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We propose a scheme for assigning the martensite
variant using electron backscatter diffraction in a
martensite material that undergoes a solid—solid
phase transformation. Based on the solutions of the
crystallographic equations of martensite, we provide
an algorithm to assign martensite variants to a
particular microscopic region, and to check the elastic
compatibility of the microstructure corresponding to
low hysteresis and high reversibility in shape memory
alloys.

This article is part of the theme issue “Topics in
mathematical design of complex materials’.

1. Introduction

Martensitic transformations are diffusionless structural
phase transformations that have been widely observed
in metals, alloys, ceramics and even crystalline polymers
[1-4]. In metals, the martensitic transformation can be
either irreversible, as seen in the quenching process
of steel [5], or reversible, as seen in shape memory
alloys [2]. Both types are characterized by a symmetry-
breaking structural transformation accompanied by the
formation of a rich microstructure. The mechanical
properties, such as recoverable strain, stiffness and
ductility, as well as some transport properties, such
as conductivity, polarization and magnetization of
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these transforming metals strongly depend on the morphological configurations of the martensite
microstructure. Shape memory alloys are the primary family of the transforming metals, widely
exploited for self-expandable stents, micro-actuation devices and solid-state refrigerators [6-8].
Among the most studied shape memory alloys, Nitinol (a slightly Ni-rich NiTi alloy) is the most
successful one by a large margin because of its superior thermo-mechanical performance, i.e.
about 5% superelastic strain has been achieved under 0.5 GPa stress at room temperature [6].
However, its advanced mechanical properties degrade quickly with an accumulation of large
hysteresis and residual strains during cyclic transformations [9-11].

Based on heuristic assumptions and empirical rules from observation, in the early 1990s, the
functional fatigue of shape memory alloys was believed to be related to a pinning mechanism
caused by intrinsic defects, and a thermal activation mechanism caused by a time-dependent
transformation path [12,13]. Thereafter, extensive work was performed on special heat treatments
and compositional doping to reduce the hysteresis by eliminating pinning sites or facilitating the
thermal activation; however, those metallurgical methods were not effective, and sometimes led
to opposite effects. For instance, Lovey & Torra showed that the dislocations exhibit a paradoxical
behaviour toward the size of the hysteresis of the martensitic transformation in a CuZnAl shape
memory alloy [14]; Otsuka et al. proved experimentally that the size of hysteresis of CuAINi
during stress-induced martensitic transformations does not have strong strain rate dependence
[15].

Almost simultaneously with the metallurgical developments, theories of rational mechanics
and mathematics were applied to the study of the microstructure for martensitic phase
transformation, based on the minimization of free energy [16-18]. In a solid-solid transformation
with a change of crystal symmetry, a very fine mixture of twins of the martensite phase forms and
is separated by a planar interface from the homogeneous austenite phase. For energetic reasons,
the material in the austenitic state will be deformed into a sequence of states characterized
by deformation gradients {I, F",F~} C R3%3, where I refers to the reference configuration, and
the deformation gradients F*|F~|[F*||[F~ represent a piecewise affine deformation comprised of
martensite twin laminates. The sequence of deformation gradients needs to satisfy the kinematic
condition of interface compatibility. That is, a rank-one relation of the form

FFr—F =a®n (1.1)

for some vectors a, n € R3; conventionally, n is the twinning plane normal and a is the twinning
shear vector. The stretch parts of F™ and F~ are symmetry-related variants of martensite [3,17,19].
For most martensitic transformations, such as cubic-to-tetragonal, cubic-to-orthorhombic and
cubic-to-monoclinic, the rank-one relation of twins is generic and underlies the microstructure
of martensite. The condition of compatibility between I and either F*, F~ does not necessarily
hold, but it has been shown by a weak convergence theorem [16] that the mixture of deformation
gradients F© and F~ can be compatible with I if the mixture gets finer and finer at the
interface. The calculations of the interface between the homogeneous austenite and the fine
mixture of martensite variants are related closely to the results given by the phenomenological
theory of martensite [20-23], and align with all experimental observations with remarkably
good agreement [2,3,17,20,23,24]. Beyond the prediction of habit planes and martensite twinning
structures, the mathematical theories developed on the basis of energy minimization provide
a rational understanding of the origin of hysteresis in shape memory alloys [24-26]. A new
mathematical theory based on I'-convergence arguments [26] was proposed to calculate the size
of the hysteresis as the energy barrier for the formation of twinned martensite from homogeneous
austenite through elastic transition layers. It has been rigorously proven that the limiting energy
barrier (that is, the least hysteresis) corresponds to the satisfaction of the condition A, =1, where
A2 is the middle principal stretch of the transformation stretch tensor. Thus, the size of the
hysteresis in shape memory alloys is minimized by satisfying a simple criterion 1, =1 despite
the presence of local defects, a rate-dependent transformation path and even a volume change.
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Table 1. Nomenclature.

