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a b s t r a c t 

Magnetic coercivity is often viewed to be lower in alloys with negligible (or zero) values of the anisotropy 

constant. However, this explains little about the dramatic drop in coercivity in FeNi alloys at a non-zero 

anisotropy value. Here, we develop a theoretical and computational tool to investigate the fundamental 

interplay between material constants that govern coercivity in bulk magnetic alloys. The two distinguish- 

ing features of our coercivity tool are that: (a) we introduce a large localized disturbance, such as a 

spike-like magnetic domain, that provides a nucleation barrier for magnetization reversal; and (b) we 

account for magneto-elastic energy—however small—in addition to the anisotropy and magnetostatic en- 

ergy terms. We apply this coercivity tool to show that the interactions between local instabilities and 

material constants, such as anisotropy and magnetostriction constants, are key factors that govern mag- 

netic coercivity in bulk alloys. Using our model, we show that coercivity is minimum at the permalloy 

composition ( Fe 21 . 5 Ni 78 . 5 ) at which the alloy’s anisotropy constant is not zero. We systematically vary the 

values of the anisotropy and magnetostriction constants, around the permalloy composition, and identify 

new combinations of material constants at which coercivity is small. More broadly, our coercivity tool 

provides a theoretical framework to potentially discover novel magnetic materials with low coercivity. 

© 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

In ferromagnetic materials, hysteresis is the lag in reorienting 

he magnetic moment with the applied field. This reorientation is 

ypically delayed with respect to the applied field, and follows a 

haracteristic curve as shown in Fig. 1 . This phenomenon is called 

ysteresis, and the corresponding curve is called the hysteresis 

oop. The width of this hysteresis loop determines several applica- 

ions of magnetic materials. For example, magnetic alloys with nar- 

ow hysteresis width, informally called soft magnets, are used in 

ransformer cores and induction motors while magnetic alloys with 

ide hysteresis width, called hard magnets, are used in permanent 

agnets and some computer memories [1,2] . Other features of the 

ysteresis loop—such as magnetic saturation, coercive field (with 

agnitude termed coercivity ), and remnant magnetization—govern 

he applications of magnetic alloys. 

Although hysteresis is a fundamental property that governs the 

pplication of magnetic materials, we know little about the funda- 

ental constants that govern hysteresis [3] . For example, a com- 

only accepted reasoning for low hysteresis in magnetic alloys fo- 

uses on a material constant κ , called the anisotropy constant. 
1 
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his constant penalizes the magnetization rotation away from its 

referred crystallographic orientation. At present, theoretical meth- 

ds suggest that a small (or zero) anisotropy constant lowers mag- 

etic hysteresis [4–6] . However, this reasoning contradicts experi- 

ental observations: Take the well studied FeNi binary alloy sys- 

em [7] . In this alloy system, magnetic hysteresis is drastically low- 

red at 78.5 % Ni-content. However, the anisotropy constant at this 

omposition is not zero. In fact, the anisotropy constant is zero 

t 75 % Ni-content, at which magnetic hysteresis is not minimum. 

lso, magnetostriction constants vanish at nearby compositions, 

ut not at 78.5 % Ni. These discrepancies in the FeNi system are 

nown as the “Permalloy Problem” [7,8] . Similar discrepancies are 

bserved in other magnetic systems, such as the Sendust, FeGa and 

iMnGa alloys [9–12] . These examples suggest that we understand 

ittle of the role of material constants that govern magnetic hys- 

eresis in bulk alloys. It is, therefore, important to develop a the- 

retical and computational framework that reliably predicts mag- 

etic coercivity in bulk magnetic alloys. Such a framework would 

pen doors to developing novel magnetic alloys with low hystere- 

is. 

.1. Mathematical modeling of magnetic hysteresis 

A widely used theory to describe magnetization processes is the 

icromagnetics [20] . This is a continuum theory that describes the 

https://doi.org/10.1016/j.actamat.2021.116697
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Fig. 1. A schematic illustration of hysteresis in magnetic materials: The magneti- 

zation, M lags behind the applied field, H , and traces out a characteristic curve 

known as the hysteresis loop. The applied field strength at which the magnetiza- 

tion reverses is called the coercive field. The width of the hysteresis loop indicates 

the hardness of the magnetic material. For example, narrow loops correspond to 

soft magnets, and wide loops correspond to hard magnets. 
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nergy of a body in terms of its magnetic moment. In this theory, 

ach energy term is directly correlated with a measured material 

onstant, and potentially provides a rigorous framework for explor- 

ng the links between material constants and magnetic hysteresis. 

ttempts to use the micromagnetics to understand hysteresis have 

 long history: Beginning in the 1950s [14–17] , researchers stud- 

ed the breakdown of a single domain state under a constant ex- 

ernal field. They decreased the magnitude of this external field 

rom a large value. In this method, a typical approach was to con- 

ider the second variation of the micromagnetics energy evaluated 

t a constant magnetization in equilibrium with the constant ap- 

lied field, i.e., linear stability analysis [20] . This leads to a linear 

artial differential equation in the form of an eigenvalue problem, 

ith non-trivial solutions associated to breakdown. With the aid of 

implifications (ellipsoids), these linear equations could sometimes 

e solved analytically, and the results were studied sufficiently in- 

ensely so that the eigenvectors were given names such as coher- 

nt rotation, magnetization curling, and anticurling [15–17] . (For a 

odern treatment of these kinds of calculations based on duality, 

ee Section 8 of [31] .) 

The well-known difficulty with this approach is that, when ac- 

epted values for the material constants are substituted into the 

esults, they dramatically over predict the coercivity [13,20] . A typ- 

cal evaluation in iron is a coercivity of κ1 + m 1 · Nm 1 , where κ1 is

he first anisotropy constant, m 1 is the constant magnetization and 

 is an appropriate demagnetization matrix for the region of inter- 

st. For a typical bulk specimen of iron, this gives a coercivity more 

han three orders of magnitude higher than the measured value. 

his general disagreement between the results of linear stability 

nalysis and experiment was termed the Coercivity Paradox [20] . 

n the other hand, it was later recognized that in certain perfect 

ingle crystals with atomically smooth boundaries and in similarly 

erfect nanostructures, coercivities approaching the results of lin- 

ar stability analysis could be achieved [18] . 

