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Abstract. An efficient way to introduce elastic energy that can bias an origami structure toward
desired shapes is to allow curved tiles between the creases. The bending of the tiles supplies the
energy and the tiles themselves may have additional functionality. In this paper, we present the
theorem and systematic design methods for quite general curved origami structures that can be
folded from a flat sheet, and we present methods to accurately find the stored elastic energy. Here
the tiles are allowed to undergo curved isometric mappings, and the associated creases necessarily
undergo isometric mappings as curves. These assumptions are consistent with a variety of practical
methods for crease design. The h3 scaling of the energy of thin sheets (h = thickness) spans a broad
energy range. Different tiles in an origami design can have different values of h, and individual tiles
can also have varying h. Following developments for piecewise rigid origami [1], we develop further
the Lagrangian approach and the group orbit procedure in this context. We notice that some of the
simplest designs that arise from the group orbit procedure for certain helical and conformal groups
provide better matches to the buckling patterns observed in compressed cylinders and cones than
known patterns.
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1 Introduction
An aspect of piecewise linear origami design appreciated by experts and recreational designers
alike is the huge variety of ways a typical simple crease pattern can be folded. This friend of the
recreational designer, and foe of the goal-oriented designer, is illustrated by the (fixed) crease pattern
shown in Figure 3 of [2], having 16 × 16 tiles which can be folded 65,534 distinct ways, simply by
varying the mountain-valley assignment on two adjacent edges of the unfolded pseudo-rectangular
sheet.

This degeneracy can potentially be removed by adding appropriate elastic energy of the tiles by
allowing them to bend. Great stiffness (or softness) can be achieved in this way [3, 4], but little is
understood how this works. In addition, by engineering the thickness, tremendous freedom of the
design of the energy landscape is possible for a single crease pattern, simply because of the h3 (h =
thickness) dependence of energy on the thickness of the tiles, and the fact that different tiles can
have different thicknesses. Even on a single tile, the thickness can be varied smoothly with position
while preserving the property that the tile deforms isometrically, giving even more opportunity to
design the energy landscape.

From a continuum mechanics viewpoint, the conventional approach to origami design can be
described as Eulerian. One looks at the deformed configuration and identifies kinematic objects,
like angles between neighboring tiles and distances, and then develops relationships between these
qualities [5]. An elegant version of this approach making use of the isometric transformations and
concepts from algebraic geometry is given in [6].

Our approach here is quite different and can be described as Lagrangian, though we frequently
make use of concepts from the primarily Eulerian subject of differential geometry. The goal in this
case is to give a formula for the deformation y(x), x ∈ Ω, or y(x, t) in the dynamic case, where
Ω is a flat reference configuration−typically a flat sheet with a crease pattern before folding. This
approach has been developed in [7, 8, 9]; we develop further the Lagrangian method in the context
of curved tile origami. We base the development on formulas for the rulings, and we find ways
to include planar regions, inflection points, and straight segments on the crease that can occur
for general isometric mappings (see [10, 11]). This gives quite a general Lagrangian framework to
explore curved tile origami.

We also further develop a group orbit method for curved tile origami structures. The general
idea was outlined in [12] as a method for constructing certain compatible microstructures arising
from phase transformations in crystals and was developed for piecewise-linear origami structures in
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[2, 8, 13]. This method relies on the isometry groups, which preserve curved isometric deformations.
Different groups can be applied to the reference configuration and the deformed configuration, giving
a variety of interesting structures. We further generalize this method by replacing isometry groups
by conformal groups. These involve orthogonal transformations, translations, and dilatations. Fun-
damentally, the conformal group orbit method exploits the basic scaling law of nonlinear elasticity,
y(x, t) → ηy((1/η)x, (1/η)t), which preserves isometries, stress, equations of motion (with no body
force), etc.

While exploring some of these examples, we noticed a striking resemblance between some of our
structures to the buckling patterns observed in compressed cylindrical and conical shells (Section
7). In fact, the match is apparently much better than the Yoshimura and related patterns that are
usually compared to these buckled states. While we do not pursue a detailed study of buckling and
bifurcation here, these patterns do provide explicit “test functions” that would be essential for such
a study, and we provide methods of calculation of their energies. It came as a surprise to us that
other examples for conformal groups show a curious resemblance to various sea creatures studied
originally by Thompson [14]. We do not know if this is purely coincidental, but we conjecture that
the group structure plays a physiological role.

Curved tile origami structures are of longstanding interest from the many concepts proposed
for deployable structures in space, that nevertheless have to be folded to fit into a space vehicle.
But there is also rising interest from diverse areas: robotics [15, 16], foldable household and leisure
items [17], medical devices [18], foldable buildings [19], wind turbines with deformable blades [20]
and large scale structures that would be otherwise difficult to transport.

Table 1 Notation adopted in the paper

Notation Description Formula

Domain and Basis
ŷ Isometric mapping ŷ : R2 → R3

x Point in the reference flat domain
y Point in the deformed domain
(ê1, ê2) Fixed orthonormal basis in R2 det(ê1, ê2) > 0

(x1, x2) Coordinates of x in (ê1, ê2) x = x1ê1 + x2ê2

Variables in crease
s Arc length parameter of creases s ∈ R, s1 < s < s2
x0 Reference crease x0(s)

x′
0 Tangent vector of x0 x′

0(s)

p0 Principal normal vector of x0 in R2 x′
0(s) · p0(s) = 0,

det(x′
0(s),p0(s)) > 0

κ0 Curvature of x0 x′′
0(s) · p0(s)

y0 Deformed crease y0(s)

y′
0 Tangent vector of y0 y′

0(s)

p Principal normal vector of y0

b Binormal vector of y0 y′
0(s)× p(s)
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κ Curvature of y0 y′′
0(s) · p(s)

τ Torsion of y0 −b′(s) · p(s)

Variables in surface
y,1 ,y,2 Derivatives of ŷ(x) w.r.t. x1 and x2 y,σ =

∂ŷ(x(x1,x2))
∂xσ

, σ = 1, 2

e Reference rulings

e⊥ Unit vector in R2 perpendicular to e
e · e⊥ = 0,
det(e, e⊥)>0

t Deformed rulings
t⊥ Unit vector perpendicular to t lying in

t− y′
0 plane

t · t⊥ = 0, |t⊥ · y′
0| > 0

n Normal vector of a curved tile n = y,1×y,2= t× t⊥

F Deformation gradient of ŷ ∇xŷ

e1, e2 Reference rulings of the two tiles meeting
at x0 in curved tile origami

e⊥1 , e
⊥
2 Unit vectors in R2 perpendicular to eσ

eσ · e⊥σ = 0,
det(eσ, e

⊥
σ ) > 0, σ = 1, 2

t1, t2 Deformed rulings of the two tiles meeting
at y0 in curved tile origami

t⊥1 , t
⊥
2 Unit vectors perpendicular to tσ lying in

tσ − y′
0 plane

tσ · t⊥σ = 0,
|t⊥σ · y′

0| > 0, σ = 1, 2

n1,n2 Unit normal vectors of the two tiles in
curved tile origami

F1,F2
Deformation gradients of the two tiles in
curved tile origami

γ The angle between n1 and p γ ∈ (−π
2
+ε, π

2
−ε), ε > 0

ρ1, ρ2 C1 bounded functions τ = ρ1κ, γ
′ = ρ2κ

f1, f2 C1 bounded functions τ = f1κ cos γ,
γ′ = f2κ cos γ

2 Necessary conditions that two isometrically deformed sur-
faces meet at a crease

2.1 Some results from differential geometry in Lagrangian form

In this section, we collect some results from classical differential geometry for the convenience of
the reader, and we rewrite some of these results in Lagrangian form. In fact, for our constructions
in the sequel, our main tools are the two formulas for the rulings in the reference and deformed
configurations and the invertible deformation that relates them. It will be seen that these formulas
apply in large domains (with certain restrictions) and deliver exact isometric mappings. For Section
2.1 our presentation is informal; we work on a neighborhood of a point on a crease with smoothness
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assumed as needed. Precise sufficient conditions that two smooth surfaces meet at a crease are
given in Section 3.

Consider a smooth deformation y : Ω → S from a domain Ω ⊂ R2 into a generally curved
surface S = y(Ω) ⊂ R3. It will be convenient to use rectangular Cartesian components (x1, x2)
relative to a fixed right-handed orthonormal basis (ê1, ê2) for the domain Ω,

x = x1ê1 + x2ê2, x1, x2 ∈ R, (1)

and a description in terms of vectors for the range.
We begin by deriving some local, necessary conditions for an isometric mapping. The deforma-

tion gradient F = ∇xy is given by

F =
∂y

∂xi

⊗ êi = y,1 ⊗ ê1 + y,2 ⊗ ê2, (2)

where y,1 and y,2 are two tangent vectors of S at y(x). From (2), they can be expressed as

y,1 = Fê1, y,2 = Fê2. (3)

By definition, if y is an isometric mapping, it locally preserves lengths and angles in the sense that

Fx1 · Fx2 = x1 · x2 (4)

for all x1,x2 ∈ Ω. Substituting (3) into (4), we have the necessary and sufficient conditions

y,1 · y,1 = y,2 · y,2 = 1, y,1 · y,2 = 0, (5)

for a mapping to be isometric. Clearly, a necessary and sufficient condition for (4) is

FTF = I. (6)

Since y,i ·y,j = δij by (5), we have the necessary condition for an isometric mapping,

y,ik · y,j + y,i · y,jk = 0. (7)

Firstly, let i = j: we get y,ik ·y,i = 0 (no sum). Then let j = k: we get y,jj ·y,i = 0 (no sum). So we
conclude from (7) that y,jk ·y,i = 0 for all i, j, k = 1, 2. For definiteness, we take the unit normal of
S to be n = y,1 × y,2. Because y,i are tangent vectors, we obtain

y,jk = yjkn, j, k = 1, 2, (8)

where yij = y,ij ·n = yji are the coefficients of the second fundamental form. Taking the gradient
of F, we have

∇F = y,ij ⊗ êi ⊗ êj = n⊗ (yij êi ⊗ êj) (9)

Since y,ij ·y,k = 0, we have (y,22 ·y,1−y,12 ·y,2 ),1+(y,11 ·y,2−y,12 ·y,1 ),2= 0. Expanding and sim-
plifying above equation, we get

y,11 ·y,22−y,12 ·y,21= y11 y22 − y212 = 0, (10)
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so at least one eigenvalue of the 2×2 matrix yij is 0. Hence, yij is a symmetric matrix of rank one and
can be written as yij = Λmimj, where m2

1 +m2
2 = 1. The two eigenvalues 0 and Λ are the principal

curvatures of the isometrically deformed surface. Defining the unit vector e⊥ = m1ê1 +m2ê2, (9)
becomes

∇F = Λn⊗ e⊥ ⊗ e⊥. (11)

Continuing with our local analysis, we assume by possibly shrinking Ω that Λ ̸= 0 on Ω1. Then,
m1,m2 can be chosen to be continuously differentiable on Ω, and we obtain a continuously differ-
entiable, right-handed, orthonormal basis field (e, e⊥) on Ω, where e = m2ê1 −m1ê2.

