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LAMINAR ELASTIC COMPOSITES WITH
CRYSTALLOGRAPHIC SYMMETRY*

RICHARD JAMES,’, ROBERT LIPTON$, AND ADAM LUTOBORSKI

Abstract. Francfort and Murat [Arch. Rational Mech. Anal,, 94 (1986), pp. 307-334] derived an explicit
formula for the effective elasticity tensor of a multiply layered composite made from two isotropic elastic
materials in prescribed proportion. For multiply layered composites with crystallographic symmetry, it is
shown that these formulae can be represented as a group average over the crystallographic group. The
special case of cubically symmetric elastic composites made by multiple layering is considered. This article
determines precisely the set of elasticity tensors that correspond to these composites. Extremal property of
laminar composites is then used (see Avellaneda [SIAM J. Appl. Math., 47 (1987), pp. 1216-1228]) to obtain
new optimal bounds on the effective shear moduli for elastic composites with cubic symmetry.

Key words, finite-rank laminates, group average, optimal bounds
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1. Introduction. An effective elastic medium represents the limiting behavior of a
heterogeneous elastic material as the ratio e between microscopic and macroscopic
scales tends to zero. Mathematically, the limiting behavior ofthe heterogeneous medium
as e goes to zero is described by the theory of H-convergence [5], [16], [17] or
G-convergence [19], [20], [24].

Let C1 and C2 be the elasticity tensors for. two isotropic elastic materials with
shear and bulk moduli/xl,/x2 and K, K:, respectively. Throughout the paper we will
suppose there exist positive constants a </3 for which aft -< C and [Cs,ijkl[ , for s 1,
2. A composite constructed with these two components is defined by the characteristic
function X of material 1 in E3. The elasticity tensor for the composite is given by

(1.1) C(x) CIX(X) +C2(1 -X(X)).

A composite body for which the heterogeneities are of the size e relative to the domain_
E3 occupied by the body is described by the rapidly oscillating characteristic

function X (x) ofmaterial 1. We consider the family ofcomposites with elasticity tensors

(1.2)

such that

(1.3)

C (X) C1/’e (X)-" C2(1 -X)(x))

X O(x) in L(t2) weak

as e tends to zero. The limit 0 is interpreted as the local average volume fraction of
material 1 in the effective material.
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684 RICHARD JAMES, ROBERT LIPTON, AND ADAM LUTOBORSKI

THEOREM 1.1 (cf. [5]). A subsequence of tensors C’ of the sequence C given by
(1.2) and (1.3) H-converges to the tensor C* with [ICkl[IL(m<=fl and C*>-a almost
everywhere in , i.e., for any f in H-l(f) the unique solution u ’ in H(f) of

(1.4)
’=1/2(Vu’+(Vu’))
div C’E’=f

satisfies
u’-. u* weakly in Hol()

as e’ goes to zero, where u*6 H(’-) is the unique solution of
(1.5) div C’E* =f

The resulting fourth-order tensor C* is a symmetric linear transformation on the
space of symmetric 3 3 matrices.

DEFINITION 1.2. The tensor C* delivered by Theorem 1.1 is called the effective
elasticity tensor of the two-phase composite defined by (1.2) and (1.3).

Incompressible elastic composites are constructed using two isotropic incompress-
ible elastic components characterized by the shear moduli/Zl, 2 only. The analogue
of the H-convergence Theorem 1.1 for incompressible elasticity is stated in [11] and
the effective elasticity C* is a symmetric linear transformation on the space of symmetric
3 3 trace-free matrices.

Effective material can be anisotropic and can exhibit crystallographic symmetries.
The easiest materials to characterize are the isotropic ones, because the effective tensor
contains only two parameters. The characterization becomes more difficult when fewer
assumptions on the symmetry are made.

In general there are no explicit formulas for the effective tensor C*; however,
when the H-convergent sequence (1.2) involves laminar geometries (e.g., X is a function
of x. n where n is a fixed unit vector in 3) then C* is given by an algebraic formula.
The resulting materials are referred to as laminates. Algebraic formulas for the effective
tensors of laminates were introduced by Tartar [21] for the case of heat conductivity.
Francfort and Murat [5] applied the ideas of Tartar and obtained formulae for the
effective elasticity of laminates. Formulae for the effective elasticity of incompressible
elastic laminates are given in [10], [11].

