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Abstract
Motivated by a design of a vertical axis wind turbine, we present a theory of dynamical
similarity for mechanical systems consisting of interacting elastic solids, rigid bodies and
incompressible fluids. Throughout, we focus on the geometrically nonlinear case. We ap-
proach the analysis by analyzing the equations of motion: we ask that a change of variables
take these equations and mutual boundary conditions to themselves, while allowing a rescal-
ing of space and time. While the disparity between the Eulerian and Lagrangian descriptions
might seem to limit the possibilities, we find numerous cases that apparently have not been
identified, especially for stiff nonlinear elastic materials (defined below). The results ap-
pear to be particularly adapted to structures made with origami design methods, where the
tiles are allowed to deform isometrically. We collect the results in tables and discuss some
particular numerical examples.

Keywords Dynamic similarity · Scaling laws · Fluid-structure interaction · Wind turbines ·
Material selection · Continuum mechanics
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1 Introduction

A powerful tool in fluid and solid dynamics is dynamic similarity. In this paper we con-
sider its use in the design of structures involving parts that are highly deformable, together
with components that are nearly rigid, immersed in a complex fluid flow that may be un-
steady and turbulent. Structures having these features are encountered increasingly for the
mitigation of climate change by emerging concepts for the generation of power from wind
and flowing water; this is the context in which the need for a theory arose for the authors
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Fig. 1 Example of a structure of
the type considered here. The
blades are deformable (see Fig. 2)
and could reasonably be treated
by geometrically nonlinear
elasticity, the central rotator and
supports are naturally modeled as
rigid bodies and the surrounding
air as a Navier-Stokes fluid

(Fig. 1). In such cases the existence or reliability of numerical methods is in question and
validation of such methods by, say, wind/water tunnel testing is in any case desirable. Often
these structures also contain rotating parts, which further necessitates the use of geometri-
cally nonlinear theory. In addition, examples of this type often include thin structures, rigid
bodies or disconnected deformable bodies. Our results apply in that case, but we only show
connected bodies of each type in Fig. 1.

Dynamic similarity is an ancient subject. Surely, Archimedes, in his studies of the float-
ing of simple objects such as paraboloids of revolution, knew that the behavior of one such
object implied the behavior of all such objects [1]. Euler’s precise treatment of beams [2]
and the stability of ships [3–5] contained explicit combinations of material and geometric
constants suitable for dynamic similarity.

A treatment of the modern view of dynamic similarity (termed similitude) from an en-
gineering perspective is presented by Coutinho et al. [6], Kline [7], and Casaburo et al.
[8]. They distinguish the use of classical dimensional analysis from the use of differential
equations to establish similitude. In the former case there is an algebraic relation between
the quantities of interest, and this is usually exploited by using the Buckingham π theorem
([9]. A natural application of this method is to the simplification of a proposed constitutive
relation (Examples given in [10]).

The use of differential equations relies in a more general way on the fundamental law that
all equations of physics are invariant under a change of units, whether differential, algebraic
or more general. With differential equations the usual procedure is to put the equations in
a dimensionless form, and to identify various combinations of material constants that give
rise to the same solution rescaled to a different domain and a different time scale.

From a mathematical viewpoint (where units are usually not mentioned), the equiva-
lent procedure is to find a symmetry of the differential equation, i.e., a change of variables
that transforms a solution to another solution. This is more general than the procedure of
nondimensionalization. In other words, after nondimensionalizing the given equations, there
may be additional symmetries. They are also candidates for the demonstration of dynamical
similarity. An example to explain such a symmetry is the heat equation ut = uxx , where
u(x, t) = e−εx+ε2t f (x − 2εt, t) solves the heat equation whenever f (x, t) is a solution. See
[11], where many other examples and their associated Lie groups are given.
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In the case treated here of deformable bodies interacting with rigid bodies and incom-
pressible fluids, which are themselves interacting with each other, we are unable to find
a treatment in the generality considered here, and it is not clear at the outset that there is
any opportunity for dynamic similarity. However, surprisingly, we find various possibilities,
particularly in cases of stiff bodies where geometrically nonlinear/physically linear models
apply.1 Structures like this are ubiquitous in origami design [12–14]; the fact that they can
be folded from a flat state is considered as an advantage with regard to transportation and
deployment of the structure. In this case unusual scalings involving elastic moduli as well
as space, time, viscosity, density, Lagrangian motions of the solids, Eulerian velocity of the
fluid, and other geometric factors are possible.

The search for scaling laws forces us to say precisely how, for example, the fluid interacts
with the elastic solid. Then we have to check that this interaction is consistent with the scal-
ing laws we find. In the particular case of the elastic solid interacting with the fluid, we say
that the fluid provides a traction boundary condition on the elastic solid. Conversely, we say
that the elastic solid imposes a no-slip boundary condition on the fluid. Similar decisions
are made for the other interactions. We based these decisions on physical considerations
discussed in Sect. 7. From a mathematical viewpoint this issue concerns the well-posedness
of the full coupled system of equations, and almost nothing is known about this.2 We sum-
marize the full system of equations and boundary conditions for which the final scaling laws
hold in Sect. 7. We hope that these physical considerations can guide future work on well
posedness in this area. In general in this paper we suppress smoothness assumptions.

For quick reference we summarize all the cases of dynamical similarity that we find in
Sect. 6. To further highlight the usefulness of the results we give some numerical examples.

2 Basic Set-up, Kinematics and Notation

We consider three types of bodies: a general nonlinear elastic solid, a rigid body and an
incompressible Navier-Stokes fluid. We do not consider body forces.3 We allow mutual in-
teractions between all pairs of these bodies. Fig. 1 shows a schematic. Our results also apply
in complex cases, for example, there are several disconnected rigid bodies or disconnected
deformable bodies.

In all cases we scale the solid structures uniformly in space as shown in Fig. 2. We use
the Lagrangian form of the equations for solid structures. Therefore, both the elastic solid
and rigid body have reference configurations labelled, respectively, � and �r . This is to take
advantage of “elasticity scaling”, which also applies exactly to the Lagrangian form of the
equations of rigid body mechanics. These reference configurations meet at S = ∂� ∩ ∂�r .