machine basis attached to the stage.

conventional lattice basis of austenite.

Geometrically, 1, = 1 guarantees a distortion-free interface between austenite and a single variant
of martensite. The notations used in this paper are shown in table 1.

In a variety of alloy systems such as NiTiCu [24,27], NiTiPd [26,28], NiTiCuPd [29], and
Heusler alloys NiCoMnSn [30] and NiCoMnln [31], tuning the lattice parameters to achieve A =1
at interfaces has been conclusively demonstrated as a successful development strategy for low-
hysteresis shape memory alloys. The quantitative characterization of the compatible interface
between austenite and a single variant of martensite was conducted under high-resolution
transmission electron microscopy in an alloy family of NiTiPd with varying Pd compositions
[32,33]. These experiments provide two important quantitative pieces of evidence for the relation
between 1, and the morphology of martensite: (1) As the A, value approaches 1, the martensite
gradually becomes twinless; and (2), the austenite/martensite interface, characterized as (755)p2,
satisfies the rank-one relation in (1.1) exactly between austenite and a single martensite variant.

Further compatibility conditions, known as the cofactor conditions (CC), can be derived for
austenite and twinned martensite interfaces [26,28]. Beyond (CC); : A2 =1 where 15 is the middle
eigenvalue of transformation stretch tensor U, the cofactor conditions require two additional sub-
conditions (CC); : a - cof(U% — I)n = 0; and (CC)3 : trU% + det U2 — (1/4)|a|?|n|? > 2 for certain twin
systems with twinning plane normal n and twin shear vector a. Let U and U be the pair of variants
of a certain twin laminate, where U = (-I+2e®e)U(-I+2e®e) for ecR3, e|=1 being one
of the twofold symmetry axes of the austenite lattice. The cofactor conditions are summarized
in table 2 for Type-I, Type-II and Compound twin systems [28]. When a martensitic material
satisfies all sub-conditions of the CC, it exhibits an unusual microstructure, observed as curved
austenite/twinned martensite interfaces in CupsAuzpZnygs [34], and a profound enhancement
of reversibility in both thermally and mechanically driven structural transformations [28,
35]. The quantitative characterization of CupsAuzpZngswas conducted by synchrotron X-ray
microdiffraction (uSXRD) [36]. Using a temperature gradient stage, the austenite and martensite
interface can be scanned by the micro beam of X-rays. Using the orientation relationship, the
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Table 2. Cofactor conditions in different types of twin systems for the martensite variant U and the corresponding twofold
symmetry axis e and its orthogonal vector e - e = 0, |e~| = 1. The vector v, is the normalized eigenvector of U associated
with the middle eigenvalue X, [28].

(CCh (CO), (O3
Type-l A=1 [Ue| =1 satisfied
el
ompound det =0 21— (e wRel vl + 1 detW =2

deformation gradient of a martensite variant can be measured. Thus, the orientation map of
martensite phases can be converted to a deformation map, which provides important insights
into the mechanical properties of the phase-transforming metal. However, the spatial resolution
of microdiffraction is limited by the beam size and the scanning step size. The fine microstructure,
specially the twin laminates of martensite, is difficult to be resolved by the micro beam of X-rays.