We now prove that div e⊥ = 0. We begin by eliminating Λ from (8) in the form yij = Λmimjn.
Then we note that divF = y,11+y,22= Λn from m2

1 + m2
2 = 1. From (11), we have ∇F e⊥ =

divF⊗ e⊥. Taking divergence of the above equation and canceling terms, we get

∇F · ∇e⊥ = (div e⊥)divF. (12)

Differentiating e⊥ · e⊥ = 1, we get e⊥ · ∇e⊥ = 0, so ∇F · ∇e⊥ = 0. Since divF = Λn ̸= 0, we
conclude that div e⊥ = 0 on Ω. Thus, by direct calculation, we have

∇e e = −(div e⊥)e⊥ = 0. (13)

2.2 Formulas for the rulings

We examine the integral curves of the vector field e(x). We choose x0 ∈ Ω and solve the ordinary
differential equation

x′(v) = e(x(v)), x(0) = x0. (14)

Under our hypotheses, there is a unique local solution. Differentiating with respect to v, we have
that x′′(v) = ∇e e = 0 by (13), so the solution of (14) are straight lines, x(v) = ve(x0) + x0.

The formulas for the rulings in the reference domain come from the simple observation that we
can allow x0 to lie on the smooth curve x0(s) as long as it is transversal to the vector field e(x).
Choose a smooth curve x0(s), s1 < s < s2, in Ω that is transversal to the vector field e(x). Without
loss of generality, we can also assume an arc-length parameterization of this curve, so we have, say,

x′
0(s) · e⊥(x0(s)) > 0, |x′

0(s)| = 1, s1 < s < s2. (15)

Then, for each s ∈ (s1, s2), we can solve the ordinary differential equation (14) with initial condition
x(s, 0) = x0(s) yielding the solution,

x(s, v) = x0(s) + ve(s), (16)

where e(s) = e(x0(s)). The formula (16) describes the rulings in the reference domain. Under our
hypotheses, the rulings do not intersect, by uniqueness of the initial-value problem (14). They may
not cover all of Ω, but also may extend well beyond Ω in the directions e(s) if the deformation is
defined on a larger domain. In any case to proceed with the necessary conditions, we assume that
Ω is further reduced so that the rulings are defined on all of Ω.

1Some of our constructions below have Λ = 0 in parts of the domain, but the fact that the associated mappings
are exact isometric mappings will be proved from the sufficient conditions given in Theorem 3.1 below.
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By (11), the deformation gradient is constant along a ruling in the reference domain, i.e.,

d

dv
F(x(s, v)) = ∇F(x(s, v))

∂x(s, v)

∂v
= ∇F(x(s, v)) e(s) = 0. (17)

So, with s fixed, F(x(s, v)) = F(x0(s)) is constant along the ruling x(s, v). We consider y(s, v) =
ŷ(x(s, v)) parameterized by the reference ruling variables v, s. Therefore, we have by the chain rule

∂

∂v
y(s, v) = F(x(v, s))e(s) = F(x0(s))e(s) =: t(s), (18)

and t(s) is a unit vector by (5). Integrating this relation, we have

y(s, v) = y0(s) + vt(s). (19)

Since y0(s) is the isometric image of the arclength parameterized curve x0(s), then it is also pa-
rameterized by arclength with |y′

0(s)| = 1.
Additional necessary conditions on the rulings follow from the fact that F(s) := F(x0(s)) is

constant on a ruling. Differentiating ŷ(x(s, v)) = y(s, v) with respect to s, we have the condition

v
(
F(s)e′(s)− t′(s)

)
= y′

0(s)− F(s)x′
0(s), (20)

which, combined with (18), implies that

F(s)e(s) = t(s), F(s)x′
0(s) = y′

0(s), F(s)e′(s) = t′(s) (21)

on Ω. Define t⊥(s) by t⊥(s) = n(s)× t(s). Then x′
0(s) and y′

0(s) can be expressed as

x′
0(s) = (x′

0 · e)e(s) + (x′
0 · e⊥)e⊥(s),

y′
0(s) = (y′

0 · t)t(s) + (y′
0 · t⊥)t⊥(s).

(22)

We use the first and second of (21), (22) and the fact that FTF = I to get

x′
0 · e = y′

0 · t, x′
0 · e⊥ = y′

0 · t⊥, (23)
F(s) = t(s)⊗ e(s) + t⊥(s)⊗ e⊥(s). (24)

Finally, the third condition of (21) applied to (24) gives

t′(s) = (e⊥(s) · e′(s)) t⊥(s), (25)

which implies
t′(s) · (t(s)× t⊥(s)) = 0. (26)

2.3 Formulas for the creases

In our main Theorem 3.1 below we use the Frenet-Serret formulas to define the crease y0(s), s1 <
s < s2. The tangent y′

0(s), principal normal p(s) and binormal b(s) of a smooth arclength-
parameterized curve y0(s) with (signed) curvature κ(s) and torsion τ(s) satisfy the linear system
of ordinary differential equations

y′′
0(s) = κ(s)p(s), y′

0(s1) = ȳ′
0,

p′(s) = −κ(s)y′
0(s) + τ(s)b(s), p(s1) = p̄,

b′(s) = −τ(s)p(s), b(s1) = b̄.
(27)
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(The precise smoothness and other conditions on κ(s) and τ(s) are given in Theorem 3.1.) If
the initial conditions (ȳ′

0, p̄, b̄) are right-handed orthonormal, then the functions y′
0,p,b remain

orthonormal for s1 < s < s2 due to the the fact that their pairwise dot products satisfy a system of
linear ordinary differential equations (ODEs) in standard form with initial conditions

(|y′
0|2, |p|2, |b|2, y′

0 · p, y′
0 · b, p · b)|s=s1 = (1, 1, 1, 0, 0, 0). (28)

By direct observation, these equations continue to have the solution (1, 1, 1, 0, 0, 0) for s > s1. The
right-handedness follows from the right-handedness of the initial data and the continuity of this
solution.

We emphasize that, unlike typical books on differential geometry, we do not assume that the
curvature (or the torsion) is non-negative, but we allow it to have both signs in Section 3. Then the
Frenet-Serret formulas make sense as ordinary differential equations and give curves that may have
complex arrays of inflection points or straight regions. This is essential: many of our designs below
have creases with inflection points. Similarly, the normal and binormal are also continuously differ-
entiable. The curve with (signed) curvature κ(s) and torsion τ(s) can be obtained by integrating
the tangent,

y0(s) = ȳ0 +

∫ s

s1

y′
0(r) dr. (29)

A smooth reference crease x0(s), s1 < s < s2 in R2 can be defined by using two-dimensional
Frenet-Serret formulas. That is, the tangent x′

0(s) and the principal normal p0(s) with (signed)
curvature κ0(s) satisfy

x′′
0(s) = κ0(s)p0(s), x′

0(s1) = x̄′
0,

p′
0(s) = −κ0(s)x

′
0(s), p0(s1) = p̄0,

(30)

with x̄′
0 · p̄0 = 0. Then, x′

0(s),p0(s) remain orthonormal on (s1, s2). x0(s) can be obtained by

x0(s) = x̄0 +

∫ s

s1

x′
0(r) dr. (31)

In the following contents, we consider y0(s) and x0(s) are curves that can be defined by (27) and
(30), respectively.

2.4 Formulas for isometrically deformed curved origami

In this section, we collect some necessary conditions for curved tile origami such that the whole
structure is developable, i.e., isometric to a subset of a plane. First of all, consider a curve y0(s), s1 <
s < s2 lying on a curved developable surface y(s, v), s1 < s < s2, v1 < v < v2 with normal n(s). Let
x0(s) be the preimage of y0(s). Since y′

0 = Fx′
0 and y′′

0 = Fx′′
0 +∇Fx′

0x
′
0, by substituting (2) and

(11) we get y′
0 · y,σ = x′

0 · êσ and y′′
0 · y,σ = x′′

0 · êσ, σ = 1, 2. Then

κn · b = (y,1×y,2 ) · (y′
0 × y′′

0)

= (y′
0 · y,1 )(y′′

0 · y,2 )− (y′′
0 · y,1 )(y′

0 · y,2 )
= (x′

0 · ê1)(x′′
0 · ê2)− (x′′

0 · ê1)(x′
0 · ê2)

= x′′
0 · p0 = κ0. (32)

8



Since n · y′
0 = 0, n can be expressed as

n = ± cos γp+ sin γb, (33)

where γ ∈ (−π/2, π/2) satisfies
κ0 = κ sin γ. (34)

Now consider two generally curved surfaces with distinct normal vectors n1 and n2 join at a
curve y0 ∈ C2. Assume the whole structure is isometric to a plane without overlapping, and let x0

be the preimage of y0. Then (32) shows that κn1 · b = κn2 · b = κ0. Without loss and generality,
n1 and n2 can be given by

n1 = cos γ p+ sin γb, n2 = − cos γp+ sin γ b. (35)

(At straight crease segments, p and b can be specified in such a way that (35) remains satisfied.)
Thus,

n2 = (−I+ 2b⊗ b)n1. (36)

According to (34) and (35), if y0 is given (i.e., κ,p and b are given), for each x0 (i.e., κ0), there
are only two developable surfaces with normal vetors n1,n2 that can go through y0. If we assign a
different reference crease x0, we can get different pairs of developable surfaces.