We use the suggestive terminology laboratory model and full-scale model to describe
reference and deformed configurations in both cases. The laboratory model can be made of
different materials than the full-scale model, and the fluid in the laboratory model can have

1We emphasize that in this paper the deformable body is allowed to undergo large motions. Thus, the lin-
earizations that are common in problems of fluid-structure interaction and particularly in aerodynamics are
not considered here.
2The conditions for well-posedness of the dynamic nonlinear elastic system by itself are not known in the
general case; the state of knowledge is presented by [15]. The well-posedness of the system of equations for
the rigid body is trivial, see below.
3All equations are written in the common inertial frame fixed to the laboratory and full-scale models, so
centrifugal forces are accounted for in our geometrically nonlinear treatment. Often, steady centrifugal forces
are treated as a body force in a rotating frame. Here, centrifugal forces are accounted for even if they are
unsteady and, for example, cause unwanted vibrations.
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Fig. 2 An example to show the laboratory model and the full-scale model, where the reference configuration
of a VAWT and its deforming configuration (top view) are scaled. Note the asymmetry of the fluid flow arising
from the shape and deformability of the blades in this origami design

Fig. 3 Schematic of the elastic
solid �, the rigid body �r and
their interface S . The fluid
domain is R3 \ � ∪ �r

different viscosity, density and pressure than the full-scale model. The rigid body can be
inhomogeneous. The elastic body is also allowed to be inhomogeneous but the scaling laws
place restrictions on the inhomogeneity.

The motion of the elastic body is denoted by y(x, t), x ∈ � and the motion of the rigid
body is yr (x, t), x ∈ �r . � and �r are fixed reference configurations and x is a material
coordinate throughout. The motion of the fluid is described by an Eulerian velocity field
v(y, t), y ∈ R

3 \ (
y(�, t) ∪ yr (�r, t)

)
(see Fig. 3). Thus, we use the letter y as both an in-

dependent and a dependent variable. Where this notation could cause confusion, we replace
the independent variable y by r. To describe the interaction of solid bodies on the fluid, we
will have to find the Eulerian velocity field of solid bodies. We will convert the velocities by
using the standard relation between Eulerian (E) and Lagrangian (L) descriptions, e.g.,

E −→ L : Solve the infinite system of ODEs: ẏ(x, t) = v(y(x, t), t), y(x,0) = x, x ∈ �,

L −→ E : Invert and evaluate: v(y, t) = ẏ(y−1(y, t), t), y ∈R
3 \ (

y(�, t) ∪ yr (�r, t)
)
.

(1)
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A superimposed dot represents the time derivative of a function of (x, t).
The most convenient form for the kinematics of the rigid body is as follows. �r is given

and we also assume that the reference density ρr(x), x ∈ �r , is given for the laboratory
model. The general form of the motion of a rigid body can be written as

yr (x, t) = R(t)(x − xcm) + ycm(t), t > 0, x ∈ �r, (2)

where R(t) ∈ SO(3) and xcm denotes the center of mass in the reference configuration, which
is

xcm = 1

Mr

∫

�r

ρr(x)xdx, ycm(t) = 1

Mr

∫

yr (�r )

ρr(y−1
r (r, t))rdr, Mr =

∫

�r

ρr(x) dx.

(3)
Here SO(3) denotes the set of rotation tensors in 3 dimensions (in an orthonormal basis,
3 × 3 rotation matrices), SO(3) = {R : RT R = I, detR = 1}. The function ycm(t) has the
interpretation as the center of mass in the deformed configuration of the rigid body at time
t . We use the following fact below: let a skew tensor W(t) = −WT (t), t > 0 be given, and
solve the system of ordinary differential equations Q̇(t) = Q(t)W(t), subject to the initial
conditions Q(0) = Q0. A general fact is that, if Q0 ∈ SO(3), then Q(t) ∈ SO(3) for t > 0.
We shall also need the inertia tensor for the reference configuration of the rigid body, defined
by

I =
∫

�r

ρ0(x)
[|x − xcm|2I − (x − xcm) ⊗ (x − xcm)

]
dx. (4)

By the Cauchy-Schwarz inequality I is positive-definite.

3 Equations of Motion

We summarize the equations of motion for the three types of bodies, written for the labora-
tory model. The interaction conditions are treated in Sect. 4.

3.1 Rigid Body

Consider first the rigid body with reference domain �r . It is assumed to be acted upon by a
resultant force f(t) and moment m(t), t > 0, these being produced by the fluid and elastic
solid. The equations of motion of the rigid body are:

Mr ÿcm(t) = f(t),

Iẇ = −w × Iw − R(t)T
(
ycm(t) × f(t)

) + m(t),

Ṙ = RW, w = axl(W), (5)

where W is a skew tensor with axial vector w. In rectangular Cartesian components,
Wik = εijkwj , where εijk is the permutation symbol. The system of three equations (5) is a
system of ordinary differential equations in standard form. Hence, given f(t) and m(t) these
equations are solved for ycm(t),w(t),R(t) subject to initial conditions ycm(0) = y0

cm,w(0) =
w0,R(0) = R0 with R0 ∈ SO(3). By the remark at the end of Sect. 2, the solution R(t) is in
SO(3). Since xcm is given, a solution of (5) fully determines the motion (2) of the rigid body.
The equations (5) can be found by substituting (2) into the standard Lagrangian form of the
balances of linear and rotational momentum of continuum mechanics.
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3.2 Elastic Solid

It is most convenient here to give the nonlinearly elastic solid in Lagrangian form. For that
purpose we specify a constitutive relation for the Piola-Kirchhoff stress of the form T(F,x),
where F = ∇y is the deformation gradient. The explicit dependence on x represents inho-
mogeneity of the material; this allows us to consider composites. We assume T(F,x) is
defined for det F > 0 and x ∈ � and satisfies the principle of material frame indifference
T(QF,x) = QT(F,x) for all Q ∈ SO(3), all F with det F > 0, and all x ∈ �. T is related to
the familiar Cauchy stress by the formula σ = (1/det F)TFT . Later, the explicit dependence
of T on x will be further restricted to be consistent with scaling. The equations of motion of
the elastic solid are