.2. Nucleation barriers and localized disturbances 

Two recent developments suggest a way forward to predict hys- 

eresis in bulk materials. The first concerns the hysteresis observed 

n martensitic phase transformations [24] . The goal in that case is 

o predict the thermal hysteresis on heating and cooling. Like the 
2 
agnetic case, linear stability analysis fails in the case of marten- 

itic transformations; the linearized operator is typically strongly 

ositive-definite at the point of transformation on cooling, espe- 

ially in cases of big first order phase transformations. However, 

f one analyzes a certain nucleus consisting of a twinned platelet 

see Fig. 2 a for an example), then one finds a realistic energy bar- 

ier [23,24,38] . More importantly, a simple criterion for lowering 

his barrier emerges, involving the middle eigenvalue of the trans- 

ormation stretch matrix [25,26] . Satisfying this criterion to high 

ccuracy in alloy development programs has led to numerous al- 

oys with near zero thermal hysteresis despite having transforma- 

ion strains of the order of 10 % . 

The second development suggesting a way forward is an un- 

ublished Ph.D. thesis of Pilet [27] . Pilet examines the appearance 

f the nuclei of reverse domains on the shoulder of the hysteresis 

oop in various ferromagnetic materials. These nuclei appear pre- 

isely at the same location in the material on each magnetization 

eversal cycle. He finds 1) a strong correlation between the appear- 

nce of these nuclei and the ultimate measured coercivity, even 

hough the shoulder occurs at quite a different field than the co- 

rcive field, and 2) that the nuclei are large but highly localized 

isturbances, which in our view would likely not be captured by 

inear stability analysis. 

Theoretically, there are few general methods that treat large lo- 

alized disturbances. Classical results in the calculus of variations 

elated to “strong relative” minimizers would seem to be relevant, 

ut they are only available in the case of a one-dimensional do- 

ain [40] . Recently, a big step forward is the development of a 

heory of strong local minimizers in the multidimensional case 

41,42] . However, the necessary and sufficient conditions for a 

trong local minima given by these studies involve the concepts 

f “quasiconvexity” and “quasiconvexity at the boundary”, which 

re difficult or impossible to verify with known methods. Another 

oint is that of strong local minimizers are not precisely what is 

eeded in the present case of micromagnetics. That’s because do- 

ain wall energy dominates at small scales, so typical large local- 

zed disturbances always increase the energy at sufficiently small 

cales, i.e., they are missed by the usual concept of “strong local 

inimizer”. It is the barrier that is important, and, in the present 

ase, the dependence of the height of the barrier on material con- 

tants. To our knowledge, the only general approach to estimation 

f the barrier (in the case of phase transformations) is the work of 

nüpfer et al. [38] , Knüpfer and Otto [39] . 

.3. Present research 

In the present work, we develop a computational tool that pre- 

icts coercivity in bulk magnetic alloys. To this end, we use the 

oncept of nucleation barriers to compute magnetic hysteresis. As 

n the martensitic case, the key is to select a potent defect. In mag- 

etic materials, inclusions in the form of a spike domain are com- 

only found around defects, and possess a fine needle-like geom- 

try, see Fig. 2 (b) [30] . These spike-domains form to minimize the 

otal energy of the system. They were theoretically predicted to 

orm by Néel [28] and have been imaged by Williams [29] . We hy-

othesize that these spike-domain microstructures serve as a nu- 

leus (or a local disturbance) that grows during magnetization re- 

ersal. Unlike in shape memory alloys in which the needle growth 

s a balance between elastic and interfacial energies, the growth 

f a spike-domain in alloys with strong ferromagnetism involves 

n intricate balance between anisotropy, magnetostatic, and mag- 

etostrictive energies. Except for introducing this physically moti- 

ated defect, we do not introduce other perturbations, random or 

eterministic, to seed the magnetization reversal process. In this 

ense we are formulating a method that specifically tests the po- 

ency of spatial defects as a possible cause of hysteresis in the ab- 
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Fig. 2. (a) A martensite nucleus embedded within the austenite phase of a shape memory alloy. The growth of this martensite nucleus provides an energy barrier that is 

related to hysteresis in shape memory alloys [38] . Fig. 2 (a) is modified and reprinted from Ref. [38] with permission from John Wiley and Sons. (b) In magnetic materials, 

spike domain microstructures formed around defects (i.e., cavity) serves as a nucleus that grows during magnetization reversal. We hypothesize this nucleus provides an 

energy barrier that is related to magnetic hysteresis [28,29] . Image is modified from Ref. [29] , and is reprinted with permission from the American Physical Society. 
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ence of mechanisms involving thermal activation. Although one 

ould choose infinitely many possible defects, our predictions of 

ysteresis using the spike domain substantiate the intuition of Néel 

hat the spike domain is the potent defect. 

The structure of the remainder of this paper is as follows: In 

ection 2 , we give an overview of micromagnetics and equilibrium 

quations that are implemented in our computational tool. Here, 

e account for the magnetoelastic energy terms that were typ- 

cally neglected in prior calculations; and we introduce concepts 

elated to ellipsoid theorem and reciprocal theorem that simplify 

ur calculation for computing magnetic coercivity. A key aspect 

s to find a computational way to model the important effect of 

oundaries that are typically far from the defect but play an impor- 

ant role. Next, in Section 3 we demonstrate the advantages of this 

omputational tool across three case studies: (a) We show how the 

ool can be applied to modeling stress in magnetic alloys, and in 

oing so uncover that the effect of stress on hysteresis varies as a 

unction of alloy composition. (b) We show how the tool can be 

pplied to engineering different defect geometries, and by doing 

o we find how the structural features of defects affect hystere- 

is loops. (c) We show how applying the tool can help solve the 

ermalloy problem. (d) We reveal an unexpectedly important ef- 

ect of magnetostriction on hysteresis, contrary to the conventional 

isdom that, all else fixed, coercivity is minimized at vanishing 

agnetostriction constants. Broadly, we find that the delicate bal- 

nce between material constants, such as the magnetostriction and 

he anisotropy constant, has an important influence on coercivity. 

Overall, we present a computational framework to predict coer- 

ivity in bulk magnetic alloys. Our tool can be used to discover 

ossible new soft magnetic materials (low hysteresis). In princi- 

le, some aspects of our methods could also be used to discover 

ard magnetic materials (i.e., candidates for permanent magnets) 

ut this is much more difficult: for soft magnets one has only to 

ake a good choice of potent defect, while hard magnets have to 

xhibit large hysteresis for all possible defects. 

. Theory 

In this section, we describe the theoretical framework of our 

oercivity tool. First, we introduce the total energy of micromag- 

etics, including magnetostriction. Then we solve the mechanical 

nd magnetostatic equilibrium equations to compute the strain 

nd demagnetization fields, respectively, in the body. Here, we 

resent a computational trick based on the ellipsoid theorem that 

implifies the calculation of demagnetization fields in ellipsoid 

odies that are much bigger than the defect, but play a critical 

ole. Finally, we compute the evolution of the magnetization using 
3 
he Landau-Lifshitz-Gilbert equation. This equation is numerically 

olved using the Gauss-Siedel projection method [32] , and the ac- 

ompanying equilibrium equations are solved in Fourier space [33] . 

