careful examination of the
argument shows that

Co~ CsA +/ A1) dt.
0

In any case, we just indicate at this point that the assumptions (3.79), (3.80) which are at
the basis of the approximation of the solution A (f) by means of an adiabatic change of the
eigenvalue z (f) cannot be given by granted for arbitrary values of 5 and ¢ (7). In particular, a
careful analysis of the conditions (3.79), (3.80) is needed in each particular case.

3.5.5. The model (3.52)—(3.54). Finally we derive asymptotic formulae for the solutions € (¢)
of the problem (3.52)—(3.54). To this end we multiply (3.52) by e!!~9¥ and integrating in X we
obtain the following equation for A (1) = [~ _e!"~%® (z,X) dX (cf also (3.75))

G0 Al —8dg
A = (l+t)“+ ()/ T (3.84)

with
C, = / GoX)e!" " XdXand0 < a < 1.

On the other hand (3.53) becomes

! G Al —=§)dE
e (r)exp (/0 5(7)d7’> G +/0 dte (3.85)

‘We now use the methods in section 3.5.4 to approximate A (). We will obtain an asymptotics

with the form ¢ (¢) ~ /%, something that is not surprising, because the form of (3.85) sug-

gests the behaviour fot e(1)d7 ~ K log (). Since a € (0, 1) we cannot use the method yielding
(3.78) but instead the method yielding (3.81) and (3.83). Suppose that € (¢) ~ /% (something that
we will check ‘a posteriori’). Then, using (3.81) and (3.83) we obtain

C
MO ~ s 1= 00, (3.86)

On the other hand, we can rewrite (3.85) as

d ! G A& de
E(exp (/0 6(7’)d7’)) = (1+t)“+/0 TTef (3.87)

Combining (3.86) and (3.87) we obtain the approximation

d ! K
@ <exp (/0 E(T)dT)) ~ as t— oo

whence [ e (7)dr ~ log (') as t — 0. Then £ (1) ~ = as  — co. We then recover the
ansatz made for € (r) with A = (1 — a).
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3.5.6. Conclusions on the toy model. The model (3.40)—(3.42) either with € constant or given
by (3.45) gives some information about the particle distribution which evolves according to the
combined effect of particle transport and rare collisions. It is interesting to remark that even
in the case of constant collision rate ¢, different moments of the function f are asymptotically
given by different functions in a way that is not compatible with a self- similar behaviour
for the distribution f. In the case of the model (3.40)—(3.42) with € given by (3.45) we formally
obtained an asymptotic formula for the long time behaviour of the function (f). More pre-
cisely, we show that ¢ () ~ (1—;") as t — oo. Notice that the lack of integrability of this rate as
t — oo implies that a given particle experiences infinitely many collisions as # — oo. It would
be relevant to prove rigorously this asymptotic behaviour and to extend these results to the full
nonlinear Boltzmann equation.

3.6. A remark on the homoenergetic solutions for the Fokker—Planck operator

The problem of some particular homoenergetic solutions for a different kinetic equation,
namely the Fokker—Planck equation has been considered in [20]. More precisely, instead of
considering the Boltzmann equation (1.3) they consider

1
e(x)

with V(x) and e(x) as in (2.15) and (2.16) respectively. In [20] the case of simple shear
and higher dimensional generalizations of it are considered. Notice that this case, from a
dimensional analysis point of view, corresponds to the hyperbolic-dominated case consid-
ered in this paper. The following solution of (3.88) is obtained and its stability properties are
described.

Of +vouf =Avf + =0, (f(v = V), (3.88)

S (#,x,v) = (detn(1)G (p) (3.89)
with
p=n (v+ Kx(1,007),
L (V33
n(t) = P ( 3 21(:) (3.90)
and

1 1
G(p) = (4m) 7 exp (—leF) :

It is interesting to remark that the solution (3.89) is a stretched Maxwellian. This is very
different from the type of behaviour that we obtained for the simplified model introduced in
section 3.5. Note also that the models (1.3) and (3.88) are very different from the physical
point of view in the hyperbolic-dominated regime. Indeed, in the Boltzmann case the mean free
flight time is much larger than the characteristic time in which important shear takes place. On
the contrary, the Fokker—Planck dynamics implicitly assumes that the mean free flight time is
very small.

4. Entropy formulae

Homoenergetic solutions are characterized by constant values in space of the particle density
p = p(t) and internal energy € = ¢ (f). We are now interested in the form of another relevant
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thermodynamic magnitude, namely the entropy that, for the Boltzmann equation, we identify
with minus the H—function.