ρ0(x)ÿ = divxT, x ∈ �, (6)

or, expanded and in rectangular Cartesian components,

ρ0(x)ÿi (x, t) = ∂Tij (yp,q (x, t),x)

∂Fk�

yk,�j (x, t) + ∂Tij (yp,q (x, t),x)

∂xj

. (7)

The equations of nonlinear elasticity place the strongest restriction on possible scaling
laws, since they must be applicable to all materials, i.e., all functions T(F,x) with perhaps a
special dependence on x. However, besides the standard “elasticity scaling” that we use be-
low, we consider another interesting case that covers geometrically nonlinear elasticity the-
ory for physically linear/ geometrically nonlinear elasticity. To explain this case, we assume
that there is a stored energy function ϕ(F,x), which is a potential for the Piola-Kirchhoff
stress: T = ∂ϕ/∂F. This assumption is justified by thermodynamic arguments [16]. In ad-
dition, it is usually assumed that ϕ(F,x) ≥ ϕ(I,x). Together with frame-indifference, this
implies that ϕ is minimized on SO(3). If for some reason (thinness, or the stresses are small)
the deformation gradient remains mainly near SO(3) in a suitable sense, then the response
of the material is governed by the linear elastic moduli.

The typical way to formulate an explicit model of this type is to replace the geometrically
linear strain measure by a nonlinear strain measure in the stress-strain law of linear elasticity.
The classic example for an isotropic material is due to St. Venant and Kirchhoff (see [10],
p. 348), based on the relation

T̃ = λ(trE)I + 2μE, (8)

where E = 1
2 (FT F − I) is the Green strain, T̃ is the second Piola-Kirchhoff stress and λ,μ

are the Lamé moduli. The corresponding (first) Piola-Kirchhoff stress is

T(F,x) = E(x)

2

(
ν̂(x)

(1 + ν̂(x))(1 − 2ν̂(x))

(
tr(FT F) − 3)

)
I + 1

1 + ν̂(x)

(
FFT − I

))
F, (9)

where we have traded Young’s modulus E and Poisson’s ratio ν̂ for the Lamé moduli.4 The
corresponding free energy is given in [17].

In fact, the St. Venant-Kirchhoff model has a defect: it fails the condition of rank-1 con-
vexity at certain states of strong compression, see also [17]. Essentially, stiff materials or
sufficiently thin bodies primarily see deformation gradients near SO(3), but the particular
relation (9) should generally not be used for soft materials in compression.

4The hat on ν distinguishes it from the kinematic viscosity introduced below.
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The St. Venant-Kirchhoff and related models are widely used and quite reasonable for
stiff materials. They gain flexibility for the scaling, because the linear elastic moduli can be
part of the scaling while the theory remains fully geometrically nonlinear. That is, the elastic
material of the laboratory model can be made different from that of the full-scale model as
long as it is tuned appropriately. Moreover, T(F,x) in (9) is linear in Young’s modulus
E(x). From the viewpoint of material selection one can find lots of materials with nearly
the same value of Poisson’s ratio (≈ 1/3) but highly tunable values of Young’s modulus.
Thus, below, we will consider the scaling of Young’s modulus. We want to emphasize that
the terminology “stiff” refers to a large Young’s modulus. Large deformations with large
rotations are still allowed.

Relatedly, rigorous derivations of nonlinear plate theory from a general version of 3D
nonlinear elasticity are consistent with the exact use of constitutive equations that replace
the small strain tensor by a corresponding finite strain tensor in the linearized theory. This
situation occurs in the Kirchhoff energy of nonlinear plate theory [18], where the free energy
is proportional to a single plate modulus, 2μ + λμ

μ+λ/2 . However, the passage from the plate
theory to a geometrically nonlinear Piola-Kirchhoff stress in the manner of the St. Venant-
Kirchhoff model is unclear, though we believe that this should be possible. More general
models for anisotropic materials can also be used, but the selection of materials becomes
more difficult.

3.3 Incompressible Navier-Stokes Fluid

The motion of the fluid is characterized by an Eulerian velocity field v(y, t) and pressure
field p(y, t) defined on the domain exterior to the rigid and elastic bodies. The equations of
motion are

vt + ∇v v = −∇p + ν�v, div v = 0, y ∈R
3 \ (

y(�, t) ∪ yr (�r, t)
)
, t > 0, (10)

to be solved for v(y, t) and p(y, t) (pressure/density). The material constant ν is the kine-
matic viscosity (viscosity/density). The density of the fluid is ρf = const . and Cauchy stress
in the fluid is

σ = ρf

( − pI + ν(∇v + ∇vT )
)
. (11)

4 Interaction Conditions

Any rescaling must preserve the interactions (i.e., mutual boundary conditions) between
bodies, so that they are satisfied for the full-scale model if and only if they are satisfied
for the laboratory model. As explained in the introduction, in the absence of a theorem of
well-posedness, there is arbitrariness in the specification of interaction conditions, and we
are guided here by what is known about special cases.

We have three kinds of interactions, elastic-rigid, elastic-fluid and rigid-fluid. The rigid
body is special in two ways: it requires a specification of a resultant force f(t) and resultant
moment m(t), and it is governed by ordinary differential equations. We assume that the
force and moment on the rigid body are contributed by the elastic solid and the fluid:

f(t) =
∫

S
T(∇y(x, t),x)n0 da0 +

∫

y(∂�r\S)

σ (r, t)nda,
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m(t) =
∫

S
y(x, t) × T(∇y(x, t),x)n0 da0 +

∫

y(∂�r\S)

r × σ (r, t)nda. (12)

Here n0 is the outward unit normal to S ⊂ ∂�r and n is the outward unit normal to y(∂�r \
S).