Similar to X-ray microdiffraction, the EBSD is a diffraction-based probe providing much higher
spatial resolution. The EBSD technique is more suitable for the quantitative analysis of the
crystallographic relations of twins at finer scales, e.g. the nano-scale martensitic twins of NiTi [37],
the 5M [38] and 7M [39] modulated martensite twins within a grain of NiMnGa. In this paper,
we introduce a method of quantitative determination of deformations of the highly reversible
transforming metal CupsAuzpZnys by EBSD, which enables sufficient spatial resolution (i.e. in
the nanometre to submicrometre range) to resolve the fine martensite twins satisfying rank-one
compatibility. Unlike X-ray probes, the electron probe cannot directly measure the lattice vectors
in situ with varying temperature; thus we use continuum mechanics with application to geometric
nonlinear theory of martensite to derive a general variant assignment method. As a result, we are
able to convert the EBSD orientation map to a deformation map, by which the elastic compatibility
and twinning parameters can be quantified.

2. Microstructure characterization by SEM with EBSD

We use the same piece of CupsAuzpZngs prepared in reference [34] to study the compatible
microstructure using the FEI Quanta 600 field emission scanning electron microscope equipped
with an Oxford Instruments EBSD detector system and a liquid nitrogen cooling stage. The
sample undergoes a reversible martensitic transformation at approximately —40°C driven by the
installed cryogenic stage inside SEM. It was polished at room temperature in the austenitic phase,
corresponding to the SEM image in figure 1a. Let the austenite be the reference configuration
£20; the deformation gradient of austenite is assigned to be I expressed in the cubic basis of
the austenite lattice. As the temperature decreases through the phase transformation, the SEM
images of martensite exhibit piecewise linear surface relief in figure 1b—d. Based on previous
X-ray diffraction characterization, the symmetry of austenite is Fm3m (i.e. cubic L21) with lattice
parameter ap = 6.1606 A, and the symmetry of martensite is P2; (i.e. long modulated monoclinic
MI18R) with lattice parameters a =4.4580 A, b =5.7684 A, c =40.6980 A and p = 86.80° [34,36].
Let the orthonormal basis (s1, 52, s3) correspond to the transverse (TD), rolling (RD) and normal
(ND) directions of SEM, defined as the machine basis. We consider a continuous deformation of
the single domain (£2¢) within a grain of austenite transforming to N regions R, . .. Ry containing
variants of martensite. Figure 2 shows a grain of austenite with size of several millimetres scanned
by EBSD. The orientation deviation within most of the grain is about 3° with a maximum
deviation of 6.3°. The inverse pole ([001]) figure in figure 2c shows the averaged orientation
of austenite. Upon continuous cooling, it transforms to martensite phase exhibiting much finer
microstructures at approximately —40°C. We zoomed in an area of interest and conducted the
EBSD scan. Consequently, we observed four sub-regions of martensite, R;, i=1,2,3,4 as shown
in figure 3. The imaged microstructure in figure 3a is shifted a bit compared to the EBSD scanned
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Figure 1. SEM images of (a) austenite phase at room temperature 20°C, (b)—(d) martensite phase at —50°C at different
magnifications.

1 mm

Figure 2. EBSD results of (a) austenite phase measured at room temperature corresponding to (b) Grain Reference Orientation
Deviation (GROD) map with a maximum deviation of 6.3°, and (c) the orientation distribution of inverse pole figure map. (Online
version in colour.)

region in figure 3b, where the martensite interfaces look slightly bent. This is due to the imaging
distortion caused by thermal fluctuations during the long run of EBSD process.

Three Euler angles ¢1, @ and ¢, are measured by EBSD for a specific location x in the scanned
region. With the information of the crystal symmetry and lattice parameters, we can calculate a
linear transformation O € R3*3, defined as the orientation matrix that maps the machine basis into
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Figure 3. EBSD results of (a) martensite phase measured at approximately —40°C corresponding to (b) the orientation map
showing four martensite sub-domains RL' i=1,2,3,4. () The stereographic projection of crystallographic relationships
between the normals of {100}, (101), and (101), in austenite phase and in each of the martensite sub-domains. (Online version
in colour.)