To avoid a trivial folding (cf., Figure 2(b) below), we assume n1 and n2 are distinct, i.e.,
|n1 ·n2| ≤ 1−2ε2 < 1 for some ε > 0. Since n1 ·n2 = n1 · (−I+2b⊗b)n1 = 2(b ·n1)

2−1 ≤ 1−2ε2

and b · n1 = b · n2, we have |b · nσ|2 ≤ 1− ε2 < 1, σ = 1, 2. Via (35) this is equivalent to

|p · nσ| ≥ ε > 0, σ = 1, 2. (37)

Let t1 and t2 denote the rulings of the two surfaces. We assume transversality, i.e., that the
ruling tσ(s) and tangent to the crease y′

0(s) do not become parallel:

|t⊥σ · y′
0| ≥ c > 0, σ = 1, 2, (38)

for some 0 < c ≪ 1. This appears to be quite natural in the case of origami design. Since tσ ·nσ = 0,
t1, t2 can be expressed as

t1 = cosα1 y
′
0 − sinα1 n1 × y′

0,
t⊥1 = sinα1 y

′
0 + cosα1 n1 × y′

0,
t2 = cosα2 y

′
0 − sinα2 n2 × y′

0,
t⊥2 = sinα2 y

′
0 + cosα2 n2 × y′

0,
(39)

where α1 ∈ (−π+ĉ,−ĉ) and α2 ∈ (ĉ, π−ĉ), ĉ = arcsin c. The angles ασ represent the angles between
the rulings tσ and y′

0. Then α1, α2 satisfy the necessary conditions t′1 · n1 = 0 and t′2 · n2 = 0 from
(26), which imply

κ cos γ cotα1 = τ + γ′, κ cos γ cotα2 = −τ + γ′. (40)

Necessary and sufficient conditions that there exist bounded C1 functions cotα1 and cotα2 are that
there exist bounded C1 functions ρ1, ρ2 satisfying

τ = ρ1κ, γ′ = ρ2κ. (41)

Here, we have also used (37).
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3 Theorem on curved origami design
In this section, we present the main theorem of the paper. We consider the classic problem of
origami design of two smooth surfaces meeting at a deformed crease, and we wish to design the
crease pattern in the reference domain, i.e., a single flat sheet. These two smooth surfaces must be
obtainable from isometric deformations of this reference domain. One would then like to predict the
reference crease that deforms isometrically to the given deformed crease and the reference rulings
that deform to the given deformed rulings. The latter can guide the folding process.

Under mild conditions of smoothness, this is easily accomplished for just one surface, and there
are many such surfaces. (This is obvious because one can take any isometric mapping of a flat sheet
and simply draw a curve on the deformed surface. Taking the inverse image of this curve gives a
reference crease.) However, the addition of a second surface meeting the same crease becomes quite
restrictive: under mild restrictions, the first surface and the deformed crease determine the second
surface.

Under mild restrictions, Theorem 3.1 below treats two isometrically deformed surfaces meeting
at a deformed crease, both obtained by isometric deformations of a flat sheet and both sharing the
same reference crease.

Theorem 3.1. Let curvature and torsion, κ, τ ∈ C1(s1, s2) of the deformed crease be given satisfying
τ = ρ1κ, where ρ1 is a bounded C1 function. Let the deformed crease y0 ∈ C2(s1, s2) together with
its principal normal and binormal p,b ∈ C2(s1, s2) be the unique solutions of the Frenet-Serret
equations

y′′
0 = κp, y′

0(s1) = ȳ′
0,

p′ = −κy′
0 + τb, p(s1) = p̄,

b′ = −τp, b(s1) = b̄,
(42)

with given right-handed orthonormal initial values ȳ′
0, p̄, b̄. (Alternatively, give the deformed crease

y0 with the indicated smoothness having curvature and torsion satisfying τ = ρ1κ and calculate p,b
consistent with the Frenet-Serret equations.) We restrict the domain of y0, if necessary, so that it
does not intersect itself on [s1, s2].

To define Surface 1 and Surface 2, let γ(s) ∈ [−π
2
+ ε, π

2
− ε], ε > 0, be a C1(s1, s2) function

satisfying γ′ = ρ2κ, where ρ2 is a bounded C1(s1, s2) function. Let

n1 = cos γp+ sin γb,
t1 = cosα1 y

′
0 − sinα1 n1 × y′

0,
t⊥1 = sinα1 y

′
0 + cosα1 n1 × y′

0,

n2 = − cos γp+ sin γb,
t2 = cosα2 y

′
0 − sinα2 n2 × y′

0,
t⊥2 = sinα2 y

′
0 + cosα2 n2 × y′

0,
(43)

where α1 ∈ (−π, 0), α2 ∈ (0, π) are defined by

α1 = cot−1

(
ρ1 + ρ2
cos γ

)
, α2 = cot−1

(
ρ2 − ρ1
cos γ

)
. (44)

Define the reference crease x0 by the following ODEs:{
x′′
0 = κ0p0, x′

0(s1) = x̄′
0,

p′
0 = −κ0x

′
0, p0(s1) = p̄0,

(45)

where
κ0 = κnσ · b = κ sin γ, σ = 1, 2. (46)
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The reference rulings of Surface 1 and Surface 2 are then defined by

eσ = cosασ x
′
0 − sinασ p0, (47)

e⊥σ = sinασ x
′
0 + cosασ p0, σ = 1, 2. (48)

The parameterizations of Surfaces 1 and 2 in terms of creases and rulings are

xσ(s, v) = x0(s) + veσ(s), (49)
yσ(s, v) = y0(s) + vtσ(s), σ = 1, 2 (50)

respectively, with (s, v) ∈ Ωσ, where Ω1 = {(s, v) : s1 < s < s2,−v−1 (s) < v < v+1 (s)}, Ω2 = {(s, v) :
s1 < s < s2,−v−2 (s) < v < v+2 (s)}, and, by the restrictions on α1 and α2, v−1 (s), . . . , v

+
2 (s) > 0 on

(s1, s2) are assigned such that there are no intersections between rulings.
Let ŷσ(x), σ = 1, 2, be the induced mappings between rulings:

ŷσ(xσ(s, v)) = yσ(s, v), (s, v) ∈ Ωσ. (51)

Then the two mappings ŷ1 and ŷ2 are each isometric.

Figure 1: General curved origami given by Theorem 3.1 having planar regions (green). (a) Deformed
configuration from three different viewpoints. (b) The reference configuration of (a). The surfaces
highlighted in green in (a-b) are planar regions meeting at a straight crease segment. Note that the
sheet in (b) is flat: the apparent bending at the crease is an optical illusion.

Proof. The formula (43) implies that {tσ, t⊥σ ,nσ}, σ = 1, 2 form two right-handed orthonormal
bases. The formulas (44) are well defined since ρ1, ρ2, cos γ are bounded functions and the cotangent
is invertible on (−π, 0) and on (0, π).

The invertibility of xσ(s, v) on Ωσ, σ = 1, 2 follows from the condition that the rulings do not
intersect. By the smoothness and invertibility of xσ(s, v), we have that ŷσ(xσ) ∈ C1(Ωσ). Let the
deformation gradient of ŷ1 be F1 = ∇x1ŷ1. Then F1 satisfies

y′
0 + vt′1 = F1(x

′
0 + ve′1), t1 = F1e1. (52)
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According to (43-44), t′1, e′1 are found by t′1 = (κ0 − α′
1)t

⊥
1 and e′1 = (κ0 − α′

1)e
⊥
1 . Substituting to

the first of (52), and since (52) is true for all v ∈ (−v−1 , v
+
1 ), one can get

y′
0 − F1x

′
0 = 0, (κ0 − α′

1)(t
⊥
1 − F1e

⊥
1 ) = 0. (53)

From (43) and (47-48), y′
0,x

′
0 can be expressed as

y′
0 = cosα1t1 + sinα1t

⊥
1 , x′

0 = cosα1e1 + sinα1e
⊥
1 . (54)

Substitute (54) into the first of (53) and use the restriction on the domain of α1 to get

t⊥1 = F1e
⊥
1 , (55)

which, together with the second of (52) (t1 = F1e1), gives

F1 = t1 ⊗ e1 + t⊥1 ⊗ e⊥1 . (56)

Since F1 satisfies FT
1F1 = I (cf., (6)), the mapping ŷ1 : x1(Ω1) → y1(Ω1) is isometric. Similarly,

the deformation gradient for ŷ2 can be found by

F2 = t2 ⊗ e2 + t⊥2 ⊗ e⊥2 , (57)

which implies the mapping ŷ2 : x2(Ω2) → y2(Ω2) is also isometric.

In brief, if y0 and the normal vector n1 of one surface are well defined under the assumptions in
the theorem, this surface will be completely determined. The other surface is then determined by
using its normal vector n2 = (−I+2b⊗b)n1 (see an example in Figure 2(a-b)). Specifying different
n1, one will get different pairs of surfaces, and the preimage x0 will change correspondingly. To get
nontrivial curved origami structures, we assign the two mappings to each side of the crease, which
gives two distinct deformed configurations, see Figure 2(c).

Figure 2: Examples of curved tile origami given by Theorem 3.1. (a) Reference domain. (b) Surface
1 and Surface 2 isometrically deformed from (a) going through y0. The ruling directions on both
sides of y0 are: (t1,−t1) and (−t2, t2). (c) Two curved origami structures by assigning these two
mappings to different sides of the crease. The ruling directions on opposite sides of y0 are: (t1, t2)
and (−t2,−t1).