Conversely, the rigid body imposes forces on the elastic body and fluid. These forces can-
not be calculated directly because the stress in a rigid body is arbitrary. However, the detailed
motion is specified. Thus, we assume that the rigid body imposes a kinematic condition on
the fluid in the form of a no-slip condition:

v(r, t) = ẏr

(
y−1

r (r, t), t
)

= ṘRT (r − ycm(t)) + ẏcm(t), r ∈ yr (∂�r \ S, t), t > 0. (13)

For the same reason we assume that the rigid body imposes displacement conditions on the
elastic body:

y(x, t) = yr (x, t), x ∈ S, t > 0. (14)

The conditions (13) and (14) can each be thought of as “half boundary conditions”,
the other half being represented by (12). Similarly, we expect that there are two additional
boundary conditions for the fluid and elastic body. We think that the most reasonable choices
from a physical viewpoint is a no-slip boundary condition for the fluid imposed by the elastic
solid,

v(r, t) = ẏ
(
y−1(r, t), t

)
, r ∈ y(∂� \ S, t), t > 0, (15)

and a traction condition on the elastic solid imposed by the fluid,

T(∇y(x, t),x)n0 = (det F)σ (y(x, t), t)F−T n0 x ∈ ∂� \ S, t > 0, (16)

with σ defined in (11).
We could also have some additional kinematic conditions, such as anchoring condi-

tions for the elastic body. These could be added without changing our conclusions. All of
the choices in this section have the interesting property that the softer body imposes trac-
tion boundary conditions on the harder body, while the harder body imposes displacement
boundary conditions on the softer body.

5 Scaling Laws

5.1 One Scaling Parameter; General Elastic Material

We take the more general point of view expressed in the introduction of seeking a change of
variables such that full set of equations of motion and interaction conditions for the labora-
tory model implies their satisfaction for the full-scale model. Our notation going forward is
to write the scaling parameters as a superscript for quantities describing the full-scale model.

The equations of motion (6) of the elastic solid are most restrictive. This is because the
function T(F,x) is unspecified. It could be specified, by choosing for example one of the
popular forms, such as Mooney-Rivlin [19], Gent-Thomas [20], or Ogden [21] materials, but
these would lead to highly specialized relations among the material constants, because they
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multiply different functions of F with apparently different powers of the scaling parameter.
Few of these constants are measured. Thus, the practical problem of identifying an actual
material for the laboratory model is likely to be prohibitive. There are possibilities for the
one constant Neo-Hookean material, but we do not pursue this case.

The simplest possibility that avoids implication of these material constants is that the
rescaling preserves the deformation gradient, i.e., “elasticity scaling”. Ignoring the time
dependence for now, this means we introduce the dimensionless scaling parameter λ and
assume the deformation gradient and Piola-Kirchhoff stress for the full-scale model are

F(λ)(x, t) = F( 1
λ

x, 1
λ
t), T(λ)(F(λ)(x, t),x) = T(F( 1

λ
x, 1

λ
t), 1

λ
x), x ∈ λ�. (17)

Our choice is to scale the inhomogeneity like the argument of F. In view of (7) this is
the right choice to make the right hand side of the equations of motion for the elastic body
consistent. It also has the natural physical interpretation that inhomogeneity is simply scaled
up – in the case of a layered composite the layers are simply scaled by λ, retaining their
material properties within corresponding layers.

Notice that the scaling (17) brings a factor 1/λ to the right hand side of (7) due to the
divergence. Elasticity scaling also implies that the elastic properties of the full-scale model
are the same as the laboratory model. Here, we assume the reference densities of the model
and structure are the same. To assure the equations of motion (7) for the elastic body are
exactly satisfied by the full-scale model, the left hand side must satisfy

ρ
(λ)

0 (x) = ρ0(
1
λ

x), x ∈ λ�. (18)

Satisfaction of the equations of motion of the elastic body of the full-scale model then im-
plies

y(λ)(x, t) = λy( 1
λ

x, 1
λ
t), (19)

which also implies how frequencies transform.
Since the patch S is shared by the elastic and rigid bodies, it must scale as the elastic

body. This in turn forces elasticity scaling onto the rigid body. Thus, we must assume that
the rigid body transforms by elasticity scaling, i.e.,

y(λ)
r (x, t) = λyr (

1
λ

x, 1
λ
t). (20)

Consistency of the equations of motion then forces the density of the rigid body to transform
by the law

ρ(λ)
r (x) = ρr(

1
λ

x), x ∈ λ�r. (21)

These assumptions, in turn, imply scaling laws for the total mass Mr , the center of mass xcm

and the inertia tensor I according to their definitions given in Sect. 3.1,

M(λ)
r = λ3Mr,

x(λ)
cm = λxcm,

I(λ) = λ5I, (22)

and so the motion of the rigid body for the full-scale model is

y(λ)
r (x, t) = λyr (

1
λ

x, 1
λ
t) = R( 1

λ
t)(x − x(λ)

cm) + y(λ)
cm(t). (23)
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These scaling laws are found by direct substitution of (20) into the definitions and a change
of variables.

We postpone the verification of the equations of motion of the rigid body until the end of
this section, because the fluid contributes to the force and moment on the rigid body.

We now turn to the scaling laws for the incompressible fluid. These must be consistent
with the interaction conditions coming from the elastic solid, whose scaling has already
been determined. As expressed in (15) the elastic body imposes a no slip condition on the
fluid. This occurs on the deforming boundary of the elastic solid, where it meets the fluid. To
understand how this restricts the motion of the fluid, it is convenient to pass to an Eulerian
version of (15). We will then need to express the inverse of the motion y(λ)(x, t), x ∈ λ�, in
terms of the inverse of y(x, t), x ∈ �. We have that y(λ)(x, t) = λy( 1

λ
x, 1

λ
t), x ∈ λ�, so

x = y(λ)−1(y(λ)(x, t), t) = y(λ)−1
(
λy( 1

λ
x, 1

λ
t), t

)
. (24)

Put x = λy−1(r, 1
λ
t) and then put r = λy ∈ λy(�, t) to get

y(λ)−1(r, t) = λy−1
(

1
λ

r, 1
λ
t
)
. (25)

Notice that the scaling of the inverse of y(λ)(·, t) is the same as the scaling of y(x, t); it is
not the inverse of its scaling. Therefore, combining these results, the scaling of the Eulerian
velocity field is

v(λ)(r, t) = ẏ(λ)
(
y(λ)−1(r, t), t

) = ẏ(y−1( 1
λ

r, 1
λ
t), 1

λ
t) = v( 1

λ
r, 1

λ
t). (26)

Hence, compatibility of the Navier-Stokes equation with elasticity and rigid body mechanics
restricts the standard Reynold’s number scaling of the Navier-Stokes equations, since space
and time must be scaled alike. However, there is the useful remaining invariance (26).