The ultimate goal is to characterize the set of all effective elasticity tensors arising
from H-converging sequences of composites of two isotropic components taken in
specified proportion in 3.

In this article we characterize the set of all effective tensors with cubic symmetry
arising from H-converging sequences of incompressible and compressible elastic lami-
nates (see Corollary 5.8 and Corollary 5.12). From the comparison theorem of Avel-
laneda (Theorem 1 of [1]) and our knowledge of the set of all cubic laminates, we
derive new optimal bounds on the effective shear moduli for cubically symmetric
composites. These bounds correlate the shear moduli (see Theorem 5.13 of 5.C) and
improve the shear moduli bounds given in [1].

Many bounds characterizing the set of effective elasticity tensors have been derived
[1], [2], [5], [8]-[15], [23]. Recently Kohn and Milton [14] derived a set of bounds
on the effective elasticity tensor that follows from the Hashin-Shtrikman variational
principle (equations 6.61 and 6.62 of[ 14]). The extent to which these bounds completely
characterize the set of effective tensors remains largely uninvestigated. One of the
bounds included in [14] is a bound on the eigenvalues of the effective tensor. For the
special case of incompressible elasticity, bounds on the eigenvalues of the effective
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ELASTIC COMPOSITES WITH SYMMETRIES 685

tensor are also derived independently in [11]. In two dimensions it is shown in [11]
that eigenvalue bounds completely describe the set of effective elasticity tensors. For
the three-dimensional incompressible case with 0 const, it is known [11] that the
eigenvalues A1, , A5 of the effective tensor lie in the convex region of E5 given by
the intersection of Paul’s bounds (cf. [18])

(1.6) 2(txTO+tx(1-O))-<=A,<=2(tXlO+tx2(1-O)), i= 1,... ,5

and the eigenvalue bounds

1 1 3/2(.7) E< +
,=X,-2 2( 0+1(1-0)) -21 2(,0+2(1-0))-2

1 1 3/2
(0 +.( 0

These restrictions do not presuppose any particular symmetry of the effective medium.
To understand how well the eigenvalue bounds characterize the effective tensor in
three dimensions it is of immediate interest to know whether all (I, , I s), consistent
with (1.7) and (1.8) and (1.6) are attainable by laminar composites. As of this writing
the answer to this question is open. In fact, in three dimensions the set of effective
tensors is not characterized by restrictions on eigenvalues only. We give a simple
mathematical statement of this problem in 5, Problem 5.1. However, if we limit our
attention to the class of effective composites with cubic symmetry, then 1 2 3 if,

14 S=7 (see Remark 5.4) and (1.7) and (1.8) become

3 3/
(.9 + +

3/
(1.10) - (0+;( 0-+.-(o+u(-o
We show in 5.A that not all points on (1.9) and (1.10) are attainable by finite rank
laminates with cubic symmetry. This result is in sharp contrast to the two-dimensional
anisotropic case where every point on the eigenvalue bound analogous to (1.7) and
(1.8) is achieved by a rank-2 laminate 11].

In 6 we give a simple proof of isotropy for the finite rank isotropic compressible
elastic laminates introduced by Francfort and Murat 5]. We note that our proof applies
to the incompressible case as well (see Theorem 6.1).

Lastly, if we consider incompressible elastic composites with isotropic effective
elasticity then

I=I=I=14=Is=*

and (1.7) and (1.8) become

(1.11)

where

(1.12)

0

2(1’- 0)"

D
ow

nl
oa

de
d 

09
/0

4/
13

 to
 1

34
.8

4.
75

.1
08

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



686 RICHARD JAMES, ROBERT LIPTON, AND ADAM LUTOBORSKI

We first note that (1.12) and (1.13) may be obtained by passing to the limit K--> in
the Hashin-Shtrikman bounds on the shear moduli for macroscopically isotropic
compressible elastic composites (cf. equations (0.2) and (0.3) of [5]). Secondly we
remark that the equations of incompressible elasticity are identical to the equations
of Stokes flow when surface tension is neglected. Thus the bounds (1.12) and (1.13)
are identical to the Hashin-Shtrikman bounds on the effective viscosity for a statistically
isotropic mixture of two Stokes fluids [7]. In 6, Theorem 6.2, we show that (1.11)
describes the set of effective shear moduli for all isotropic incompressible elastic
composites.

