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A B S T R A C T

Shape-morphing finds widespread utility, from the deployment of small stents and large solar sails to actuation
and propulsion in soft robotics. Origami structures provide a template for shape-morphing, but rules for
designing and folding the structures are challenging to integrate into broad and versatile design tools. Here,
we develop a sequential two-stage optimization framework to approximate a general surface by a deployable
origami structure. The optimization is performed over the space of all possible rigidly and flat-foldable
quadrilateral mesh origami. So, the origami structures produced by our framework come with desirable
engineering properties: they can be easily manufactured on a flat reference sheet, deployed to their target state
by a controlled folding motion, then to a compact folded state in applications involving storage and portability.
The attainable surfaces demonstrated include those with modest but diverse curvatures and unprecedented
ones with sharp ridges. The framework provides not only a tool to design various deployable and retractable
surfaces in engineering and architecture, but also a route to optimizing other properties and functionality.
1. Introduction

Origami is the art of paper folding, long appreciated for its aes-
thetic quality (Lang, 2011). Interest in the sciences and engineering
has followed Huffman (1976), Miura (1985), Kawasaki (1989), Hull
(1994), Tachi (2009), Filipov et al. (2015), Callens and Zadpoor (2018),
Li and You (2019), Gu and Chen (2020). Origami is now seen as a
tool for large and coordinated shape-morphing increasingly sought in
many applications. With the right folding patterns, one can achieve
rapid deployment across scales from medical stents to reconfigurable
antennas and solar sails (Kuribayashi et al., 2006; Zirbel et al., 2013;
Pellegrino, 2014). Origami is also useful as a mechanism for robotic
motion (Felton et al., 2014; Kim et al., 2018) or as a way to assemble
complex surfaces in manufacturing (Rogers et al., 2016). Yet, despite
this promise, inverse design in origami – the process of arranging rigid
panels and straight-line creases into a pattern that can be folded to
achieve desired configurations in space – is hindered by delicate and
nonlinear constraints. So it is challenging to develop broad design
principles for origami structures that balance considerations of practical
engineering and inverse design. Approaches based on symmetry and
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offshoots thereof (Gattas et al., 2013; Sareh and Guest, 2015a,b; Hu
et al., 2019; Feng et al., 2020b; McInerney et al., 2020) are ideal
for manufacturability and foldability, but generally lack the versatility
needed for inverse design. Approaches based on space-filling algorithms
and fine-scale fold operations (Lang, 1996; Demaine and Tachi, 2017)
are adept at handling the inverse problem, but typically yield crease
patterns that are difficult to fold by actuation or mechanical control
systems common to practical engineering. And approaches based on
fixing a crease pattern topology (Tachi, 2010; Dudte et al., 2016;
Pratapa et al., 2019; Dieleman et al., 2020; Dudte et al., 2021; Hu et al.,
2020; Hayakawa and Ohsaki, 2020), while attempting to strike this
balance, typically only perform well for one of the following criteria
or the other:

• Controlled deployability. A framework for producing designs that ex-
hibit coordinated shape-morphing, i.e., the ability to deploy as a
mechanism by a controlled folding motion from one state to another.
This functional property is needed in many applications, yet far from
guaranteed in origami design.
vailable online 2 September 2021
020-7683/© 2021 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.ijsolstr.2021.111224
Received 3 February 2021; Received in revised form 12 August 2021; Accepted 17
 August 2021

http://www.elsevier.com/locate/ijsolstr
http://www.elsevier.com/locate/ijsolstr
mailto:jxwang@pku.edu.cn
https://doi.org/10.1016/j.ijsolstr.2021.111224
https://doi.org/10.1016/j.ijsolstr.2021.111224
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2021.111224&domain=pdf


International Journal of Solids and Structures 234-235 (2022) 111224X. Dang et al.
• Versatility for inverse design. A framework that is general enough to
address a broad range of inverse design problems.

With this work, we seek a novel design framework for origami struc-
tures that both guarantees controlled deployability and is versatile for
inverse design.

Among various types of origami structures constructed with
polygonal-mesh crease patterns, rigidly and flat-foldable quadrilateral
mesh origami (RFFQM) is one special class with two fundamental prop-
erties. First, the origami can be initially designed and manufactured
on a flat reference domain, deployed to its target state, then finally to
a compact folded flat state, all without any stretching or bending of
the panels during the entire process. In addition, the compact folded
state can be unfolded to the target state in application involving
storage and portability. Second, the folding kinematics have only one
degree-of-freedom (DOF); all the folding angles vary in a coordinated
manner during the folding process. This feature simplifies the design
of a mechanical control system or actuation strategy. Given these
properties, we consider RFFQM to be a promising template for the
design of deployable structures, and develop our inverse design strategy
using this class of origami.

The canonical example of RFFQM is the famed Miura-Ori. This
origami often serves as a paradigm to demonstrate the efficacy and
utility of folding strategies (Miura, 1985; Schenk and Guest, 2013; Wei
et al., 2013; Silverberg et al., 2014; Na et al., 2015), yet it is just
a singular example in a much larger design space. RFFQM are now
thoroughly characterized (Tachi, 2009; Lang and Howell, 2018; Feng
et al., 2020a). Our previous work (Feng et al., 2020a) employed the
concept of rank-one compatibility (Ball and James, 1989; Bhattacharya,
2003; Song et al., 2013) to derive an explicit marching algorithm for the
designs and deformations of all possible RFFQM. Here, we demonstrate
that this marching algorithm can be an effective ingredient to inverse
design when supplemented with a careful optimization procedure. Im-
portantly, to the success of this strategy, the configuration space of all
RFFQM is quite broad: While research on RFFQM has often focused on
symmetric Miura-Ori like patterns (Gattas et al., 2013; Sareh and Guest,
2015a,b; Hu et al., 2019), which exhibit simple (planar/cylindrical)
modes of deformation on folding, generic RFFQM patterns can have
significant spatial variations in their crease design, thus enriching their
possible deformation modes. We can therefore explore the configura-
tion space of RFFQM systematically using the marching algorithm with
the goal of approximating a variety of surfaces.

To this end, we develop a general, efficient and widely applicable
inverse design framework to achieve a targeted surface by controlled
deployment of a RFFQM crease pattern. The design process is composed
of two progressive optimization steps to pursue the best approximation
of the targeted surface while strictly guaranteeing the non-linear con-
straints induced from rigid and flat foldability. By optimizing the input
parameters of the marching algorithm described above, we minimize
the difference between the shape of an origami structure produced by
RFFQM and the targeted surface to achieve the optimal design. The
article is arranged as follows. We first recall the marching algorithm
that parameterizes all possible RFFQM. Then we present the schematic
of our inverse design method. As illustrations of the approach, diverse
examples of surfaces with varying curvatures and even sharp ridges
are presented. We also highlight the versatility of our optimization
framework by extending it to design more general quad-mesh origami
that accurately approximates a human face.

2. Inverse design framework

2.1. Marching algorithm for deployable origami by RFFQM

To begin, we recall the characterization of the designs and deforma-
tions of all RFFQM via the marching algorithm derived in Feng et al.
(2020a). This algorithm will be a key ingredient to our inverse design
framework.
2

A quadrilateral mesh crease pattern is comprised of quad panels (𝑀
columns and 𝑁 rows) arranged in a plane and connected along creases.
RFFQM is a special class of quad-mesh origami patterns with the
desirable properties for deployment that restrict their design. Specif-
ically and as illustrated in Fig. 1(a), a RFFQM crease pattern with
𝑀 × 𝑁 panels is characterized by two sector angles at each vertex:
0 < 𝛼𝑖,𝑗 , 𝛽𝑖,𝑗 < 𝜋, for 𝑖 = 0, 1,… ,𝑀 , 𝑗 = 0, 1,… , 𝑁 . The other two
sector angles at each vertex are constrained so that the sum of all four
angles is 2𝜋 (developability) and the sum of opposite angles is 𝜋 (flat-
foldability/Kawasaki’s condition). These conditions are necessary for
RFFQM but far from sufficient.

Here, we address sufficiency using a marching algorithm that is
initialized by the input data indicated schematically by the red and
blue line segments in Fig. 1(a). This data is a collection of all of the
angles 0 < 𝛼𝑖,0, 𝛽𝑖,0, 𝛼0,𝑗 , 𝛽0,𝑗 < 𝜋, lengths 𝑤𝑖,0, 𝑙0,𝑗 > 0 and signs
𝜎𝑖,0, 𝜎0,𝑗 = + or − that parameterize the left and bottom ‘‘L’’-shaped
boundary creases on the 𝑀 × 𝑁 pattern. Note, the signs encode valid
mountain-valley (M-V) assignments (Fig. 1(e)) at each vertex on the
‘‘L’’, and the exact formula relating signs to the M-V assignments is
provided in Appendix A. From hereon, we represent this data compactly
through arrays 𝜶0, 𝒍0 and 𝝈0 that list all such boundary angles, lengths
and signs, respectively.

We proved in Feng et al. (2020a) that it is possible to march
algorithmically and discover that:

Theorem 1. For any input data (𝜶0, 𝒍0,𝝈0) assigned as above, there is
exactly one or zero RFFQM consistent with this data set.

This theorem is established by a series of local calculations, starting
at the panel on the bottom-left corner of the pattern (Fig. 1(b)). The
input data provides the geometry and M-V assignment of creases at
three of four vertices of this panel. The fourth vertex is then charac-
terized by attempting to constrain the crease pattern to be rigidly and
flat-foldable. The fundamental result derived in Feng et al. (2020a) is
that, under this constraint, the crease geometry and M-V assignment at
this final vertex are either uniquely determined from the other three by
explicit formulas, or the data is incompatible.1 In the case of compatible
data, we can proceed to an adjacent panel, and iterate the calculation
since we again know all relevant data at three of four vertices. The
criteria for compatible data and the iterative formulas are provided
in Appendix A.2–4. By this procedure, we obtain an explicit marching
algorithm that either discovers a unique RFFQM pattern or fails due to
incompatibility at some point during iteration.

Let us assume compatible input data (𝜶0, 𝒍0,𝝈0), so that we can
compute the overall crease pattern by this marching algorithm. This
pattern is guaranteed to exhibit a single DOF folding motion that
evolves each folding angle from 0 to 𝜋 (or −𝜋) monotonically under the
prescribed M-V assignments. We characterize this motion by a folding
parameter 𝜔 such that 𝜔 = 0 describes the flat crease pattern, 𝜔 = 𝜋 the
folded-flat state, and 0 < 𝜔 < 𝜋 evolves the pattern from flat to folded
flat (Fig. 1(c)). As a result, the kinematics of the origami structure are
parameterized by
{

𝐲𝑖,𝑗 (𝜶0, 𝒍0,𝝈0, 𝜔)
|

|

|

𝑖 = 0, 1,… ,𝑀, 𝑗 = 0, 1,… , 𝑁
}

, (1)

where 𝐲𝑖,𝑗 are the vertex positions (in 3D) on the deformed origami
structure (determined by 𝜶0, 𝒍0,𝝈0, 𝜔). This parameterization is also
determined explicitly by marching (Feng et al., 2020a); the formulas
for doing so are provided in Appendix A.5–7. Briefly, regarding these
formulas, the folding parameter 𝜔 corresponds to the folding angle
of the fictitious crease below the (0, 0) vertex shown in Fig. 1(a) and
(d). This crease, along with the other boundary creases at the left and
bottom boundary, are used to seed the pattern and its kinematics but
are not included in the output (Fig. 1(c)) for the sake of convenience;

1 This means that there is no solution for the fourth vertex.
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Fig. 1. Marching algorithm for deployable origami. (a) The design of a RFFQM crease pattern is fully determined by input data provided at the left and bottom boundary (i.e., the
red and blue solid lines and M-V assignment at each boundary vertex), which is a collection of angles, lengths, and signs encoding the M-V assignment on the ‘‘L’’-shaped outline.
(b) The algorithm is initialized at the lower left corner. Since input data at three of four vertices is provided, the fourth vertex is determined by foldability. The overall crease
pattern is then obtained by marching and making repeated use of this basic fact. (c) The crease pattern emerging from this algorithm is RFFQM. The pattern’s deformations are
characterized by a single DOF – a continuous motion in 𝜔 from flat (𝜔 = 0) to folded-flat (𝜔 = 𝜋). (d) The folding parameter 𝜔 is defined by the folding angle of the crease
below the vertex at the lower left corner, i.e., the red dashed crease in this figure. (e) The M-V assignment for the motion is indicated by the choice of + or − at each vertex.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
their exclusion streamlines the implementation of the overall marching
algorithm.

For inverse design, a key point with the marching algorithm is that
discovering a RFFQM pattern and computing its kinematics in Eq. (1)
are efficient calculations; both the pattern and any of its folded states
are determined by computations that scale linearly with the number of
panels as 𝑂(𝑀𝑁) due to the explicit iterative nature of the procedure.
Consequently, we can dedicate most of our computational resources
towards solving an inverse design problem, rather than computing the
design and kinematic constraints involved in the discovery of such
patterns.