Finally, consider the Navier-Stokes equations for an incompressible fluid, and suppose
they are satisfied by the velocity field of the laboratory model outside the elastic and rigid
bodies:

vt + ∇v v = −∇p + ν�v, div v = 0, v(y, t), y ∈R
3 \ (

y(�, t) ∪ yr (�r, t)
)
. (27)

Here, as above, we have divided by the density of the fluid, so ν is kinematic viscosity and
p is pressure over density. Assuming that v(y, t),p(y, t) satisfy (27) on the given domain
with kinematic viscosity ν, then

v(λ)(y, t) = v( 1
λ

y, 1
λ
t), p(λ)(y, t) = p( 1

λ
y, 1

λ
t), (28)

satisfy the Navier-Stokes equations on the domain R
3 \ (

λy(�, t) ∪ λyr (�r, t)
)

with kine-
matic viscosity

ν(λ) = λν. (29)

Hence, scaling up (λ > 1) necessitates the use of a lower kinematic viscosity fluid for the
laboratory scale model.

We now check the scaling of boundary conditions. We have imposed a no slip condition
(15) on the deforming boundaries between fluid and elastic solid or fluid and rigid body and,
in addition, a traction condition (16). The no slip conditions for the fluid at the elastic solid
and rigid body are, respectively,

v(y(x, t), t) = ẏ(x, t), x ∈ ∂� \ S and v(yr (x, t), t) = ẏr (x, t), x ∈ ∂�r \ S, (30)
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for the laboratory model. Clearly, these imply that the no slip conditions are satisfied for the
full-scale model. That is, by (26), (13) and the scaling laws of y(x, t) and yr (x, t), it follows
that

v(λ)(y(λ)(x, t), t) = ẏ(λ)(x, t), x ∈ ∂λ� \ λS and

v(λ)(y(λ)
r (x, t), t) = ẏ(λ)

r (x, t), x ∈ ∂λ�r \ λS. (31)

Lastly, following (16), we consider the scaling of the traction continuity condition. For
the nonlinear elastic material we have deformation gradient F(x, t) = ∇y(x, t), giving rise
to the Cauchy stress

σ (y(x, t), t) = 1

det F(x, t)
T(F(x, t),x)F(x, t)T , x ∈ ∂� \ S, (32)

where the Cauchy stress in the Navier-Stokes fluid of density ρf = const . is, in Eulerian
form,

σ (y, t) = ρf

( − p(y, t)I + 2νD(y, t)
)
, where D = 1

2
(∇v + (∇v)T ). (33)

Thus, traction continuity for the laboratory model can be written as

1

det F(x, t)
T(F(x, t),x)F(x, t)T n

= ρf

(
− p(y(x, t), t)I + ν

(∇v(y(x, t), t) + (∇v(y(x, t), t)T
)
)

n, x ∈ ∂� \ S, (34)

where n is the outward unit normal to ∂y(�, t)\∂yr (�r, t). Alternatively, for computational
purposes (since � is given) one could replace n in (34) by F−T n0, where n0 is the outward
normal to ∂� \ S .

A similar formula as (34), integrated over ∂�r \ S holds for the rigid body. However, it
does not serve as a boundary condition, but rather as a contribution to the overall force and
moment that appear on the right hand side of the equations of motion of the rigid body.

We now examine the implications of (17) and (18) for traction continuity of the full-scale
model. We replace x, t in (34) by x/λ, t/λ, use (28), (29) and y(λ)(x, t) = λy( 1

λ
x, 1

λ
t). Also,

geometric similarity (or the standard parametric formula of continuum mechanics) implies
that n(λ) = n. After making these substitutions, we obtain

1

det F(λ)(x, t)
T(λ)(F(λ)(x, t),x)F(λ)(x, t)T n(λ)

= ρf

(
− p(y(λ)(x, t), t)I + ν(λ)

(∇v(λ)(y(λ)(x, t), t) + (∇v(λ)(y(λ)(x, t), t)T
)
)

n(λ) (35)

for x ∈ ∂λ� \ λS . Hence, the scaling laws (17)-(19) imply that satisfaction of traction con-
tinuity of the laboratory model (34) implies traction continuity for the full-scale model (35).
See scaling laws in Table 1.

5.2 Two Scaling Parameters; Stiff Elastic Material

Notice that Piola-Kirchhoff stress as discussed in Sect. 3.2 is linear in Young’s modulus. We
get more options for material selection by varying the Young’s modulus of the elastic solid,
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and we can also allow it to be inhomogeneous. In this subsection, we introduce a scaling
parameter δ for Young’s modulus:

E(λ,δ)(x) = δE( 1
λ

x), x ∈ λ�. (36)

Assume as above y(λ)(x, t) = λy(x/λ, t/λ) and that the Piola-Kirchhoff stress for the lab-
oratory model is linear in Young’s modulus having the form ET̂(F). We assume that the
full-scale model then has Piola-Kirchhoff stress

T(λ,δ)(x, t) = δE( 1
λ

x)T̂(F( 1
λ

x, 1
λ
t)), x ∈ λ�. (37)

The equation of motion (6) is satisfied for the full-scale model by choosing the reference
density

ρ
(λ,δ)

0 (x) = δρ0(
1
λ

x), x ∈ λ�. (38)

Because of the choice y(λ)(x, t) = λy(x/λ, t/λ), we get the same scaling for the velocity
field as (26), that is,

v(λ)(r, t) = v( 1
λ

r, 1
λ
t). (39)

Assume that v(r, t) satisfies the Navier-Stokes equations (10) on the given domain with
kinematic viscosity ν. Then v(λ)(y, t) = v( 1

λ
y, 1

λ
t) satisfies the Navier-Stokes equations on

the domain R
3 \ (

λy(�, t) ∪ λyr (�r, t)
)

with kinematic viscosity and pressure/density

ν(λ) = λν, p(λ)(y, t) = p( 1
λ

y, 1
λ
t). (40)

