
ARTICLE OPEN

Design of soft magnetic materials
Ananya Renuka Balakrishna 1✉ and Richard D. James 2

We present a strategy for the design of ferromagnetic materials with exceptionally low magnetic hysteresis, quantified by coercivity.
In this strategy, we use a micromagnetic algorithm that we have developed in previous research and which has been validated by its
success in solving the “Permalloy Problem”—the well-known difficulty of predicting the composition 78.5% Ni of the lowest
coercivity in the Fe–Ni system—and by the insight it provides into the “Coercivity Paradox” of W. F. Brown. Unexpectedly, the design
strategy predicts that cubic materials with large saturation magnetization ms and large magnetocrystalline anisotropy constant κ1
will have low coercivity on the order of that of Permalloy, as long as the magnetostriction constants λ100, λ111 are tuned to special
values. The explicit prediction for a cubic material with low coercivity is the dimensionless number ðc11 � c12Þλ2100=ð2κ1Þ ¼ 81 for
〈100〉 easy axes. The results would seem to have broad potential application, especially to magnetic materials of interest in energy
research.
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INTRODUCTION
A long-standing puzzle in materials science is understanding the
origins of magnetic hysteresis in ferromagnetic materials. Hyster-
esis in this domain refers to the differing behaviors obtained when
a demagnetized specimen is subject to an increasing magnetic
field to saturation vs. that obtained when decreasing the field
from saturation to zero. The effect is typically characterized by the
final (absolute) value of the magnetic field after such a test,
termed the coercivity. Informally, soft magnets have low
coercivity. This paper is concerned with the prediction of
coercivity from micromagnetic theory. An unexpected prediction
of our study is that coercivity can be made very small even in
materials with large magnetocrystalline anisotropy constant, as
long as the magnetostrictive constants are tuned appropriately.
Aside from basic scientific interest on the origins of hysteresis

and the traditional application to transformers, a strategy for the
discovery of new soft magnetic materials is desirable for rapid
power-conversion electronics, all-electric vehicles, and wind
turbines, especially in cases where induction motors are favored.
Magnetic hysteresis has also become critical to the adoption of
proposed spintronic and storage devices, as requirements for
limiting energy consumption have moved to the forefront1,2.
These requirements impact a wide range of applications, from
hand held electronic devices to storage systems and servers at
data centers. While our analysis is aimed primarily at bulk
applications, the key idea that micromagnetic theory with
magnetostriction, together with a well-chosen potent defect,
can be used to predict hysteresis suggests a strategy for the
lowering of coercivity also in these small-scale applications. In fact,
in certain film-based devices, the likely potent defects, such as
threading dislocations in epitaxial films, are often better char-
acterized than in bulk material.
Currently, a widely accepted strategy to lower the hysteresis in

cubic ferromagnetic alloys is based on changing composition so
as to reduce the magnitude of the anisotropy constant ∣κ1∣. This
has the effect of flattening the graph of magnetocrystalline
anisotropy energy vs. magnetization and reducing the penalty
associated with magnetization rotation. Intuitively, this makes

sense, as it apparently makes available additional low-energy
pathways of an alloy in a metastable state on the shoulder of the
hysteresis loop, as an applied field is being lowered. A related idea
is the known strategy of tuning the composition so as to be
precisely at the point where two different symmetries coincide,
again leading to a flattening of the magnetocrystalline anisotropy
energy vs. magnetization and the lowering of hysteresis. The latter
is the strategy used by Clarke and collaborators3,4 that led to the
particular composition of Terfenol: TbxDy1−xFe2, x= 0.3. We add
that modern research on these RFe2 cubic Laves phase materials
has focused on the benefits of exploiting a nearby morphotropic-
phase boundary in these systems to enhance magnetostrictive
response under small fields5–7.
However, these strategies cannot be the whole story behind

coercivity. For example, in the iron–nickel system, a sharp drop in
coercivity occurs at the Permalloy composition, at which κ1=
−161Jm−3. Tuning the magnetocrystalline anisotropy constant to
zero in iron-nickel alloys in fact leads to an alloy composition with
noticeably higher hysteresis8. Similarly, in Sendust (Fe0.85S-
i0.096Al0.054 alloy), the hysteresis is minimum when the magneto-
crystalline anisotropy and magnetostriction constants are close to
zero, and not precisely at κ1= 09. Finally, there are quite a few
isolated examples of alloys that have very large magnetocrystal-
line anisotropy constants but low coercivity: an example is the
uniaxial phase of Ni51.3Mn24.0Ga24.7 having a uniaxial magneto-
crystalline anisotropy constant of 2.45 × 105 Jm−3 and coercivity
less than 1 kAm−1 in single crystals10. Another example is the
Galfenol alloys (Fe1−xGax for 0.13 ≤ x ≤ 0.24) that have small
magnetic hysteresis, despite their very large magnetocrystalline
anisotropy constants11,12. These examples suggest that the
magnetocrystalline anisotropy constant is not the only factor that
governs hysteresis in magnetic alloys.
The precise role of magnetostriction constants on magnetic

hysteresis is not well understood for two reasons: (a) prior research
has typically ignored the contribution of magnetoelastic interac-
tions on hysteresis, justified by the small values of the
magnetostriction constants, and (b) mathematical methods, such
as the linear stability analysis, overestimate the coercivity of bulk
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alloys—by over three orders of magnitude in some cases—as
compared with measured experimental values13,14. The latter is
referred to as the “Coercivity Paradox”13,15. These factors limit our
understanding of how the balance between fundamental material
constants—such as magnetocrystalline anisotropy and magnetos-
triction constants—affects magnetic coercivity.
In our recent work, we developed a computational tool based