2.2. General inverse design strategies

Inverse problems in origami concern designing crease patterns to
fold into structures with specified properties. Here, we describe a gen-
eral framework for the inverse design of deployable origami structures
by RFFQM, and discuss our approach in the context of related research.

Let {𝐲𝑖,𝑗} denote a collection of vertices 𝐲0,0, 𝐲1,0,… , 𝐲𝑀,𝑁 in 3D
space. Suppose we want to arrange the vertices to correspond to an
origami deformation of a RFFQM crease pattern with 𝑀 × 𝑁 panels
that, in addition, minimizes an objective function consistent with some
inverse problem. Tachi’s Theorem (Tachi, 2009) indicates that we may
describe such a general optimization in the following way:

min
{𝐲𝑖,𝑗}

𝑓obj.({𝐲𝑖,𝑗})

subject to

⎧

⎪

⎪

⎨

⎪

⎪

𝑔dev.(𝐲𝑖,𝑗 , 𝐲𝑖+1,𝑗 , 𝐲𝑖,𝑗+1, 𝐲𝑖−1,𝑗 , 𝐲𝑖,𝑗−1) = 0
if (𝑖, 𝑗) indexes an interior vertex,

𝑔ffold.(𝐲𝑖,𝑗 , 𝐲𝑖+1,𝑗 , 𝐲𝑖,𝑗+1, 𝐲𝑖−1,𝑗 , 𝐲𝑖,𝑗−1) = 0

(2)
3

⎩

if (𝑖, 𝑗) indexes an interior vertex.
Here, 𝑓obj. corresponds to some suitably chosen objective function
of all or some of the vertices {𝐲𝑖,𝑗}, 𝑔dev. denotes the developability
constraint (the sector angles at a vertex sum to 2𝜋), and 𝑔ffold. the flat-
foldable constraint (opposite sector angles at a vertex sum to 𝜋). As
indicated, these constraints can be written in terms of five neighboring
vertices on R3 via the formulas
𝑔dev.(𝐯0, 𝐯1, 𝐯2, 𝐯3, 𝐯4) =

∑

𝑖=1,…,4
arccos

( 𝐯𝑖−𝐯0
|𝐯𝑖−𝐯0|

⋅ 𝐯𝑖+1−𝐯0
|𝐯𝑖+1−𝐯0|

)

− 2𝜋,

𝑔ffold.(𝐯0, 𝐯1, 𝐯2, 𝐯3, 𝐯4) = arccos
( 𝐯2−𝐯0
|𝐯2−𝐯0|

⋅ 𝐯1−𝐯0
|𝐯1−𝐯0|

)

+ arccos
( 𝐯4−𝐯0
|𝐯4−𝐯0|

⋅ 𝐯3−𝐯0
|𝐯3−𝐯0|

)

− 𝜋,

(3)

where 𝐯5 = 𝐯1 for the former formula, and the side lengths |𝐯𝑖 − 𝐯0| are
assumed2 to be positive to apply the formulas. More precisely, Tachi’s
theorem furnishes the following result: If we can find vertices {𝐲𝑖,𝑗}

• that solve all the 2(𝑀 − 1)(𝑁 − 1) equality constraints in Eq. (2) for
an 𝑀 ×𝑁 crease pattern

• and that do not all lie on a plane in R3

then the set {𝐲𝑖,𝑗} describes the vertices of a rigid origami deformation
of an 𝑀 × 𝑁 RFFQM crease pattern. So any solution to Eq. (2)
corresponds to an origami structure that can be designed on a flat
reference crease pattern and deployed by a folding motion (mechanism)
to achieve the objective. Note though, regardless of the objective func-
tion, this optimization is a non-convex problem because the equality
constraints are nonlinear. There are also 2(𝑀 − 1)(𝑁 − 1) nonlinear
equality constraints and 3(𝑀 + 1)(𝑁 + 1) unknowns to optimize in the

2 The assumption can be enforced by introducing inequality constraints to
the optimization. Alternatively, a well-chosen objective function will ensure
that optimization does not drive the design towards vanishing side lengths.
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collection of vertices {𝐲𝑖,𝑗}. Thus, the optimization is fundamentally
hallenging and fraught with potential scalability issues. Nevertheless,
any researchers have attacked various aspects of this problem.

Tachi (2010), in particular, pioneered the approach in Eq. (2) as
strategy for free-form origami by linearizing around known origami

atterns and choosing an objective that perturbs the vertices towards
esired positions, while maintaining the constraints. Dudte et al. (2016)
ugmented the equality constraints in Eq. (2) to allow some flexibility
uring the optimization and used this approach to demonstrate a
ariety of origami structures that approximate curved surfaces. Im-
ortantly though, they achieved these results typically by relaxing the
lat-foldable constraint 𝑔ffold; so the origami designs produced by their

framework generally cannot deploy as strict mechanisms from the flat
state to the optimized state. Hu et al. (2020) recently adapted the ap-
proach of Dudte et al. to allow for the flat-foldable constraint. However,
their method reported difficulty in converging to a solution for crease
patterns with a large number of panels; an issue, we surmise, is likely
due to the significant challenge of satisfying all the equality constraints
numerically when optimizing a finely meshed origami pattern.

Our key idea is to eliminate the equality constraints altogether by
aking advantage of the characterization of RFFQM furnished by the
arching algorithm. As discussed, this algorithm efficiently parame-

erizes a RFFQM crease pattern by the angles, lengths and mountain-
alley assignments on the ‘‘L’’-shaped boundary indicated by the arrays
𝜶0, 𝒍0,𝝈0), and it efficiently parameterizes the kinematics by a folding
arameter 𝜔. We can therefore directly and efficiently replace the
ptimization in Eq. (2) with

min
𝜶0 ,𝒍0 ,𝝈0 ,𝜔

𝑓obj.(𝜶0, 𝒍0,𝝈0, 𝜔)

subject to
{

(𝜶0, 𝒍0,𝝈0) is compatible input data,
𝜔 ∈ (0, 𝜋).

(4)

ere we simply replace 𝑓obj. with 𝑓obj.(𝜶0, 𝒍0,𝝈0, 𝜔) = 𝑓obj.({𝐲𝑖,𝑗 (𝜶0, 𝒍0,
0, 𝜔)}); so it is the same general objective function, just with the
ertices explicitly parameterized by the marching algorithm.

While Eq. (4) describes a general optimization scheme (equivalent
o Eq. (2)) over the family of RFFQM crease patterns, the variable
0 is an array of discrete variables and thus difficult to optimize
umerically. As a point of practical implementation, we instead tackle
his optimization problem under a prescribed �̄�0, i.e.,

min
𝜶0 ,𝒍0 ,𝜔

𝑓obj(𝜶0, 𝒍0, 𝜔) = 𝑓obj.(𝜶0, 𝒍0, �̄�0, 𝜔)

subject to
{

(𝜶0, 𝒍0, �̄�0) is compatible input data,
𝜔 ∈ (0, 𝜋).

(5)

In this setting, the structure of compatible input data has nice prop-
rties for numerical implementation: Suppose we have identified some
ompatible input data (�̄�0, �̄�0, �̄�0) (e.g., a well-known RFFQM origami
tructure like the Miura-Ori), then we can rigorously show that, with M-
assignment indicated by �̄�0 held fixed, there is an open neighborhood

f (�̄�0, �̄�0) on which the data is also compatible. Additionally, we can
how that the formulas for vertex positions 𝐲𝑖,𝑗 (𝜶0, 𝒍0, �̄�0, 𝜔) are smooth
or (𝜶0, 𝒍0) in this neighborhood and for 𝜔 ∈ (0, 𝜋). As a result, the
ptimization in Eq. (5) is a standard nonlinear programming problem
ver an open subset of R3𝑀+3𝑁+2 with smooth formula generating
olded origami configurations, which means it can be treated using
tandard numerical schemes (see Appendix E). A precise statement and
roof of this technical result is provided in Appendix A.8.

Finally, there are some notable benefits to formulating the opti-
ization via Eq. (5) rather than using vertex based approaches like
q. (2):

• Strict guarantees on deployability of the origami. Most of the striking
examples of optimized origami structures found in the literature,
such as in Dudte et al. (2016), do not actually solve the opti-
mization in Eq. (2); rather, they solve an augmented vertex based
4

approach that relaxes the flat-foldable constraints. In the relaxed
setting, it is much easier to achieve an objective (e.g., surface
approximation) since the optimization has less constraints. But
there are also no guarantees that a functional property like deploy-
ability – the ability to fold as a mechanism to the target origami
structure, either from the flat crease pattern or from a compact
state – can be ensured.
In contrast, every origami structure obtained by the optimization
in Eq. (5) is rigidly and flat-foldable, so deployable in the sense
described above.

• A direct encoding of the dimensionality of the design space. The
design space for a RFFQM is proportional to the number of
vertices on the boundary 𝑂(𝑀+𝑁), not the number of vertices of
the entire pattern 𝑂(𝑀𝑁). This fact is directly encoded into the
optimization in Eq. (5), yet not at all transparent3 in the vertex
based approach in Eq. (2).
This disparity in dimensionality has significant implications for
how one should design an objective function. In particular, a
common approach to constrained optimization is to introduce ad-
ditional constraints that are consistent with the desired objective.
In the optimization of surfaces developed in Dudte et al. (2016),
for example, the authors directly attach half of the vertices to
the surface they wish to approximate, then attempt to use the
remaining freedom to satisfy the origami constraints during the
optimization. This procedure evidently works well when the flat-
foldable constraints are relaxed. However, there are only 𝑂(𝑀 +
𝑁) degrees-of-freedom in the design space of RFFQM. So any
objective that introduces an additional set of 𝑂(𝑀𝑁) nontrivial
constraints to Eq. (2) is unlikely to be feasible for 𝑀𝑁 ≫ 1.

.3. Optimizing for targeted surfaces

We now restrict our focus to a class of challenging and important
nverse problems — that of approximating targeted surfaces by optimiz-
ng over the family of deployable origami in Eq. (1). We note however
hat the marching algorithm and the procedure outlined with Eq. (5)
an be used for other optimization strategies, e.g., optimal packaging,
ocomotion, or optimization of functional or dynamic properties.

In the problem of approximating surfaces using deployable origami
tructures, we confront three basic issues:

(I) Origami structures are rough, whereas the surfaces we often aim
to approximate are smooth.

(II) The delicate non-linear couplings relating (𝜶0, 𝒍0,𝝈0, 𝜔) to the
origami structure Eq. (1) and then to a surface, via some 𝑓obj.
in Eq. (5), lead to an inverse design problem of minimizing a
non-convex objective function over a non-convex set.

(III) Ensuring the functional property of deployability, while also
obtaining a quality approximation, is challenging because the
dimensionality of the design space is small, i.e., 𝑂(𝑀 + 𝑁) as
opposed to 𝑂(𝑀𝑁).

or these reasons, success in inverse design requires a careful strategy,
oth for formulating the optimization and choosing an initial condition.

We address these issues by embracing the Miura-Ori as a template
or inverse design. The key ideas are described in Fig. 2(a). The initial
rigami shown is a Miura-Ori that has been folded along its single DOF
otion to a 3D configuration, which we call a partially folded state

3 By counting DOFs and constraints in Eq. (2), one might incorrectly suspect
hat the design space in this optimization is in the order of 𝑀𝑁 . This
ounting argument is, however, inappropriate because the equality constraints
re nonlinear. As a simple example, the optimization problem ‘‘min 𝑓 (𝐲) subject
o |𝐲| = 0’’ has a unique solution 𝐲 = 𝟎 no matter the dimension of the ambient

Euclidean space. This solution always has zero DOF, even though the counting

argument would suggest the DOFs of the ambient space.
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Fig. 2. Inverse design schematic. (a) Discretization: the targeted surface is discretized matching the grid number and offset of the initial Miura-Ori. (b) Shape optimization: the
targeted surface and origami surface are triangulated, and discrete notions of metric and curvature are compared on like triangles to be optimized for shape. (c) Registration: the
targeted surface is then rotated �̄� and translated �̄� onto the shape optimized patten in a process termed registration. (d) Point optimization: a final optimization is performed to
match the origami vertices to like vertices of the registered targeted surface to produce the optimal origami. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
(since it is neither flat, nor fully folded flat). Importantly, this partially
folded Miura-Ori, while itself a rugged corrugated structure, has an
ordered collection of points forming red and blue lattices that discretize
a planar region in 3D space. Note, these lattices are offset from one
another in the plane but have identical rectangular unit cells. Also, this
basic fact holds regardless of the geometry/number of unit cells or the
choice of partially folded state. We therefore take the offset lattice that
emerges from a partially folded Miura-Ori as a seed to discretize the
targeted surface and initialize the two-stage optimization that compares
deployable origami structures to this surface.