In Theorem 3.1, one can assign κ, τ and the initial conditions in (42) to get a unique deformed
crease y0. Then different choices of γ will define different κ0 (see 46), which give different reference
creases x0. Here we make two different choices of γ(s), say γ1(s), γ2(s), to get altogether four
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surfaces passing through the crease y0. Among these four, select one surface corresponding to γ1
and another corresponding to γ2. In this way, we construct two different reference creases that
deform to the same deformed crease and, correspondingly, two isometric mappings. This method
applies to the case where the two reference regions are not compatible as shown in Figure 3(a).
This case is exploited in famous architectural designs such as the Walt Disney Concert Hall in Los
Angeles, California. Assume the two reference creases and the deformed crease are well prescribed.
Then one can join two incompatible flat sheets with different creases together at the same deformed
crease by solving each pair of reference crease and deformed crease individually. See Figure 3 for
the four possibilities of this type.

Figure 3: An example of generalized curved origami. (a) Incompatible reference domain. (b) The
four branches of deformed configurations.

In summary, our methods contained in Theorem 3.1 treat quite generally cases analogous to
classical origami, i.e., piecewise isometric folding a creased sheet (Figure 1 and Figure 2), or cases
seen in Frank Gehry designed buildings (Figure 3) in which sheets bounded by two different reference
creases are deformed isometrically to join at the same deformed crease.

The following series of corollaries follow immediately from Theorem 3.1.

Corollary 3.1. Assume the hypotheses of Theorem 3.1. From (43), the normal vectors n1 and n2

satisfy
n1 = −Pn2. (58)

where P = I− 2b⊗ b. Substituting tσ, t
⊥
σ and eσ, e

⊥
σ into Fσ, σ = 1, 2, F1 and F2 satisfy

F1 = PF2, (59)

i.e., the two deformation gradients F1 and F2 given by Theorem 3.1 are related by a reflection
through a plane having normal given by the binormal of the crease.

Corollary 3.2. Let y0 and γ be prescribed consistent with Theorem 3.1. Explicit formulas of
quantities given by Theorem 3.1 for constructing curved origami are collected in Table 2. In the
table, f1(s) and f2(s) are

f1 =
ρ1

cos γ
, f2 =

ρ2
cos γ

, (60)

that is, f1 and f2 are bounded C1 functions satisfying

τ = f1 κ cos γ, γ′ = f2 κ cos γ. (61)

13



Table 2: Formulas of constructing curved origami

Variable Crease

x0

∫ s

s1

(
cos(

∫ ŝ

s1
κ sin γ dr)ê1 + sin(

∫ ŝ

s1
κ sin γ dr)ê2

)
dŝ

x′
0 cos(

∫ s

s1
κ sin γ dr)ê1 + sin(

∫ s

s1
κ sin γ dr)ê2

p0 − sin(
∫ s

s1
κ sin γ dr)ê1 + cos(

∫ s

s1
κ sin γ dr)ê2

Surface 1 Surface 2

n cos γp+ sin γb − cos γp+ sin γb

n× y′
0 sin γp− cos γb sin γp+ cos γb

t⊥
−y′

0 − (f1 + f2)n1 × y′
0√

(f1 + f2)2 + 1

y′
0 − (f1 − f2)n2 × y′

0√
(f1 − f2)2 + 1

t
−(f1 + f2)y

′
0 + n1 × y′

0√
(f1 + f2)2 + 1

−(f1 − f2)y
′
0 − n2 × y′

0√
(f1 − f2)2 + 1

e⊥
−x′

0 − (f1 + f2)p0√
(f1 + f2)2 + 1

x′
0 − (f1 − f2)p0√
(f1 − f2)2 + 1

e
−(f1 + f2)x

′
0 + p0√

(f1 + f2)2 + 1

−(f1 − f2)x
′
0 − p0√

(f1 − f2)2 + 1

Corollary 3.3. If y0 is a planar curve, then b is constant and τ = 0 on (s1, s2). Thus, we can
choose f1 = 0 in Theorem 3.1. According to Table 2, the rulings satisfy

t1 = −Pt2, e1 = −e2. (62)

Corollary 3.4. In addition to constructing curved origami by specifying the deformed crease and
one surface or by specifying the reference crease and the deformed crease, one can also specify the
two distinct normal vectors n1,n2. Let n1,n2 ∈ C1 be distinct normal vectors of the two surfaces
satisfying n′

σ = τσt
⊥
σ , where τσ, t

⊥
σ ∈ C1, σ = 1, 2. Since y′

0 · n1 = 0 and y′
0 · n2 = 0, the crease y0

is given by

y0(s) = ȳ0 +

∫ s

s1

n1 × n2

|n1 × n2|
dr. (63)

where ŷ0 ∈ R3. The transversality condition and the developability condition imply n1 and n2 satisfy

|(n1 × n2) · t⊥σ | > 0, (n+1 × n−1) · (n′
+1 + n′

−1) = 0. (64)
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By assigning the n1,n2 satisfying (64), one can construct curved origami structures using (63) and
Table 2.

Corollary 3.5. By direct calculation from (43), one can get that tσ ∥ nσ × n′
σ, σ = 1, 2. Assume

n′
σ ̸= 0. Then tσ can be given by

tσ = nσ ×
n′
σ

|n′
σ|
, σ = 1, 2. (65)

If nσ is a planar vector, tσ will be constant, which is the normal vector of the plane on which nσ is
located.

Construction of more complicated structures then involves fitting these two-surface structures
together, and the group orbit procedure described below is a suitable method for this purpose.

4 Curved origami design by the group orbit procedure
In this section we use a group orbit procedure to design complex origami structures, that is, origami
structures are obtained by repeated application of a Euclidean group to an origami unit cell. A key
idea is that elements of a Euclidean group preserve isometries. A second key idea is that Abelian
Euclidean groups preserve the matching at creases. That is, matching of tiles at a few creases
implies matching of tiles at all creases in the extended structure.

In this work, we will apply Abelian isometry groups that have been studied for piecewise linear
origami in [2, 8, 13, 21]. The main difference between our present work and the earlier work is that
in many cases our unit cells below contain interior creases, while in the earlier work the unit cells
were typically single tiles. The presence of these additional creases gives us extra freedom that we
exploit to describe a continuous folding path from a flat sheet to the folded structure.

A group element of a Euclidean group is written g = (Q|c), where Q ∈ O(3)= {Q : QTQ = I}
and c ∈ R3. The action of a group element on points x ∈ R3 is given by g(x) = Qx + c.
Below, we use the terminology “isometry” for the group elements g = (Q|c) or this action. The
subgroup of O(3) consisting of rotations is SO(3) = {R ∈ O(3) : detR = 1}. We follow this
notation below: Q represents a typical element in O(3) and R represents an element in SO(3). The
multiplication rule for isometries is based on the composition of mappings using the action above,
i.e., g1(g2(x)) = g1g2(x) for all x ∈ R3, and therefore is given by

g1g2 = (Q1|c1)(Q2|c2) = (Q1Q2|c1 +Q1c2). (66)

The identity is (I|0).
While there are many Abelian isometry groups that we could use (see e.g., the International

Tables of Crystallography [22]), we will focus on helical groups, circle groups and translation groups.
We will later generalize these results to the conformal Euclidean groups, which involve also dilata-
tions and a suitable choice of product.

The main features of the unit cell for curved tile origami are: 1) as mentioned above, in most
examples, we introduce an extra crease in the unit cell to gain some additional freedom; 2) we
often use the rulings themselves as creases, e.g., xaxb and xdxc in Figure 4(a). The latter simplifies
constructions: 3) since rulings are straight, we only have to be sure that two rulings related by
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a group element are the same length; 4) regardless of the two isometric mappings meeting at a
straight crease, the deformed structure will be compatible.

Following the choice of action above, we apply the group element g = (Q|c) to a suitable unit
cell Ω in the following way: g(Ω) = QΩ+c. After this group action, each unit cell with curved tiles
should fit perfectly together with its neighbors. The beauty of Abelian groups is that, if this fitting
is done only for the generators of the group, then the whole structure fits together perfectly. In
short, the group builds the structure for you. Finally, for the groups involving global compatibility,
such as the helical and circle groups, these groups should be discrete ([2, 8] and below), which will
generate discrete and globally compatible curved origami.

Extending the notation used above, we use Ω and S, respectively, to denote the unit cell before
and after folding. The origami unit cell we choose will typically contain one inner curved crease
x1(s) ⊂ Ω and two boundary creases x0(s), x2(s) ⊂ Ω, all parameterized by s ∈ (s1, s2), as shown
in Figures 4-8(a). The isometric images of the three curves are y1(s), y0(s) and y2(s), respectively.
Any two points on adjacent creases with the same s are connected by a ruling. A ruling between
y0(s) and y1(s) has tangent t1(s), and the ruling between y1(s) and y2(s) has tangent t2(s). The
deformation gradients of t1(s) and t2(s) are F1(s) and F2(s) respectively. The binormal vectors of
the creases at yi(s) are denoted by bi(s), i = 0, 1, 2. Pi(s) = I− 2bi(s)⊗bi(s) is a reflection tensor
relating to the ith crease. We use xi, i = a, b, c, d to denote the four corner points of the reference
unit cell and denote their images by yi, i = a, b, c, d, see Figures 4-8(a) and (c).

The general result we use repeatedly below is the following, described in the context of discrete
Abelian isometry groups with two generators as in Figure 4. Let T be the group applied to Ω with
generators t1 and t2, and let G be the group applied to S with generators of g1 and g2. Let x3(s) =
xcxd, x4(s) = xbxa denote the remaining two sides of ∂Ω apart from x0(s) and x2(s). Suppose there
is an isometric mapping y : Ω → S satisfying y(∂Ω) = ∂S, that is, y(xi(s)) = yi(s), i = 0, 2, 3, 4
(Figure 4(c)). Assume that, by adjusting the group parameters, we also arrange that

t1(x0(s)) = x2(s), t2(x3(s)) = x4(s), (67)
g1(y0(s)) = y2(s), g2(y3(s)) = y4(s). (68)

Now we apply the group T , not just to ∂Ω, but to all of Ω. By construction, by simply matching
on two boundaries, we achieve that T (Ω) is a perfect lattice of translated copies of Ω without gaps
(Figure 4(b)). Similarly, G(S) is a perfect helical structure isometrically mapped from T (Ω) (Figure
4(d)). If the group G is discrete, the structure closes perfectly. That is, referring to Figure 4(d),
discreteness for a helical group has the geometric interpretation that the helical structure can be
produced by a “rolling up” construction, and, once rolled up, there is no seam. Equivalently, from
a group theory perspective, discreteness means that the group acting on any point in R3 produces
a family of points without accumulation points.