on micromagnetics, including magnetoelastic terms, that is
adapted to the prediction of coercivity in bulk magnetic alloys16,17.
Micromagnetics, since its first postulation in 1963 by W.F.Brown
Jr.13, has been applied to a wide range of problems in
ferromagnets and forms the basis to several computational
frameworks18–20. Our coercivity tool is based on the micromag-
netics theory16, but however differs from earlier works in the
following ways: a key feature of this tool is that it uses a large but
highly localized disturbance—in the form of a Néel-type spike
domain—to predict magnetic coercivity. Néel spike-like domains
are frequently observed to form around defects in various
magnetic alloys (see21–25 for examples) and grow under an
external field. In the absence of this spike-domain, the second
variation of the micromagnetic energy misses the energy barrier
for magnetization reversal13,26. Instead, we model a large localized
disturbance (i.e., compute a nonlinear stability analysis) to predict
coercivity on the shoulder of the hysteresis curve, see Fig. 1. Other
features of our coercivity tool are that we account for
magnetoelastic interactions, however small, in estimating coerciv-
ity of bulk magnetic alloys; and we use the ellipsoid and reciprocal
theorems to accelerate our coercivity calculations, see16. Our
computations are fully three-dimensional with the magnetization
evolving from (010) to (100) in all directions as one leaves the
spike domain.
To arrive at the Néel spike as a reasonable description of a

potent defect, we include in16 a study of alternative nuclei,
including rotated spikes and multiple spikes. These spike domains
serve as nuclei that grow during magnetization reversal. In this
previous study16, we investigated the role of defect geometry,
defect orientation, and defect number on magnetic coercivity, and
we found that these features did not significantly affect coercivity
when compared with fundamental material constants. Mathema-
tically, they can be interpreted as localized disturbances that,
under the right combination of material constants and suitable
applied field, are able to surmount an energy barrier27–30 Small,
smooth disturbances of a homogeneous state are not able to

surmount this barrier at realistic applied fields due to the
dominance of domain-wall energy at small scales, and, in our
view, this is the essence of the Coercivity Paradox16,17. Mathema-
tically, the situation is that the study of the second variation of the
micromagnetic energy misses the important energy barrier, while
it is captured as a large-amplitude, but localized, disturbance.
Our viewpoint is consistent with the thesis of Pilet27 who

examines the microscopic state on the shoulder of the hysteresis
loop (far away from where coercivity is measured) using magnetic
force microscopy, and finds good correlation with the presence of
large localized disturbances. Another feature of our tool is that we
account for the magnetoelastic interactions—however small—in
estimating coercivity. Our results are in a form that is amenable to
alloy development, as in related searches for low hysteresis-phase
transformations31.
An alternative highly effective route to low hysteresis in

magnetic materials is the synthesis of nanocrystalline material32.
For example, the powder synthesis and rapid solidification
techniques have resulted in nanocrystalline and amorphous
magnetic alloys that offer low hysteresis and enhanced perme-
ability2,33,34. Here we do not specifically analyze this situation, but
we think this should be possible in the nanocrystalline case,
though challenging due to the many grains that would likely have
to be considered.
The aim of the present work is to identify combinations of

material constants, including saturation magnetization (ms),
magnetocrystalline anisotropy constant (κ1), elastic moduli (c11,
c12, c44), and magnetostriction constants (λ100, λ111) that give the
lowest coercivity in a cubic material. We do not vary the exchange
constant, which in practice does not vary much: we also give
arguments why, when combined with the demagnetization
energy, it should matter little. We find the striking result that
magnetostriction plays a critical role, and more importantly,
coercivities on the order of those found in very soft materials such
as Permalloy are predicted to be possible in materials with large
magnetocrystalline anisotropy constant, as long as the magnetos-
triction constants are tuned to special values. We find that
magnetocrystalline anisotropy and magnetostriction constants
play a particularly important role, but neither has to be small.
The simulations are carried out using our newly developed

coercivity tool. Details on our micromagnetic algorithm are
described in “Methods”. Specifically, we apply this tool in two
studies: in Study 1, we test the hypothesis that the tuning of

Fig. 1 We model a 3D computational domain with a spike-domain microstructure. a The 3D computational domain is Ω embedded inside
an oblate ellipsoid E, which is several times larger in size than Ω. A spike-domain microstructure forms around a nonmagnetic defect that
grows under an applied field. (b) Spike-domain microstructures are commonly found in magnetic materials around defects such as cavities
and pores in Fe film and Fe–Si crystal, respectively21,40. (Reprinted subfigure (b) with permission from ref. 40. Copyright (2020) by the American
Physical Society).
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magnetostriction constants, in addition to the magnetocrystalline
anisotropy constant, is necessary to reduce coercivity in magnetic
alloys. Here we study how combinations of κ1 and λ100 affect
coercivity, and ignore the contribution from λ111= 0. In total, we
compute coercivity values from N= 2, 163 independent simula-
tions. In Study 2, we test our hypothesis that there exists a specific
combination of material constants—κ1, λ100, λ111—at which mag-
netic coercivity is the lowest. Here, we compute coercivity by
systematically varying the magnetocrystalline anisotropy and the
magnetostriction constants, in the ranges 0 ≤ κ1 ≤ 2000 J m−3,
−2000μϵ ≤ λ100 ≤ 2000μϵ, and 0 ≤ λ111 ≤ 600μϵ, respectively (N=
605). Overall, our computations from over 2500 independent
simulations show that the lowest coercivity is attained when the

dimensionless number ðc11�c12Þλ2100
2κ1

� 81. Here, c11, c12 are the elastic
stiffness constants of the soft magnet assuming a linear cubic
relation. To our knowledge, this discovery of the balance between
material constants at which magnetic hysteresis is small has not
been proposed before. A theoretical analysis supporting the
importance of this dimensionless number is given below. This
analysis further supports the idea that, in other situations, a

second dimensionless number c12λ
2
100

2κ1
may become important, and

tuning the stiffness constants c11 and c12, so that both of these
dimensionless constants have particular values may be desirable35.