Basic setup with the Miura-Ori. To explain these ideas concretely, it is
useful to describe the Miura-Ori using the marching algorithm. This is
done by first choosing the input data to the algorithm: (𝜶M-O, 𝒍M-O,𝝈M-O)
such that
𝛼𝑖,0 = 𝛼, 𝛽𝑖,0 = 𝜋 − 𝛼, for all 𝑖,
𝛼0,𝑗 = 𝛼, 𝛽0,𝑗 = 𝜋 − 𝛼, for all 𝑗 even,
𝛼0,𝑗 = 𝜋 − 𝛼, 𝛽0,𝑗 = 𝛼, for all 𝑗 odd,
𝑤𝑖,0 = 𝑤, 𝑙0,𝑗 = 𝑙, for all 𝑖 and 𝑗,

𝜎𝑖,0 = +, 𝜎0,𝑗 = +, for all 𝑖 and 𝑗,

(6)

where 𝑖 and 𝑗 are cycled to give data consistent with an 𝑀 ×𝑁 pattern
and 0 < 𝛼 < 𝜋 and 𝑙, 𝑤 > 0 describe the geometry and corrugation of the
origami. We also assume 𝑀 and 𝑁 are even to simplify some notation
below. This data, together with a folding parameter 0 < 𝜔M-O <
𝜋, initializes the marching algorithm, which then produces a generic
5

partially folded Miura-Ori with vertices

𝐲𝑖,𝑗M-O = 𝐲𝑖,𝑗 (𝜶M-O, 𝒍M-O,𝝈M-O, 𝜔M-O) (7)

in 3D space (recall Eq. (1)). This origami has an offset lattice, e.g., the
red and blue mesh points for the initial origami in Fig. 2(a). It is given
by collecting the vertices on the ‘‘top’’ surface of the origami through
the formulas

𝐫𝑖,𝑗M-O = 𝐲2𝑖,𝑗M-O (8)

for 𝑖 = 0, 1,… ,𝑀∕2 and 𝑗 = 0, 1,… , 𝑁 . (𝑀∕2 is an integer by
assumption.)

Now, suppose we alter the angle and length input data in Eq. (6)
with perturbations 𝜶0 = 𝜶M-O + 𝜹𝜶0 and 𝒍0 = 𝒍M-O + 𝜹𝒍0, while keeping
the M-V assignment 𝝈M-O fixed. A large class of these perturbations
is compatible with RFFQM.4 We can therefore initialize the marching
algorithm, with a compatible perturbation and a folding parameter
0 < 𝜔 < 𝜋, to produce a new origami structure. As in the Miura-Ori case,
we can collect the vertices on the ‘‘top’’ surface of this new origami
structure through the formulas

𝐫𝑖,𝑗 (𝜶0, 𝒍0, 𝜔) = 𝐲2𝑖,𝑗 (𝜶0, 𝒍0,𝝈M-O, 𝜔) (9)

4 The data is guaranteed to be compatible for sufficiently small perturba-
tions. By our numerical investigation, it is also evident that the perturbations
do not need to be all that small.
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for 𝑖, 𝑗 cycled as in Eq. (8). One way to view this collection is as a
smooth deformation of the offset lattice in Eq. (8). Embracing this
viewpoint, we will call the mesh of these points an origami surface.
Note, each such surface is an explicit function of (𝜶0, 𝒍0, 𝜔), and these
parameters can be varied. So we can explore this large family of origami
surfaces for the purpose of inverse design.

Targeted surfaces of practical interest can often be described by a
parameterization that maps a rectangular region in 2𝐷 to the surface.
Suppose we have one such surface given by �̄�(𝑢, 𝑣) for 𝑢 ∈ [𝑢𝐿, 𝑢𝑅]
and 𝑣 ∈ [𝑣𝐿, 𝑣𝑅], e.g., the spherical cap in Fig. 2(a), and we wish to
find an origami surface that resembles it. Since the origami surfaces
above are inherently described by a discrete collection of points, we
find it natural to make comparisons by invoking a discretization of the
targeted surface given by

�̄�𝑖,𝑗 = �̄�(𝑢𝑖,𝑗 , 𝑣𝑖,𝑗 ) (10)

for 𝑖, 𝑗 cycled as in Eq. (8). Here, the discrete points 𝑢𝑖,𝑗 ∈ [𝑢𝐿, 𝑢𝑅]
and 𝑣𝑖,𝑗 ∈ [𝑣𝐿, 𝑣𝑅] are chosen based on a Miura-Ori offset lattice to
exhibit the same zig-zag vertex distribution. Recall that the offset lattice
in Eq. (8) depends on many parameters: 𝛼,𝑤, 𝑙,𝑁,𝑀 and 𝜔M-O. For
simplicity and a uniform discretization, we choose 𝛼 = 𝜋∕3, 𝑤 = 𝑙 and
𝜔M-O = 3𝜋∕4. This choice results in an offset lattice with a nearly square
unit cell of side lengths 𝐿 ≈ 𝑊 ≈ 𝑙, aspect ratio 𝑊 ∕𝐿 ≈ 1, total width
≈ 𝑙𝑀∕2, and total length ≈ 𝑙𝑁∕2. So we can treat the even integer 𝑀
as a free parameter dictating of the number of panels in the origami,
then choose an even integer 𝑁 that best approximates the aspect ratio
of the characteristic lengths5 of the targeted surfaces �̄�𝑢∕�̄�𝑣 ≈ 𝑀∕𝑁 ,
and finally 𝑙 such that 𝑙𝑀∕2 ≈ �̄�𝑢. By these choices, we can use the
construction in Appendix B.1 to project the offset lattice to the (𝑢, 𝑣)-
plane, yielding a collection of points (𝑢𝑖,𝑗 , 𝑣𝑖,𝑗 ) that suitably discretize
this space.

To this point, we have outlined a general strategy for obtaining
a family of deployable origami surfaces and discretizing a (fairly)
arbitrary targeted surface by choosing to embrace the Miura-Ori —
both for how we collect the points to describe origami surfaces and
how we discretize the targeted surface. These choices come with many
benefits to the optimization, the heuristics of which are: (1) The Miura-
Ori is buried deep in the compatible set of parameters for RFFQM,
meaning it can be perturbed in many directions without issues of
incompatibility limiting the optimization. (2) The red and blue mesh
(Fig. 2(a)) collectively remains regular, even for large perturbations
of a Miura-Ori. So there is a level of consistency when comparing
these mesh points to analogous points on a smooth targeted surface.
(3) Finally, perturbed Miura-Ori surfaces have access to a wide range of
effective curvatures and metrics. So the optimization does not get stuck
in local minima of poor quality, at least for most surfaces of practical
interest. By combining these choices with a careful two-stage optimiza-
tion procedure, we develop an approach that largely overcomes the
issues discussed with (I–III). We develop the optimization procedure
below, again using Fig. 2 to guide the exposition. Additional details on
the procedure are provided in Appendix B.2.

Step 1: Discretization. We fix a targeted surface of our choosing,
�̄�(𝑢, 𝑣), 𝑢 ∈ [𝑢𝐿, 𝑢𝑅] and 𝑣𝑖,𝑗 ∈ [𝑣𝐿, 𝑣𝑅]. We also fix an even integer
𝑀 , which sets the number of columns of panels for the origami. From
these quantities, we construct the discretization of the targeted surface
�̄�𝑖,𝑗 and the meshing of points of the origami surface 𝐫𝑖,𝑗 (𝜶0, 𝒍0, 𝜔) based
on the Miura-Ori offset lattice, exactly as outlined with Eqs. (6)–(10).
For reference, we recall that the Miura-Ori parameters are labeled
(𝜶M-O, 𝒍M-O,𝝈M-O, 𝜔M-O); also, that the length input is chosen so that
𝑤 = 𝑙 in Eq. (6). We therefore have 𝒍M-O = 𝑙𝟏 for an array 𝟏, where
each component is 1.

5 Here the characteristic lengths �̄�𝑢 and �̄�𝑣 represent the total size of the
targeted surface along the 𝑢 and 𝑣 directions, respectively. For example we
can take �̄� = 𝑢𝑅 − 𝑢𝐿 and �̄� = 𝑣𝑅 − 𝑣𝐿 for the spherical cap in Fig. 2.
6

𝑢 𝑣 t
Step 2: Shape optimization. It is a well-known fact of differential
geometry that two smooth parameterizations of surfaces from the same
underlying domain are the same (up to a Euclidean transformation) if
and only if their first and second fundamental forms are the same. These
geometric quantities are therefore the natural points of comparison for
such parameterizations. We consider an analogue of this comparison
in an optimization of shape for triangular meshes of the targeted
and origami surfaces. Specifically, we triangulate the two discretized
surfaces (far-right, Fig. 2(b)) and compare shape operators that quantify
discrete yet frame indifferent notions of metric and curvature on like
triangles.

The procedure we outline originates from Grinspun et al. (2006) and
has also been employed in the design of shape-changing biomimetic
structures (Van Rees et al., 2018). As sketched in Fig. 3(a–d), we notice
that the offset lattices and the discretization of surfaces (Eqs. (9) and
(10)) based on these lattices have natural triangulations. Specifically,
there are two sets of triangulations – one of the discrete origami surface
in Eq. (9) and one of the discrete targeted surface in Eq. (10) – with a
one-to-one correspondence of triangles on each surface for which it is
appropriate to compare shape. We triangulate the two surfaces in this
way and define shape operators on these triangles. Consider a triangle
on the interior of one of these surfaces and introduce the labeling in
Fig. 3(e) and (f). The shape operators for this triangle are

𝐚 = 1
⟨𝐿⟩

[

|𝐭0| |𝐭1| |𝐭2|
]

,

𝐛 = 2

⎡

⎢

⎢

⎢

⎢

⎣

(𝐧1−𝐧0)⋅𝐭0
|𝐭0|

(𝐧1−𝐧0)⋅𝐭1
|𝐭1|

(𝐧1−𝐧0)⋅𝐭2
|𝐭2|

(𝐧2−𝐧1)⋅𝐭0
|𝐭0|

(𝐧2−𝐧1)⋅𝐭1
|𝐭1|

(𝐧2−𝐧1)⋅𝐭2
|𝐭2|

(𝐧0−𝐧2)⋅𝐭0
|𝐭0|

(𝐧0−𝐧2)⋅𝐭1
|𝐭1|

(𝐧0−𝐧2)⋅𝐭2
|𝐭2|

⎤

⎥

⎥

⎥

⎥

⎦

,
(11)

where 𝐚 is non-dimensionalized by ⟨𝐿⟩, the average length of the quad-
esh edges of the targeted surface (see Appendix B.2). In terms of

he triangulation, the array 𝐚 characterizes the shape of the triangle,
nd the matrix 𝐛 describes its curvature since it relates to how this
riangle is orientated relative to its neighbors. For completeness, the
hape operators for a boundary triangle take on a different form: we
ompute the array 𝐚 as above but only compute one row of 𝐛 since
nly two normals are defined in this case.