.1. Micromagnetics 

Micromagnetics is a continuum theory that uses the mag- 

etic moment to describe the free energy of a magnetic body E
 19–22 ]. This theory has been successfully applied to solve vari- 

us problems, such as finding energy minimizing domain struc- 

ures and understanding their role in the magnetization process 

11,32,34,36,37] . A key advantage of this theory is that the total 

nergy is expressed in terms of conventional material constants 

hat are measured in specific experiments. This advantage of mi- 

romagnetics makes it an ideal framework to investigate the links 

etween material constants, microstructural geometry, and mag- 

etic coercive fields. In our coercivity tool, we use the standard 

icromagnetic energy including magnetostriction and define the 

ree energy function as 

 = 

∫ 
E 

{∇m · A ∇m + κ1 

(
m 

2 
1 m 

2 
2 + m 

2 
2 m 

2 
3 + m 

2 
3 m 

2 
1 

)
+ 

1 

2 

[ E − E 0 ( m ) ] · C [ E − E 0 ( m ) ] − σe · E − μ0 m s H e · m 

} 

d x 

+ 

μ0 

2 

∫ 
R 

3 
| ∇ζm 

| 2 d x . (1) 

Here, we describe the micromagnetic energy in a cu- 

ic basis { e 1 , e 2 , e 3 } , where the magnetization M , is normal- 

zed by its saturation magnetization m s , such that M 

m s 
= m = 

 1 e 1 + m 2 e 2 + m 3 e 3 and | m | = 1 . Eq. (1) describes the energy land-

cape of a magnetic body, and its local minima represent 

etastable magnetization patterns. Fig. 3 schematically illustrates 

he different energy contributions in Eq. (1) . First, the exchange 

nergy , 
∫ 
E ∇m · A ∇m d x penalizes gradients of the magnetization, 

ee Fig. 3 (a). This penalty originates from the quantum mechanical 

xchange-interaction forces between neighboring magnetization, 

nd is minimized when the neighboring magnetization are parallel. 

econd, the anisotropy energy 
∫ 
E κ1 ( m 

2 
1 
m 

2 
2 

+ m 

2 
2 
m 

2 
3 

+ m 

2 
3 
m 

2 
1 
) d x pe- 

alizes magnetization that are not aligned in the direction of easy 

rystallographic axes, see Fig. 3 (b). Here, we assume a cubic form 

f the anisotropy energy, and κ1 is the anisotropy constant. (More 

eneral forms can be included without difficulty.) Third, the elas- 

ic energy 
∫ 
E 

1 
2 [ E − E 0 (m ) ] · C [ E − E 0 (m ) ] d x is related to the mag- 

etostrictive response of the material. For example, take a mag- 

etic rod with randomly oriented domains as shown in Fig. 3 (c). 

ext, apply a magnetic field to the rod to align the domains with 

he external field. This reorientation of domains extends or con- 
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Fig. 3. A schematic illustration of the different energy contributions in micromagnetics. (a) The exchange energy penalizes spatial variation of the magnetization, and (b) 

the anisotropy energy quantifies the difficulty of rotating the direction of magnetization away from the easy crystallographic axes. (c) The elastic energy accounts for the 

deformation of the magnetic body in response to an applied field. (d) The external field energy (Zeeman energy) is an energy associated to the torque acting on a body 

due to the mutual difference in the magnetization and the applied field. (e) The magnetostatic energy accounts for the stray fields (demagnetization field) generated by a 

magnetic body. The formation of fine layered microstructures reduces the magnetostatic energy. 
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1 The Fastest Fourier Transform in the West (FFTW) is a software library for com- 

puting discrete Fourier transforms. 
racts the rod and the relative change in its length is defined as 

he magnetostrictive strain. We consider geometrically linear strain 

 = 

1 
2 ( ∇u + (∇u ) T ) that deviates from the spontaneous or pre- 

erred strain values E 0 (m ) . The spontaneous strain tensor is given 

y: 

 0 (m ) = 

3 

2 

[ 

λ100 (m 

2 
1 − 1 

3 
) λ111 m 1 m 2 λ111 m 1 m 3 

λ100 (m 

2 
2 − 1 

3 
) λ111 m 2 m 3 

symm. λ100 (m 

2 
3 − 1 

3 
) 

] 

(2) 

n which the magnetostrictive constants λ100 and λ111 are mea- 

ured material constants. C is the tensor of elastic moduli. Fourth, 

he external energy , 
∫ 
E σe · E − μ0 m s H e · m d x consists of two con-

ributions: the former term corresponds to the elastic energy due 

o applied mechanical stress σe ; the latter is the mutual en- 

rgy between magnetization vector and the applied external field, 

 e . This external field, H e , has the physical interpretation as the 

agnetic field that would be present if the ferromagnetic body 

ere removed [20] . This energy is minimized when the angle be- 

ween them is zero, see Fig. 3 (d). Finally, the magnetostatic energy , 
μ0 
2 

∫ 
R 

3 |∇ζm 

| 2 d x is related to the work required to arrange mag- 

etic dipoles into a specific geometric configuration. This energy 

erm scales quadratically with the demagnetization field, H d = 

∇ζm 

, which is computed by solving magnetostatic equilibrium 

 · (H d + M ) = 0 on all of space ( Sections 2.2 –2.3 ) and Fig. 3 (e)).

his field is sensitive to the presence of defects and body geome- 

ry. 

.2. Equilibrium equations 

We compute the strain and demagnetization fields in Eq. (1) by 

olving the mechanical and magnetostatic equilibrium equations, 

espectively. The mechanical equilibrium is satisfied by: 

 · σ = ∇ · C ( E − E 0 ) = 0 on E . (3) 

ere, σ is the stress field and C elastic modulus tensor, assumed 

ere to be positive-definite. We note from the form of the energy 
4 
and the positive-definiteness of C , that, if the magnetization 

 (x ) is chosen so that the preferred strain E 0 ( m (x ) ) is the sym-

etric part of a gradient, then the unique minimizing strain ten- 

or is E (x ) = E 0 ( m ( x ) ) . Then, using Korn’s inequality, the displace- 

ent is uniquely determined (in H 

1 (E ) ) up to an overall infinitesi- 

al rigid body rotation [43] . However, in general, other competing 

nergy terms in ψ influence the evolving strains. The mechanical 

quilibrium in Eq. (3) is non-trivial, and magnetostriction plays an 

mportant role during energy minimization. 