RESULTS
Computation of coercivity
In Study 1, we test our hypothesis that the magnetostriction
constants, in addition to the magnetocrystalline anisotropy
constant, are necessary to reduce coercivity in magnetic alloys.
Figure 2(a) shows a heat map of coercivity values as a function of
the magnetocrystalline anisotropy constant κ1 and the

magnetostriction constant λ100. A key feature of this plot is that
the coercivity is minimum along a curve described by
ðc11�c12Þλ2100

2κ1
� 81. As expected, the coercivity is small when κ1→ 0

and the magnetostriction constant is small λ100→ 0, see Inset A.
However, surprisingly, we find that the coercivity value is also
small for non-zero magnetocrystalline anisotropy constants κ1 >>
0 with suitable combinations of the magnetostriction constant,
see Inset B. Note the rather large magnetocrystalline anisotropy
constants being considered, well outside the range associated
with normal soft magnetism. Furthermore, the minimum coerciv-
ity valleys are symmetric about the λ100= 0 axis. This symmetric
response arises from the even terms λ2100 in the free-energy
expression. We observe a similar lowering of coercivity in
magnetic alloys with κ1 < 0 at suitable values of λ111 magnetos-
triction constant (see Supplementary Fig. 2).
Figure 2(b–c) are 3D surface plots of the inset regions “A” and

“B” respectively. The “wells” in these plots correspond to
combinations of material constants at which coercivity is
minimum. Figure 2(b) is a 3D plot of the inset region “A”—here,
we note a discontinuity or a jump in coercivity values at κ1= 0.
This discontinuity is because of the change in easy axes for
magnetic alloys with κ1 > 0 and κ1 < 0. For example, we compute
coercivities along [100] and [111] crystallographic directions for
magnetic alloys with κ1 > 0 and κ1 < 0, respectively. These alloys
have different values of magnetostriction constants along their
easy axes. We believe that the computed rapid change of
coercivity at κ1= 0 is real, and arises from the anisotropy of these
magnetostriction constants. Figure 2(c) shows the 3D surface plot
of the inset region B. Here, coercivities comparable to that of the
permalloy composition are achieved at large magnetocrystalline
anisotropy values κ1 ≈ 1700 J m−3 with suitable combinations of
the magnetostriction constant λ100 ≈ 1200μϵ.

Fig. 2 The coercivity map as a function of the magnetocrystalline anisotropy κ1 and the magnetostriction constant λ100. a We carried out
a total of N= 2163 computations with the magnetostriction constant λ111 set to zero. We find that minimum coercivity is achieved when
ðc11�c12Þλ2100

2κ1
� 81. For comparison, the solid red dot corresponds to the coercivity of the permalloy composition. Note, the parabolic relationship

is a best-fit polynomial to the spread of coercivity data from our calculations. Alloys, such as the permalloy, lie close to the vertex of this
parabola and we interpret this as the shortest distance to the parabola with a dimensionless constant of 81. The axes (in red) indicate the
crystallographic directions along which coercivity values were measured for alloys with κ1 > 0 and κ1 < 0, respectively. The 3D surface contours
of the coercivity values in (b) “inset A” and (c) “inset B” are shown. These plots show coercivity wells (regions of minimum coercivity) as κ1→ 0
and κ1 >> 0, respectively. Note, in subfigure (b), the 3D surface contour is discontinuous along κ1= 0—we attribute this discontinuity to the
transformation of easy axes from [100] to [111] crystallographic direction.
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Overall, the findings from Study 1 contradict the general
understanding of hysteresis in magnetism, i.e., the magnetocrys-
talline anisotropy constant needs to be near zero for small
hysteresis. Our findings show that magnetic hysteresis (or
coercivity value) is small not only when κ1→ 0 but also when
κ1 >> 0, given suitable values of the magnetostriction constants.
Figure 2 shows that the magnetostriction constant, λ100, in
addition to the magnetocrystalline anisotropy constant κ1 plays
an important role in reducing coercivity in magnetic alloys.
Thus far, we investigated coercivity values by setting one of the

magnetostriction constants λ111 to be zero. In Study 2, we test the
hypothesis that there exists a specific combination of material
constants, namely κ1, λ100, λ111, at which magnetic coercivity is the
lowest. We compute coercivities at every combination of κ1, λ100,
and λ111 in the parameter space 0 ≤ κ1 ≤ 2000 J m−3 and
−2000μϵ ≤ λ100 ≤ 2000μϵ and 0 ≤ λ111 ≤ 600μϵ.
Figure 3(a) shows the coercivity map as a function of κ1 and λ100

for increasing values of λ111. A key feature here is that the
minimum coercivity relationship κ1 / λ2100 is unique at each value
of the λ111 magnetostriction constant. For example, the minimum
coercivity valleys gradually widen and become asymmetric about
λ100= 0, with increasing value of the λ111 magnetostriction
constant. We identify combinations of material constants at which
minimum coercivity is achieved, and then plot a 3D surface
through these points in the κ1−λ100−λ111 parameter space, see
Fig. 3(b). This 3D plot represents a surface through the material
parameter space on which coercivity is small.