4.1 Helical groups

Helical origami is obtained by applying a helical group to a partially folded unit cell S as shown in
Figure 4. We consider helical groups with two generators

G(S) = {gp1g
q
2(S) : (p, q) ∈ Z2}, (69)

where g1, g2 are two screw isometries

g1 = (R1|τ1eR
+ (I−R1)z), g2 = (R2|τ2eR

+ (I−R2)z), (70)
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with R1,R2 ∈ SO(3), R1 ̸= I, e
R
, z ∈ R3, |e

R
| = 1, τ1, τ2 ∈ R, z · e

R
= 0 and R1eR

= R2eR
= e

R
.

Let θ1 and θ2 denote the rotation angles of R1 and R2, respectively. These parameters are subject
to discreteness conditions

p⋆τ1 + q⋆τ2 = 0, p⋆θ1 + q⋆θ2 = 2π, (71)

where (p⋆, q⋆) ∈ Z2 is some pair of integers [21].

Figure 4: Curved tile origami generated by helical groups. (a) Reference unit cell. (b) Reference
configuration. Note that (b) is flat sheet: the apparent curvature is an optical illusion. (c) Deformed
unit cell. (d) Deformed configuration. (e) Some examples.

In the reference domain, the reference unit cell Ω shown in Figure 4(a) consists of two triangle-
like flat regions that meet at the curved crease x1(s), s1 < s < s2. The two boundary creases x0(s)
and x2(s) differ by a translation. All creases satisfy the smoothness conditions of Theorem 3.1. The
other two straight boundaries on the left- and right-handed sides are chosen to be two rulings after
deformation. The overall reference domain can be obtained by a translation group

T (Ω) = {tp1t
q
2(Ω) : (p, q) ∈ Z2}, (72)

where
t1 = (I|c1), t2 = (I|c2), (73)

with c1, c2 ∈ R3 and tp1t
q
2(Ω) = Ω + pc1 + qc2, p, q ∈ Z. See Figure 4(b), which is a curved-crease

generalization of the Kresling pattern.
For a suitable unit cell, we apply T to its reference configuration Ω and apply G to its deformed

configuration S. The curved creases between adjacent unit cells should be compatible before and
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after folding. Then, at the curved crease, we have the local compatibility conditions

x2(s) = t1(x0(s)) = x0(s) + c1, (74)
y2(s) = g1(y0(s)) = R1y0(s) + τ1eR

+ (I−R1)z. (75)

Thus, x′
2 = x′

0, y′
2 = R1y

′
0. Combining with y′

0 = F1x
′
0 and y′

2 = F2x
′
2, we have y′

2 = R1F1x
′
2,

where F2 and R1F1 correspond to the deformation gradients of the surfaces on opposite sides of
y2. From Corollary 3.1, the deformation gradients satisfy F2 = P1F1 and F2 = P2R1F1. So

P2P1 = R1. (76)

Since R1 is constant, we also have y′′
2 = R1y

′′
0 from (75). Replacing R1 by P2P1 we have

y′
2 = P2P1y

′
0 = P1y

′
0, y′′

2 = P2P1y
′′
0 = P1y

′′
0 . (77)

Because y′′
2 = (P1y

′
0)

′ = P1y
′′
0 + P′

1y
′
0, we get P′

1y
′
0 = 0, that is, (b1 · y′

0)b
′
1 + (b′

1 · y′
0)b1 = 0.

By simple argument, one can see b1 is constant. In the same way, we can conclude that b0,b2

are constant, which implies the creases y0(s),y1(s), and y2(s) are planar curves. According to
Corollary 3.3 for planar creases, we get t1 = −P1t2 and e1 = −e2. Since the rulings in the whole
reference domain are periodic, the reference rulings will be parallel, which gives cylindrical surfaces
for the deformed unit cell. Of course, as can be seen from Figure 4, different unit cells have different
cylindrical surfaces. We want to emphasize that the procedure outlined here gives one simple way
to make helical origami structures with curved tiles, but the more general procedure described at
the beginning of this section gives other possibilities.

In the implementation, if the planar crease y1(s) and the constant ruling t1 of one tile are given,
the ruling of the other tile will be found by t2 = −P1t1. Since y0(s) is a planar curve in the
tile, a simple way to get y0(s) is to cut off the rulings with a plane, whose normal vector will be
the binormal b0 of y0(s). Once y0 is found, y2 will be determined since b2 = −P1b0 from (77).
Specifically, the two boundaries y0(s) and y2(s) can be obtained by

y0 = y1 −
(y1 − y1(s1)) · b0

t1 · b0

t1, y2 = y1 +
(y1 − y1(s2)) · b0

t1 · b0

t2. (78)

The creases y0 and y2 given by (78) have the same configuration since (77) is satisfied. Also, x′
0 = x′

2

will be automatically satisfied in the reference domain, which can be verified by using x′
0 = FT

1 y
′
0

and x′
2 = FT

2 y
′
2 and Corollary 3.3. Therefore, the adjacent unit cells will be compatible at curved

creases in both reference and deformed domains after group operations. An algorithm to construct
the helical curved origami follows.

Algorithm 1 Helical group
Input: planar crease y1(s), constant binormal b0, constant ruling t1 of one surface.
Output: helical curved origami.
Steps:
1: Find the unit cell S:

• Find the deformed rulings of the second surface:

t2 = −P1t1. (79)
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• Find the two boundary creases y0(s) and y2(s):

y0(s) = y1(s)−
(y1(s)− y1(s1)) · b0

t1 · b0

t1, (80)

y2(s) = y1(s) +
(y1(s)− y1(s2)) · b0

t1 · b0

t2, (81)

• Construct the deformed unit cell:

S =

{
(1− v)y1(s) + vy0(s)
(1− v)y1(s) + vy2(s)

: 0 < v < 1, s1 < s < s2

}
(82)

2: Find the group parameters of G:

e
R

=
b0 × b1

|b0 × b1|
(83)

θ1 = sign(e
R
· (ya − yb)× (yd − yc)) arccos

(
A(ya − yb) ·A(yd − yc)

|ya − yb||yd − yc|

)
(84)

θ2 = sign(e
R
· (ya − yd)× (yb − yc)) arccos

(
A(ya − yd) ·A(yb − yc)

|ya − yd||yb − yc|

)
(85)

τ1 = e
R
· (ya − yd) (86)

τ2 = e
R
· (ya − yb) (87)

z = R̄2A(ya −R2yd) (88)

where A = I− e
R
⊗ e

R
, R̄2 = (I+ e

R
⊗ e

R
−R2)

−1 − e
R
⊗ e

R
, ya = y2(s1),yb = y0(s1), and

yc = y0(s2),yd = y2(s2).
3: Apply the helical group to the unit cell:

G(S) = {gp1g
q
2(S) : (p, q) ∈ Z2}. (89)

Here if y1(s) is fixed, the group parameters (83-88) will rely on b0 and t1. In this algorithm, to
get a globally compatible helical origami, suitable b0 and t1 are chosen in advance by numerically
solving (71) with certain (p⋆, q⋆) by plugging in the group parameters with respect to b0 and t. See
some helical curved tile origami in Figure 4.

4.2 Circle groups

In this subsection, we study the degenerate case where a circle group is applied to a partially folded
unit cell as shown in Figure 5. The reference unit cell in this case consists of two parallelogram-like
planar sheets. The whole reference domain can be obtained by taking the product of a translation
to Ω. To define this translation, let

t = (I|c). (90)

Then the overall flat tessellation in Figure 5(b) is obtained by

T (Ω) = {tp(Ω), p ∈ Z}. (91)
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For the deformed domain define
g = (R|(I−R)z), (92)

where R is a rotation of angle 2π/n with n ∈ Z, z ∈ R3 and z · e
R
= 0, e

R
is the unit vector along

the axis of R. Then the overall deformed configuration is obtained by

G(S) = {gp(S), p ∈ Z}. (93)

By following the same steps in the helical origami, one can get the same conclusion that all the
creases are planar curves and all surfaces are cylindrical surfaces. The algorithm to construct curved
origami using a circle group follows.

Algorithm 2 Circle group
Input: planar crease y1(s) and constant ruling t1 of one surface, the order of group G: n.
Output: curved origami with rotational symmetry.
Steps:
1: Find the unit cell:

• Find the deformed rulings of the second surface:

t2 = −P1t1 (94)

• Find the axis of R and the two boundary creases y0(s) and y2(s):

e
R

=
t1 × t2
|t1 × t2|

, (95)

y0(s) = (I− t1 ⊗ b0

t1 · b0

)y1(s) + at1, a ∈ R (96)

y2(s) = (I− t2 ⊗ b2

t2 · b2

)y1(s) + bt2, b ∈ R (97)

where b0 = Rαb1,b2 = −P1b0 and Rα is a rotation about axis e
R

with angle
α = π

2
− π

n
, n ∈ Z.

• Construct the deformed unit cell:

S =

{
(1− v)y1(s) + vy0(s)
(1− v)y1(s) + vy2(s)

: 0 < v < 1, s1 < s < s2

}
(98)

2: Find the group parameters of G:
z = R̄A(ya −Ryd). (99)

where A = I− e
R
⊗ e

R
, R̄ = (I+ e

R
⊗ e

R
−R)−1 − e

R
⊗ e

R
.

3: Apply the circle group to the unit cell:

G(S) = {gp(S), p ∈ Z}. (100)
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Figure 5: Curved tile origami generated by circle groups. (a) Reference unit cell. (b) Reference
configuration. (c) Deformed unit cell. (d) Deformed configuration. (e) Some examples.