Let ρ
(λ,δ)
f denote the density of the fluid for the full-scale model. Traction continuity between

elastic solid and the fluid, i.e.,

1

det F(λ)(x, t)
T(λ,δ)(x, t)F(λ)(x, t)T n(λ)

= ρ
(λ,δ)
f

( − p(λ)(y(λ)(x, t), t)I + ν(λ)
(∇v(λ)(y(λ)(x, t), t) + (∇v(λ)(y(λ)(x, t), t)T

))
n(λ),

(41)

for x ∈ ∂λ� \ λS is then satisfied by the choice

ρ
(λ,δ)
f (y) = δρf ( 1

λ
y) (42)

for the full-scale model. Here, we retain the superscript λ to avoid conflict with the notation
for other choices of scaling parameters, even though this dependence is trivial here due to
the incompressibility of the fluid. Since the rigid body is attached to the elastic solid, the
motion of the rigid body can be given as above by

y(λ)
r (x, t) = λyr (

1
λ

x, 1
λ
t). (43)

Considering the equations of motion (5) and forces (12) for the rigid body, its density will
transform by the law

ρ(λ,δ)
r (x) = δρr(

1
λ

x), x ∈ λ�r. (44)
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Then the scaling laws for the total mass Mr and the inertia tensor I are given for the full-
scale model by

M(λ,δ)
r = δλ3Mr,

I(λ,δ) = δλ5I. (45)

These scaling laws are summarized in Table 2.

5.3 Four Scaling Parameters; Stiff Elastic Material

In this subsection, we consider the more general case with four scaling parameters. Let λ,α,
η and δ be the geometry, time, density and Young’s modulus scaling parameters, respec-
tively. Starting from elastic solid which is assumed to have Piola-Kirchhoff stress given by
(9), we have

F(λ,α)(x, t) = F( 1
λ

x, 1
α
t), T(λ,α,δ)(x, t) = δE( 1

λ
x)T̂(F( 1

λ
x, 1

α
t)), (46)

ρ
(η,λ)

0 (x) = ηρ0(
1
λ

x), y(λ,α)(x, t) = λy( 1
λ

x, 1
α
t), x ∈ λ�. (47)

Then (6) is satisfied for the full-scale structure if and only if the four parameters satisfy

η = δ
α2

λ2
. (48)

For the fluid, since y(λ,α)(x, t) = λy( 1
λ

x, 1
α
t), we get

v(λ,α)(r, t) = ẏ(λ,α)
(
y(λ,α)−1(r, t), t

) = λẏ(y−1( 1
λ

r, 1
α
t), 1

α
t) = λ

α
v( 1

λ
r, 1

α
t). (49)

Consider the Navier-Stokes equations for an incompressible fluid, and assume that v(y, t)

satisfies (10) on the given domain with kinematic viscosity ν. Then (49) satisfies the Navier-
Stokes equations on the domain R

3 \ (
λy(�, t) ∪ λyr (�r, t)

)
with kinematic viscosity and

pressure

ν(λ,α) = λ2

α
ν, p(λ,α)(y, t) = λ2

α2 p( 1
λ

y, 1
α
t). (50)

Then considering traction continuity between elastic solid and the fluid, we have

1

det F(λ,α)(x, t)
T(λ,α,δ)(x, t)F(λ,α)(x, t)T n(λ)

= − ρ
(λ,α,δ)
f p(λ,α)(y(λ,α)(x, t), t)n(λ)

+ ρ
(λ,α,δ)
f ν(λ,α)

(∇v(λ,α)(y(λ,α)(x, t), t) + (∇v(λ,α)(y(λ,α)(x, t), t)T
)
n(λ), (51)

for x ∈ ∂λ� \ λS . Substituting all quantities to (51), we get

ρ
(λ,α,δ)
f (y) = δ α2

λ2 ρf ( 1
λ

y). (52)

Again, we retain the superscript λ to avoid conflict with the notation for other choices of
scaling parameters, even though this dependence is trivial here due to the incompressibility
of the fluid. The motion of the rigid body is restricted by the motion of elastic solid, yielding

y(λ,α)
r = λyr (

1
λ

x, 1
α
t). (53)
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Similarly, consistency with (5) and (12) implies that the scaling law for density of rigid body
is

ρ(λ,α,δ)
r (x) = δ α2

λ2 ρr(
1
λ

x), x ∈ λ�r. (54)

Correspondingly, the total mass Mr and the inertia tensor I of rigid bodies will transfer by

M(λ,α,δ)
r = δα2λMr,

I(λ,α,δ) = δα2λ3I. (55)

The scaling laws in this case are summarized in Table 3.

6 Summary of Scalings

Summaries of the scaling laws are given in Tables 1, 2 and 3.

Remarks and Examples for Table 1 In this case, since the density and elastic properties of
the corresponding solid structures in the two models are the same, one can simply choose
the materials used to make the full-scale structure to fabricate the corresponding laboratory
structure at scale. Note that the fluids in the two models are different since they have same
density but different kinematic viscosity. We can choose fluids with lower kinematic vis-
cosity but similar density as the full-scale fluid. Another way to design such fluids for the
laboratory model is to choose the same fluid as full-scale model to guarantee the same den-
sity, then varying the temperature of a closed tunnel to obtain lower kinematic viscosity and
therefore higher geometric scaling parameter λ.