Theoretical analysis
The results of our studies above can be understood in the following
way. We begin from the free energy that we have used in the
simulations of micromagnetics (see Figs. 4, 5) in dimensional form16,R
Ω ∇m � A∇mþ κ1ðm2

1m
2
2 þm2

2m
2
3 þm2

3m
2
1Þ

�
þ 1

2 ½E� E0ðmÞ� �C½E� E0ðmÞ� � μ0msHext �m
�
dxþ 1

2

R
R3μ0 Hdj j2dx

(1)

where E ¼ 1
2 ð∇uþ ð∇uÞT Þ and the energy is to be minimized, or

minimized locally, over the pair of functions u,m ∈ H1(Ω). Here, m
(with components on the cubic axes m1;m2; m3) has been
previously nondimensionalized so m ⋅m= 1, and the demagne-
tization field satisfies the magnetostatic equations Hd=−∇ζm,
∇ ⋅ (−∇ζm+msm)= 0 on all of space, so Hd has the dimensions of
ms, as does Hext. Please note that m is extended to R3 by making
it vanish outside Ω. Typical accepted values from a large
compositional space appropriate to Fig. 3(a) including most of
the Fe–Ni system, are

A � 10�11Jm�1; κ1 � 0� 6 ´ 103Nm�2; λ100 � 0� 2000 ´ 10�6; λ111 � 0� 600 ´ 10�6;

ms � 106Am�1; μ0 � 1:3 ´ 10�6NA�2; c11; c12; c44 � 10� 24 ´ 1010Nm�2

(2)

A nondimensional form is obtained by dividing the micromag-
netic energy by μ0m

2
s � 106Nm�2, changing variables

x0 ¼ 1
ℓ x 2 Ω0, where ℓ is a typical length scale and x0 is

dimensionless. This gives a typical nondimensional value of the
micromagnetic coefficients

A
ℓ2μ0m

2
s
� 10�17; κ1

μ0m
2
s
� 10�3;

ðc11�c12 or c44Þðλ2100 or λ2111Þ
μ0m

2
s

� 10�5 � 10�1;

1
ms
Hext � 10�3; 1

m2
s
H2
d � 1

(3)

The range of magnetostrictive coefficients is consistent with Fig. 3
(a), and for material constants with a size range, we choose a
typical intermediate value. A caveat with these numbers is the
observation made by Brown26 (discussed also in21) that the formal
linearization of geometrically nonlinear micromagnetics that gives
Eq. (1) implies a possible m dependence of the elastic moduli c11,
c12, c44. This dependence is usually neglected, as is done here.
Note from Eq. (3) the wide ranging values of magnetostrictive
energy and its relative importance generally.
It is seen from the nondimensionalized coefficient Eq. (3) that

magnetostriction and demagnetization energy are dominant, but
it is important to observe that each can be made negligible by
suitable magnetization distributions. The magnetostrictive energy

Fig. 3 The coercivity map as a function κ1, λ100, and λ111. a The minimum coercivity is achieved along a parabolic relation, ðc11�c12Þλ2100
2κ1

� p.
Here, the value of coefficient p depends on the value of the second magnetostriction constant λ111. For example, as λ111 increases and the
coercivity well loses symmetry across the λ100= 0 axes. b The 3D surface plot identifies a combination of material constants, namely κ1, λ100,
and λ111, at which the coercivity is small.
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can be made to vanish by choosing a magnetization that satisfies
curlðcurl E0ðmÞÞT ¼ 0, that is, E0ðmðxÞÞ ¼ 1

2 ð∇uþ ð∇uÞT Þ is the
symmetric part of a gradient, while the demagnetization energy
vanishes on divergence-free magnetizations. In addition, we note
that the exchange energy is one of the smallest energy
contributions and its contribution further decreases at increasing
length scales. Although the exchange constant could be affected
by temperature, composition, and presence of defects, its order of
magnitude A ≈ 10−11 J m−1 does not significantly affect large-scale
micromagnetic simulations. Consequently, we do not vary the
exchange constant in our calculations.
We first explain from a theoretical viewpoint why the Néel

spike attached to a defect of the type we have chosen is a
particularly potent perturbation. A key observation comes from
symmetry and holds also in the more general case of a
geometrically nonlinear magnetoelastic free energy (see Section
6 of36). The observation is that domain walls involving a jump in
the magnetization m+−m− ≠ 0, where m+ and m− minimize
the magnetocrystalline anisotropy energy density and satisfy the
divergence-free condition (m+−m−) ⋅ n= 0 at an interface with
normal n, have the property that they give rise to strains that are
perfectly mechanically compatible in the sense that E0ðmþÞ �
E0ðm�Þ ¼ 1

2 ða� nþ n� aÞ for some vector a. The latter is the
jump condition implying the existence of a continuous
displacement across the interface. These conditions hold also
for typical domain-wall models with remote boundary conditions
given by (m+, E0(m+)) and (m−, E0(m−)). This argument applies
not only to materials with cubic symmetry but also to many
lower-symmetry systems (see36 for the precise statement of this
result).
To understand the relation between this symmetry argument

and the Néel spike, we substitute the form of C and E0(m) for
cubic materials into Eq. (1). The latter is