For the optimization, we list the local shape operators into a global
‘shape array’’, so that each interior triangle contributes twelve ele-

ents to the list (the components of 𝐚 and 𝐛 above) and each boundary
riangle six. We let �̄� denote the shape array for the targeted surface
nd 𝐒(𝜶0, 𝒍0, 𝜔) the shape array for the origami surface. We organize
hese shape arrays so that shape operator components of corresponding
riangles – on the origami and targeted surface – have matching place-
ent in these arrays. With this organization, it is possible to show that

̄ = 𝐒(𝜶0, 𝒍0, 𝜔) if and only if the two triangular meshes are the same up
o Euclidean transformation; hence, the connection to first and second
undamental forms. We therefore introduce

𝑓Sh.(𝜶0, 𝑙0, 𝜔) =
1
𝑁𝑇

|�̄� − 𝐒(𝜶0, 𝑙0𝟏, 𝜔)|
2 (12)

s the objective function if (𝜶0, 𝑙0𝟏,𝝈M-O) is compatible input data to
he marching algorithm, where 𝑁𝑇 is the number of vertices on the
rigami surface. If the data is, instead, incompatible, a large positive
onstant 𝐶Num. ≫ 𝑓Sh.(𝜶M-O, 𝑙, 𝜔M-O) is returned. This is a numerically
onvenient way to enforce compatibility during the optimization. Note,
he length input data here, 𝒍0 = 𝑙0𝟏, is restricted to be a rescaling of the
iura-Ori length input in order to preserve a relatively uniform aspect

atio for the origami panels. To compute an optimum, we start from
he Miura-Ori input data (𝜶M-O, 𝑙, 𝜔M-O) and iterate numerically (see
ppendix E) to arrive at a local minimum for 𝑓Sh.(⋅) or an origami con-

iguration which lies near the boundary of the compatible set of RFFQM
nput parameters. For reference, we label this optimum (𝜶⋆

0 , 𝑙
⋆
0 , 𝜔

⋆). The
verall procedure is sketched in Fig. 2(b).
Step 3: Registration. The origami surface obtained from shape op-

imization is indicated by the collection of vertices 𝐫𝑖,𝑗 (𝜶⋆, 𝑙⋆𝟏, 𝜔⋆).
0 0
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Fig. 3. Shape description of the discrete surface: (a) Quad mesh in the parametric space; (b) Triangular mesh in the parametric space; (c) Quad mesh in the configuration space;
(d) Triangular mesh in the configuration space. (e) Discretization of the tangent and normal vectors on the triangular mesh (reproduced from Van Rees et al. (2018)). (f) Midedge
normal (reproduced from Grinspun et al. (2006)). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Since shape optimization is frame indifferent, these vertices are not
necessarily aligned and oriented with the like vertices �̄�𝑖,𝑗 on the
targeted surface. Thus, we apply a rigid motion to the targeted surface
to fit the vertices as best as possible by solving

min
𝐑∈𝑆𝑂(3),𝐛∈R3

∑

𝑖,𝑗
|𝐫𝑖,𝑗 (𝜶⋆

0 , 𝑙
⋆
0 𝟏, 𝜔

⋆) − (𝐑�̄�𝑖,𝑗 + 𝐛)|2 (13)

(Fig. 2(c)). Since the minimizing rigid motion here can be large, the
solution is computed numerically using the coherent point drift method
(see Appendix E), which is based on well-established ideas (Myronenko
and Song, 2010). For reference, we label the minimizing pair (�̄�, �̄�).

Step 4: Point optimization. For many targeted surfaces, shape opti-
mization provides a reasonable global approximation of shape. How-
ever, there can be significant local deviation (e.g., near the boundary of
the pattern after registration; Fig. 2(c)). We improve the approximation
by perturbing the parameters (𝜶⋆

0 , 𝑙
⋆
0 𝟏, 𝜔

⋆) to bring like vertices on the
origami and targeted surface closer together (Fig. 2(d)). Specifically,
we introduce the second optimization step that takes

𝑓Pt.(𝜶0, 𝒍0, 𝜔,𝐑,𝐛) =
1
𝑁𝑇

∑

𝑖,𝑗
|𝐫𝑖,𝑗 (𝜶0, 𝒍0, 𝜔) − (𝐑�̄�𝑖,𝑗 + 𝐛)|2 (14)

as the objective function for compatible input data, and a large number
�̃�Num. ≫ 𝑓Pt.(𝜶⋆

0 , 𝑙
⋆
0 𝟏, 𝜔

⋆, �̄�, �̄�) when the data is incompatible. Note,
the full set of length input data 𝒍0 is freely optimized in this step,
and we also include a rigid motion term for a rotation 𝐑 = �̄� + 𝜹𝐑
and translation 𝐛 = �̄� + 𝜹𝐛 (likely optimal as small perturbations of
the motion in registration). Note also, in performing the optimization,
we parameterize the rotation fully in terms of Euler angles by writing
𝐑 = 𝐐(𝜂, 𝜉, 𝜁 )�̄� for

𝐐(𝜉, 𝜂, 𝜁 )

=

⎡

⎢

⎢

⎢

⎣

cos 𝜉 cos 𝜁 − cos 𝜂 sin 𝜉 sin 𝜁 −cos 𝜉 sin 𝜁 − cos 𝜂 cos 𝜁 sin 𝜉 sin 𝜉 sin 𝜂

cos 𝜁 sin 𝜉 + cos 𝜉 cos 𝜂 sin 𝜁 cos 𝜉 cos 𝜂 cos 𝜁 − sin 𝜉 sin 𝜁 −cos 𝜉 sin 𝜂

sin 𝜂 sin 𝜁 cos 𝜁 sin 𝜂 cos 𝜂

⎤

⎥

⎥

⎥

⎦

,

(15)

where 𝜂, 𝜉, 𝜁 are the Euler angles. Finally, to compute an optimum,
we start from the shape optimized input data (𝜶⋆

0 , 𝑙
⋆
0 𝟏, 𝜔

⋆), rotation
�̄� = 𝐐(0, 0, 0)�̄�, and translation �̄�. Then, we iterate numerically in the
same manner as shape optimization (see Appendix E). For reference,
we label the optimal input data as (𝜶⋆⋆

0 , 𝒍⋆⋆0 , 𝜔⋆⋆), the optimal rotation
as 𝐑⋆⋆ = 𝐐(𝜂⋆⋆, 𝜉⋆⋆, 𝜁⋆⋆)�̄�, and the optimal translation as 𝐛⋆⋆.

Step 5: Quality of approximations.We measure the maximum distance
between like vertices on the origami and targeted surfaces after regis-
tration to characterize the quality of approximation. This calculation is
done for both the shape optimized and point optimized surfaces, i.e.,

𝑑⋆ = max
𝑖,𝑗

1
⟨𝐿⟩

|𝐫𝑖,𝑗 (𝜶⋆
0 , 𝑙

⋆
0 𝟏, 𝜔

⋆) − (�̄��̄�𝑖,𝑗 + �̄�)|,

𝑑⋆⋆ = max 1
|𝐫𝑖,𝑗 (𝜶⋆⋆, 𝒍⋆⋆, 𝜔⋆⋆) − (𝐑⋆⋆�̄�𝑖,𝑗 + 𝐛⋆⋆)|,

(16)
7

𝑖,𝑗
⟨𝐿⟩ 0 0
respectively. Here, ⟨𝐿⟩ denotes the average length of the quad-mesh
edges discretizing the targeted surface (see Appendix B.2).

Comments and generalizations. The heuristic for success in this two-
stage optimization procedure is that shape optimization does the bulk
of the work – approximating well the global surface, except possibly in
some small regions of the pattern – while point optimization supplies a
refinement that corrects the poorly approximated regions but otherwise
does not dramatically change the pattern. Recall that the input length
array is restricted when optimizing for shape (Eq. (12)). Without this
restriction, we find shape optimization to be far too flexible, leading to
origami with distorted aspect ratios ill-suited for practical application
(see Appendix B.2 and Fig. B.8). We also find point optimization to
be delicate, leading to quality results only if the input is already fairly
close to the desired surface. These features motivated our two-stage
optimization procedure. We typically look for shape optimization to
yield 𝑑⋆ < 1, so that distances between like vertices on the two surfaces
are no larger than the characteristic length of the mesh-panels. In
this case, point optimization often yields quality refinement 𝑑⋆⋆ ≈
0.5 to 0.05 𝑑⋆ (see Table 1) by slight perturbation (𝜶⋆⋆

0 , 𝒍⋆⋆0 , 𝜔⋆⋆) ≈
(𝜶⋆

0 , 𝑙
⋆
0 𝟏, 𝜔

⋆), a result likely facilitated by the extreme non-linearity
inherent to folding origami.

Finally, for some targeted surfaces discussed below, we choose an
initial origami different from the Miura-Ori, as it significantly improves
the quality of approximation resulting from the optimization. We base
our choice on direct numerical observations of origami structures that
exhibit useful basic deformations (see Appendix C.1 and Fig. C.9). The
versatility of our framework allows us to simply apply the step-by-step
inverse design procedure as before, except replacing the Miura-Ori with
the new initial origami and modifying the offset lattice that discretizes
the targeted shape. As the input origami need not be consistent with a
planar or uniform discretized surface, we choose this offset lattice to co-
incide with the average tangent space of this surface (see Appendix C.2
and Fig. C.10).

3. Examples and discussion

3.1. Numerical examples of deployable origami

We demonstrate the numerical examples of our inverse design
framework for targeted surfaces in Fig. 4 (a–g). In each example, the
targeted surface is overlaid in gray onto the deformed optimal origami
structure. To reiterate, the origami structures shown are deployable —
they can be obtained by a single DOF folding motion from an easily
manufactured flat state and an easily packaged folded-flat state. We
display this deployment capability with the first example and refer to
Fig. C.11 and the supplementary Videos S1–S7 for the others. With
our marching algorithm, the optimization process takes a matter of
minutes using standard computational resources (see Appendix E) for

various given examples. We also numerically investigate the efficiency
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Fig. 4. Inverse design of surfaces by deployable origami. Numerical examples: (a) A quarter vase, and its deployment from states that are easy to manufacture and package. (b–e)
Other examples of smooth surfaces: (b) Spherical cap, (c) hyperboloid, (d) 2D sinusoid, (e) saddle. (f–g) Examples of surfaces with sharp ridges: (f) Connecting cylinders and (g)
connecting saddles. Paper models: (h) The quarter vase. (i) The saddle. (j) The connecting cylinders.
of our optimization scheme. The results of this investigation are pro-
vided in Fig. 5, and they indicate quadratic time complexity in terms
of the number of origami panels. Finally, Table 1 shows the exact
parameterizations of the targeted surfaces, i.e., �̄�(𝑢, 𝑣), details about the
initial Miura-Ori and optimal origami, and computational time for the
optimization.

3.1.1. Surfaces with modest curvature
With the examples in Fig. 4(a–e), we approximate a variety of

smooth surfaces by deployable origami. Each example shown is ob-
tained by optimization, starting from the same 24 × 24 partially folded
Miura-Ori, and following the inverse design framework above exactly.
We choose the targeted surfaces here – a quarter vase, spherical cap, hy-
perboloid, 2D sinusoidal parameterization and saddle – to demonstrate
the wide range of curvatures amenable to our methods. Each surface
is approximated with the value of 𝑑⋆⋆ ∼ 0.1. Note, we did choose the
curvatures to be modest compared to the size of the mesh-panels and
8

to not exhibit dramatic variations. We elaborate more on this below
when discussing the human face case. Note also, each optimization here
took ≈ 5 minutes using the modest computational resources outlined in
Appendix E.

3.1.2. Surfaces with sharp ridges
The examples of smooth surfaces above arise by taking a partially

folded Miura-Ori as the initial state to the optimization. Yet, our
marching algorithm for deployable origami is general. So any base
state with compatible input parameters (𝜶0, 𝒍0,𝝈0) can be used to seed
the inverse design framework. To explore this idea, we first note that
there is a family of input parameters more general than those of the
Miura-Ori that produce crease patterns with periodicity. These patterns
deform periodically when folding along the Miura-Ori M-V assignment.
However, it is possible to change the M-V assignment 𝝈0, keeping the
other parameters fixed (see Appendix C.3 and Fig. C.9(a)). When we
flip exactly one of these assignments, the marching algorithm produces
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Table 1
Evaluation of approximation.

No. Targeted surface Initial origamia 𝜔⋆⋆ 𝑑⋆ 𝑑⋆⋆ Time

A

⎧

⎪

⎨

⎪

⎩

𝑥 = (0.75 + 0.12 sin𝜋𝑣) cos 𝑢

𝑦 = (0.75 + 0.12 sin𝜋𝑣) sin 𝑢

𝑧 = 0.7𝑣

𝑢 ∈ [0, 0.5𝜋], 𝑣 ∈ [0.2, 2.0]

𝑃mu
24,24 (𝜋∕3, 2𝜋∕3)

𝑙 = 𝑤 = 0.1
𝜔 = 0.75𝜋

0.7544𝜋 0.6224 0.1351 296.01𝑠

B

⎧

⎪

⎨

⎪

⎩

𝑥 = cos 𝑢 cos 𝑣

𝑦 = sin 𝑢 cos 𝑣

𝑧 = sin 𝑣

𝑢 ∈ [−𝜋∕6, 𝜋∕6], 𝑣 ∈ [−𝜋∕6, 𝜋∕6]

𝑃mu
24,24 (𝜋∕3, 2𝜋∕3)

𝑙 = 𝑤 = 0.075
𝜔 = 0.75𝜋

0.7946𝜋 0.7006 0.1071 390.75𝑠

C

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑥 = −cos 𝑢
√

1 + 𝑣2

𝑦 = − sin 𝑢
√

1 + 𝑣2

𝑧 = −𝑣

𝑢 ∈ [−𝜋∕6, 𝜋∕6], 𝑣 ∈ [−0.5, 0.5]

𝑃mu
24,24 (𝜋∕3, 2𝜋∕3)

𝑙 = 𝑤 = 0.075
𝜔 = 0.75𝜋

0.7139𝜋 0.2714 0.1210 313.75𝑠

D

⎧

⎪

⎨

⎪

⎩

𝑥 = 𝑢

𝑦 = 𝑣

𝑧 = (1 + 0.12 sin𝜋𝑢)(1 + 0.12 sin𝜋𝑣)

𝑢 ∈ [0, 2], 𝑣 ∈ [0, 2]