The magnetic induction and magnetic field produced by the 

agnetization satisfy ∇ · B = 0 , B = H d + M , and are computed

rom 

 · B = ∇ · ( H d + M ) = 0 on R 

3 
. (4) 

According to Ampére’s law, ∇ × H d = 0 on R 

3 , so the demag- 

etization field is the gradient of a magnetostatic potential, i.e., 

 d = −∇ζm 

. Substituting for the demagnetization field, the mag- 

etostatic equation reduces to: 

 · ( −∇ζm 

+ M ) = 0 on R 

3 
. (5) 

 mathematical statement of these conditions is that, given the 

agnetized body E as a bounded open set with M = 0 outside E
nd satisfying the constraint of saturation, | M | = m s on E, there is

 unique solution ζm 

in H 

1 (R 

3 ) of Eq. (5) , up to an additive con-

tant. 

We solve Eq. (3) –5 in Fourier space. We use the FFTW 

1 library 

 57,58 ] that computes discrete Fourier transformation of the fields 

n Eq. (3) –5 , and thus enforces periodic boundary conditions on 

he computational domain. Further details on its numerical imple- 

entation are described in the supplementary material (Section 4), 

hich borrows significantly from Ref. [33] . 
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Fig. 4. (a) We assume an appropriately oriented ellipsoid magnetic body, in which the magnetization reorients under an applied field. (b) In our computations, we model 

only a finite domain that is much smaller than the size of the ellipsoid. This computational domain consists of a defect, such as a non-magnetic inclusion, around which 

spike-domains form to reduce the magnetostatic energy. We apply an external field H ext to switch the magnetization in this domain and estimate coercive fields. 
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Fundamentally Eq. (5) should be solved on R 

3 , which includes 

he bulk magnetic material and all of free space surrounding the 

aterial. Such a computational domain would typically span hun- 

reds of microns or more in size, and modeling fine microstruc- 

ures, such as spike-domains and domain walls, which are several 

rders of magnitude smaller than the diameter of E would be com- 

utationally expensive. 2 We next introduce known tricks based on 

he ellipsoid theorem that simplify the calculation of the demag- 

etization field. 

.3. Ellipsoid theorem 

First we note that, even though the defect and spike domain 

re much smaller than, and far from the boundary of, the mag- 

etic body E, the shape of E is important, because the growth of 

he spike domain is importantly affected by the demagnetization 

ffects arising from poles at the far-away boundary of E . For ex- 

mple, an ellipsoid body with uniform magnetization contains free 

oles on its surface. These surface poles induce a demagnetiza- 

ion field that is proportional to the uniform magnetization in the 

ody. The shape of E is extremely important, because the growth 

f the spike domains can be seen as a mechanism for reducing 

he demagnetization energy due to these poles. This demagneti- 

ation field, also referred to as the stray field, has approximately 

he same effect as a particular external field applied to the com- 

utational domain. The only difference is that the demagnetization 

eld is not applied by an external source, but originates because of 

he magnetic body’s geometry and its surface poles. 

In our calculations we assume the magnetic body to be an ellip- 

oid E that supports a magnetization M (x ) . This ellipsoid geometry 

f the body allows us to decompose the magnetization into two: a 

onstant magnetization M , and a spatially varying magnetization ˜ 

 (x ) . The presence of a defect, such as a non-magnetic inclusion 

d , introduces a local perturbation that gives rise to the spatially 

arying magnetization 

˜ M (x ) . This field is localized in the vicinity 

f a defect and decays away from it. 

In our computations, we model a finite sized domain � cen- 

ered around a defect �d . This domain is several times smaller 

han the actual size of the ellipsoid E, see Fig. 4 . The size of

he domain � is chosen such that ˜ M (x ) → M on the surface of 

he computational domain. The demagnetization field is then com- 

uted in two steps: First, the demagnetization field produced by 

he constant magnetization on the ellipsoid is computed as H = 

 · M . Here, N is the demagnetization factor matrix that is a tab- 

lated geometric property of the ellipsoid. The constant magne- 

ization M on the domain is defined such that 
∫ 
� M (x )d x = 0 .
2 Mesh refinement techniques could be used to address this problem, although 

apid variations of H d just outside of E would also have to be resolved with this 

pproach. 

g

v

a

g

5 
n the next paragraphs we explain how we choose this constant 

agnetization and explain our reasoning behind it. Second, the 

emagnetization field produced by the spatially varying magne- 

ization is computed by solving ∇ · ( ̃  H + ̃

 M ) = 0 on �. This de-

agnetization field is a continuously varying field that is sensi- 

ive to the inhomogeneities present in the material. By the linear- 

ty of the magnetostatic equation, the reciprocal theorem and the 

act that constant magnetization implies constant magnetic field 

n an ellipsoid, the total demagnetization field is a sum of the 

ocal and the non-local fields, H d = H̄ + ̃

 H (x ) . This decomposition 

s justified in the supplementary material (Section 3) 2.3 and in 

efs. [ 55,56 ]. 

In the initial state of our calculations, we choose the constant 

agnetization M as the unique constant that minimizes the in- 

ividual energy terms in Eq. (1) . For example, M minimizes the 

xchange energy (because there are no domain walls), minimizes 

he anisotropy energy (because M is coincident with an easy axis), 

inimizes the magnetoelastic energy (because of constant strain, 

 = E 0 , and compatibility), minimizes the applied field or external 

nergy (for a sufficiently large H e along positive e 1 direction), and 

inimizes the magnetostatic energy for the particular ellipsoid ge- 

metry chosen (i.e., ellipsoids have long axis in the direction par- 

llel to M ). Overall, we choose M such that the total energy of the 

ystem is minimum. 

Our reasoning behind this choice of constant magnetization is 

s follows: We want to initialize our calculations with the lowest 

nergy state as possible. Thus we choose the energy minimizer M , 

hich is also observed experimentally for sufficiently large fields 

nd even on non-ellipsoidal specimens. For the chosen ellipsoid, 

he applied field value H e at which M ceases to be energy mini- 

izing is known (e.g., Ref. [31] , Section 8). However, it is widely 

bserved in experiments that the breakdown of the single domain 

tate typically does not occur at that point, but rather the same 

ingle domain state persists to lower fields [27] . While defects and 

ano domains are certainly present on small regions during this 

tage, they do not grow to macroscopic size. These experimental 

bservations have motivated our initial choice of M and the defect 

n the computational domain. 