the conventional lattice basis of the crystal. Appendix A includes the calculations of the matrix
representation of the orientation matrix from the crystallographic information. As illustrated in
figure 4, the lattice bases of the different phases are related to the machine basis by

e =0ys;, i=1,2,3 2.1)
for the orientation matrix O, in austenite region, and
e =0ls;, i=1,2,3 (2.2)

for one of the orientation matrices O’,;l in the martensite region, Ry, k € {1,. .., N}. Because the basis
vectors s;, e and e; define a right-hand coordinate systems, the determinants of the orientation
matrices satisfy

detO; >0 and det 051 >0

forallk=1,...,N. Let tij € R3 be vectors that are parallel to the traces of the interfaces between
regions R; and R; in martensite, projected onto the image plane. Assuming the microscope
has been set up so that the image plane is parallel to the planar surface of austenite before
transformation, then tij-ng=0 where ng denotes the twinning interface normal in reference
configuration (austenite). In general, the unprojected traces of interfaces will have various small
out-of-plane components due to surface relief and the complex microstructure. Visually, the in-
plane traces of the EBSD image look bent slightly due to the perspective effect. The components
of these vectors are given in the machine basis. If the conventional lattice vectors do not vary
substantially in a region, then, by the Cauchy-Born rule, the associated deformation gradient is
constant in that region. Two neighbouring regions R; and R; with (distinct) constant deformation
gradients in a compatible microstructure have deformation gradients that differ by a rank-one
matrix [16] as in equation (1.1), which uniquely determines the direction of the normal to the
interface in the deformed configuration. Therefore straight-line traces of interfaces are expected
to separate such regions, which can be solved by the rank-one equation.

3. Assignment of martensite variants

In this section, we propose a mathematical method to assign a martensite variant to the specific
region scanned by EBSD without knowing the orientation relationships.
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Figure 4. Schematic diagram of mappings from the machine base to the crystallographic base through the orientation matrices
measured by EBSD. (Online version in colour.)

(a) Crystallography theory of martensite

For the phase transformation of CuysAuzpZnys from cubic austenite to monoclinic martensite,
the lattice bases can be expressed in matrix representations as E* = (ef, e3, eg) and E= (e, e, e3)
where ef and e; are calculated from the lattice parameters according to equation (A 2). Using the
StrucTrans algorithm [40], the transformation stretch tensor U is determined corresponding to a
lattice correspondence matrix I' € R3%3, Geometrically, the lattice correspondence matrix results
in a set of sublattice vectors of austenite, (f, &3, &5) = E’I" [41], which underlies a unit cell to be
deformed to the primitive unit cell of martensite upon phase transformation. Thus, the set of
vectors (Ué’{,Uég, Uég) gives the lattice metric of the martensite unit cell, but their orientation
may not match the observed martensite variant in the real microstructure.

The variants of martensite are symmetry-related according to the point groups of austenite and
martensite. In particular, the point group of martensite should be a sub-group of austenite so that
the solid-solid phase transformation is reversible [42]. Let P ={Qy, ..., Qu}, Q; € O(3) denote the
point group of austenite; we define a set of symmetry-related martensite variants

U={Uy,..., U} ={QUQ] :i=1,...,m}. (3.1)

Note that n can be less than m because one can have repetition. We choose Q1 =Iso that U; =U.
In general, for a point group P of the Bravais lattice with primitive basis P = (p1, p2, p3), if
Q € P, there is a 3 x 3 matrix of integers M = M;; with determinant +1 such that

Qp; = M;jp;. (3.2)

In matrix representation, we have QP =PM. All matrices determined by (3.2) for a Bravais
lattice with lattice vectors P form a group, i.e. a lattice group [41-43]. The lattice group plays
an important role in the determination of the lattice correspondence between austenite and
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martensite upon structural transformation because the symmetry-related martensite variants
result in the symmetry-related lattice correspondences [40].

The fundamental theorem of crystallography says that if p1, p», p3 are primitive lattice vectors
of a periodic structure, then all other possible primitive lattice vectors are given by p; = ;L]ipj,

where the 3 x 3 matrix /“Li' is a matrix of integers with determinant +1. The 3 x 3 matrices of
integers with determinant +1 form a group, called GL(3, Z). Among the 14 Bravais lattices,
there are 7 complex lattices whose conventional lattice bases are not the same as the primitive
bases. In the case that austenite belongs to one of those complex lattices, the relation between the
conventional and primitive bases is calculated as e‘iZ = X; P for the conversion matrix XIZ € 73%3,
Using the indicial representation for the lattice correspondence given by the StrucTrans algorithm,

the sublattice vectors &/ = Vi] e;’ for a real matrix Vi] € R¥3, which can be expressed as &/ = )7; pj

for a matrix of integers )71.] = yz.k x]](; the proof can be found in reference [41]. The associated
transformation stretch tensor U deforms the sublattice cell of austenite to the primitive cell of
martensite as

y,fei . Uzyjkeﬁ =e;-e. (3.3)
Using the matrix representation that yij e}’ =E"T", equation (3.3) becomes
(E°r)"U’E‘r =E"E. (3.4)