E0ðmÞ ¼ 3
2

λ100ðm2
1 � 1

3Þ λ111m1m2 λ111m1m3

λ111m1m2 λ100ðm2
2 � 1

3Þ λ111m2m3

λ111m1m3 λ111m2m3 λ100ðm2
3 � 1

3Þ

0B@
1CA (4)

in the orthonormal cubic basis. We consider only the case κ1 > 0
corresponding to 〈100〉 easy axes, for which we have the most
data above. The case κ1 < 0 corresponding to 〈111〉 easy axes is
handled similarly. Without loss of generality, we also divide the
whole energy by the dimensionless number κ1=μ0m

2
s . In addition,

we define a new displacement ûðxÞ by uðxÞ ¼ λ100ûðxÞ with the
corresponding strain tensor E ¼ λ100Ê. Minimization of energy
using u is equivalent to the same using û, and this equivalence
applies also to local minimization or the relative height of an
energy barrier. These changes give the explicit nondimensional
form of the free energyR

Ω0 A
ℓ2κ1

mi;jmi;j þ ðm2
1m

2
2 þm2

2m
2
3 þm2

3m
2
1Þ

þ 2c44λ
2
100

κ1
ϵ̂12 � 3

2
λ111
λ100

m1m2

� �2
þ ϵ̂13 � 3

2
λ111
λ100

m1m3

� �2
þ ϵ̂23 � 3

2
λ111
λ100

m2m3

� �2� �
þ ðc11�c12Þλ2100

2κ1

� �
ϵ̂11 � 3

2 m2
1 � 1

3

� 	� 	2 þ ϵ̂22 � 3
2 m2

2 � 1
3

� 	� 	2 þ ϵ̂33 � 3
2 m2

3 � 1
3

� 	� 	2h i
þ c12λ

2
100

2κ1
ϵ̂11 þ ϵ̂22 þ ϵ̂33ð Þ2 � μ0ms

κ1
ðHe1m1 þ He2m2 þ He3m3Þ � μ0ms

2κ1
ðHd1m1 þ Hd2m2 þ Hd3m3Þ dx;

(5)

where we have used the magnetostatic equation to include the
demagnetization term in the integrand. Also, ϵ̂ij ¼ 1

2 ðûi;j þ ûj;iÞ,
and for simplicity, we have dropped the prime on x. However, Ω0

remains dimensionless.
Now, we make an observation about the structure of Eq. (5)

relating to the symmetry argument given above. With κ1 > 0 as
assumed, the two magnetizations m−= (1, 0, 0) and m+= (0, 1, 0)
satisfy (m+−m−) ⋅ n= 0, where n ¼ 1ffiffi

2
p ð1; 1; 0Þ. Therefore, by the

symmetry argument described above, E0ðmþÞ � E0ðm�Þ ¼ 1
2 ða�

nþ n� aÞ and it is indeed verified that that this holds with

a ¼ 3
ffiffi
2

p
λ100
2 ð�1; 1; 0Þ. The values of the strains are given in Fig. 6(c).

Importantly, these choices of m+, E0(m+), and m−, E0(m−) make
the magnetocrystalline anisotropy energy and all three magne-
tostrictive terms in Eq. (5) vanish, and also give a locally
divergence-free magnetization. Recalling that the simulations are
3D (see Fig. 5), note that Fig. 6(c) can be confined to a slab
between two surfaces parallel to the plane of the page and, if m
(x)=m− is assigned outside the slab, then these surfaces are also
pole-free. These facts support the potency (i.e., low-energy barrier)
provided by the Néel spikes.
At the transient state, the magnetic poles on the tips of the

spike domains are far apart and the geometric features of the
spike domain have evolved to compatible interfaces. Similar
symmetry arguments can be made for transient-state micro-
structures with multiple Néel spikes and/or other defect
geometries. In these cases, the magnetic material constants
dominate the energy barrier, and the defect geometries appear
to play a negligible role.
Thus, we arrive at the following scenario typical of nucleation.

When the applied field is large, the magnetocrystalline
anisotropy energy of a large spike is disfavored, and spike is
small and collapsed near the defect, due to the dominating
influence of (diffuse) domain-wall energy at small scales. As the
applied field is decreased, the magnetocrystalline anisotropy
and demagnetization energies favor the growth of the spike. A
local energy maximum is reached, beyond which an energy-
decreasing path is possible, leading to complete reversal of the
magnetization.
The parabolic form of the locus of the lowest coercivity points

in Figs. 3(a) and 2(a) can now be understood heuristically. The
terms involving the very small nondimensional exchange
constant and very large multiplier of the nondimensional
demagnetization energy are the only terms that involve ∇m.
These are expected to compete within the diffuse domain walls
present in these simulations, but otherwise lead only to a near-
divergence-free magnetization, as suggested by the inequality
of arithmetic–geometric means in the formffiffiffiffiffiffiffiffiffi

A

ℓ2κ1

s
mi;j �

ffiffiffiffiffiffiffi
μ0
6κ1

r
j∇ζmjδij

 ! ffiffiffiffiffiffiffiffiffi
A

ℓ2κ1

s
mi;j �

ffiffiffiffiffiffiffi
μ0
6κ1

r
j∇ζmjδij

 !
� 0;

(6)

which implies, using the magnetostatic equations Hd=−∇ ζm
and ∇ ⋅ (−∇ζm+msm)= 0, that