The ellipsoid theorem simplifies the computational complexity 

f our problem in two ways. First, we reduce the computational 

osts by eliminating the need for a large computational domain 

n R 

3 . Instead, we model a computational domain that is much 

maller than the magnetic body, and yet can capture the demagne- 

ization contributions from body geometry and local defects. Sec- 

nd, we resolve nanoscale features of the magnetic microstruc- 

ures, such as domain walls and spike-like domains, and investi- 

ate their switching mechanism, in-situ, during magnetization re- 

ersal. This ellipsoid theorem enables us to model a local region 

round a defect, and yet account for macroscopic effects from body 

eometry on the demagnetization fields. 
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Finally, note that this decomposition of the field is specific to 

agnetic bodies with ellipsoid geometry. While different ellip- 

oid geometries, such as prolate (rod-like), oblate (pancake-like), 

phere) with varying aspect ratios can be modeled, our algorithm 

s only applicable to ellipsoid bodies. In order to compute the coer- 

ivity for a non-ellipsoid magnetic body, Eq. (4) - 5 would have to be

olved on a large domain, including especially a sufficiently large 

ubset of free space surrounding the body, so that the poles at its 

oundary are computed correctly. Our computational trick, which 

implifies the calculation of the demagnetization field, cannot be 

pplied to this non-ellipsoidal geometry. A non-ellipsoidal compu- 

ational domain could span hundreds of microns or much more in 

ize and modeling fine microstructures, such as needle domains, 

ould be computationally expensive. 

.4. Landau-Lifshitz-Gilbert equation 

Next, we compute the evolution of the magnetization using the 

andau-Lifshitz-Gilbert equation [ 44,45 ]. This is the simplest gra- 

ient flow of the free energy function ψ accounting for the con- 

traint | m | = 1 : 

∂m 

∂τ
= −m × H − αm × ( m × H ) . (6) 

ere, τ = γ m s t is the dimensionless time step, γ is the gyromag- 

etic ratio, and α is the damping constant. The effective field is 

 = − 1 
μ0 m 

2 
s 

δψ 

δm 

= A 

∗∇ 

2 m + h (m ) , in which, h ( m ) is the first vari-

tion of the free energy density with respect to m (ignoring the 

onstraint), excluding the exchange energy and A 

∗ = 2A/ μ0 m s 
2 l d 

2 , 

here l d is the length scale of the model. This form of the dif-

erential equation is widely used in the micromagnetics commu- 

ity to study domain formation (e.g., [46,47] ), magnetic switching 

e.g., [48] ), and twin boundary movement [49] in ferromagnetic 

hape memory alloys. Eq. (6) can be used to compute the rota- 

ional movement of the magnetization while conserving its mag- 

itude, i.e., | m | = 1 is preserved by the evolution. This property of 

q. (6) is advantageous because the constraint | m | = 1 is not con- 

ex and therefore difficult to handle by other known methods. 

Please note that both the uniform magnetization M = m s m and 

he perturbed magnetization 

˜ M = m s ̃  m on the computational do- 

ain evolve according to the Landau-Lifschitz-Gilbert (LLG) Eq. (6) 

We employ the Gauss-Siedel projection method developed by 

ang et al. [32] to numerically solve the Landau-Lifshitz-Gilbert 

quation, Eq. (6) . This implicit method overcomes the severe time 

tep constraint introduced by the exchange term in Eq. (1) . Fur- 

hermore, this numerical scheme is unconditionally stable and al- 

ows for adaptive time steps that is useful in computing magnetic 

ysteresis. We next summarize the key steps of the Gauss-Siedel 

rojection method: 

1. Let g n ( x ) and g ∗(x ) be the intermediate fields at the n th time

step and are defined as follows: 

g 

n ( x ) = 

(
1 − A 

∗
τ∇ 

2 
)−1 [

m 

n + 
τh [ m 

n ] 
]

g 

∗( x ) = 

(
1 − A 

∗
τ∇ 

2 
)−1 [

m 

∗ + 
τh [ m 

n ] 
]
. (7) 

Here, 
τ = 0 . 1 is the non-dimensionalized time step, and the 

magnetization m 

∗ is given by: [ 

m 

∗
1 

m 

∗
2 

m 

∗
3 

] 

= 

[ 

m 

n 
1 + (g n 2 m 

n 
3 − g n 3 m 

n 
2 ) 

m 

n 
2 + (g n 3 m 

∗
1 − g ∗1 m 

n 
3 ) 

m 

n 
3 + (g ∗1 m 

∗
2 − g ∗2 m 

∗
1 ) 

] 

. (8) 

2. Next, the intermediate magnetization m 

∗∗ is incremented using 

the updated values of m 

∗ and h ( m 

∗) from step 1: 

∗∗ ( ∗ 2 
)−1 [ ∗ ∗ ]
m = 1 − A α
τ∇ m + α
τh [ m ] (9) v

6 
3. Finally the magnetization at the n + 1 time step, m 

n +1 is up- 

dated, m 

n +1 = 

1 
| m 

∗∗| m 

∗∗. 

Eq. (7) –9 are computed in Fourier space, and further details 

f its numerical implementation are described in [33] and in the 

upplementary material (Section 5). Note, in our code we compute 

he discrete Fourier transformation of the fields assuming periodic 

oundary conditions. In our micromagnetic simulations, we iter- 

te steps 1–3 to compute magnetization evolution until the system 

eaches equilibrium. 

.5. Boundary conditions 

We model a 3D computational domain � typically with 128 ×
28 × 24 grid points, and the element size is chosen such that do- 

ain walls span 3-4 elements, see supplementary material (Sec- 

ion 4). A defect, such as a non-magnetic inclusion, is modeled at 

he center of this domain and is of size �d = 8 × 8 × 6 . We choose

 defect with edge l d that is several times smaller than the com- 

utation domain size L (i.e., l d < 6 L ) . This geometry ensures that

he demagnetization fields and strain fields decay away from the 

efect boundary, and are negligible at the computational domain 

oundary. We initialize the computational domain � with a ho- 

ogeneous magnetization, M 

m s 
= m = m 1 e 1 as shown in Fig. 5 (a). 

he defect induces a local demagnetization field, ˜ H (x ) which we 

ompute by solving: 

 · ˜ H ( x ) = ∇ 

2 ζm 

= 

{∇ · M 

0 

in �
in �d 

(10) 

ogether with the jump conditions at the boundaries of the non- 

agnetic inclusion: 

 ζm 

] ∂�d 
= 0 (11) 

∂ζm 

∂n 

]
∂�d 

= −M · n . (12) 

Here, the brackets [ ·] denote the jump of the enclosed quantity. 

e enforce this jump condition by maintaining M = 0 inside the 

efect throughout the computation. We apply a large external field 

 e = H 1 e 1 that is gradually decreased in steps of 
He 1 until the 

agnetization reverses. The external field at which the magnetiza- 

ion switches is the predicted coercivity of the magnetic alloy. 