Letbe f = f (¢, x,v) the velocity distribution. We obtain the following entropy density for
particle at a given point x

s(t,x)__L
p®  pQ)

Using (2.1) it follows that the entropy density for particle is independent of x and it is given
by

/f(z,x,v)log(f(r,x,v))d%.

s 1
p(  p® )

In a previous paper (see [18], section 7) we showed that in the case of self-similar solutions
the formulae for entropy for particle have some analogies with the corresponding formulae
for equilibrium distributions, in spite of the fact that the distributions obtained there deal with
nonequilibrium situations. This was due to the fact that to a large extent the entropy formulae
depend on the scaling properties of the distributions.

Moreover, there is a case in which the analogy between the entropy formulae for the equi-
librium case and the considered solutions is the largest which corresponds, nonsurprisingly, to
the case in which the particle distribution is given by Hilbert expansions (see [19]). Indeed, we
notice that both in the cases of solutions given by time-dependent Maxwellian distributions or
self-similar solutions we can approximate g (f, w) as

K (1, w)log (g (t, w)) dw. 4.1)

1 w
g(t’w)wa(t)G<)\(t)) ast — 00 4.2)
for suitable functions a(), A(f) which are related to the particle density and the average energy
of the particles.

In the case of solutions given by Hilbert expansions the distribution G is a Maxwellian,
which can be assumed to be normalized to have density one and temperature one. Moreover,
we will assume also that the mass of the particles is normalized to m = 2 in order to get simpler

formulae. This implies that the Maxwellian distribution takes the form Gy(¢) = ﬁ
‘We recall that in [18] it has been obtained that M
3
%: log (%) +Cg 4.3)

where Cg is

S
_[Gle@d | (f €] Gd&)

Cs = 5
¢ fG(f)df (fG(E)dﬁ)j

, 4.4)

and £ — oo as t — oo. The formula (4.3) has the same form as the usual formula of the entropy
for ideal gases, except for the value of the constant Cg. In the case of solutions given by Hilbert
expansions the value of Cg is the same as the one in the formula of the entropy for ideal gases.
Therefore, in the case of the solutions obtained in [19] which can be approximated by Hilbert
expansions, the asymptotic formula for the entropy by particle is the same as the one for ideal
gases.
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In the case of solutions corresponding to a hyperbolic-dominated behaviour the formula of
the entropy does not necessarily resemble the formula of the entropy for ideal gases, because
in general the scaling properties of the particle distributions are very different from the ones
taking place in the case of gases described by Maxwellian distributions.

For instance, if the homoenergetic flow is a homogeneous dilatation (cf section 3.1) the
formula (4.3) holds with a constant C; which depends on the initial particle distribution Gy.
Howeyver, in this case, % converges to a finite limit as # — oo and therefore the contribution of
the constant Cg in (4.3) is of the same order of magnitude as each of the other two terms.

In the case of simple shear with v < —1 (cf section 3.3) we obtain the following formulae
for large 7 (cf (3.11)—(3.13))

p= /Go (1, w2, w3) dryydwydws
€~ Kzl‘z/Go (11, w2, w3) (wr)*dndwadws

o= — / G, w2 105)log (Go Oy, wa, w) ddwnds, 4.5)
R~

Notice that (4.5) implies that the entropy of the distribution does not increase as t — oo,
something that it is not surprising given that the role of the collisions is negligible. The average
energy of the molecules increases due to the shear, but the entropy does not increase. Therefore,
(4.3) holds with a constant C; depending on the solution itself but, since the three terms in
the equation are of the same order of magnitude as in the case of homogeneous dilatation, the
formula does not give much information.

In the case of cylindrical dilatation the asymptotic behaviour of G is described by (3.6), i.e.

G (1,w) = e Go (e"wy, e ws, w3) .

Then s is given by

s = —/ e’ Gy (e"wy, e’ wa, w3) log G, (e7wy, e"wo, ws3) dw
R3

__ / G (1,12, 03)108 G o, 1, 5) i s
R,

We then obtain the same situation as in the case of planar shear (with K = 0), i.e. the entropy
does not increase much for large values of ¢ and its limit value is much dependent on the initial
particle distribution.

In the case of combined orthogonal shears (cf section 3.4) we do not have much infor-
mation about the distribution of particles, but we have argued that this distribution cannot be
expected to be self-similar, and very likely the particle distributions and energy distributions are
concentrated in different scales of |w|. Therefore, it is unlikely that formulae like (4.3) could
be satisfied in such cases.

5. Concluding remarks

We have described in [18, 19] and in this paper several examples of long time asymptotics for
homoenergetic solutions of the Boltzmann equation. This particular class of solutions exhibits
a rich variety of possible asymptotic behaviours.
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As discussed in [19] the key feature which distinguishes the different asymptotic behaviours
is the relative size of the collision term and the hyperbolic term in the equation satisfied by the
homoenergetic flows (cf (1.9)). The situation in which the collision terms are the dominant
ones for large times has been studied in [19]. The case in which there is a balance between
hyperbolic and collision terms has been rigorously analysed in [ 18]. In this paper we considered
the case in which the hyperbolic terms are the dominant ones as t — oc.