A

ℓ2κ1
mi;jmi;j � μ0ms

2κ1
Hd �m � 2

ffiffiffiffiffiffiffiffiffiffiffiffi
Aμ0
6ℓ2κ21

s
ðdiv mÞj∇ζmj: (7)

In the geometry being considered, the heuristic argument for
the energy barrier suggests that the shear strains in this geometry
play a minor role, and this is supported by typical measurements
of the shear strains across the spike, Fig. 7(a–c), taken from the
simulations. This observation, together with the fact that the
magnetization is near the easy axes [100] or [010] in the region of
the spikes (so that mimj ≈ 0, i ≠ j), indicates that the constant
c44λ100

2=κ1 will play only a minor role in determining the energy
barrier.
Granted these approximations, the height of the energy barrier

must then be affected mainly by the remaining dimensionless
constants

ðc11 � c12Þλ2100
2κ1

and
c12λ

2
100

2κ1
: (8)

Again, from the simulations (Fig. 7(d–f)) tr E is quite small in
comparison with the multiplier of ðc11 � c12Þλ2100=ð2κ1Þ, and so we
expect the latter, ðc11 � c12Þλ2100=ð2κ1Þ, to be the key dimension-
less constant that governs the height of the barrier. In simulations,
the term containing this constant accounted for up to 80% of the
total magnetoelastic energy.
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The value of this dimensionless constant giving the lowest
energy barrier indicated by the simulations is

ðc11 � c12Þλ2100
2κ1

¼ 81:0056 (9)

As we have noticed previously17, 78.5% Ni Permalloy does not
exactly fall on the computed parabola given by Eq. (9). This may
indicate that there are opportunities for lowering the coercivity of
permalloy. It is possible that favorable heat treatments of
permalloy do just that by modifying the material constants
present in Eq. (9). An alternative possibility is that, while Eq. (9)
may be the primary dimensionless constant affecting coercivity,
both constants given in Eq. (8) may play a role, indicating that the
fine-tuning of elastic moduli according to their relative roles in the
two constants of Eq. (8) may be a route to even lower coercivity.

DISCUSSION
At present, the conventional approach to develop soft magnets is
to reduce the magnetocrystalline anisotropy value to zero.
Consequently, the search for soft magnets is concentrated around
the κ1→ 0 region. Our theory-guided prediction suggests that in
addition to the coercivity well at κ1→ 0 region, there exists other

regions along ðc11�c12Þλ2100
2κ1

� 81 at which coercivity is small. This
analytical relation between material constants gives greater
freedom for alloy development and increases the parameter
space to discover novel soft magnets. In summary, our findings
show that the magnetostriction constants, in addition to the
magnetocrystalline anisotropy constant, play an important role in
governing magnetic coercivity. This was the case in study 1 when
coercivity was minimum along a parabolic relation given by
ðc11�c12Þλ2100

2κ1
� 81 with λ111= 0 in magnetic alloys. In study 2, we

identified a 3D surface topology on which the coercivity is small.
Below, we discuss some limitations of our findings and then
present its potential impact to the magnetic alloy development
program.
Two features of this work limit the conclusions we can draw

about the fundamental relationship between magnetic material
constants. First, we compute coercivities assuming a simple defect
structure (i.e., two spike domains formed around a nonmagnetic
inclusion) in an oblate ellipsoid. While defect geometry has been
shown to have surprisingly small effect on the coercivity values16,
it is not known whether and how different defect geometries, and
crystallographic texture of the magnetic alloy would affect our
predictions of the parabolic relation for minimum coercivity.
Second, the presence of mechanical loads, such as residual strains
or boundary loads, could affect the delicate balance between the
magnetic material constants. The idealized stress-free conditions
in our model are subject to the shortcomings associated with the
presence of microstructural inhomogeneities and surface condi-
tions in bulk materials. Whether accounting for these inhomo-
geneities would yield comparable results in experiments is an
open question. With these reservations in mind, we next discuss
the impact of our findings to the alloy-development program.
A key feature of our work is that we demonstrate that the

magnetostriction constants play an important role in governing
magnetic coercivity. These findings contrast with prior research in
which the magnetocrystalline anisotropy constant has been
regarded as the only material parameter that governs magnetic
hysteresis, and the contribution from magnetostriction constants
has been largely neglected. Consequently, the commonly
accepted norm in the literature is that magnetic alloys with small
magnetocrystalline anisotropy constant have small coercivity, and
magnetic alloys with large magnetocrystalline anisotropy constant
have large coercivity. However, by accounting for both magne-
tocrystalline anisotropy and magnetostriction constants, we show

that magnetic alloys, despite their large κ1 values, have small
coercivities at specific combinations of the magnetostriction
constants.
Another significant feature of our work is that we identify a

relationship ðc11�c12Þλ2100
2κ1

� 81 between magnetic material constants
at which the coercivity is small. This generic formula serves as a
theoretical guide to the alloy-development program, by suggest-
ing alternative combinations of material constants—beyond κ1=
0—to develop soft magnets. While this relation is based on 〈100〉
easy axes and might differ for alloys with different easy axes, our
work is intended to guide the search for soft magnetism in
ordinary ferromagnets with large ms. In future work, we intend to
investigate other easy axes, elastic stiffness constants, to further
lower coercivity in magnetic alloys35. With the recent advances in
atomic-scale engineering, the compositions of magnetic alloys can
be tuned atom-by-atom37,38. For these experimental approaches,
our prediction of the material constant formula could serve as a
guiding principle, to engineer magnetic alloy compositions to
small hysteresis. Overall, the fundamental relationship between
material constants provides initial steps to experimentalists to
discover soft magnets with high magnetocrystalline anisotropy
constants.
In conclusion, the present findings contribute to a more

nuanced understanding of how material constants, such as
magnetocrystalline anisotropy and magnetostriction constants,
affect magnetic hysteresis. Specifically, magnetoelastic interac-
tions have been regarded to play a negligible role in lowering
magnetic coercivity. Given the current findings, we quantitatively
demonstrate that the delicate balance between magnetocrystal-
line anisotropy, magnetostriction constants, and the spike-domain
microstructure (localized disturbance) is necessary to lower
magnetic coercivity. We propose a mathematical relationship
between material constants ðc11�c12Þλ2100