Remarks and Examples for Table 2 The scaling of Young’s modulus opens up more possi-
bilities for material selection. For our motivating example of a Vertical Axis Wind Turbine
(VAWT), assume the full-scale structure has the rotor diameter of approximately 1m, and the
blades are made of fiberglass reinforced polyester with ρ ≈ 1600 kg/m3 and E ≈ 20 GPa. At
room temperature and atmospheric pressure, the full-scale fluid has νair = 15.6×10−6 m2/s

Table 1 Scaling laws with one geometric scaling parameter (λ) and a general elastic material

Variable Rigid body Elastic solid Fluid

Laboratory Full-scale Laboratory Full-scale Laboratory Full-scale

Geometry x ∈ �r x ∈ λ�r x ∈ � x ∈ λ�

Time t ∈ T t ∈ λT t ∈ T t ∈ λT t ∈ T t ∈ λT

Density ρr (x) ρr (
1
λ x) ρ0(x) ρ0( 1

λ x) ρf (r) ρf ( 1
λ r)

Mass Mr λ3Mr M λ3M

Young’s modulus E E

Motion yr (x, t) λyr (
1
λ x, 1

λ t) y(x, t) λy( 1
λ x, 1

λ t) v(r, t) v( 1
λ r, 1

λ t)

Deformation gradient R(t) R( 1
λ t) F(x, t) F( 1

λ x, 1
λ t)

Kinematic viscosity ν λν

Pressure/density p(r, t) p( 1
λ

r, 1
λ
t)

Cauchy Stress σ (x, t) σ ( 1
λ x, 1

λ t) σf (r, t) σf ( 1
λ r, 1

λ t)
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Table 2 Scaling laws with scaling parameters for geometry (λ) and Young’s modulus (δ) (stiff elastic mate-
rial)

Variable Rigid body Elastic solid Fluid

Laboratory Full-scale Laboratory Full-scale Laboratory Full-scale

Geometry x ∈ �r x ∈ λ�r x ∈ � x ∈ λ�

Time t ∈ T t ∈ λT t ∈ T t ∈ λT t ∈ T t ∈ λT

Density ρr (x) δρr (
1
λ x) ρ0(x) δρ0( 1

λ x) ρf (r) δρf ( 1
λ r)

Mass Mr δλ3Mr M δλ3M

Young’s modulus E δE

Motion yr (x, t) λyr (
1
λ x, 1

λ t) y(x, t) λy( 1
λ x, 1

λ t) v(r, t) v( 1
λ r, 1

λ t)

Deformation gradient R(t) R( 1
λ
t) F(x, t) F( 1

λ
x, 1

λ
t)

Kinematic viscosity ν λν

Pressure/density p(r, t) p( 1
λ

r, 1
λ
t)

Cauchy Stress σ (x, t) δσ ( 1
λ x, 1

λ t) σf (r, t) δσf ( 1
λ r, 1

λ t)

and ρair = 1.204 kg/m3. One way to design the laboratory fluid is to use pressurized air [22].
For example, at room temperature and 6 times atmospheric pressure, the kinematic viscosity
and density of air become ν̄air = 2.603 × 10−6 m2/s and ρ̄air = 7.122 kg/m3, giving scaling
parameters λ ≈ 6 and δ ≈ 1/6. According to Table 2, this implies (1) the size of laboratory
VAWT will be reduced to 1/6 of the full-scale VAWT (to approx. 17 cm); (2) both density
and Young’s modulus of the laboratory blades will increase to 6 times that of the full-scale
blades, which are approximately 9600 kg/m3 and 120 GPa. We can select suitable metals
or alloys to fabricate the laboratory blades, see the plot of Young’s modulus against density
in page 61 of [23]. Particularly, copper with density ≈ 9000 kg/m3 and Young’s modulus
≈ 120 GPa would be an option.

Modern thermoplastic resins used in many industries, such as horizontal axis wind tur-
bines and automobiles, have E ≈ 2 GPa and ρ ≈ 1000 kg/m3, giving a wide variety of
possible scale factors with metals or hard polymers chosen for the laboratory model. If
we increase pressure to 11 times atmospheric pressure, at room temperature, we have
ν̄air = 1.42 × 10−6 m2/s and ρ̄air = 13.08 kg/m3, then the scaling parameters will be
λ ≈ 11 and δ ≈ 1

11 . So for the laboratory structure, we get (1) size reduction to 1/11 of
the size of full-scale structure; (2) density: ρ/δ ≈ 11000 kg/m3, and (3) Young’s modulus:
E/δ ≈ 22 GPa. Therefore, lead alloys with density ≈ 11000 kg/m3 and Young’s modulus
≈ 21 GPa will be a possible option to fabricate the laboratory structure.

Timber has been the main building material for house construction, especially in
earthquake-prone areas. One can use above method to design laboratory model to test the
structural stability. Specially, if the geometric scaling parameter is chosen as λ = 20, low
carbon steel will be a suitable material to fabricate laboratory model, and the test environ-
ment will be 20 times atmospheric pressure.

Remarks and Examples for Table 3 In this general case, one more independent scaling pa-
rameter, α for time, is introduced, which gives us additional flexibility to design the scale
model. Reduction of the duration of the experiment can be achieved by increasing the value
of α.

In addition, since we have η = δ α2

λ2 , the inverse design of densities of laboratory fluid
can be realized by adjusting the three independent parameters on the right-hand side. For
example, if we choose the laboratory fluid same as the full-scale fluid, the scaling parameters
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Table 3 Scaling laws with the scaling of geometry (λ), time (α), density (η) and Young’s modulus (δ), where
η = δα2/λ2 (stiff elastic material)

Variable Rigid body Elastic solid Fluid

Laboratory Full-scale Laboratory Full-scale Laboratory Full-scale

Geometry x ∈ �r x ∈ λ�r x ∈ � x ∈ λ�

Time t ∈ T t ∈ αT t ∈ T t ∈ αT t ∈ T t ∈ αT

Density ρr (x) δα2

λ2 ρr (
1
λ x) ρ0(x) δα2

λ2 ρ0( 1
λ x) ρf (r) δα2

λ2 ρf ( 1
λ r)

Mass Mr δα2λMr M δα2λM

Young’s modulus E δE

Motion yr (x, t) λyr (
1
λ x, 1

α t) y(x, t) λy( 1
λ x, 1

α t) v(r, t) λ
α v( 1

λ r, 1
α t)

Deformation gradient R(t) R( 1
α t) F(x, t) F( 1

λ
x, 1

α t)

Kinematic viscosity ν λ2

α ν

Pressure/density p(r, t) λ2

α2 p( 1
λ r, 1

α t)