When the hyperbolic terms are much larger than the collision terms the resulting solutions
yield much more complex behaviours than the ones that we have obtained in the previous cases.
One of the reasons for this is that in some cases the description of the asymptotic behaviour
of the solutions is a singular perturbation problem, in which the collision term is very small
but plays a crucial role determining the behaviour of the solutions for large times, because
the collisions, in spite of their smallness, yield huge modifications of the geometry of the veloc-
ity distributions. In other cases we have found that the collisions are so small that their effect
becomes irrelevant as t — oo. These are situations in which the collision rate becomes so small
that the expected number of collisions for a given particle is bounded as r — co. In these cases
we say that we have ‘frozen collisions’.

As it might be seen in this paper, in the hyperbolic-dominated case, the detailed understand-
ing of the particle distributions for long times is largely open and challenging. The analysis
of these flows suggest many new interesting mathematical questions which deserve further
investigation.

Acknowledgments

We thank Stefan Miiller, who motivated us to study this problem, for useful discussions and
suggestions on the topic. The work of RDJ was supported by ONR (N00014-14-1-0714),
AFOSR (FA9550-15-1-0207),NSF (DMREF-1629026), and the MURI program (FA9550-18-
1-0095, FA9550-16-1-0566). AN and JJLV acknowledge support through the CRC 1060 The
mathematics of emergent effects of the University of Bonn that is funded through the German
Science Foundation (DFG).

ORCID iDs

Alessia Nota & https://orcid.org/0000-0002-1259-4761

References

[1] Alonso R J 2009 Existence of global solutions to the Cauchy problem for the inelastic Boltzmann
equation with near-vacuum data Indiana Univ. Math. J. 58 999-1022

[2] Bardos C, Gamba I M, Golse F and Levermore C D 2016 Global solutions of the Boltzmann equation
over RPnear global Maxwellians with small mass Commun. Math. Phys. 346 435-67

[3] Bardos C and Degond P 1985 Global existence for the Vlasov-Poisson equation in 3 space variables
with small initial data Annales de I’l. H. P. 2 101-18

[4] Bender C M and Orszag S A 1999 Advanced Mathematical Methods for Scientists and Engineers
(New York: Springer)

[5] Bobylev A V, Caraffini G L and Spiga G 1996 On group invariant solutions of the Boltzmann
equation J. Math. Phys. 37 2787-95

[6] Cercignani C 1989 Existence of homoenergetic affine flows for the Boltzmann equation Arch.
Ration. Mech. Anal. 105 377-87

[7] Cercignani C 2001 Shear flow of a granular material J. Stat. Phys. 102 1407-15

3814


https://orcid.org/0000-0002-1259-4761
https://orcid.org/0000-0002-1259-4761
https://orcid.org/0000-0002-1259-4761
https://doi.org/10.1512/iumj.2009.58.3506
https://doi.org/10.1512/iumj.2009.58.3506
https://doi.org/10.1007/s00220-016-2687-7
https://doi.org/10.1007/s00220-016-2687-7
https://doi.org/10.1016/s0294-1449(16)30405-x
https://doi.org/10.1016/s0294-1449(16)30405-x
https://doi.org/10.1063/1.531540
https://doi.org/10.1063/1.531540
https://doi.org/10.1007/bf00281497
https://doi.org/10.1007/bf00281497
https://doi.org/10.1023/a:1004804815471
https://doi.org/10.1023/a:1004804815471

Nonlinearity 33 (2020) 3781 R D James et al

[8] Cercignani C 2002 The Boltzmann equation approach to the shear flow of a granular material Phil.
Trans. Roy. Soc. 360 437-51

[9] Cercignani C, Illner R and Pulvirenti M 1994 The Mathematical Theory of Dilute Gases (Berlin:
Springer)

[10] Dayal K and James R D 2010 Nonequilibrium molecular dynamics for bulk materials and nanos-
tructures J. Mech. Phys. Solids 58 145-63

[11] Dayal K and James R D 2012 Design of viscometers corresponding to a universal molecular
simulation method J. Fluid Mech. 691 461-86

[12] Duistermaat J J and Kolk J A C 2010 Distributions, Theory and Applications (Basel: Birkhéuser)

[13] Galkin V S 1958 On a class of solutions of Grad’s moment equation PMM 22 386—9

Galkin V S 1956 On a class of solutions of Grad’s moment equation PMM 20 445—6 Erratum