4.3 Translation groups

Periodic curved origami is obtained by applying translation groups to the unit cell S. The schematics
of the reference and deformed unit cells are shown in Figure 6. In the reference configuration,
the crease x2(s) is obtained by translating x0(s) by a translation c1. Similarly, in the deformed
configuration, y2(s) is obtained from y0(s) by c2. Define

t1 = (I|c1), g1 = (I|c2), (101)

then the whole reference domain and deformed domain are found by

T (Ω) = {tp1(Ω), p ∈ Z}, G(S) = {gp1(S), p ∈ Z}. (102)

Since x2 = t1(x0) = x0 + c1 and y2 = g1(y0) = y0 + c2, we have x′
0 = x′

2 and y′
0 = y′

2. Thus,
y′
2 = F2x

′
2 = y′

0 = F1x
′
0 = F1x

′
2. At crease y1, the compatibility condition gives F1x

′
1 = F2x

′
1. So

(F1 − F2)x
′
1 = 0, (F1 − F2)x

′
2 = 0 with F1 ̸= F2. (103)

We get x′
2 = cx′

1, c ∈ R. Therefore, y′
2 = F2x

′
2 = cF2x

′
1 = cy′

1. Similarly, we have y′
1 = cy′

0. Then
y′
2 = y′

0 implies c = 1. Thus,
y′
0 = y′

1 = y′
2. (104)

Let y2 = y1 + v1t1 and y2 = y1 + v2t2. Then v1t1 and v2t2 will be constant independent of s from
(104). Therefore, the two surfaces in S will be cylindrical surfaces, but the deformed creases are
not necessarily planar curves in this case.

In the implementation, we get the cylindrical surfaces by assigning planar normal vectors n1

and n2 according to Corollary 3.4 and Corollary 3.5. The algorithm is given below.

21



Algorithm 3 Translation group
Input: the two planar normal vectors n1(s),n2(s).
Output: periodic curved origami.
Steps:
1: Find the unit cell:

• Find the crease y1(s):

y1(s) = ȳ1 +

∫ s

s1

n1 × n2

|n1 × n2|
dr. (105)

where ȳ1 = y1(s1) is a given constant.

• Find the two constant rulings t1 and t2:

t1 = n1 ×
n′
1

|n′
1|
, t2 = n2 ×

n′
2

|n′
2|
. (106)

• Find the two boundary creases y0(s) and y2(s):

y0(s) = y1(s) + v1t1, (107)
y2(s) = y1(s) + v2t2, (108)

where v1, v2 > 0 are constant.

• Construct the deformed unit cell:

S =

{
(1− v)y1(s) + vy0(s)
(1− v)y1(s) + vy2(s)

: 0 < v < 1, s1 < s < s2

}
. (109)

2: Find the group parameters of G:
c2 = ya − yd. (110)

3: Apply the circle group to the unit cell:

G(S) = {gp(S), p ∈ Z}. (111)

Since the upper boundary x̂dxa is a translation of the lower boundary x̂cxb in Ω, we can also
introduce the second translation generator to Ω: t2 = (I|c3), where c3 = xa − xb. Then the
reference domain is given by

T (Ω) = {tp1t
q
2(Ω), p, q ∈ Z}, (112)

see Figure 6(a)3. In the deformed domain, y(g3(Ω)) is automatically compatible with y(Ω). Let
c4 = ya − yb and g2 = (I|c4), the whole deformed configuration is found by

G(S) = {gp1g
q
2(S), (p, q) ∈ Z2}. (113)

See examples in Figure 6(d).
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Figure 6: Curved tile origami generated by translation groups. (a) Reference configurations (flat).
(b) Deformed configurations. (c) Some examples generated by the translation groups with one
generator. (d) Some examples generated by the translation groups with two generators.

4.4 More on circle groups

As an alternative to the constructions of Section 4.2, in this subsection we apply circle groups to
both the reference unit cell and the deformed unit cell, see Figure 7. Define

t = (R1|0), g = (R2|0), (114)

where R1 ∈ SO(2) and R2 ∈ SO(3). The reference and deformed domains are given by

T (Ω) = {tp(Ω) : p ∈ Z}, G(S) = {gp(S) : p ∈ Z}. (115)

Let the normal vectors of S1 and S2 on the both sides of y1(s) be n1(s) and n2(s). Then the normal
vectors on the both sides of y2(s) will be n2(s) and R2n1(s). Let y1(s1) = y2(s1) = 0. According
to Corollary 3.4, an algorithm is presented in Algorithm 4.

Algorithm 4 Circle groups
Input: the normal vectors n1 and n2, rotation R2.
Output: periodic curved origami.
Steps:
1: Find the unit cell:

• Find the crease y1(s):

y1(s) =

∫ s

s1

n1 × n2

|n1 × n2|
dr. (116)
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• Find the two boundary creases y0(s) and y2(s):

y2(s) =

∫ s

s1

R2n1 × n2

|R2n1 × n2|
dr, (117)

y0(s) = RT
2 y2(s). (118)

• Construct the deformed unit cell:

S =

{
(1− v)y1(s) + vy0(s)
(1− v)y1(s) + vy2(s)

: 0 < v < 1, s1 < s < s2

}
. (119)

2: Apply the circle group to the unit cell:

G(S) = {gp(S), p ∈ Z}. (120)

See some examples in Figure (7).

Figure 7: Curved tile origami generated by circle groups. (a) Reference unit cell. (b) Reference
configuration. (c) Deformed unit cell. (d) Deformed configuration. (e) Some examples.

4.5 Conformal groups

Conformal groups, which include dilatations as well as rotations and translations, can be used to
construct origami structures. At first, one might think that the dilatations present in conformal
groups might be incompatible with the pure isometric deformations possible in thin tiles. How-
ever, one can simply recognize that the basic scaling law of nonlinear elasticity theory, y(x, t) →
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ηy((1/η)x, (1/η)t), which preserves the deformation gradient, stress, balance of linear momentum
(no body force), isometric deformations, etc., can be invoked by simply allowing neighboring tiles
to be related by the appropriate dilatation, as well as a possible rotation and translation. To be
compatible with elasticity scaling, the same dilatation must be used on corresponding tiles in the
reference and deformed domains. Conformal groups necessarily have at least one accumulation
point, so this point must of course be avoided, by e.g., introducing a small cut-out.

Since neighboring tiles are related by dilatation, conformal groups feature structures that have a
natural mechanism of growth, beginning from their accumulation points (Figure 8). In this regard
our structures here are similar to some discussed by Thompson [14], especially the examples of sea
shells and horns. While isometries do not play a significant role in his analysis, the group orbit
procedure (described in words) applied with conformal groups is central to his work.

Figure 8: Curved tile origami generated by conformal groups. (a) Reference unit cell. (b) Reference
configuration. (c) Deformed unit cell. (d) Deformed configuration. (e-f) Some examples.

We say that G is a conformal Euclidean group if G is a group of affine linear mappings of the
form g = (ηQ|c), where η > 0 and η ̸= 1, Q ∈O(3), c ∈ R3. We will be particularly interested in
the generators of the form

gi = (ηiRθi |(I− ηiRθi)ci), (121)

where ηi > 0 and ηi ̸= 1, Rθi ∈ SO(3) denotes a rotation of angle θi, ci ∈ R3. Let the generators
for the reference domain and deformed domain be t and g respectively, which are defined by

t = (ηI|(1− η)c0), g = (ηR|(I− ηR)c). (122)

The reference unit cell Ω is shown in Figure 8(a). The whole reference domain can be obtained by

T (Ω) = {tp(Ω) : p ∈ Z}, (123)
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where tp = (ηpI|(1 − ηp)c0). The deformed unit cell S is shown in Figure 8(c), and the deformed
configuration in Figure 8(d) is obtained by

G(S) = {gp(S) : p ∈ Z}, (124)

where gp = (ηpRpθ|(I − ηpRpθ)c) and the subscript denotes the rotational angle of R. Since
x2 = t(x0) = ηx0 + (1− η)c0 and y2 = g(y0) = ηRy0 + (I− ηR)c, we have

x′
2 = ηx′

0, y′
2 = ηRy′

0 (125)

Combining this with y′
0 = F1x

′
0 and y′

2 = F2x
′
2, we get y′

2 = RF1x
′
2 = F2x

′
2. This gives the

compatibility condition at x2(s). Because F2 = P1F1, RF1 = P2F2, we have F1 = P1P2RF1.
Notice that P1P2R ∈ SO(3). We get P1P2R = I and therefore P2P1 = R. We obtain the same
conclusion that the creases are planar curves as discussed in Section 4.1. Thus, the rulings in the
reference domain with same s are collinear. Since η ̸= 1, the extension of all reference rulings, which
can be given by x2 − x0, will intersect at a common point because of the proportional relationship
of x′

2 = ηx′
0. Therefore, the deformed surfaces are generalized conical surfaces. Algorithm 5 is used

to construct conformal curved origami.

Algorithm 5 Conformal group
Input: two planar creases on the conical surface: y0(s) and y1(s).
Output: conformal curved origami.
Steps:
1: Find the unit cell:

• Find the deformed rulings:

t1(s) =
y0(s)− y1(s)

|y0(s)− y1(s)|
, t2(s) = −P1t1(s). (126)

• Find the crease y2(s):

y2(s) =

(
I− t2(s)⊗ b2

t2(s) · b2

)
y1(s) + b t2(s), (127)

where b ∈ R and b2 = −P1b0.
• Construct the deformed unit cell:

S =

{
(1− v)y1(s) + vy0(s)
(1− v)y1(s) + vy2(s)

: 0 < v < 1, s1 < s < s2

}
(128)

2: Find the group parameters of G:

η =
|y2 − yb|
|y0 − ya|

(129)

e
R

=
ẽ

R

|ẽ
R
|
, ẽ

R
= (

y0 − ya

|y0 − ya|
− y2 − yb

|y2 − yb|
)× (

y0 − y2

|y0 − y2|
− ya − yb

|ya − yb|
) (130)

θ = sign(e · (y0 − ya)× (y2 − yb)) arccos

(
A(y0 − ya) ·A(y2 − yb)

|A(y0 − ya)||A(y2 − yb)|

)
(131)

c = (I− ηR)−1(−ηRy0 + y2) (132)

where e
R

is the axis of R and A = I− e
R
⊗ e

R
.
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3: Apply the circle group to the unit cell:

G(S) = {gp(S), p ∈ Z}. (133)

Thus, applying the group G with the group parameters listed above to the unit cell, we can get
conformal origami structures. Some examples are shown in Figure 8(e-f).