𝑃mu
24,24 (𝜋∕3, 2𝜋∕3)

𝑙 = 𝑤 = 0.15
𝜔 = 0.75𝜋

0.7463𝜋 0.3114 0.0995 360.85𝑠

E

⎧

⎪

⎨

⎪

⎩

𝑥 = 𝑢

𝑦 = 𝑣

𝑧 = 𝑢𝑣

𝑢 ∈ [−0.5, 0.5], 𝑣 ∈ [−0.5, 0.5]

𝑃mu
24,24 (𝜋∕3, 2𝜋∕3)

𝑙 = 𝑤 = 0.075
𝜔 = 0.75𝜋

0.7723𝜋 0.3863 0.1061 291.97𝑠

F

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑥 = 𝑢

𝑦 = −sign𝑣(cos(|𝑣| − 𝜋∕4) −
√

0.5)

𝑧 = sin(|𝑣| − 𝜋∕4) +
√

0.5

𝑢 ∈ [−0.5, 0.5], 𝑣 ∈ [−𝜋∕4, 𝜋∕4]

𝑃 pl
24,48 (𝜋∕3, 115𝜋∕180)

𝜎0,25 = −1
𝑙 = 𝑤 = 0.075
𝜔 = 0.75𝜋

0.7759𝜋 0.5460 0.1142 1244.05𝑠

G

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑥 = 𝑢

𝑦 = 𝑣∕2 +
√

3𝑢|𝑣|∕6

𝑧 =
√

3|𝑣|∕2 + 𝑢𝑣∕6

𝑢 ∈ [−0.5, 0.5], 𝑣 ∈ [−1, 1]

𝑃 pl
24,48 (𝜋∕3, 115𝜋∕180)

𝜎0,25 = −1
𝑙 = 𝑤 = 0.075
𝜔 = 0.75𝜋

0.7493𝜋 1.6267 0.1194 1401.69𝑠

H Discrete points in Fig. 6(a). 𝑃 vb
36,24 (𝜋∕2, 3𝜋∕4)

𝑙 = 𝑤 = 2∕30
𝜔 = 7𝜋∕9

0.7896𝜋 0.6761 0.5390 621.15𝑠

I Same as that in case H. 𝑃 vb
36,24 (𝜋∕2, 3𝜋∕4)

𝑙 = 𝑤 = 2∕30
𝜔 = 7𝜋∕9

0.7624𝜋 0.2407 0.1292 23729.42𝑠 (on HPC)

aThe notation employed to describe the initial origami crease pattern, i.e., 𝑃mu
24,24 (𝜋∕3, 2𝜋∕3) ,… , etc., is defined explicitly in Appendix C.1.
exactly the same periodic crease pattern, but it folds as two planar
states connected by something akin to a sharp interface at this altered
assignment – a feature reminiscent of the multi-stability of flat crease
patterns explored in Dieleman et al. (2020).

We take advantage of this fact to explore the inverse design of
targeted surfaces with sharp interfaces. With Fig. 4(f) and (g), we
consider two such examples: one connecting cylinders and the other
connecting saddles. In both cases, the initial origami to the optimization
is as described above, i.e., a periodic origami with 24 × 48 mesh-
panels and an altered M-V assignment along the 25th column that
produces a sharp interface in its folded states. The origami obtained
by optimization well approximate the surfaces, 𝑑⋆⋆ ∼ 0.1, even with
the sharp interfaces. An interesting point highlighted by this result is
that we are not limited by smoothness. Structured triangulations are
obtained and compared for both the targeted and origami surfaces in
shape optimization. Whether or not the targeted surface is smooth,
we have the property 𝑓Sh.(⋅) = 0 in Eq. (12) if and only if the two
triangulations are the same up to rigid motion (as discussed above).
Since the triangulations serve as the fundamental proxy of the surfaces,
the framework itself addresses the issue of smoothness automatically.
9

3.1.3. Paper models
To verify our numerical results, we fabricated and folded the designs

for the quarter vase, the saddle, and the connecting cylinders. For each
example, a flat piece of cardboard 315g art paper was perforated by
a laser cutter in accordance with the crease pattern design generated
by the simulation. The paper models were then folded manually in an
attempt to match the desired target shape. The folded shapes are shown
in Fig. 4 (h–j). One can observe that these shapes agree well with the
numerical examples in Fig. 4 (a), (e), and (f), respectively.

3.2. Challenges in deployable origami

Ever since the pioneering work (Klein et al., 2007) on shape-
programming with hydrogels, it has been an ambition to develop design
principles for programming material physics to actuate completely
general surfaces (Dias et al., 2011; Plucinsky et al., 2016; Van Rees
et al., 2017; Aharoni et al., 2018; Griniasty et al., 2019). In this domain,
the challenge of ‘‘making a face’’ – with its diverse and sharp changes
in curvature – is seen as a worthy exemplar of a general surface.
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Fig. 5. Time consumption of the numerical cases. The data points of case C are
obtained from a series of approximations of the same hyperboloid targeted surface
(C in Table 1) with different origami size 𝑀 × 𝑁 = 82 , 102 , 122 ,… , 342. Other data
points are plotted according to the computational time for the simulations for A-H
in Table 1. The polynomial fit of the data points of case C gives a quadratic curve
with the coefficient of determination 𝑅2 = 0.99972. Points of the other cases lie near
the fitting-curve, suggesting that the optimization approach we provide has 𝑂((𝑀𝑁)2)
time complexity for various targeted surfaces. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

We therefore consider this case in the context of quad-mesh origami
(Fig. 6).

Before turning to the results, we digress to lend perspective on an
important issue. The state of computational origami design for artistic
purposes is impressive (Lang, 1996; Demaine and Tachi, 2017), show-
casing an ability to approximate complex shapes (insects/bunnies/. . . )
far beyond anything we could ever hope to approach by our methods.
Rigorous mathematical results (Conti and Maggi, 2008) also suggest
that essentially any surface can be approximated by origami maps.
10
Nevertheless, both the art and the mathematics take advantage of
refinement; a base pattern gets enriched with finer and finer folding
mechanisms that are guaranteed to approximate a targeted shape to any
degree of accuracy with sufficient refinement. By its very nature, this
strategy is a direct impediment to considerations of manufacturability
or foldability. In contrast, we are seeking to approximate a surface
by an origami that is guaranteed to be deployable. This distinction is
important in engineering: Folding the crease pattern to achieve such
shape is not the work of a skilled Origamist, but rather modalities like
simple external loads or actuators involving motors/active materials,
which have practical limitations.

Unfortunately, not all surfaces can be easily approximated using our
optimization strategy for deployable origami. The face we attempt to
approximate is shown in Fig. 6(a). Our first attempt using a partially
folded Miura-Ori (36 × 24 mesh-panels) as the initial origami failed to
produce a quality approximation during the optimization. Our best at-
tempt is shown in Fig. 6(b). To obtain this approximation, we employed
an initial origami exhibiting a basic deformation – slight curvature
along the short axis – that most resembled the global shape of the
face (Table 1). After optimizing through our design framework, we end
with a deployable origami structure that fits the global features of the
face but fails to capture the sharp features at the nose. To understand
why, note the crease pattern for this origami (Fig. 6(b.3)). The mark of
being on the boundary of the compatible set of RFFQM is diminishing
panel lengths or aspect ratios. The central region of the pattern, i.e., the
region folded to approximate the nose, fits exactly this description. So
the optimization is driving the initial origami towards the boundary of
the compatible set of parameters, where it gets stuck before the nose
can be adeptly approximated.

3.3. More general quad-mesh origami

What if we relax the condition of flat-foldability, but otherwise
maintain that the origami is folded from a flat quad-mesh crease
pattern? One generally expects enhanced flexibility in the parameter
space, thus a richer capability to approximate general surfaces. We have
generalized our inverse design framework to explore this question. The
basic approach is a local-to-global characterization that yields an ex-
plicit parameterization of the origami, akin to the marching algorithm
Fig. 6. Making a face with quad-mesh origami: (a) Targeted surface from two perspectives. (b) Attempt at making a face using RFFQM. This origami can be folded from the
flat crease pattern to the ‘‘face’’ depicted without incurring stress in the mesh-panels. (c) The approximation can be improved significantly using quad-mesh origami that is not
constrained by deployability. This origami is ideally stress-free in both the flat and face state but can only be deployed by stressing the panels. The regular distributed discrete
human-face points is reproduced from the source data in Gerig et al. (2018) by interpolation and transformation.
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for Eq. (1), except with significantly more degrees-of-freedom in the
angle input data. It is possible to show that, unlike the flat-foldable
case, every interior vertex in this setting has a single degree of freedom
in its choice of sector angles. If these are chosen appropriately and if
appropriate input data on the left and bottom boundary of the pattern is
supplied, then the entire origami structure can be determined explicitly
by marching. A related approach was derived recently in Dudte et al.
(2021).

In this more general framework, we can take our parameterization
for quad-mesh origami and apply exactly the same optimization proce-
dure above to investigate the inverse design of surfaces. Our effort to
make a face in this setting proved quite successful (Fig. 6(c)). With the
same input origami as the one supplied to the optimization in Fig. 6(b),
we are able to adeptly approximate the face. The nose, which caused
so much trouble previously, now emerges from a quite different crease
pattern (Fig. 6(c.3)) that exhibits nothing of the characteristic zig-zags
inherent to perturbed Miura-Ori. The optimization is clearly exploiting
the additional degrees of freedom at interior vertices to address the
sharp contrasts in curvature.

Fig. 6 shows some challenges inherent to the constraint of de-
ployability: Two sharply distinctive origami emerge from the same
initial origami under the same optimization framework, except one is
deployable and the other is not. To be clear on the latter, the origami
in Fig. 6(c) is (ideally) stress-free in both the flat state and face state,
but it cannot be folded without introducing stress in the panels during
the process. Whether such stresses can be overcome by the simple
modalities of folding inherent to practical engineering depends on addi-
tional factors, such as the stiffness of panels and the actuation strategy.
Two improvements to our ideas can be made on the deployability
front: (1) All the initial origami to the optimization are essentially
derivatives of the Miura-Ori. This is not necessary. Some well-designed
non-Miura-Ori-like quadrilateral mesh patterns have numerous ways of
folding with distinct folded configurations (Liu et al., 2021). Due to
their versatility, we expect that these foldable families, when utilized
as input to the optimization algorithm, can help to enlarge the design
space of surfaces that can be adeptly approximated. (2) A general char-
acterization of the foldability of quad-meshes is provided in Izmestiev
(2017), yet the characterization is hard to ‘‘march’’ due to non-local
couplings. If this difficulty can be overcome, it may be possible to give
up on flat-foldability – which is not needed in some fields – without
giving up deployability.

4. Conclusion

In this paper, we demonstrate an inverse design framework that is
easy to implement, efficient, and accurate for approximating targeted
surfaces by deployable origami structures. Numerical examples of sur-
faces with modest curvature and sharp ridges are calculated to illustrate
the efficiency and accuracy of our approach. A human-face case is
further discussed to highlight some challenges of deployability and to
demonstrate the versatility of our framework. In the end, we expect our
inverse design framework to have broad utility and be adaptable to the
many demands in engineering and architecture for functional origami
structures beyond surface approximation.
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Appendix A. Marching algorithm for deployable origami

We describe the marching algorithms that parameterize any origami
structure {𝐲𝑖,𝑗 (𝜶0, 𝒍0,𝝈0, 𝜔)|𝑖 = 0, 1,… ,𝑀, 𝑗 = 0, 1,… , 𝑁} obtained by
folding a RFFQM. With the exposition here, we aim for a compact
description that is easy to implement numerically. We refer to our
previous work (Feng et al., 2020a) for a justification and detailed
derivation of the formulas outlined.