2κ1
� 81 at which minimum

coercivity can be achieved in a material with 〈100〉 easy axes.
More generally, our findings serve as a theoretical guide to
discover novel combinations of material constants that lower
coercivity in magnetic alloys.

METHODS
Micromagnetics
In our coercivity tool, we use micromagnetics theory that describes the
total free energy as a function of magnetization m, strain E, and
magnetostatic field Hd:

ψ ¼ RΩf∇m � Amþ κ1ðm2
1m

2
2 þm2

2m
2
3 þm2

3m
2
1Þ þ 1

2 ½E� E0ðmÞ�
�C½E� E0ðmÞ� � μ0msHext �mgdx þ RR3

μ0
2 Hdj j2dx: (10)

The form of Eq. (10) is identical to that used in our previous work, in
which we detail the meaning of the specific terms, material constants,
and normalizations16. For the present work, we note that the exchange
energy ∇m ⋅ A∇m penalizes spatial gradients of magnetization. More
generally, the anisotropy energy for cubic alloys would have contribu-
tions from higher order energy terms (e.g., κ2ðm2

1m
2
2m

2
3Þ), and these

additional anisotropy coefficients are likely in general to contribute to
our coercivity calculations. Although including these higher-order
anisotropy coefficients, e.g., κ2, could affect the easy axes of magnetiza-
tion of the material. For example at κ1 � �κ2

2 other crystallographic
directions, such as [111], [110], and a family of irrational directions,
would have similarly small magnetocrystalline anisotropy energy. This
warrants a systematic investigation in a future study, especially with κ1,
κ2, κ3 near actual measured values. However, we do not think that these
higher order terms would significantly affect our coercivity calculations
for the following reasons: first, in our computations, we model an oblate
ellipsoid (pancake-shaped) that supports an in-plane magnetization. This
ellipsoid geometry and the defect shape penalizes out-of-plane
magnetization and thus m3 ≈ 0 in our calculations of the magnetic
hysteresis. Consequently, the energy contribution from the higher-order
anisotropy term, κ2ðm2

1m
2
2m

2
3Þ, is negligible in our computations. Second,

in the nondimensional form of the free energy (see Eq. (5)), the energy
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contribution from the higher-order anisotropy term would scale as
κ2
κ1
ðm2

1m
2
2m

2
3Þ with ∣m∣= 1. This sixth-order energy term is expected not to

change the coercivity calculations significantly. We propose to investi-
gate the precise role of the higher-order anisotropy terms in a future
study, however, as a first step, we investigate coercivity as a function of
magnetocrystalline anisotropy κ1 and magnetostriction constant λ100.
The elastic energy 1

2 ½E� E0ðmÞ� �C½E� E0ðmÞ� penalizes mechanical
deformation away from the preferred strains, and the external energy,
μ0Hext ⋅m accounts for the mutual interaction between magnetization
moment and the applied field. Finally, the magnetostatic energy μ0

2 Hdj j2
computed in all of space R3 penalizes the stray fields generated by the
magnetic body in its surroundings.
We compute the evolution of the magnetization using an energy-

minimization technique, the generalized Landau–Lifshitz–Ginzburg equa-
tion, see Fig. 4:

∂m
∂τ

¼ �m ´H� αm ´ ðm ´HÞ: (11)

Here, H ¼ � 1
μ0m

2
s

δΨ
δm is the effective field, τ= γmst is the dimensionless

time step, γ is the gyromagnetic ratio, and α is the damping constant. We
numerically solve Eq. (11) using the Gauss–Siedel projection method18, and
identify equilibrium states when the magnetization evolution converges,
mnþ1 �mnj j<10�9. At each iteration we compute the magnetostatic field
Hd=−∇ζm and the strain E by solving their respective equilibrium equations:

∇ � ð�∇ζm þmsmÞ ¼ 0 on R3 (12)

∇ �CðE� E0Þ ¼ 0 on E: (13)

The magnetostatic equilibrium condition arises from the Maxwell
equations, namely ∇ ×Hd= 0→Hd=−∇ ζm and ∇ ⋅B=∇ ⋅ (Hd+msm)= 0.
In our calculations, we model a finite-sized domain Ω centered around a

nonmagnetic defect Ωd, see inset images in Fig. 4. This domain is several
times smaller than the actual size of the ellipsoid E; see Fig. 1. We define
the total demagnetization field as a sum of the local eHðxÞ and nonlocal

Fig. 4 Growth of a spike-domain microstructure during a typical magnetization reversal. A spike domain forms around a nonmagnetic
inclusion in the computation domain. This spike grows gradually on decreasing the external field (a–c). At the coercivity value, the spike
domain grows abruptly, resulting in magnetization reversal (d, e). The hysteresis loop plots the average magnetization in the computation
domain m1 as a function of the applied field Hext.