By symmetry, there are n variants of martensite where 7 is the ratio of the order of the point
group of austenite to that of the point group of martensite, i.e. n=|P|/|P™|. For the cubic to
monoclinic phase transformation, there are n =24/2 = 12 variants of martensite. However, direct
calculation of equation (3.1) results in |P| variants. This implies that going through every Q,
in P will result in some duplicate U,’s. Based on group theory, the multiplicity is equal to the
order of the point group of martensite. For example, in the case of the cubic to monoclinic
transformation, there exist two possible lattice correspondences mapping the different sublattices
of austenite to the same primitive lattice of martensite. Let M*" be the lattice groups of austenite
and martensite respectively, where Q,P = PM7 and Q7'E = EMY for Q, € P and QJ} € P". For any
variant labelled by ¢, Chen et al. [40] has proven a crystallographically equivalent form of (3.4)

ETENTUZE T = ETE (3.5)

where
r) =mer”)~! and U, = Q,UQ’. (3.6)

The double-superscript matrix I'“¥) represents the lattice correspondence congruous with
the variant Uy. The superscript £ denotes the indices giving unique variants, where £ €
{1,2,...,|P|/IP™}. The superscript d represents the multiplicity of the variant £ where d=
1,...,|P™|. Applying (3.1) and (3.6), all variants and their congruous lattice correspondence can
be computed in terms of the cubic basis of the crystal.

The above equation can be also expressed in the machine basis through the orientation matrix
characterized by EBSD. From the orientation matrix of austenite O, = G,E* where G, is calculated
by (A 4) from three Euler angles (¢f, &%, ¢), the left-hand side of equation (3.5) can be written as,

Lhs = (0, r““NT[C,1,0, . (3.7)

The term [C¢], = GaU%Gg underlies the components of the Right Cauchy—Green tensor in terms
of the machine basis for the stretch tensor Uy. The right-hand side of equation (3.5) is invariant of
rotation, thus

(0, r“NT[C,y1,0,r ¢ = ETE. (3.8)

For a given material that transforms from the point group P to the point group P with
P™ C P, any pair (Ug, r'dywhere t=1,...,|P|,d=1,...,|P"| should satisfy the equality (3.8)
up to experimental errors. For a specific domain in austenite corresponding to the sub-region
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in martensite characterized by the orientation matrix O,; = G, E, there exists a sufficiently small
rotation R € SO(3) such that

RU.O,I'“ ") = 0,, for some ¢* € {1,...,|P|/|P™},d* € {1,...,|P"}. (3.9)

This equation is true because of the rigidity of the solid-solid transformation [44]. Although
the EBSD experiment does not provide direct orientation parallelisms of crystallographic planes
and directions between the austenite and martensite lattices, equation (3.9) indicates that the
assignment of a variant to a certain sub-region in martensite is subjected to finite options in the
order of the point group of austenite.

(b) Method of variant assignment

In this section, we propose a procedure to assign variants to the sub-regions of martensite
characterized by EBSD. Within each of the regions, the Euler angles are measured and converted
to the orientation matrices for austenite O, and martensite ofj? forke({1,2,...,N}. From the X-ray
diffraction characterization and the StrucTrans algorithm, we obtain the transformation stretch
tensor U and its corresponding I', which are labelled as U; and I' AD), The following procedure
outlines how to assign the deformation to a specific region of martensite:

(i) Examine whether the conventional lattice basis of austenite is the same as its primitive
basis. If yes, proceed to the next step. If not, derive the conversion matrix x by

x =P 'E, (3.10)

where the primitive basis is P = (p1, p2, p3) and conventional basis is E* = (e], €7, ef).
Label x 'Y to be the new I'MD. If the conventional lattice basis of martensite is not the
same as its primitive basis, label I' A1y =1 to be the new I'MD where y is the conversion
matrix derived in the same way as in (3.10).