A.1. Some preliminary definitions

Let 𝜃, 𝜑 ∈ (0, 𝜋) such that (𝜃, 𝜑) ≠ (𝜋∕2, 𝜋∕2). A valid mountain-
alley (M-V) assignment will be indicated by the set

(𝜃, 𝜑) =
⎧

⎪

⎨

⎪

⎩

− if 𝜃 = 𝜑 ≠ 𝜋∕2

+ if 𝜃 = 𝜋 − 𝜑 ≠ 𝜋∕2

± if 𝜃 ≠ 𝜑 ≠ 𝜋 − 𝜑

. (A.1)

or a sign 𝜎 ∈ (𝜃, 𝜑) indicating such an assignment, we define the
olding angle functions

�̄�𝜎V(𝜔; 𝜃, 𝜑) = sign
(

(𝜎 cos𝜑 − cos 𝜃)𝜔
)

× arccos
( (−𝜎1 + cos 𝜃 cos𝜑) cos𝜔 + sin 𝜃 sin𝜑

−𝜎1 + cos 𝜃 cos𝜑 + sin 𝜃 sin𝜑 cos𝜔

)

,

�̄�𝜎𝐻 (𝜔; 𝜃, 𝜑) = �̄�𝜎𝑉 (𝜔; 𝜃, 𝜋 − 𝜑),

(A.2)

for 𝜔 ∈ [−𝜋, 𝜋] and the fold angle multipliers

𝜇𝜎
𝑉 (𝜃, 𝜑) =

−𝜎1 + cos 𝜃 cos𝜑 + sin 𝜃 sin𝜑
cos𝜑 − 𝜎 cos 𝜃

,

𝜇−𝜎
𝐻 (𝜃, 𝜑) = 𝜇−𝜎

𝑉 (𝜃, 𝜋 − 𝜑).
(A.3)

e will employ the notation 𝐑𝐞(𝛾) for a right-hand rotation along an
xis 𝐞 (a unit vector) by an angle 𝛾. We will find the following matrix
seful:

𝐋(𝜃𝑎, 𝜃𝑏, 𝜃𝑐 ) =
⎛

⎜

⎜

⎝

− sin 𝜃𝑏
sin(𝜃𝑎+𝜃𝑏+𝜃𝑐 )

sin(𝜃𝑎+𝜃𝑏)
sin(𝜃𝑎+𝜃𝑏+𝜃𝑐 )

sin(𝜃𝑎+𝜃𝑐 )
sin(𝜃𝑎+𝜃𝑏+𝜃𝑐 )

− sin 𝜃𝑐
sin(𝜃𝑎+𝜃𝑏+𝜃𝑐 )

⎞

⎟

⎟

⎠

. (A.4)

Finally, we will always use 𝐞1, 𝐞2, 𝐞3 to denote the standard basis vectors
in 3D.

A.2. Valid input data

Following the notation of Fig. 1(a), each of the sector angles on
the bottom boundary must be chosen to satisfy 𝛼𝑖,0, 𝛽𝑖,0 ∈ (0, 𝜋) with
(𝛼𝑖,0, 𝛽𝑖,0) ≠ (𝜋∕2, 𝜋∕2). Accordingly, the M-V assignments must be
chosen so that 𝜎𝑖,0 ∈ (𝛽𝑖,0, 𝛼𝑖,0). Finally, the lengths must be positive
𝑤𝑖,0 > 0. The angle and sign conditions should hold for all 𝑖 = 0, 1,… ,𝑀
nd the length conditions should hold for all 𝑖 = 0,… ,𝑀 −1, where 𝑀
s the total number of columns desired for the crease pattern. The left
oundary is similarly restricted: it is required that 𝛼0,𝑗 , 𝛽0,𝑗 ∈ (0, 𝜋) with
𝛼0,𝑗 , 𝛽0,𝑗 ) ≠ (𝜋∕2, 𝜋∕2) and 𝜎0,𝑗 ∈ (𝛽0,𝑗 , 𝛼0,𝑗 ) for all 𝑗 = 1,… , 𝑁 . It is
lso required that 𝑙0,𝑗 > 0 for all 𝑗 = 0, 1,… , 𝑁 − 1. Here, 𝑁 is the total
umber of rows of the desired crease pattern.

From hereon, we represent valid input data via an angle array 𝜶0, a
ength array 𝒍0, and a sign array 𝝈0 whose components are constrained
s above. Note, for an 𝑀 × 𝑁 crease pattern, the angle array has
(𝑀 + 1) + 2𝑁 components, the length array has 𝑀 +𝑁 components,
nd the sign array has 𝑀 +𝑁 + 1 components.



International Journal of Solids and Structures 234-235 (2022) 111224X. Dang et al.

𝜎
v

C

I

A
i
a

A

a
a
s
0

0

•

P
c
(
w
r
n
n
b
t
t
l
s
w
t
a
t
(
p
i
t
E
p
E
(
p

A.3. Marching to obtain the sector angles, lengths and M-V assignments

Let (𝜶0, 𝒍0,𝝈0) be valid input data, and suppose we have marched to
the (𝑖, 𝑗)-index, 𝑖, 𝑗 > 0, without incompatibility (defined below). Then
the angles 𝛼𝑖−1,𝑗−1, 𝛽𝑖−1,𝑗−1, 𝛼𝑖,𝑗−1, 𝛽𝑖,𝑗−1, 𝛼𝑖−1,𝑗 , 𝛽𝑖−1,𝑗 , M-V assignments
𝑖−1,𝑗−1, 𝜎𝑖−1,𝑗 , 𝜎𝑖,𝑗−1, and lengths 𝑤𝑖−1,𝑗−1, 𝑙𝑖−1,𝑗−1 are prescribed and
alid. Set

𝜇𝑖,𝑗 = 𝜇−𝜎𝑖−1,𝑗−1
𝐻 (𝛽𝑖−1,𝑗−1, 𝛼𝑖−1,𝑗−1)𝜇𝜎𝑖−1,𝑗

𝑉 (𝜋 − 𝛼𝑖−1,𝑗 , 𝜋 − 𝛽𝑖−1,𝑗 )

× 𝜇𝜎𝑖,𝑗−1
𝑉 (𝛼𝑖,𝑗−1, 𝛽𝑖,𝑗−1).

(A.5)

heck the following conditions of compatibility

(Compatibility at the (i,j)-vertex:)
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝛽𝑖−1,𝑗−1 + 𝛼𝑖,𝑗−1 − 𝛼𝑖−1,𝑗 ∈ (0, 𝜋),

|𝜇𝑖,𝑗
| ≠ 1,

𝐋(𝛽𝑖−1,𝑗−1, 𝜋 − 𝛼𝑖−1,𝑗 , 𝛼𝑖,𝑗−1)
⎛

⎜

⎜

⎝

𝑙𝑖−1,𝑗−1

𝑤𝑖−1,𝑗−1

⎞

⎟

⎟

⎠

> 𝟎.

(A.6)

f all these conditions hold, set

𝛽𝑖,𝑗 = 𝛽𝑖−1,𝑗−1 + 𝛼𝑖,𝑗−1 − 𝛼𝑖−1,𝑗 , 𝜎𝑖,𝑗1 = −sign((𝜇𝑖,𝑗 )2 − 1),

𝛼𝑖,𝑗 = arccos
(

𝜎𝑖,𝑗
2𝜇𝑖,𝑗 + ((𝜇𝑖,𝑗 )2 + 1) cos(𝛽𝑖,𝑗 )
2𝜇𝑖,𝑗 cos(𝛽𝑖,𝑗 ) + ((𝜇𝑖,𝑗 )2 + 1)

)

,
(

𝑙𝑖,𝑗−1

𝑤𝑖−1,𝑗

)

= 𝐋(𝛽𝑖−1,𝑗−1, 𝜋 − 𝛼𝑖−1,𝑗 , 𝛼𝑖,𝑗−1)

(

𝑙𝑖−1,𝑗−1

𝑤𝑖−1,𝑗−1

)

.

(A.7)

lternatively, if any one of the compatible conditions fails, then the
nput data (𝜶0, 𝒍0,𝝈0) is not compatible with RFFQM and the marching
lgorithm cannot continue.

.4. Marching to obtain the flat crease pattern

Assume (𝜶0, 𝒍0,𝝈0) is compatible, so that the previous marching
lgorithm populated all sector angles, lengths and M-V assignments
ssociated with the crease pattern. We now compute the vertices as-
ociated with the flat crease pattern {𝐱𝑖,𝑗 (𝜶0, 𝒍0,𝝈0)|𝑖 = 0, 1,… ,𝑀, 𝑗 =
, 1,… , 𝑁}. For the first panel, we set

𝐱0,0 = 𝟎, 𝐱1,0 = 𝑤0,0𝐞1, 𝐱0,1 = 𝑙0,0𝐑𝐞3 (𝛽
0,0)𝐞1,

𝐱1,1 = 𝐱1,0 − 𝑙1,0𝐑𝐞3 (−𝛼
1,0)𝐞1.

(A.8)

For the first row with 𝑖 > 1, we set

𝐱𝑖,0 = 𝐱𝑖−1,0 + 𝑤𝑖−1,0

𝑙𝑖−1,0
𝐑𝐞3 (−𝛽

𝑖−1,0)(𝐱𝑖−1,1 − 𝐱𝑖−1,0),

𝐱𝑖,1 = 𝐱𝑖,0 + 𝑙𝑖,0

𝑤𝑖−1,0 𝐑𝐞3 (−𝛼
𝑖,0)(𝐱𝑖−1,0 − 𝐱𝑖,0).

(A.9)

For everything else, i.e., 𝑗 > 1, we set

𝐱𝑖,𝑗 = 𝐱𝑖,𝑗−1 + 𝑙𝑖,𝑗−1

𝑙𝑖,𝑗−2
𝐑𝐞3 (𝜋 − 𝛼𝑖,𝑗−1 + 𝛽𝑖,𝑗−1)(𝐱𝑖,𝑗−2 − 𝐱𝑖,𝑗−1). (A.10)

A.5. Marching to obtain the folding angles

Assume (𝜶0, 𝒍0,𝝈0) is compatible and take the quantities in the
marching algorithms in C-D as given. Fix a folding parameter 𝜔 ∈
[0, 𝜋]. We define the folding angles at horizontal and vertical creases,
respectively, as

𝛾 𝑖,𝑗𝐻 =

⎧

⎪

⎨

⎪

⎩

−𝜎𝑖,𝑗𝛾 𝑖−1,𝑗𝐻 if 𝑖 ≠ 0,
𝜎𝑖,𝑗 �̄�−𝜎𝑖,𝑗𝐻 (𝛾 𝑖,𝑗−1𝑉 ; 𝛽𝑖,𝑗 , 𝛼𝑖,𝑗 ) if 𝑖 = 0, 𝑗 ≠ 0,
𝜎𝑖,𝑗 �̄�−𝜎𝑖,𝑗𝐻 (𝜔; 𝛽𝑖,𝑗 , 𝛼𝑖,𝑗 ) if 𝑖 = 𝑗 = 0,

𝛾 𝑖,𝑗𝑉 = �̄�𝜎
𝑖,𝑗

𝑉 (𝛾 𝑖,𝑗𝐻 ; 𝛽𝑖,𝑗 , 𝛼𝑖,𝑗 ).

(A.11)
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A.6. Marching to obtain the deformation gradients

Assume (𝜶0, 𝒍0,𝝈0) is compatible and take the quantities in the
marching algorithms in C-E as given. Assume 𝑖 < 𝑀, 𝑗 < 𝑁 . Set
𝐭𝑖,𝑗 = 𝐱𝑖,𝑗+1−𝐱𝑖,𝑗

|𝐱𝑖,𝑗+1−𝐱𝑖,𝑗 | and 𝐬𝑖,𝑗 = 𝐱𝑖+1,𝑗−𝐱𝑖,𝑗
|𝐱𝑖+1,𝑗−𝐱𝑖,𝑗 | . Then set

𝐅𝑖,𝑗 =

⎧

⎪

⎨

⎪

⎩

𝐅𝑖−1,𝑗𝐑𝐭𝑖,𝑗 (𝛾
𝑖,𝑗
𝑉 ) if 𝑖 ≠ 0,

𝐅𝑖,𝑗−1𝐑𝐬𝑖,𝑗 (−𝛾
𝑖,𝑗
𝐻 ) if 𝑖 = 0, 𝑗 ≠ 0,

𝐈 if 𝑖 = 𝑗 = 0.
(A.12)

A.7. Marching to obtain the origami structure

Assume (𝜶0, 𝒍0,𝝈0) is compatible and take the quantities in the
marching algorithms in C-F as given. We finally compute the ver-
tices associated with the origami {𝐲𝑖,𝑗 (𝜶0, 𝒍0,𝝈0, 𝜔)|𝑖 = 0, 1,… ,𝑀, 𝑗 =
, 1,… , 𝑁}. These vertices are given by

𝐲𝑖,𝑗 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐲𝑖−1,𝑗 + 𝐅𝑖−1,𝑗 (𝐱𝑖,𝑗 − 𝐱𝑖−1,𝑗 ) if 𝑖 ≠ 0, 𝑗 < 𝑁,
𝐲𝑖−1,𝑗 + 𝐅𝑖−1,𝑗−1(𝐱𝑖,𝑗 − 𝐱𝑖−1,𝑗 ) if 𝑖 ≠ 0, 𝑗 = 𝑁,
𝐲𝑖,𝑗−1 + 𝐅𝑖,𝑗−1(𝐱𝑖,𝑗 − 𝐱𝑖,𝑗−1) if 𝑖 = 0, 𝑗 ≠ 0,
𝐱𝑖,𝑗 if 𝑖 = 𝑗 = 0.