[14] Galkin V S 1964 One-dimensional unsteady solution of the equation for the kinetic moments of a
monatomic gas PMM 28 186-8

[15] Galkin V S 1966 Exact solutions of the kinetic-moment equations of a mixture of monatomic gases
Fluid Dynam. 1 41-50

[16] Gamba I M, Panferov V and Villani C 2004 On the Boltzmann equation for diffusively excited
granular media Commun. Math. Phys. 246 503—41

[17] Garz6 V and Santos A 2003 Kinetic Theory of Gases in Shear Flows: Nonlinear Transport
(Dordrecht: Kluwer)

[18] James R D, Nota A and Veldzquez J J L 2019 Self-similar profiles for homoenergetic solutions of
the Boltzmann equation: particle velocity distribution and entropy Arch. Ration. Mech. Anal. 231
787-843

[19] James R D, Nota A and Veldzquez J J L 2019 Long time asymptotics for homoenergetic solutions
of the Boltzmann equation for non maxwellian molecules collision-dominated case J. Nonlinear
Sci. 29 1943-73

[20] Matthies K and Theil F 2019 Rescaled objective solutions of Fokker-Planck and Boltzmann
equations SIAM J. Math. Anal. 51 1321-48

[21] Nikol’skii A A 1965 On a general class of uniform motions of continuous media and rarefied gas
Inzh. zh. [Soviet Eng. J.] 5§ 1044-50

[22] Nikol’skii A A 1963 Three-dimensional homogeneous expansion-contraction of a rarefied gas with
power-law interaction functions DAN SSSR 151 5224

[23] Truesdell C 1956 On the pressures and flux of energy in a gas according to Maxwell’s kinetic theory,
II Indiana Univ. Math. J. 5 55—-128

[24] Truesdell C and Muncaster R G 1980 Fundamentals of Maxwell’s Kinetic Theory of a Simple
Monatomic Gas (New York: Academic)

[25] Villani C 2002 A review of mathematical topics in collisional kinetic theory Handbook of Mathe-
matical Fluid Dynamics vol 1 (Amsterdam: North-Holland) pp 71-305

3815


https://doi.org/10.1098/rsta.2001.0939
https://doi.org/10.1098/rsta.2001.0939
https://doi.org/10.1016/j.jmps.2009.10.008
https://doi.org/10.1016/j.jmps.2009.10.008
https://doi.org/10.1017/jfm.2011.483
https://doi.org/10.1017/jfm.2011.483
https://doi.org/10.1016/0021-8928(58)90067-4
https://doi.org/10.1016/0021-8928(58)90067-4
https://doi.org/10.1016/0021-8928(64)90155-8
https://doi.org/10.1016/0021-8928(64)90155-8
https://doi.org/10.1007/bf01022146
https://doi.org/10.1007/bf01022146
https://doi.org/10.1007/s00220-004-1051-5
https://doi.org/10.1007/s00220-004-1051-5
https://doi.org/10.1007/s00205-018-1289-2
https://doi.org/10.1007/s00205-018-1289-2
https://doi.org/10.1007/s00332-019-09535-6
https://doi.org/10.1007/s00332-019-09535-6
https://doi.org/10.1137/18m1202335
https://doi.org/10.1137/18m1202335
https://doi.org/10.1512/iumj.1956.5.55002
https://doi.org/10.1512/iumj.1956.5.55002

	Long time asymptotics for homoenergetic solutions of the Boltzmann equation. Hyperbolic-dominated case
	1.  Introduction
	2.  Homoenergetic solutions of the Boltzmann equation
	2.1.  Hydrodynamical fields for homoenergetic solutions

	3.  Homoenergetic flows with hyperbolic-dominated behaviour for large 
	3.1.  Homogeneous dilatation: frozen collisions
	3.2. Cylindrical dilatation: frozen collisions
	3.3. Simple shear.Frozen collisions for γ < −1
	3.4. Combined shear in orthogonal directions
	3.4.1. Derivation of a system of ODEs for the second order moments.
	3.4.2. Computations of the asymptotics for the second order moments.
	3.4.3. The asymptotics ofMj,k are not compatiblewith the self-similar behaviour for the velocitydistribution.

	3.5. A simple model with the hyperbolic terms much larger than the collision terms butyielding infinitely many collisions for long times
	3.5.1. Description of the model.
	3.5.2. Reformulation of the model in an equivalent set of variables.
	3.5.3. The model (3.52) with constant ε.
	3.5.4. The model (3.52) with slowly changing ε.
	3.5.5. The model (3.52)–(3.54).
	3.5.6. Conclusions on the toymodel.

	3.6.  A remark on the homoenergetic solutions for the Fokker–Planck operator
	4. Entropy formulae
	5. Concluding remarks
	Acknowledgments
	ORCID iDs
	References