5 Curved tile generalizations of the Miura pattern
When folding a piece of paper in a random way, it is commonly observed that several creases
intersect at one point. In this section, we study the kinematics of curved tiles in this situation and
discuss one special case where the rulings of adjacent tiles intersect at creases and form closed loops
around the vertex, that is, all creases can be parameterized by one parameter s. A necessary and
sufficient condition for constructing such compatible curved origami is given below.

Theorem 5.1. Consider an origami structure with n (n > 2) curved creases intersecting at one
vertex. Suppose the reference rulings form closed loops around the vertex in the reference domain.
Denote deformed creases counterclockwise to be yi(s), 0 < s < s1, i = 1, . . . , n. The points of
yi(s), i = 1, . . . , n with the same s are connected by straight deformed rulings. Assume the conditions
and definitions of Theorem 3.1 on yi(s). Let bi(s) be the binormal vector of the ith crease at yi(s),
and let Pi(s) = I−2bi(s)⊗bi(s). Then a necessary and sufficient condition for getting a compatible
curved origami is

P1(s)P2(s) . . .Pn−1(s)Pn(s) = I, n is even. (134)

See proof in A.1. As n = 4, we obtain the generalized Miura origami. Let the preimage of yi(s)
be xi(s), i = 1, 2, 3, 4, 0 < s < s1. Then the points x1(s),x2(s),x3(s),x4(s) with same s will lie in
the same loop. Figure 9(a) illustrates the reference configuration of four-fold curved origami, where
the gray lines represent the reference rulings. According to Corollary 3.4, if adjacent normal vectors
on both sides of each deformed crease satisfy (64), the origami at each crease is developable and
the compatibility condition (134) is automatically satisfied, see also A.1. Based on the assumptions
in Corollary 3.4, one algorithm to construct curved Miura origami with four creases is shown in
Algorithm 6.

Figure 9: Curved Miura origami. (a) Schematic of reference configuration, where the gray lines
represent the reference rulings. (b) Some examples.
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Algorithm 6 Curved origami with multiple creases
Input: normal vectors n1(s),n2(s),n3(s),n4(s).
Output: curved origami with multiple creases.
Steps:
1: Find the deformed creases: y1(s),y2(s),y3(s),y4(s):

y1(s) =

∫ s

0

c1
n1 × n2

|n1 × n2|
dr, y2(s) =

∫ s

0

c2
n2 × n3

|n2 × n3|
dr, (135)

y3(s) =

∫ s

0

c3
n3 × n4

|n3 × n4|
dr, y4(s) =

∫ s

0

c4
n4 × n1

|n4 × n1|
dr. (136)

where yi(0) = 0 and ci ∈ C1(0, s1), i = 1, 2, 3, 4.
2: Construct the curved origami:

S =


(1− v)y1(s) + vy2(s)
(1− v)y2(s) + vy3(s)
(1− v)y3(s) + vy4(s)
(1− v)y4(s) + vy1(s)

: 0 < v < 1, 0 < s < s2

 (137)

Figure 9(b) shows some examples of curved Miura origami in the folded state.

Figure 10: Helical origami with four curved creases in the unit cell. (a) Reference unit cell. (b)
Reference configuration. (c) Deformed unit cell in different viewpoints. (d) Deformed configuration.

The group orbit procedure can also be applied to the generalized Miura pattern to design complex
curved origami. Figure 10 shows an example in which the reference unit cell is a rectangle. We
apply the translation group to the reference unit cell (Figure 10(a)) and the helical group to the
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deformed unit cell (Figure 10(b)), as the examples shown in Section 4.1. In Figure 10, y1,2,3,4 are
the images of the reference creases x1,2,3,4. Since isometric mappings always shorten distances, the
mountain-valley assignments of the creases in this generalized Miura pattern will be 3 mountains−1
valley or 3 valleys−1 mountain, which are the same as that of the traditional Miura pattern, one
can get the idea by linearization. In this example, creases y1,y2,y4 are mountains and crease y3 is
a valley. The details of the group orbit procedure will not be repeated here.

6 Energy of curved tiles

6.1 Kirchhoff’s nonlinear plate theory

The energy of an isometrically deformed surface can be accurately found by Kirchhoff’s nonlinear
plate theory. For an isometric mapping ŷ : Ω ⊂ R2 → S ⊂ R3, the energy is [23]

ES =
h3

24

∫
Ω

2µ|II|2 + λµ

µ+ λ/2
(tr II)2dx, (138)

where h is the thickness of Ω, II = n · ∇F = −FT∇n is the second fundamental form, n is the
normal vector of the surface, λ, µ are the Lamé moduli. Substituting (11), the second fundamental
form becomes

II = Λe⊥ ⊗ e⊥. (139)

Thus, (138) can be further simplified to

ES =
Eh3

24

∫
Ω

Λ2dx, (140)

where E = 2µ + λµ
µ+λ/2

is the plate modulus. The reference configuration Ω can be parameterized
as x(s, v) = ve(s) + x0(s), s1 < s < s2, v1(s) < v < v2(s) by (16). So we can get

ES =
Eh3

24

∫ s2

s1

∫ v2

v1

Λ2Jdvds, (141)

where the Jacobian determinant J is

J =
∂x(x1, x2)

∂x(s, v)
= det

(
x′ · ê1 e · ê1
x′ · ê2 e · ê2

)
= x′ · e⊥, (142)

and (ê1, ê2) is a fixed orthonormal basis with associated coordinates (x1, x2). Since n′ = ∇n · x′

and II = −FT∇n, we get

Λ2 =
|n′|2

(x′ · e⊥)2
. (143)

Thus, the energy ES is

ES =
Eh3

24

∫ s2

s1

∫ v2

v1

|n′|2

x′ · e⊥
dvds. (144)
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Then substituting x′ = x′
0 + ve′, we get

ES =


Eh3

24

∫ s2

s1

|n′|2

e′ · e⊥
log(

x′
0 · e⊥ + v2e

′ · e⊥

x′
0 · e⊥ + v1e′ · e⊥

)ds, e′ ̸= 0,

Eh3

24

∫ s2

s1

|n′|2

x′
0 · e⊥

(v2 − v1)ds, e′ = 0.

(145)

For a curved origami structure, x0(s) is the reference crease and for each tile, we have 0 < v < ṽ(s),
where ṽ(s) is the length of the reference ruling at position s. Then the energy of each tile can be
given by

ES =


Eh3

24

∫ s2

s1

|n′|2

e′ · e⊥
log(

e′ · e⊥

x′
0 · e⊥

ṽ + 1)ds, e′ ̸= 0,

Eh3

24

∫ s2

s1

|n′|2ṽ
x′
0 · e⊥

ds, e′ = 0.

(146)

We also discuss the energy of the case where x′
0 · e⊥ = 0, i.e., the surface is a tangent surface, see

details in A.2.
In summary, for curved tile origami, the elastic energy according to Kirchhoff theory written

using the parameterization given in this paper can be expressed as a simple, explicit 1-dimensional
integral.

6.2 Discussion of the folding motion and the energy landscape

In this section, we discuss one strategy to get folding motions of curved origami. Different from
rigid-foldable origami whose creases and tiles undergo rigid-body motions [1], curved origami with
flexible creases and tiles exhibits infinite degrees of freedom of deformation during folding. One
way to get a folding motion of curved origami is to prescribe the deformation process of its creases.
Based on Theorem 3.1, if the reference crease and the deformed crease are given, the deformed
configuration of curved origami will be determined. By designing the deformation process of the
crease from x0 to y0 and ensuring the crease at each intermediate state satisfy the assumptions in
the theorem, one will find the origami structure at each step and therefore get a folding motion.

Here is an example to show the strategy. As shown in Figure 11(a), the reference crease x0(s),
the deformed crease y0(s) and the two reference regions Ω1,Ω2 on the opposite sides of x0(s) are
given by

x0(s) = cos se1 + sin se2, s ∈ (0, π/2), (147)
y0(s) = (cos 2se1 + sin 2se2)/2, s ∈ (0, π/2), (148)

Ω1 = {r cos se1 + r sin se2 : s ∈ (0, π/2), r ∈ (1, 3/2)}, (149)
Ω2 = {r cos se1 + r sin se2 : s ∈ (0, π/2), r ∈ (1/2, 1)}. (150)

Since a curve can be uniquely defined by its curvature and torsion [24], we use the curvature κ and
torsion τ to parameterize the crease during folding. Let κt(s) and τt(s) denote the curvature and
torsion of the crease at arc length s ∈ (s1, s2) at time t ∈ [0, 1] respectively, where t = 0 represents
the reference state and t = 1 represents the final state. Then in this example,

κ0(s) = |x′′
0| = 1, κ1(s) = |y′′

0 | = 2, τ0(s) = τ1(s) = 0. (151)
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To simplify the problem, we assume κ and τ are independent of s during folding. The crease at
time t can be expressed as

yt
0(s) =

κt

ω2
t

cos(ωts)ê1 +
κt

ω2
t

sin(ωts)ê2 +
τts

ωt

ê3, s1 < s < s2 (152)

where ωt =
√
κ2
t + τ 2t and κt ≥ 1, (ê1, ê2, ê3) is a fixed orthornormal basis in R3. By continuously

changing κt and τt from (κ0, τ0) = (1, 0) to (κ1, τ1) = (2, 0), one will get deformation process of
the crease and the associated folding motion the whole origami structure. Two folding motions are
shown in Figure 11(d), the corresponding curvature and torsion in paths 1 and 2 are{

κt = t+ 1,
τt = 0,

and

{
κt = t+ 1,
τt = 7t2(t− 1)2.

(153)

Figure 11: An example to show the folding process of curved tile origami. (a) The reference domain.
(b) The energy landscapes of the two surfaces. (c) The total energy stored in the curved origami.
(d) Two folding motions. (e) The corresponding energy paths of the two folding motions of (d).