(A.13)

A.8. Lemma for the compatible input data

Lemma A.1. Let (�̄�0, �̄�0, �̄�0) be compatible input data. Then the following
two results hold when fixing the M-V assignment indicated by the array of
signs �̄�0:

• There is an open neighborhood  (�̄�0, �̄�0) ⊂ R2(𝑀+𝑁+1) × R𝑀+𝑁 of
the point (�̄�0, �̄�0) for which (𝜶0, 𝒍0, �̄�0) is compatible input data for all
(𝜶0, 𝒍0) ∈  (�̄�0, �̄�0).
The parameterization 𝐲𝑖,𝑗

𝝈⋆0
(𝜶0, 𝒍0, 𝜔) = 𝐲𝑖,𝑗 (𝜶0, 𝒍0, �̄�0, 𝜔) is smooth on

 (�̄�0, �̄�0) × (0, 𝜋) for every (𝑖, 𝑗)-vertex of the 𝑀 ×𝑁 origami pattern.

roof. For the fixed M-V assignment �̄�0, the components of the given
ompatible input data �̄�0 and �̄�0 are the boundary sector angle pairs
�̄�0,𝑗 , 𝛽0,𝑗 ), (�̄�𝑖,0, 𝛽𝑖,0) and the boundary side lengths {�̄�0,𝑗 , 𝑙0,𝑗 , �̄�𝑖,0, 𝑙𝑖,0},
hich are in the open sets ((0, 𝜋) × (0, 𝜋) ⧵ (𝜋∕2, 𝜋∕2)) and (0,+∞)

espectively. To prove the existence of compatible  (�̄�0, �̄�0), we firstly
otice that the M-V assignment �̄�0 is valid in a small enough open
eighborhood of �̄�0 by satisfying the validity condition Eq. (A.1),
ecause the marching function for 𝜎𝑖,𝑗 in Eq. (A.7) is continuous when
he given pattern generated by (�̄�0, �̄�0) is compatible. We also notice
hat the marching functions for the sector angles 𝛼𝑖,𝑗 , 𝛽𝑖,𝑗 and the side
engths 𝑤𝑖,𝑗 , 𝑙𝑖,𝑗 are continuous functions which map open sets to open
ets. If the open set  (�̄�0, �̄�0) is small enough, the marching functions
ill ensure the validity of the vertex compatibility Eq. (A.6) according

o the compatibility’s openness, and therefore ensure that the sector
ngles and the side lengths over the pattern are all compatible. Thus,
here exists a small enough open neighborhood  (�̄�0, �̄�0) of the point
�̄�0, �̄�0) such that all the points in  (�̄�0, �̄�0) result in valid RFFQM
atterns. Next, we prove the vertex position function 𝐲𝑖,𝑗 (𝜶0, 𝒍0, �̄�0, 𝜔)
s smooth for (𝜶0, 𝒍0) ∈  (�̄�0, �̄�0) and for 𝜔 ∈ (0, 𝜋). For the (𝑖, 𝑗) vertex,
he deformation Eq. (A.13), calculated from the folding angle function
q. (A.11), the deformation gradient Eq. (A.12) and the previous vertex
ositions, is smooth for 𝜔 ∈ (0, 𝜋) and (𝜶0, 𝒍0) ∈  (�̄�0, �̄�0), because
q. (A.11) and (A.12) are valid and smooth for compatible input data
𝜶0, 𝒍0) (and its small enough open neighborhood). This completes the
roof. □
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Fig. B.7. Projection of the Miura-Ori offset lattice onto the parametric space of a planar targeted surface. The parameters of the Miura-Ori 𝑙, 𝑤, 𝐿,𝑊 ,𝑀,𝑁, 𝛼, 𝜔M-O are chosen to
match the size (�̄�𝑢 , �̄�𝑣) of the targeted surface. The offset lattice is obtained by projecting the Miura-Ori onto the 2D plane. By the rescaling factors 𝑘𝑢 and 𝑘𝑣, the parametric space
is matched to the offset lattice, and then discretized accordingly. See text for details. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
Appendix B. Details of the optimization procedure

B.1. Procedure for discretization

A partially-folded Miura-Ori is given by input data (𝜶M-O, 𝒍M-O,𝝈M-O)
in Eq. (6) and a folding parameter 0 < 𝜔M-O < 𝜋. For notational conve-
nience, we assume that 𝑀 (the number of columns of panels) and 𝑁
(the number of rows) of the origami are both even. Then, the collection
of vertices with this input data (Eq. (8)) provides a discretization of a
planar region corresponding to two identical rectangular lattices shifted
by an offset. (Here, 𝑀∕2 is even by assumption.) This offset lattice has
a rectangular unit cell of side length 𝑊 parallel to a unit vector 𝐫𝑢 and
side length 𝐿 parallel to a unit vector 𝐫𝑣 (orthogonal to 𝐫𝑢). It also has
an identical rectangular unit cell shifted by a vector 𝛿𝑢𝑊 𝐫𝑢 + 𝛿𝑣𝐿𝐫𝑣.
These quantities are all explicit functions of the vertices defined above,
i.e.,

𝑊 = |𝐫1,0M-O − 𝐫0,0M-O|, 𝐿 = |𝐫0,2M-O − 𝐫0,0M-O|,

𝐫𝑢 =
1
𝑊

(𝐫1,0M-O − 𝐫0,0M-O), 𝐫𝑣 = 1
𝐿
(𝐫0,2M-O − 𝐫0,0M-O),

𝛿𝑢 =
𝐫0,1M-O − 𝐫0,0M-O

|𝐫0,1M-O − 𝐫0,0M-O|
⋅ 𝐫𝑢, 𝛿𝑣 =

𝐫0,1M-O − 𝐫0,0M-O

|𝐫0,1M-O − 𝐫0,0M-O|
⋅ 𝐫𝑣.

(B.1)

We discretize the targeted surface so as to match an offset lattice
associated to a partially-folded Miura-Ori. For the targeted surface, we
consider an arbitrary regular parametric surface �̄�(𝑢, 𝑣) of a rectangular
domain:

�̄�(𝑢, 𝑣) = (𝑥(𝑢, 𝑣), 𝑦(𝑢, 𝑣), 𝑧(𝑢, 𝑣)), 𝑢 ∈ [𝑢𝐿, 𝑢𝑅], 𝑣 ∈ [𝑣𝐿, 𝑣𝑅] (B.2)

where 𝑢𝐿 < 𝑢𝑅 and 𝑣𝐿 < 𝑣𝑅. For the discretization based on the
offset lattice, we treat the general case here (though we use a specific
offset lattice in calculations for simplicity). In this setting, we prescribe
13
𝑤 = 𝑎𝑟𝑙 for an aspect ratio 𝑎𝑟 > 0. As a result, every side-length of
the Miura-Ori is proportional to 𝑙 in this prescription. Elasticity scaling
therefore dictates that the side lengths of the offset lattice in Eq. (B.1)
satisfy 𝑊 = 𝑐𝑊 𝑙 and 𝐿 = 𝑐𝐿𝑙 for positive numbers 𝑐𝑊 = 𝑐𝑊 (𝛼, 𝜔M-O, 𝑎𝑟)
and 𝑐𝐿 = 𝑐𝐿(𝛼, 𝜔M-O, 𝑎𝑟). We henceforth treat the quantities 𝛼, 𝜔M-O and
𝑎𝑟 as given (design parameters one can freely choose). Since the Miura-
Ori has 𝑀 columns and 𝑁 rows of panels (both even numbers), the
red lattice on the Miura-Ori (Fig. B.7) has a width 𝑊𝑀∕2 and length
𝐿𝑁∕2. As we already know the equations of the targeted surface, the
characteristic lengths �̄�𝑢 and �̄�𝑣 can be estimated to represent the total
size of the targeted surface along the 𝑢 and 𝑣 directions, respectively.
We therefore choose the parameters 𝑀,𝑁, 𝑙 such that 𝑐𝑊 𝑙𝑀∕2 ≈ �̄�𝑢
and 𝑐𝐿𝑙𝑁∕2 ≈ �̄�𝑣. Precisely we fix an even integer 𝑀 to dictate the
total number of panels desired for the optimization. Then we choose an
even integer 𝑁 that best approximates the ratio 𝑐𝑊 𝑀∕2

𝑐𝐿𝑁∕2 ≈ �̄�𝑢
�̄�𝑣

. Finally,
we set 𝑙 such that 𝑐𝑊 𝑙𝑀∕2 ≈ �̄�𝑢.

With all the parameters set, we project the Miura-Ori offset lattice
in Eq. (8) onto a plane by the formulas
[

𝑢𝑖,𝑗

𝑣𝑖,𝑗

]

=

[

𝑘𝑢𝐫
𝑖,𝑗
M-O ⋅ 𝐫𝑢 + 𝑐𝑢

𝑘𝑣𝐫
𝑖,𝑗
M-O ⋅ 𝐫𝑣 + 𝑐𝑣

]

, (B.3)

choosing the scaling (𝑘𝑢, 𝑘𝑣) and translation (𝑐𝑢, 𝑐𝑣) so that the center of
the rectangular region [𝑢𝐿, 𝑢𝑅]×[𝑣𝐿, 𝑣𝑅] and the center of the projected
offset lattice match. In other words, the average lattices ⟨(𝑢𝑖.𝑗 , 𝑣𝑖,𝑗 )⟩
should coincide with the center of the rectangular region. We therefore
obtain the formulas for this transformation
[

𝑘𝑢
𝑘𝑣

]

=

[

(𝑢𝑅 − 𝑢𝐿)∕(𝑊𝑀∕2)

(𝑣𝑅 − 𝑣𝐿)∕(𝐿𝑁∕2)

]

, (B.4)

[

𝑐𝑢
]

=

[

𝑢𝐿 − 𝑘𝑢𝐫
0,0
M-O ⋅ 𝐫𝑢

𝐿 0,0

]

. (B.5)

𝑐𝑣 𝑣 − 𝑘𝑣𝐫M-O ⋅ 𝐫𝑣
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Fig. B.8. Results of spherical cap approximation: (a) When the boundary length input data of 𝑓Sh. is optimized freely, this leads to distorted aspect ratios. In addition, point
optimization exits quickly with negligible refinements. (b) When the boundary length input data of 𝑓Sh. is restricted, i.e., 𝒍0 = 𝑙0𝟏, this leads to regular aspect ratios and satisfying
refinements. Note that the boundary length input data of 𝑓Pt. is optimized freely in both (a) and (b).
The projection process of a targeted plane is sketched in Fig. B.7. Note,
by following the procedure above exactly, some boundary points such
as (𝑢0,2𝑗 , 𝑣0,2𝑗 ) would exceed the given domain [𝑢𝐿, 𝑢𝑅] × [𝑣𝐿, 𝑣𝑅] due
the offset. This is not an issue because either the domain of parametric
equation can be enlarged slightly, or we can decrease slightly the
scaling coefficients 𝑘𝑢 and 𝑘𝑣 to include all the points in the given
domain. The latter can always be done.

B.2. Some remarks on the optimization procedure

We develop a two-stage optimization procedure that produces two
deployable origami structures,

after shape optimization:
{

𝐲𝑖,𝑗 (𝜶⋆
0 , 𝑙

⋆
0 𝟏,𝝈M-O, 𝜔

⋆)||
|

𝑖 = 0, 1,… ,𝑀,

𝑗 = 0, 1,… , 𝑁
}

,

after point optimization:
{

𝐲𝑖,𝑗 (𝜶⋆⋆
0 , 𝒍⋆⋆0 ,𝝈M-O, 𝜔

⋆⋆)||
|

𝑖 = 0, 1,… ,𝑀,

𝑗 = 0, 1,… , 𝑁
}

.

(B.6)

When optimizing for shape to obtain the first deployable origami
structure, we restrict the boundary length input data 𝑙0𝟏, only allowing
for a rescaling of the Miura-Ori boundary lengths 𝑙𝟏. This is a choice
based on trial and error in our numerical investigation. Because we only
control the top vertices of the origami structure, additional freedom
to vary the boundary lengths can lead to distorted aspect ratios and
origami that is not conducive to manufacturability or deployability
considerations. An example to this effect is highlighted in Fig. B.8.

Note, unlike shape optimization, we allow the boundary lengths
𝒍0 to freely vary in point optimization. This additional freedom does
not generally pose the same kind of aspect ratio and manufacturability
issues observed in the shape optimization. A basic heuristic for why
is that the origami surface optimized for shape is already a decent
candidate for point optimality. Thus, |(𝜶⋆⋆

0 , 𝒍⋆⋆0 , 𝜔⋆⋆) − (𝜶⋆
0 , 𝑙

⋆
0 𝟏, 𝜔

⋆)| is
typically small.

Finally, in the calculations of shape operators and in measuring the
quality of approximation, we have non-dimensionalized length quanti-
ties by ⟨𝐿⟩ ‘‘the average length of the quad-mesh edges of the targeted

̄ 0,0 ̄ 1,0 ̄ 1,2 ̄ 0,2
14

surface’’. To be clear, these quads have vertices {𝐫 , 𝐫 , 𝐫 , 𝐫 },
{�̄�0,1, �̄�1,1, �̄�1,3, �̄�0,3}, …, etc. So ⟨𝐿⟩ averages the side lengths of all quads
defined in this fashion.