(ii) Determine n = |P|/|P™| distinct martensite variants where P and P™ are the point groups
of austenite and martensite with P™ C P.
First, generate a set of martensite variants

M={(U;,Q;,M;): U; = Q;U;Q;" and M; =P~'Q,P for Q; € P}. (3.11)

The set M can be divided into n subsets containing the elements with the same U; [3,41,
42]; thatis M = A1 U ... U A, where n = |P|/|P™|. Each of the subsets

Ae={(Ug, Qr,a), Me,g) ford=1,...,1P"|}, (3.12)

represents a distinct variant of martensite.
(iii) For each of the subsets A, calculate the lattice correspondence matrices

r' =My r, ford=1,...,|P"|. (3.13)

Note that the above calculation is equivalent to (3.6) due to the group-subgroup relation
between austenite and martensite [41]. All lattice correspondence matrices form a set

V={(C, Tyt =1,...,|P|/|P",d=1,...,[P"]}, (3.14)

where the Right Cauchy Green tensor is given by:
cd = (0, r'*“M-TeTg0,r¢")-1. (3.15)
)

(iv) In a specific martensite sub-region Ry corresponding to orientation matrix O,(L(
the set of rotations

Se = (R . RED — 0B (/e O,r @)1 for all (C,, rD) e V). (3.16)

, calculate

Given the fact that the relative rotation of the lattice of the martensite to that of austenite
is near to the identity matrix [44], a pair of labels (¢*,d*) e {1,..., [P|/IP™|} x {1,...,|P™}
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minimizes the distance

dist= R —1|, foralle=1,...,|P|/|P™, d=1,...,|P™. (3.17)
The symbol | - || denotes the L2 norm of a matrix. In this representation, we use the angle
of rotation
trR(EAD — 1
cos 9t = %, (3.18)

as the measure of rotations.

In the case of the cubic to monoclinic phase transformation in CuzsAuzgZnys alloy, we have
0 0
E* =(ef, e}, e3)=apl, E=(e, e, e3)= 0 b 0]. (3.19)
0 c

Equation (3.5) shows that the transformation stretch tensor Uj is calculated as the polar
decomposition of E(E"T’ (1dy~=1 with d =1,2 where

1o 5 0 -3
rav_|l o 1 o and T =10 1 0 (3.20)
1 m 1 m

In (3.20), m =9 is an integer that denotes the modulation for long period stacking order structure
of martensite [34]. We can explicitly write the Right Cauchy—Green tensor for U; as

c? 4 a?m? + 2acm cos B 2 — a?m?
2,2 0 2.2
agm agm
b2
G =Ul= 0 2 0 ) (3.21)
0
2 — a?m? 2 + a?m? — 2acm cos B
aAm? 0 a2m?
0 0

Equation (3.21) implies that the components of U; only depend on the lattice parameters of
austenite and martensite which were determined by X-ray measurement; the components are
a =1.0591, € =0.0073, § = 1.0015, y =0.9363 and m = 9. Table 3 lists all the correlated martensite
variant pairs of (U, I’ (M)) calculated from (3.11) and (3.12) in step (ii) of the variant assignment
algorithm.

The martensite domains are distinguishable in the orientation map of figure 2. The Euler angles
for the austenite and sub-regions of martensite R1, Ry, R3, R4 are listed in table 4. Following the
steps (iii) and (iv) of the variant assignment algorithm, we calculate the set of rotations Sy for each
of the sub-regions Ry, k=1,2,3,4, expressed as the angle of rotations () calculated by (3.18) in
table 5. It is clear that there is only one angle of rotation much smaller than all other angles in each
of the martensite sub-regions. Note that the angle of rotation underlies the orientation relationship
between martensite and austenite. For a non-diffusive phase transformation in solids, the elastic
rigidity restricts the rotation between the product phase and the parent phase. Therefore, the sub-
region is assigned to be the martensite variant corresponding to the smallest angle of rotation
relative to austenite. The deformation gradient in each of the assigned martensite regions is
calculated by

F(¢*,d*) =000, r )1 fork=1,2,3,4. (3.22)