Fig. 5 A 3D visualization of the needle domain. a This needle domain forms around an embedded defect in our micromagnetic
computations. b The inset figure shows the needle domain with distinct surfaces (marked by surface-normal vectors n1, n2). The surface n1
approximately satisfies the strain-compatibility condition, however, the surface n2 is not compatible and contributes to nonzero elastic energy
in the system. The magnetization is denoted by m.
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contributions H. The local contribution eHðxÞ varies spatially and accounts
for the magnetostatic fields generated from defects and other imperfec-
tions inside the body. We calculate this local contribution by solving ∇ �
ðeHþms emÞ ¼ 0 on Ω. The nonlocal contribution is computed as
H ¼ �Nmsm. Here, N is the demagnetization-factor matrix that is a
tabulated geometric property of the ellipsoid. We note, from the tabulated
values in ref. 39, the demagnetization factors for an oblate ellipsoid
(pancake-shaped) are N11=N22= 0, N33= 1. The m is the constant
magnetization that is defined, such that ∫Ωm(x)dx= 0. This decomposition
simplifies our computational complexity, because we now model a local
domain Ω that is much smaller than modeling a domain in R3, and yet
account for the demagnetization contributions from both the body
geometry and the local defects. This decomposition is justified in the
appendix of our previous paper16. Both the magnetostatic and mechanical
equilibrium conditions in Eqs. (12)–(13) are solved in Fourier space, see
refs. 16,19 for further details.

Numerical calculations
In the present work, we calibrate our micromagnetic model for the FeNi
alloy with the following material constants: A= 10−11 J m−1, ms= 106Am−2,
μ0= 1.3 × 10−6NA−2, c11= 240.8GPa, c12= 89.2GPa, and c44= 75.8GPa. The
values of κ1, λ100, λ111 are systematically varied as detailed in the “Results”
section. Here, note that magnetic alloys with positive and negative
magnetocrystalline anisotropy constants have their easy axes along 〈100〉
and 〈111〉 crystallographic directions, respectively. To accommodate this
change of easy axes, we transform the energy potential from a cubic basis,
and further details of this transformation are described in the appendix of16.
We compute the coercivity of magnetic ellipsoids as a function of the

magnetocrystalline anisotropy and magnetostriction material constants. In
each computation, we model a domain of size 64 × 64 × 24 containing a
defect with 16 × 16 × 6 grid points. We choose a grid size such that the
domain walls span across 3–4 unit cells. We initialize the computational
domain with a uniform magnetization m=m1, and force the

Fig. 7 The strain and elastic energy distribution across the needle domain. a–c The strain distribution ϵ̂ij across lengths “AA”, “BB”, and “CC”
(as marked in Fig. 6(d)) in the computational domain. The strain distribution from the simulation, ϵ̂11 � 1, ϵ̂22 � ϵ̂33 � �0:5, is consistent with
the theoretical analysis in Fig. 6(a). The strains at the domain walls near the spike domain vary, indicating the diffuseness of the walls. The
shear strains are mostly zero throughout the computational domain. (d–f) A plot of the three polynomials f ðÊ;mÞ that accompany coefficients
2c44λ

2
100

κ1
, ðc11�c12Þλ2100

2κ1
, and c12λ

2
100

2κ1
in Eq. (5). In line with our hypothesis the polynomials accompanying 2c44λ

2
100

κ1
and c12λ

2
100

2κ1
make negligible energy

contributions for magnetization reversal at the transient state of the spike domain, and the polynomial accompanying ðc11�c12Þλ2100
2κ1

serves as an
energy barrier for magnetization reversal at the transient domain state.

Fig. 6 Schematic of the metastability of the Néel spikes. a With large applied field the spikes are collapsed onto the nonmagnetic defect,
stabilized by (diffuse) domain wall and demagnetization energy. b As the applied field is decreased, the spikes grow, so as to decrease
magnetostrictive and demagnetization energies. c The associated energy barrier is breached at small negative applied fields, and the spikes
run to the boundary. The state (c) is transient, and precedes the full switch to the lower energy ½100� magnetization; the final state is like (a)
except the spike domains are pointing NE and SW (see Fig. 4e). d An example simulation of the spike domain at its transient domain state
during magnetization reversal. Labels “AA”, “BB”, and “CC” mark lengths across which we examine the strain distribution in Fig. 7.
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magnetization inside the defect to be zero throughout the computation,
mj j ¼ 0, see Fig. 4. We apply a large external field along the easy axes, Hext

>> 0, and decrease it gradually in steps of δH= 0.25e1Oe. As we decrease
the applied field, a spike domain forms around the defect, see Fig. 1. This
spike domain grows in size as the applied field is further lowered until a
critical field value—known as the coercivity Hc—at which the magnetiza-
tion vector reverses. We use this approach to predict the coercivity of the
magnetic alloys at each combination of the magnetocrystalline anisotropy
and magnetostriction constants.
Specifically, in Study 1 and Study 2 we carry out a total of n= 2163 and

n= 605 computations respectively. In these computations, we system-
atically vary the material constants in the parameter space range of 0 ≤
κ1 ≤ 2000 J m−3, −2000μϵ ≤ λ100 ≤ 2000μϵ, and 0 ≤ λ111 ≤ 600μϵ, respec-
tively. Our investigation shows that the minimum coercivity is attained
for a parabolic relation κ1 / λ2100, and a total of over 2500 computations
are necessary to confirm this relationship.
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