Appendix C. Details of the optimization procedure

C.1. Origami patterns for approximating basic surfaces

To approximate the target surface accurately, it is efficient to choose
the initial input origami close to the target surface. Here we pro-
vide some experimental results for approximating four types of basic
surfaces: planar, vertical bending, horizontal bending and twisting
surfaces, as the guidance for selecting the initial input. We follow the
notations in Appendix A and apply the marching algorithm to generate
2𝑀×2𝑁 RFFQM patterns from the boundary data. The folding topology
on the boundary here is the same as Miura-Ori, i.e., 𝝈 = {+,… ,+},
while the effect of changing folding topologies is discussed later. We
use two parameters 𝛼 ∈ (0, 𝜋) and 𝛽 ∈ (0, 𝜋) to represent the input sector
angles, while excluding the degenerate case 𝛼 = 𝛽 = 𝜋∕2 that does not
follow the kinematics in the framework of the marching algorithm.

1. Planar origami 𝑃 pl
2𝑀,2𝑁 (𝛼, 𝛽):

𝛼0,0 = 𝛼2,0 = ⋯ = 𝛼, 𝛽0,0 = 𝛽2,0 = ⋯ = 𝛽,

𝛼1,0 = 𝛼3,0 = ⋯ = 𝜋 − 𝛽, 𝛽1,0 = 𝛽3,0 = ⋯ = 𝜋 − 𝛼,

𝛼0,2 = 𝛼0,4 = ⋯ = 𝛼, 𝛽0,2 = 𝛽0,4 = ⋯ = 𝛽,

𝛼0,1 = 𝛼0,3 = ⋯ = 𝛽, 𝛽0,1 = 𝛽0,3 = ⋯ = 𝛼.

(C.1)

Note, the surface remains planar during the folding for this case
(see Fig. C.9(a.1) and (a.2)). Note also, these planar origami
degenerate to the Miura-Ori 𝑃mu

2𝑀,2𝑁 (𝛼, 𝛽) when 𝛼 + 𝛽 = 𝜋.
2. Vertical bending origami 𝑃 vb

2𝑀,2𝑁 (𝛼, 𝛽):

𝛼0,0 = 𝛼2,0 = ⋯ = 𝛼, 𝛽0,0 = 𝛽2,0 = ⋯ = 𝛽,

𝛼1,0 = 𝛼3,0 = ⋯ = 𝜋 − 𝛽, 𝛽1,0 = 𝛽3,0 = ⋯ = 𝜋 − 𝛼,

𝛼0,2𝑗 =
𝑁 − 𝑗
𝑁

𝛼 +
𝑗
𝑁

(𝜋 − 𝛽) , 𝛽0,2𝑗 =
𝑁 − 𝑗
𝑁

𝛽 +
𝑗
𝑁

(𝜋 − 𝛼) ,

𝛼0,2𝑗−1 =
𝑁 − 𝑗
𝑁 − 1

𝛽 +
𝑗 − 1
𝑁 − 1

(𝜋 − 𝛼) , 𝛽0,2𝑗−1 =
𝑁 − 𝑗
𝑁 − 1

𝛼 +
𝑗 − 1
𝑁 − 1

(𝜋 − 𝛽) .

(C.2)
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Fig. C.9. The crease patterns and folded configurations (𝜔 = 3𝜋∕4) of origami for approximating basic deformations. The red and blue solid lines indicate the M-V assignments.
(a1–a2) Planar origami 𝑃 pl

10,10(𝜋∕2, 3𝜋∕4) and (a3-a6) sharp interfaces emerging from changing of folding topologies. (b) Vertical bending origami 𝑃 vb
10,10(𝜋∕2, 3𝜋∕4). (c) Horizontal

bending origami 𝑃 hb
10,10(11𝜋∕36, 25𝜋∕36, 𝜋∕18). (d) Twisting origami 𝑃 ts

10,10(7𝜋∕18, 13𝜋∕18). (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
Fig. C.10. Discretization of the parametric surface. The offset (𝛿𝑢 , 𝛿𝑣) is selected by the average of local coordinates of 𝐯𝑖,𝑗+12,𝑝𝑟𝑗 , which is the projected point of 𝐯𝑖,𝑗+12 onto the (𝐯𝑖,𝑗1|𝑢 , 𝐯
𝑖,𝑗+1
1|𝑣 )
plane. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
for 𝑗 = 1,… , 𝑁 . The top and bottom surfaces will bend in 𝑗
direction but keep 𝑖 direction straight during the folding for this
case. (See Fig. C.9(b)).

3. Horizontal bending origami 𝑃 hb
2𝑀,2𝑁 (𝛼, 𝛽, 𝛾):

𝛼0,0 = 𝛼2,0 = ⋯ = 𝛼, 𝛽0,0 = 𝛽2,0 = ⋯ = 𝛽,

𝛼1,0 = 𝛼3,0 = ⋯ = 𝛼 + 𝛾, 𝛽1,0 = 𝛽3,0 = ⋯ = 𝛽 − 𝛾,

𝛼0,2 = 𝛼0,4 = ⋯ = 𝛼, 𝛽0,2 = 𝛽0,4 = ⋯ = 𝛽,

𝛼0,1 = 𝛼0,3 = ⋯ = 𝛽, 𝛽0,1 = 𝛽0,3 = ⋯ = 𝛼.

(C.3)

for 𝛼 + 𝛽 = 𝜋, 𝛾 ∈ (0, 𝛽). The surface will bend in 𝑖 direction
but keep 𝑗 direction straight during the folding for this case (see
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Fig. C.9(c)). This observation can also be found in Wang et al.
(2016).

4. Twisting origami 𝑃 ts
2𝑀,2𝑁 (𝛼, 𝛽):

𝛼2𝑖,0 = 𝑀 − 𝑖
𝑀

𝛼 + 𝑖
𝑀

(𝜋 − 𝛽) , 𝛽2𝑖,0 = 𝑀 − 𝑖
𝑀

𝛽 + 𝑖
𝑀

(𝜋 − 𝛼) ,

𝛼2𝑖−1,0 = 𝑀 − 𝑖
𝑀 − 1

(𝜋 − 𝛽) + 𝑖 − 1
𝑀 − 1

𝛼, 𝛽2𝑖−1,0 = 𝑀 − 𝑖
𝑀 − 1

(𝜋 − 𝛼) + 𝑖 − 1
𝑁 − 1

𝛽,

𝛼0,0 = 𝛼0,2 = 𝛼0,4 = ⋯ = 𝛼, 𝛽0,0 = 𝛽0,2 = 𝛽0,4 = ⋯ = 𝛽,

𝛼0,1 = 𝛼0,3 = ⋯ = 𝛽, 𝛽0,1 = 𝛽0,3 = ⋯ = 𝛼.

(C.4)

for 𝑖 = 1,… ,𝑀 . The surface will exhibit a twisting motion during
the folding for this case (see Fig. C.9(d)).
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Fig. C.11. The targeted surfaces, reference crease patterns, and deployment processes for the numerical cases: (a) A quarter vase, (b) spherical cap, (c) hyperboloid, (d) 2D
sinusoid, (e) saddle, (f) connecting cylinders, (g) connecting saddles, and (h–i) the human-face surface. For cases (h) and (i), we refer to the deployable (h) and non-deployable
(i) origami in Fig. 6.
These basic origami patterns are perturbations of the Miura-Ori that
can help select initial inputs intuitively for approximating different
target surfaces. However, we observe experimentally that the Miura-Ori
as an input is adequate for approximating target surfaces with slightly
changing curvatures. In our results, we have accurate approximations of
most surfaces while taking the Miura-Ori as the initial origami, except
for the human face case, in which we use the 𝑃 vb origami, and the
sharp-interface cases, in which we use the 𝑃 pl origami.

C.2. Selecting the offset

If the input origami to the optimization is a curved surface, we
still require a discretization of the targeted surface. In these cases, we
again employ an offset rectangular lattice to discretize the surface —
but with a reasoned comparison to the origami surface by averaging.
Here, we describe an approach to determine the offset, as illustrated in
Fig. C.10. We employ the local basis for the red points on the origami
surface:

𝐯𝑖,𝑗1|𝑢 = 𝐯𝑖+1,𝑗1 − 𝐯𝑖,𝑗1 , 𝐯𝑖,𝑗1|𝑣 = 𝐯𝑖,𝑗+11 − 𝐯𝑖,𝑗1 , 𝐯𝑖,𝑁1|𝑣 = 𝐯𝑖,𝑁−1
1|𝑣 ,

𝐧𝑖,𝑗1 =
𝐯𝑖,𝑗1|𝑢 × 𝐯𝑖,𝑗1|𝑣
𝑖,𝑗 𝑖,𝑗 .

(C.5)
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|𝐯1|𝑢 × 𝐯1|𝑣|
Now consider the adjacent blue vertex 𝐯𝑖,𝑗+12 shown. This vertex is
displaced from 𝐯𝑖,𝑗1 by a vector 𝑤𝑖,𝑗+1

2|𝑢 𝐯𝑖,𝑗1|𝑢 + 𝑤𝑖,𝑗+1
2|𝑣 𝐯𝑖,𝑗1|𝑣 + 𝑤𝑖,𝑗+1

2|𝑛 𝐧𝑖,𝑗1 with
the components given by

(𝑤𝑖,𝑗+1
2|𝑢 , 𝑤𝑖,𝑗+1

2|𝑣 , 𝑤𝑖,𝑗+1
2|𝑛 ) ∶= [𝐯𝑖,𝑗1|𝑢, 𝐯

𝑖,𝑗
1|𝑣,𝐧

𝑖,𝑗
1 ]−1 (𝐯𝑖,𝑗+12 − 𝐯𝑖,𝑗1 ). (C.6)

Note, the normal component 𝑤𝑖,𝑗+1
2|𝑛 vanishes for a Miura origami. To

some extent, (𝑤𝑖,𝑗+1
2|𝑢 , 𝑤𝑖,𝑗+1

2|𝑣 ) represents the misfit between two quad
meshes along the tangent directions. So we take the average local
coordinates mean

𝑖,𝑗
(𝑤𝑖,𝑗+1

2|𝑢 , 𝑤𝑖,𝑗+1
2|𝑣 ) as the offset, denoted by (𝛿𝑢, 𝛿𝑣). We

also choose the width of our rectangular unit cell as 𝑊 = mean
𝑖,𝑗

|𝐯𝑖,𝑗1|𝑢|

and the length as 𝐿 = mean
𝑖,𝑗

|𝐯𝑖,𝑗1|𝑣|. Given 𝑊 ,𝐿, 𝛿𝑢, 𝛿𝑣, it is possible
to construct the offset rectangular lattice and use it to discretize the
targeted surface.

C.3. Change of folding topology

Changing folding topologies from 𝜎 = + to 𝜎 = − on the boundary
will lead to unusual folding behaviors by the marching algorithm. In
fact, sharp ridges of origami will emerge, as depicted in Fig. C.9(a.3–
a.6). By observation, the change of folding topology on the left or
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Fig. C.11. (continued).
bottom boundary has different effects on the manners of folding. Specif-
ically, by changing 𝜎 = + to 𝜎 = − on the bottom boundary in
Fig. C.9(a.3) and (a.4), we observe that a ‘‘step’’ in 𝑖 direction emerges
in the folded state. Differently, by changing 𝜎 = + to 𝜎 = − on the
left boundary in Fig. C.9(a.5) and (a.6), a ‘‘V’’ shape changing in 𝑗
direction is observed in the folded state. These two observations inspire
us to approximate target surfaces with sharp interfaces. For example,
our results in Fig. 4(f) and (g) exploit the change of folding topology
on the left boundary and result in good approximations.

Appendix D. Approximation results

In Fig. C.11, we provide the optimal reference and deformed crease
patterns for all the approximation cases, as well as their deployments.

Appendix E. Computational resources

We use the function fmincon in Matlab (R2019b) Optimization
Toolbox to perform the sequence quadratic program (SQP) algorithm in
both Shape and Point Optimization. The gradients and Hessians used
in the SQP solver are computed by the forward difference scheme. We
use the function pcregistercpd in Matlab (R2019b) Computer Vision
Toolbox to perform the coherent point drift (CPD) algorithm in the
registration step. The RFFQM cases we provide in Fig. 4 (a–g) and
Fig. 6(b) are computed on a laptop with the Intel(R) Core(TM) i7-
9750H CPU (single-thread serial). The human-face case in Fig. 6(c)
17
is computed on the High-performance Computing (HPC) Platform of
Peking University (32-thread parallel).

Appendix F. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.ijsolstr.2021.111224.
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