In principle, this theoretical and computational framework can 

e used to predict coercivity in any cubic magnetic material. In 

he present work, we calibrate the model for iron-nickel alloys. We 

mphasize that, aside from including the non-magnetic defect, we 

o not otherwise seed or perturb the magnetization to induce the 

eversal process or to pre-define the hysteresis loop. Before pre- 

enting the numerical results, we first non-dimensionalize the mi- 

romagnetic energy in Eq. (1) by dividing the whole expression by 

0 m 

2 
s . Table S1 in the supplementary material (Section 1) lists the 

on-dimensional material constants used in the model. 

. Results 

In this section we show how our coercivity tool works. First, 

e demonstrate magnetization reversal by modeling the growth 

f a spike domain (localized disturbance). Then, we demonstrate 

he value of the tool in predicting magnetic coercivity across three 

ase studies: In Study 1, we model mechanical stresses on mag- 

etic alloys with λ100 < 0 , λ100 = 0 , λ100 > 0 , respectively, and in-

estigate whether and how stresses affect magnetic hysteresis. In 

tudy 2, we model different defect geometries and defect densi- 

ies, and study how these structural features affect the coercivity 

alues. In Study 3, we model material constants as a function of 
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Fig. 5. (a) A spike domain naturally forms around a defect in our micromagnetic simulations. At large external field values, the spike-domain is short. When lowering the 

applied field (b–d) the spike-domain grows in size. (e) At a critical field strength, known as the coercive field, the magnetization moment reverses its direction. 

Fig. 6. (a) Hysteresis loop and (b) Strain loop for magnetization reversal in the spike domain microstructure. The labels a-e on the plot correspond to the subfigures Fig. 5 (a–

e). The normalization constants correspond to the Fe 50 Ni 50 alloy: m s = 1 . 25 × 10 6 A / m , H 0 = 9Oe and λ100 = 10 −5 . 
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he alloy composition, and investigate how the balance between 

aterial constants lowers hysteresis at the permalloy composition. 

he results from these three studies help validate our coercivity 

ool, and provide insights into the permalloy problem. Broadly, the 

esults demonstrate that the delicate interplay between the local- 

zed disturbance and material constants is a potential way forward 

o predicting hysteresis in bulk magnetic alloys. 

.1. The growth of a spike domain 

Fig. 5 shows the growth of the spike domain (localized distur- 

ance) during magnetization reversal. A spike domain, similar to 

hose observed in experiments [29] , forms around the defect. Evi- 

ently, the growth of the spikes is driven by the energetic advan- 

age of elimination of the poles on the (non-magnetic) defect, the 

ecreasing influence of the applied field as it is lowered, and the 

endency of the spikes to lower the contribution of the demagneti- 

ation energy of the poles at the boundary of the ellipsoid. As the 

pplied field is lowered, the spike domain grows modestly at first, 

ee Fig. 5 (b–d). At a coercive field of H e = −9 e 1 Oe, the magneti- 

ation reverses abruptly. Fig. 6 shows the corresponding hysteresis 

nd strain loops for the spike domain microstructure. 

Note that, in the initial states, e.g., Fig. 5 (a–c), The far-field mag- 

etization m̄ does not change its direction as the spike domain 

rows. This is consistent with our arguments for the uniform mag- 
7 
etization M = m s m in Section 2.3 . As seen in Fig. 5 , as the field

s lowered, the spike domain grows slowly. The instability leading 

o the reversal is abrupt, and near complete reversal occurs every- 

here except the small region surrounding the defect. The final 

agnetization achieved over the full ellipsoid, except very near the 

efect, is −m̄ . 

Fig. 6 (a-b) shows the volume average magnetization m̄ 1 and 

olume average strain ε11 (e 1 � e 1 ) of the spike domain microstruc- 

ure as a function of the applied field H e . The labels (a-e) corre- 

pond to the subfigures in Fig. 5 (a–e). In Fig. 6 (a), as the external

eld is reduced to zero, the domain retains its net magnetization 

tate (i.e., remnant magnetization), and no significant changes in 

he microstructure are observed. At the coercive field H e = −H 0 e 1 , 

he net magnetization reverses, and the microstructure changes 

rastically—for example, the spike domain grows. On reversing the 

irection of the applied field the magnetization switches to its ini- 

ial state. 

In Fig. 6 (b), the volume average strain traces out a characteris- 

ic butterfly double loop that is consistent with experimental ob- 

ervations [12] . The strain gradually decreases as the external field 

s lowered, see labels (a-d), and abruptly switches at the coercive 

eld value, label (d-e) in Fig. 6 (b). At the coercive field, the mag- 

etization in the domain reverses. 

The hysteresis loop in Fig. 6 (a) is square shaped with sharp 

houlders near the values of the coercive field. We attribute the 
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quare shape of the hysteresis loop to the oblate ellipsoid geome- 

ry of the magnetic body—this body geometry assists in retaining 

 net magnetization despite reducing the external field. The sharp 

houlder at H e = −H 0 e 1 result from a sudden unstable growth of 

he spike domain. Note that the experimentally measured coer- 

ive field value for bulk Fe 50 Ni 50 is about an order of magnitude 

maller than our computed values—this may be because we as- 

ume a single crystal material with a simple defect structure and 

o sharp corners—and we discuss this further in Section 4 . We 

ext apply this fundamental concept of introducing a localized dis- 

urbance (spike domain) during magnetization reversal to explore 

he effect of stress, defect geometry and material constants on hys- 

eresis loops. 

.2. Study 1: effect of stress on hysteresis loops 

Here, we investigate whether mechanical loads, such as ten- 

ile stress, affects coercivity in three types of magnetic alloys, 

amely, alloys with magnetostriction constants λ100 < 0 , λ100 = 0 

nd λ100 > 0 . We model three magnetic disks that correspond to 

ron-nickel alloys with 42% , 45% and 50% Ni-content, respectively. 

e choose these specific alloy compositions because the measured 

agnetostriction constants for Fe 58 Ni 42 , Fe 55 Ni 45 and Fe 50 Ni 50 sat- 

sfy λ100 < 0 , λ100 = 0 and λ100 > 0 , respectively. The values of

he other material constants corresponding to each alloy compo- 

ition are listed in Table S1 of the supplementary material (Sec- 

ion 1). We introduce tensile loads in the micromagnetics energy 

ia − ∫ 
σe ·E d x , and apply stress in the range 0 − 50 MPa for each 

omputational domain. 