21100202 ‘6.6 ¥ 905 % ‘Subf 1yd e3sy/jeuinofioBunysygndfsaosjeos



i o
S BN o g~ f~sl~ §ln ©

o oo o —

—N N N N ©
I:1

Downloaded from https://royal societypublishing.org/ on 14 July 2022

10 :
o wio v w;

Aoéc 3 \u

(e oo Too=T=
TlN‘TlN o P'Né S TNP'NE O —iN FINE o
: : Il Il o
H) H) 1:
o \IU S o :

B

© U No o N o o
: I:L I:L

Table 3. Martensite variants and the associated lattice correspondences. The over lines of the entries denote the negative sign.
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Table 4. The Euler angles mapping the crystal base to the machine base measured from EBSD for the austenite (figure 2) and
four regions of martensite (figure 3). The orientation matrix follows the 3-1-3 rotation sequence.

region o3 '4 [0)) variant

austenite 134.4 124 16 |

L R1 ............................. s a g U6 .........
Rz ............................ g g ; 9 ...........
R3 ............................ g T ; 7 ...........
R4 ............................ g G g ; " ..........

12

1 172.63 90.83 12036 18.85 1731 91.87 . 121.02
SR o e o e we o i
3 ..................... 1224511370 ............... 83349693"797 .............. : 2430 ..................................... 17776
411848 .............. 12576 .............. e e e “35083"

For the four regions characterized in figure 3b, the (¢*,d*) pairs are (6, 1), (9,2), (7, 1) and (11, 2),
respectively. The assignment of variant to each of the sub-regions is summarized as

R1— Ug, Rp — Ug, Rz — Uy, Rg — Uq1. (3.23)

The deformation gradients in each of the martensite sub-regions can be expressed in machine
basis as

[1.0015 —0.1323 —0.0845 | 09659 —0.0965 0.0106 |

Fi=|00877 1.0388 —0.0219|, F,=|-0.0092 1014 0.1642

0.0630 0.0553  0.9379 —0.0207 —0.1296 0.9934

[ 1.0059 01176 —0.0014 | 09582 —0.0356 0.1289 |

and F3=|—0.1657 1.0287 0.0006 |, Fs=|—0.0601 1.0268 —0.0605
—0.0021 0.0042  0.9422 0127  0.0799  0.9906

We use the assigned variants in sub-regions R;, i=1,2,3,4 to study their twinning relations by
solving the crystallographic equations of martensite [3]. We find that R1 and R, forms Type-1/11
twins about the twofold axis [101] written in cubic basis of austenite. The same calculations for
other neighbouring sub-regions yield that R; and R3 forms Compound twins about two twofold
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Table 6. Measure of rank-one ability between any of neighbouring martensite sub-regions.

sub-regions (R, Ra) (R, Rs) (R1, Ra4) (R2 R3) (Ra, Ra) (R3, Ra4)
i) 0.04543 0.06960 0.05788 0.06409 0.06300 0.03444

Table 7. Measure of rank-one ability between any of neighbouring martensite sub-regions.

sub-region R Ry R3 R4
|lcof(F, — D) 0.02273 0.02759 0.02395 0.02516

axes [100] and [010]; R1 and R4 forms Type-I/II twins about the twofold axis [101]; R, and R3
forms Type-I/1II twins about twofold axis [101]; Ry and R4 forms Compound twins about two
twofold axes [001] and [010]; Rz and R4 forms Type-I/II twins about the twofold axis [101].
The cofactor conditions for this specific microstructure are (CC), = 1.03385 for [101] Type-I twin,
(CC)2 =0.96950 for [101] Type-II twin, and (CC); = 0 for Compound twin.

4. Rank-one connections and compatibility

The rank-one connections between the deformation gradients Fyq, Fy, in neighbouring regions are
examined as the cofactor of (Fx; — Fyo). The cofactor of a matrix A € RP*F can be calculated as

cof(A);; = (—1)"7 det(My) for all i,j € {1,2,...,p} (4.1)

where the matrix minors M;; € RP-DxE=1) are computed by removing the ith row and the jth
column of A. Then we define

Cik2) = llcof(Fx1 — Fro)|| (4.2)

as the measure of the rank-one ability between two deformation gradients Fy; and Fy,. For the sub-
regions R1, Rp, R3 and R4 in martensite in figure 2d, we calculate the expression (4.2) between any
two of the assigned martensite variants, the results are shown in table 6. Similarly, we can check
the rank-one ability between each of the martensite sub-regions and austenite by |cof(F; — I)||, as
examined in table 7.