Cauchy Stress σ (x, t) δσ ( 1
λ

x, 1
λ
t) σf (r, t) δσf ( 1

λ
r, 1

α t)

will satisfy η = δ α2

λ2 = 1 and λ2

α
= 1. Assume the size of laboratory structure is reduced to

1/10 of the full-scale structure, i.e., λ = 10, we get α = 100 and δ = 1
100 . Therefore, the

laboratory structure has approximately 100 times Young’s modulus but similar density of
the full-scale structure. Ethylene tetrafluoroethylene (ETFE) has been a widely used building
material in aerospace industry, agricultural and architectural projects, such as the panels to
cover the outside of the football stadium Allianz Arena or the Beijing National Aquatics
Centre and ETFE roof at Manchester Piccadilly station in UK. Model experiments will
play a guiding role in the construction of such architectures. For the full-scale structure we
have E ≈ 0.85 GPa and ρ ≈ 1680 kg/m3 for ETFE. Then carbon fiber reinforced polyester
(CFRP) with E of 70GPa −150 GPa and ρ ≈ 1.6 g/cm3 will be a suitable material to build
the laboratory structure with scaling parameters λ = 10, η ≈ 1 and δ ≈ 1

100 .
These scaling laws can be used not only to design size-reduced laboratory models for

large-scale structures but also to design size-increased laboratory models for small-scale
structures. An interesting example is the study of the role of elastic effects in biomimetic
shark skin. Shark skin surface with its unique microstructure can achieve flow-drag reduc-
tion [24, 25]. A scaled-up model satisfying dynamic similarity would be helpful to under-
stand the underlying mechanism, which can then be applied to design structures with better
drag reduction performance. The full-scale shark skin has E ≈ 0.2 GPa and ρ ≈ 800 kg/m3.
For the laboratory model, we scale up the microstructure 15 times, i.e., λ = 1

15 , and let
laboratory fluid be water, we get η = 1 and δ = 225. Then rubber with E ≈ 0.9 MPa and
ρ ≈ 800 kg/m3, such as silicone, acrylic rubber, chlorinated polyethylene rubber, etc., would
be suitable materials. Of course, Reynolds numbers of the two models are necessarily the
same. In this analysis we have assumed that the elasticity of shark skin is reasonably mod-
eled by a geometrically nonlinear – physically linear model, which would have to be tested.

7 The Full System of Equations

As a basis for studies of well-posedness, we give a statement of the full system of equations
for the laboratory model to clarify all the couplings.
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1. Equations of motion of the nonlinear elastic body

ρ0(x)ÿ = divxT, x ∈ �, t > 0. (56)

This is to be solved for y(x, t), x ∈ �. The reference density ρ0(x) is given on �.
(a) Boundary conditions for the elastic body interacting with the fluid

σ (x, t)n = ρf

(
− p(y(x, t), t)I + ν

(∇v(y(x, t), t) + (∇v(y(x, t), t)T
))

n,

x ∈ ∂� \ S, (57)

where σ = 1
det F TFT , F = ∇xy.

(b) Boundary conditions for the elastic body interacting with the rigid body

y(x, t) = yr (x, t) = R(t)(x − xcm) + ycm(t), x ∈ S = ∂� ∩ ∂�r, (58)

2. Equations of motion of the rigid body

Mr ÿcm(t) = f(t),

Iẇ = −w × Iw − R(t)T
(
ycm(t) × f(t)

) + m(t),

Ṙ = RW, w = axl(W), (in RCC, Wik = εijkwj ) (59)

where

Mr =
∫

�r

ρ0(x) dx

xcm = 1

Mr

∫

�r

xρ0(x) dx

I =
∫

�r

ρ0(x)
[|x − xcm|2I − (x − xcm) ⊗ (x − xcm)

]
dx. (60)

(a) Forces and moments on the rigid body due to the fluid and elastic solid.
Let

σ f (x, t) = ρf

(
− p(yr (x, t), t)I + ν

(∇v(yr (x, t), t) + (∇v(yr (x, t), t)T
))

, (61)

be the Cauchy stress in the fluid at the boundary with the rigid body, expressed in
Lagrangian variables. Then, the force and moment on the rigid body from the fluid
and elastic solid are,

f(t) =
∫

∂�r\S
σ f (x, t)Rn0 da0 +

∫

S
Tn0 da0,

m(t) =
∫

∂�r\S
yr (x, t) × σ f (x, t)Rn0 da0 +

∫

S
y0 × Tn0 da0. (62)

In these two formulae n0 is the outward normal of �r , and T is the Piola-Kirchhoff
stress evaluated from the nonlinear elastic solution. The R occurs from the conversion
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to Piola-Kirchhoff stress. These forms are preferable to other formulations because
there are no inversions and the domain of integration is fixed.

3. Equations of motion of the Navier-Stokes fluid

vt + ∇v v = −∇p + ν�v, div v = 0, y ∈R
3 \ (

y(�, t) ∪ yr (�r, t)
)
, (63)

to be solved for p(y, t) and v(y, t).
(a) No slip condition for the fluid.

The no slip conditions for the fluid on the solid and rigid body are:

v(y(x, t), t) = ẏ(x, t), x ∈ ∂� \ S and v(yr (x, t), t) = ẏr (x, t), x ∈ ∂�r \ S.

(64)
(b) Conditions at infinity for the fluid, such as

v(r, t) → v0, σ f (r, t) = −ρf p(r, t)I, as |r| → ∞. (65)

8 Conclusion and Outlook

We have derived scaling laws for a interacting system of rigid bodies, elastic bodies and
incompressible fluids undergoing large motions (geometrically nonlinear case). Our method
is to investigate rescalings that preserve the equations of motion and interaction conditions
between bodies. A number of cases of practical importance emerge from this analysis that
to our knowledge have not been identified, and we give particular examples in Sect. 6.

For a full treatment, our motivating example of a vertical axis wind turbine would have
to include a torque arising from induction in the generator, as well as possible sources of
friction, tuned appropriately for the laboratory model. Apparently, this is straightforward for
sufficiently simple models of induction and friction.

The classic application of dynamical similarity is to the case of large bodies scaled down
to laboratory size. But the opposite case is also of modern interest, particularly for biological
problems and medical devices having components with sizes from microscale to millimeter
scale, where continuum theories are often accurate and the geometrically nonlinear case is
required. With swimming bacteria, flying insects or biological motors, thermodynamics and
chemical reactions would need to be included. It would be interesting to know if there is a
theory of dynamical similarity involving scale-up to laboratory size in some of these cases.
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