Fig. 7 shows the effect of a homogeneous macroscopic stress 

e = σ11 (e 1 � e 1 ) on hysteresis loops. The results show two key 

ndings on the response of magnetic alloys to applied loads. First, 

ysteresis loops in magnetic alloys with zero magnetostriction, for 

xample Fe 55 Ni 45 with λ100 = 0 , as expected, are unaffected by 

ensile loads. For example, Fig. 7 (a) shows that the hysteresis loop 

s the same under all tensile loads σ11 . Second, the hysteresis loops 

n magnetic alloys with non-zero magnetostriction λ100 � = 0 deviate 

rom the hysteresis loop with zero external stress. For example, the 

e 50 Ni 50 magnetic alloy with λ100 > 0 shows an increasing coer- 

ive field with increasing tensile stress, and the Fe 58 Ni 42 magnetic 

lloy with λ100 < 0 shows a decreasing coercive field with increas- 

ng tensile stress. This response of the magnetic alloys is because 

f the coupling between the magnetostriction and the magnetiza- 

ion terms, for e.g., the preferred strain along e 1 −direction is given 

y E 011 = λ100 m 

2 
1 − 1 

3 . For λ100 = 0 , the strain values are decoupled 

rom magnetization terms, and the external loads do not affect 

agnetic hysteresis. Overall, Fig. 7 demonstrates that even with 

he modest magnetostriction constants of FeNi, applied stresses af- 

ect the width of the hysteresis loop quite significantly. 

.3. Study 2: effect of defect geometry on hysteresis loops 

In this section we investigate whether defect geometries and 

efect densities affect the size and shape of hysteresis loops. 

ig. 8 (a–c) shows computed magnetic microstructures formed 

round the three defect geometries. Fig. 8 (d) shows the hystere- 

is loops for each domain configuration. Broadly, we find that co- 

rcive field increases under two conditions: First, when the defect 

dges are not aligned with the material’s easy axes. For example, 

ake Fig. 8 (b), in which the defect edges are inclined at angle θ
o the easy axes. The magnetic domains formed around this de- 

ect are magnetized along the 〈 110 〉 directions in order to reduce 

he magnetostatic energy. These domains are not aligned along the 

asy axes 〈 100 〉 . Consequently growing these magnetized domains 

equires greater coercive field strength, see Fig. 8 (d). Second, the 

oercivity increases because of a domain wall pinning effect. For 
8 
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Fig. 8. We investigate the role of (a-b) defect orientation θ, and (c-d) defect density (number of defects) on magnetic hysteresis. The microstructures on the left show 

representative domain patterns as a function of defect geometry. (e) The plot on the right shows how hysteresis loops varies as a function of defect geometry and density. 

Here, the labels (a–d) correspond to the hysteresis loops for microstructures shown in sub-figures 8(a–d). 
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xample, in Fig. 8 (d) the computational domain contains multiple 

efects that pin domain wall motion during magnetization rever- 

al. This pinning effect gives rise to curved shoulder on the hys- 

eresis loop and increases the coercivity of magnetic alloys, see in- 

et Fig. 8 (e). Overall, both defect geometry and defect density af- 

ect the shape and width of hysteresis loops, but the effect is sur- 

risingly small. 

In our computations, we mainly treat one defect geometry. We 

nvisage applications to cases in which the macro-scale body is not 

llipsoidal and there are multiple defects. Our studies of Fig. 8 with 

wo defects indicate a minor effect on coercivity of having multi- 

le defects, at least when both defects are in the small compu- 

ational domain. However, a full understanding on the effects of 

ody shape and multiple defects awaits future work. Fig. 8 and 

ection 3.3 of the paper do suggest that, if an array of defects were

o be engineered in the direction of the spike domain, coercivity 

ould be lowered. 

.4. Study 3: effect of material constants on coercivity 

In this section, we investigate how the interplay between a 

ocalized disturbance and magnetic material constants affects co- 

rcivity. We explore this interplay in two sub-studies: First, we 

odel a situation relevant to the permalloy problem. We com- 

ute magnetic coercivities in the Fe 1 −x Ni x alloy system as a func- 

ion of the Ni-content, see Table S2 in supplementary material 

Section 1) [ 54 ]. We use magnetic material constants—namely the 

nisotropy κ1 and the magnetostriction constants λ100 and λ111 —as 

nputs and compute magnetic coercivity at each FeNi alloy compo- 

ition. Second, we systematically vary the values of the anisotropy 

−10 3 J / m 

3 ≤ κ1 ≤ 10 3 J / m 

3 ) and the magnetostriction constants 

long the easy axes (i.e., for κ1 > 0 we vary λ100 between −500 ×
0 −6 ≤ λ100 ≤ 500 × 10 −6 with λ111 = 0 , and for κ1 < 0 we vary 

111 between −500 × 10 −6 ≤ λ111 ≤ 500 × 10 −6 with λ100 = 0 ), and 

ompute coercivities around the permalloy composition. 3 
3 Note that magnetic alloys with κ1 > 0 and κ1 < 0 have their easy axes along 

he 〈 100 〉 and 〈 111 〉 family of crystallographic directions, respectively. We compute 

he magnetic coercivities on a domain � with 64 × 64 × 24 grid points and defect 

d of size 14 × 14 × 6 , and by applying an external field along their respective easy 

xes. These calculations require a transformation of the coordinate basis that we 

xplain in the supplementary material (Section 2). 

t

s

o

m

t

9 
The Permalloy problem : Fig. 9 (a) shows the coercivity as a 

unction of Ni-content in iron-nickel alloys. In line with experi- 

ental observations, the coercivity is minimum in the 75 − 78 . 5% 

i-content range. The coercivity is the lowest at 78 . 5% Ni-content, 

ee Fig. 9 (b). Magnetic coercivity gradually increases for material 

onstants that lie away from the 78.5 % Ni-content alloy. 

Fig. 9 (b) shows that although κ1 = 0 at 75 % Ni-content, the 

oercivity is not a minimum at this composition. In fact, the co- 

rcivity is minimum at 78.5 % Ni-content at which neither the 

nisotropy constant nor the magnetostriction constants are zero. 

e attribute the minimum coercivity at 78.5 % Ni-content to a del- 

cate balance of the localized disturbance and material constants 

f the bulk alloy. We note that this balance is sensitive to the size 

f the defect and the presence of residual strains in the domain. 

rior experimental research reports precipitate formation on cool- 

ng FeNi alloys, and we suspect that these inclusions affect the bal- 

nce between material constants at 78 . 5% , and we study this in 

etail in our forthcoming paper [53] . Here, we note that Fig. 9 (a-b)

emonstrates that magnetic material constants, such as the mag- 

etostriction constants and the anisotropy constant, play an impor- 

ant role in governing hysteresis. 