The kinematics of (4.2) suggests that it underlies a measure of the areal compatibility of an
interface deformed by Fy; and Fy,, respectively, from different sides. This quantity is related to
the out-of-plane discrepancies caused by incompatibility between the neighbouring deformation
gradients. Note that it cannot be understood as the elastic strain. For a specific twin system
with twinning plane normal nyp, the magnitude of cof(Fx; — Fxy)ng calculates the area difference
at the interface between neighbouring martensite variants. For this special alloy whose lattice
parameters closely satisfy all sub-conditions of cofactor conditions [34], the interface mismatch
between a single variant of martensite and austenite is even smaller than that of a twinning
interface. As shown in figure 1b, very coarse laths with sub-millimetre width can grow from the
austenite upon structural transformation. This is unusual for a martensite material undergoing
the first-order phase transformation with such a large volume change. The quantitative measures
of compatibility of microstructures are super critical to the mechanical property of shape memory
alloys. Our approach provides a way to quantitatively analyse the martensite/martensite and
austenite/martensite interfaces and their elastic compatibility.

5. Conclusion

Diffraction-based probes are useful characterization tools to study the formation of microstructure
for phase-transforming materials. This paper proposes a mathematical model for the quantitative
analysis of compatible interfaces of martensite by EBSD without assuming the crystallographic
orientation relationships from the parent phase. The algorithm is implemented for cubic to
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long atomic layer modulated monoclinic transformation of the alloy, CuAuzpZnys. Through the
calculation of relative areal mismatch between neighbouring variants, the rational comparison of
the rank-one ability can be conducted among different types of interfaces. When such quantitative
analysis is combined with the thermal and mechanical characterizations, the structure-property
relationship of the studied material can be established for further development.
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Appendix A. From Euler angles to conventional lattice vectors

In this appendix, we show explicitly how to obtain the conventional lattice basis of a Bravais
lattice from the three Euler angles ¢;, @ and ¢, measured by EBSD. Let e; i,=1, 2, 3 be the [100],
[010] and [001] directions of a conventional unit cell, respectively. We can choose a rectangular
Cartesian coordinate system (i.e. the cubic basis of crystal), i —} - lAc, attached to the lattice origin,
so that e; can be expressed explicitly with respect to the cubic basis i —} — k as shown in figure 5.
As a standard convention, the lattice parameters g, b, ¢, «, B, y satisfy

lerl=a, lex|=Db, les|=c,
(A1)
and e1-ep=abcosy, ey-ez=Dbccosa, e3-ef=accosp,

and (e; x ep) - e3 > 0. The alignment between cubic basis ;—]A — k and lattice basis follows the
rules:

@ kles, A
(i) i Lepandi L e3.So,i| e3 x e;.
(iii) j=Fk x 1.

In the cubic basis ;—} — 12, the conventional lattice basis of a Bravais lattice can be written
explicitly as

2
CoSy —cosacosfB) s  COSY — COS COS 34 A
elza\/sinZﬁ—( Y A i+a Y ’Bj—i-acosﬂk

sin « sino
R . (A2)
ey =bsinaj + bcos ak

and ez =ck
For example, for a monoclinic lattice, « = y =90° # 8, we have e; =asin /3? + acos ,312. In matrix
representation, the monoclinic basis is

0 0
(e1,ep,e3)= 0 b 0f. (A3)
0 ¢

By EBSD measurement, we obtain three Euler angles ¢1, @ and ¢, relating 2—} —k to the
machine basis s;. In our experiment, the Euler angles correspond to a k — i — k rotation sequence.
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>

Figure 5. Convention of lattice basis with respect to the cubic basis 7 —f — k. (Online version in colour.)

As a result, the rotation matrix is calculated as

G =G0, ?, ) =Gy, GoGy,, (A4)
where
cosgr sing; O
Gy =|—sing; cosg; O],
0 0 1
1 0 0
Go=|0 cos® sin®|,
0 —sin® cos®
cosgy singy O
and Gy, =| —singy cosgy O
0 0 1
Combining the equation (A 2), we have
O =G(ey, e, e3). (A5)
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