The energy of the two tiles ES1
and ES2

in terms of curvature and torsion can be found by using
Kirchhoff’s nonlinear plate theory in (146), which is

E = ES1
+ ES2

=
πEh3

48
Eeff , (154)

where
Eeff = Eeff1 + Eeff2 =

1

2
(κ2 + τ 2 − 1) log

r21(κ
2 + τ 2 − 1)− τ 2

r22(κ
2 + τ 2 − 1)− τ 2

(155)
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and Eeff1 , Eeff2 are the effective energy of S1,S2. Here we drop the subscript t in (155) and in
Figure 11. The energy landscapes of Eeff1 , Eeff2 and Eeff are shown in Figure 11(b-c). The two
red stars in Figure 11(e) correspond to the reference state and the final deformed state, and the two
folding motions are highlighted by red lines. Without considering the intersection between S1 and
S2, each point in the energy surface in Figure 11(c) will be a physical folding state, and therefore
any C0 curve in the energy surface of Eeff will correspond to a folding motion.

From above example, the folding motions of curved origami with one crease can be obtained
by designing the deformation process of its crease. For origami structures shown in Section 4, by
specifying a suitable deformation process of the crease in the unit cell, group orbit procedure is
potentially applied to the unit cell at each intermediate state, and then we will get a folding motion
of the whole origami structure. Figure 12 shows three examples of folding motions in which helical
groups, circle groups and translation groups are applied respectively. See animations of the three
examples in Movie 1,2 and 3.

Figure 12: Snapshots of curved origami structures during folding in which (a) helical groups, (b)
circle groups, and (c) translation groups are applied at each stage in the folding processes.

In some applications, one would like a flat sheet to fold up spontaneously to one of the deformed
structures shown in this paper. This is possible using our results and, for example, a thin sheet of
the well-known Ni50.6Ti49.4 shape memory alloy having martensite as the stable room temperature
phase. For this purpose one would begin with a flat stress-free sheet of NiTi at room temperature
and deform the sheet isometrically into the desired shape, e.g., one of the deformed shapes shown
in this paper. Then, by using a suitable fixture, the sample would be held in that shape. Next,
one would apply the standard shape-setting heat treatment for NiTi to this deformed sheet. After
cooling to room temperature, removing the fixture and flattening the specimen, heating would cause
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the specimen to spontaneously deformed to the folded state, assuming the existence of an energy-
decreasing path. A similar but more sophisticated method involving also a preliminary selective
etching of creases has been demonstrated in [18]. With suitable measured material properties, the
methods of this section are applicable to these cases.

7 Buckling patterns of thin-walled cylindrical and conical shells
In this section we suggest one way to characterize the buckled geometry observed in cylindrical
shells and conical shells. In the early work on cylindrical shell buckling [25, 26], workers fitted
a thin-walled cylinder onto a mandrel core with a prescribed annular gap, and then compressed
the cylinder axially to get a surface texture of diamond-shaped buckles. The Yoshimura origami
pattern with straight creases is often used to characterize this buckled geometry [27]. From the
experiments shown in [25, 26, 28], we notice that the buckle edges in most patterns are curves
rather than straight segments, and the overall layout of buckles is periodic in the axial direction
and has rotational symmetry. This structure resembles quite closely our curved origami shown in
the bottom left of Figure 5. So, curved origami is potentially useful to describe accurately the
buckling patterns. The strategy of constructing such origami structures is given in Algorithm 2.
Since the accurate profiles of the buckle edges are not clear, the creases we prescribed to reconstruct
buckling patterns are based on our observation. One can choose other curves to better fit the buckle
edges according to their experiments.

Figure 13: (a) Left: bucking pattern in [25]; Right: curved origami structure resembling the buckling
pattern on the left. (b) Top: bucking patterns in [26], where the bumps in the dimples are caused
by the mandrel core inside the cylinder; Bottom: curved origami structures resembling the buckling
patterns on the top. (c) The stored energy of different buckling patterns of the same thin-walled
cylindrical shell, where a ∈ R is a constant, L represents the original height of the cylindrical shell
and ∆L represents the height of shortening after buckling.

In Figure 13(a) and (b), we rebuild some buckling patterns in [25, 26] with origami structures.
Here periodic trigonometric functions are used to characterize the profiles of buckles, which later
become the creases of the origami structures. By varying the period and amplitude of the trigono-
metric function and the number of the creases, one can construct different buckling patterns.
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Assuming elasticity theory applies, the energy stored in the buckled surfaces can be found by
using Kirchhoff’s plate theory. According to (141), the energy in the buckled cylinder can be found
by

E(S) = πrEh3

12

∫ H

0

Λ(x)2dx (156)

where r is the radius of the original cylinder, H is the height of the buckled cylinder, and Λ(x) is the
curvature of the surface curve exactly halfway between two adjacent creases. Figure 13(c) shows
the stored energy of different buckling patterns of the same cylindrical shell versus ∆L/L, where L
represents original height of the cylindrical shell, ∆L = L − H, and a = πrEh3

12
. In this plot, each

value of ∆L/L will correspond to a unique buckling pattern since we fix the number of creases and
the number of periods of each crease. One can see that the greater the buckling, the more energy is
stored. It’s worth mentioning that as the degree of the buckling increases, the two adjacent creases
will touch at the peaks, and we will get a generalized Yoshimura pattern (see traditional Yoshimura
pattern in [27], where the creases are straight). Note that these curved origami structures are
rigid, which is consistent with the observation in experiments. They have different reference crease
patterns, not intermediate states of a continuous folding of one crease pattern.

Thin-walled conical shells under uniaxial compression also exhibit diamond-shaped buckles sim-
ilar to the cylindrical shell case, but the size of the buckles increases gradually from the small radius
end to the large radius end [29]. Curved origami also resembles the buckling patterns in this case,
and Algorithm 4 is used for the construction since both reference configuration and deformed con-
figuration have rotational symmetry. Figure 14 shows an example to resemble the buckling pattern
in [29].

Figure 14: (a) Bucking pattern of the thin-walled conical shell in [29]. (b) Different viewpoints of
curved origami structures resembling the buckling pattern of (a).
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A Appendix

A.1 Proof of Theorem 5.1

Proof. We first prove the necessity. Let the reference creases be xi(s), s1 < s < s2, 1 = 1, 2, . . . , n, n >
2, which are arranged counterclockwise. Let image of xi(s) be yi(s). Define ruling ti, normal ni

and t⊥i of ith surface bounded by yi(s) and yi+1(s) by

ti =
yi+1 − yi

|yi+1 − yi|
, ni =

y′
i × ti

|y′
i × ti|

, t⊥i = ni × ti, i = 1, . . . , n, (157)

where yn+1 = y1. t⊥i defined above ensures that

t⊥i−1 · y′
i < 0 t⊥i · y′

i < 0. (158)

At crease yi, we have ni−1 · y′′
i = −ni · y′′

i , i = 2, . . . , n by (36). Since (ni−1 · y′
i)
′ = (ni · y′

i)
′ = 0, we

get n′
i−1 · y′

i = −n′
i · y′

i, that is,

(n′
i−1 · t⊥i−1)(t

⊥
i−1 · y′

i) = −(n′
i · t⊥i )(t⊥i · y′

i), i = 2, . . . , n. (159)

Thus, if n′
i ̸= 0, sign(n′

i−1 · t⊥i−1) = −sign(n′
i · t⊥i ). This means

sign(n′
1 · t⊥1 ) = (−1)n−1sign(n′

n · t⊥n ) = −sign(n′
n · t⊥n ). (160)

Thus, n is even.
Let Fi(s) be the deformation gradient of the ruling between yi(s) and yi+1(s). According to

Corollary 3.4 and Corollary 3.1, the deformation gradients will satisfy

F1 = P1F2, F2 = P2F3, . . . , Fn−1 = Pn−1Fn, Fn = PnF1. (161)

where Pi = I− 2bi ⊗ bi. Thus, we get

F1 = P1P2 . . .PnF1. (162)

Since P1P2 . . .Pn ∈ SO(3), we have
P1P2 . . .Pn = I. (163)

Therefore, P1P1 . . .Pn = I and n is even.
Then we show sufficiency. The deformation gradients of the n surfaces are given by

∇ŷ =


F1, if x = (1− λ)x1 + λx2

P2F1, if x = (1− λ)x2 + λx3

P3P2F1, if x = (1− λ)x3 + λx4

. . . . . .
Pn . . .P3P2F1, if x = (1− λ)xn + λx1

(164)

where 0 < λ < 1. At crease xi, i = 2, . . . , n, we have

yi = Pi−1 . . .P3P2F1x
′
i = Pi(Pi−1 . . .P3P2F1x

′
i). (165)

So the compatibility condition at ith crease is automatically satisfied, i = 2, . . . , n. The remaining
compatibility condition is at 1st crease. As Pn . . .P3P2P1 = I and y′

1 = F1x1 = P1F1x1, we have

F1x
′
1 = Pn . . .P3P2P1F1x

′
1 = Pn . . .P3P2F1x

′
1, (166)

So the nth surface is compatible with the 1st surface at 1st crease. Thus, the curved origami
structure is compatible.
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A.2 Energy stored in a tangent surface

If x′
0 · e⊥ = y′

0 · t⊥ = 0, the developable surface is a tangent surface. Then the rulings and normals
are found by

e = x′
0, t = y′

0, (167)
e′ = x′′

0, e⊥ = p0, (168)
t′ = y′′

0 , t⊥ = p, (169)
n = t× t⊥ = b. (170)

So x′′
0 · p0 = y′′

0 · p = e′ · e⊥ = t′ · t⊥. From (145) we have

ES =
Eh3

24

∫ s2

s1

|n′|2

e′ · e⊥
log(

v2
v1
)ds,

=
Eh3

24

∫ s2

s1

|b′|2

y′′
0 · p

log(
v2
v1
)ds,

=
Eh3

24

∫ s2

s1

τ 2

κ
log(

v2
v1
)ds. (171)
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