Parametric study : Fig. 10 shows a coercivity heat map as a 

unction of the anisotropy constant κ1 and the magnetostriction 

onstants λ100 , λ111 . For the range of material constants explored, 

he coercivity is minimum when κ1 → 0 . The coercivity increases 

or an increase in either the anisotropy or the magnetostriction 

onstants. The well known permalloy composition Fe 21 . 5 Ni 78 . 5 lies 

lose to the bottom of this well in Fig. 10 . However, Fig. 10 shows

ther combinations of material constants that have a lower coer- 

ivity than the permalloy composition. This example shows a po- 

ential use of our coercivity tool to discover novel combinations 

f material constants with low magnetic hysteresis. In our forth- 

oming papers, we investigate the interplay between λ111 , λ100 

nd κ1 constants to lower coercivities in iron-based magnetic al- 

oys [52,53] . 

Overall, the results in this section demonstrate two things: First, 

he magnetostriction constant in addition to the anisotropy con- 

tant plays an important role in reducing magnetic hysteresis. Sec- 

nd, the delicate interplay between a localized disturbance and 

aterial constants is a potential way forward to predicting hys- 

eresis in bulk magnetic alloys. 
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Fig. 9. (a) A plot of the computed coercivity as a function of the Ni-content in binary iron-nickel alloys (blue dots). The measured anisotropy constants from Ref. [7] are 

plotted for reference. The minimum coercivity is achieved at 78.5 % Ni-content. (b) Inset showing minimum coercivity at 78.5 % Ni-content at which the anisotropy constant is 

non-zero. (c) Schematic illustration of the basis-transformation for magnetic alloys with κ1 > 0 and κ1 < 0 . (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 

Fig. 10. 3D surface plots of the coercivity as a function of (a) κ1 and λ111 with λ100 = 0 , and (b) κ1 and λ100 with λ111 = 0 . The plot has a well-like topology with small 

coercivities at κ1 → 0 . The solid dot indicates the approximate coercivity at the permalloy composition. 
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. Discussion 

The results show that our coercivity tool provides a system- 

tic framework to explore the interplay between magnetic do- 

ains and defect geometry—and how these features affect ma- 

erial constants that govern magnetic hysteresis. For example, in 

ections 3.1 –3.3 we show the growth of a spike domain during 

agnetization reversal, and explore the role of applied loads and 

efect geometry on magnetic hysteresis. Section 3.4 identifies the 

nterplay between anisotropy and magnetostriction constants that 

owers magnetic coercivity in FeNi alloys. In the remainder of this 

ection, we discuss some limitations of our coercivity tool, and 

hen consider some differences between our findings and prior 

ork on predicting magnetic hysteresis. 

Two features of this work limit the comparisons we can make 

ith experimental measurements on magnetic coercivity. First, our 

imulations assumed the computational domains to be a single 

rystal with periodic boundary conditions and cubic defect geome- 

ries. While these assumptions are internally consistent and al- 

ow for detailed predictions, these idealizations are subject to the 

hortcomings associated with the presence of grain boundaries and 

 complex distribution of defects that is expected to be typical 
10 
n bulk materials. From this perspective, our predictions exhibit 

 surprisingly favorable comparison with experiment. Second, al- 

hough we predict magnetic coercivity as a function of defect ge- 

metry and material constants, the quantitative values of the co- 

rcive force are an order of magnitude greater than experimental 

easurements in bulk iron-nickel alloys [35] . Whether introduc- 

ng other defects, such as sharp corners, surface roughness, non- 

llipsoid body geometries, into our model would yield comparable 

esults with experiments is an open question. With these limiting 

onditions we next proceed to discuss strengths of our coercivity 

ool. 

The key feature of our coercivity tool is the use of a localized 

isturbance in calculating the coercive force in magnetic systems. 

his localized disturbance is in the form of a Neel-type spike do- 

ain that introduces a non-linear variation in our numerical mi- 

romagnetics. The growth of this spike domain, under decreas- 

ng field values, destabilizes the uniformly-magnetized metastable 

tates. Using this approach, we predict coercive field values that 

re much closer to experimental observations, and are more ac- 

urate than the predictions from linear stability analysis [20] . Fur- 

hermore, we numerically march through local minimizing states 

nd trace out the characteristic hysteresis and strain loops of a 
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agnetic alloy. These features cannot be captured using other 

implifying methods based on absolute minimizers, such as the 

ethod of Gamma convergence. 

Another feature of the coercivity tool is that it accounts for 

agneto-elastic interactions in addition to the anisotropy and 

agnetostatic energy terms. This rigorous formulation of the co- 

rcivity tool provides a framework to systematically explore how 

ombinations of material constants can lower magnetic hysteresis. 

or example, Section 3.4 shows how both anisotropy κ1 and mag- 

etostriction constants λ100 lower magnetic hysteresis in FeNi al- 

oys. This finding contrasts with previous studies, in which zero 

nisotropy constant κ1 → 0 was considered to be the only factor 

hat lowers magnetic hysteresis [50,51] . Prior studies typically ne- 

lected the magnetostriction terms and their role on magnetic hys- 

eresis was not known. Our results show that in addition to the 

nisotropy constant, magnetostrictive constants λ100 and λ111 play 

n important role in lowering magnetic hysteresis. 

Beyond introducing a localized disturbance and magnetoelastic 

erms, the coercivity tool provides insight into nanoscale domain 

witching mechanisms during magnetization reversal. For example, 

n Section 3.1 –3.3 we show the nucleation and growth mechanism 

f the spike-domain microstructures, and domain-wall pinning on 

efects under applied loads. The evolution of these microstructural 

eatures arise naturally as a result of relative energy minimization. 

verall, these results demonstrate how our coercivity tool can be 

sed to design structural features of defects, and to discover novel 

ombinations of material constants that lower magnetic hysteresis. 

hese results suggest initial steps for experiments and alloy devel- 

pment programs to design magnetic materials with low hystere- 

is. 

. Conclusion 

The present findings contribute to a more fundamental under- 

tanding of how different variables, such as local instabilities and 

aterial constants, affect magnetic coercivity. Specifically, coerciv- 

ty is often viewed to be lower in magnetic alloys with zero (or 

egligible) anisotropy constant, κ1 = 0 , and magnetoelastic ener- 

ies are often ignored because of their small values. However, 

his explains little about the singularities in the permalloy prob- 

em, in which coercivity abruptly drops at a non-zero anisotropy 

alue, κ1 = −161 J / m 

3 . Given the present findings of including both 

agnetoelastic and anisotropy energies to compute coercivity, we 

emonstrate that both magnetostrictive constants and anisotropy 

onstants play an important role in lowering magnetic coercivity. 

urthermore, we present a tool that models a large local instability 

spike-domain) that lowers the coercive force necessary for magne- 

ization reversal, and predicts coercivity with better accuracy than 

inear stability analysis. We propose to use this computational tool 

o discover a fundamental relationship between material constants 

hat lower magnetic coercivity, and thereby develop novel mag- 

etic systems with high anisotropy constants and low coercivity. 
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