In this paper small Greek letters a,/3, 0, e,... denote real numbers. Small Latin
letters a, b, e, n, v,... denote vectors in E3. Capital Latin letters K, M denote
second-order tensors on E3. Hollow Latin letters C, , P, denote fourth order tensors
on 3.

Throughout the paper the coefficients of all tensors are given with respect to a
fixed orthonormal basis in 3, i.e., el, e2, e3. We define scalar product, tensor products,
and contractions as follows"

a. b is the scalar with value ab;
K" M is the scalar with value KMo;
Ka is the vector with components (Ka)- Ka;
CK is the second-order tensor with components (CK)ij--CijklKkl;
CQQQQ is the fourth-order tensor with components

(CQQQQ ik, Cm,,op QimQj,,QokQp,
a (R) b is the second order tensor with components (a (R) b) ab
a (R) b is the symmetric rank two tensor with components

a (R) b) 1/2( a,b + ab
trC is the scalar given either by C0 or by the sum of the eigenvalues of
C..$3 --) S

The following vector spaces of 3 x 3 matrices are used"
$3 is the space of symmetric 3 x 3 matrices;
Sdiag is the space of diagonal 3 3 matrices with zero trace;
So is the space of symmetric 3 3 matrices with zero diagonal elements;
S, is the space of symmetric 3 x 3 matrices with zero trace;
03 is the set of all orthogonal 3 x 3 matrices;
O- is the set of all proper orthogonal 3 x 3 matrices;
I denotes the identity matrix;
denotes the identity mapping on $3;
is the restriction of to S,.

All elasticity tensors considered in this article are symmetric linear transformations on
$3 and therefore have the component symmetries

C ijkl Cjikl C klij.

2. The effective elasticity tensors of finite rank laminates. Sequentially laminated
composite materials, or for short, laminates, have been widely used to prove the
attainability of bounds on effective tensors for equations of heat conductivity [21] and
systems of equations of linear elasticity [5].

To define a rank-1 laminate we consider two isotropic elastic materials 1 and 2
with elasticity tensors defined by

2(2.1) C 2fl + (K --)I (R) I
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ELASTIC COMPOSITES WITH SYMMETRIES 687

where /zi, Ki, i= 1, 2, are the shear and bulk moduli, respectively, with /22>/xl > 0,
K2 > 1 > 0. Let X"I"- {0, 1} be a sequence of step functions which converge to the
constant Pl in the L() weak, topology and let n be a fixed unit vector in 3.
Consider the sequence of laminar materials in 3 with layer direction nl and layer
thickness e with elasticity tensors given by

(2.2) Ce(X)--Cl,,e’l(x" n)+C2(1-xe’l(x nl)).

The homogenization result of Francfort and Murat [5, Cor. 4.1] states that the
H-limit of the sequence (2.2) defines the effective elasticity tensor C* given by

)--1 (C2__Cl)--1(2.3) P2(C1* --([1 - piT1 (hi)

where/91 +/92 1, and by definition

3/2
(2.4) Tl(nl) =31 +4/21

1

and

(v)M=2(Mv)(R)v
(2.5)

(v)M=2(M" v(R)v)v(R)v,

for all M in $3 and unit vectors v in 3.
To construct a rank-2 laminate we consider the sequence of materials X’2 with

elasticity tensors given by

(2.6) C =C1x’(x nz)+C*(1-X’2(x n2)),
where X’2" [0, 1 converges to 71 const, in L() weak., n is a fixed unit vector
denoting another layer direction, and C1" is given by (2.3). From Corollary 4.1 of [5]
the H-limit of the sequence (2.6) is the effective tensor C2" given by

(2.7) r2(C2"-C1)-1-- (C1 -C1)-1 -I- 71T1(n2),
where rl + ’2 1. We use (2.3) to expand (C*-C1)-1 in (2.7) and obtain

02(C --(1)-1 (C2-- el)-1 + 01(,.1T1(t’/1) + 2Tl(n2))
where 0 is the total volume fraction of material 1 in the composite, 02 1- 0, and.. + E2 1 where ..1 pl/01, 2 (01 pl)/0. It is now apparent that Corollary 4.1
of [5] gives a convenient formula for the effective tensor for a multiply layered
composite. Repeating the above process j times we arrive at the following definition.

DEFINrrION 2.1. Let the j unit vectors n, , nj, the scalar 0, and the elasticity

" 1 The effectivetensors C and C2 be given. Let 02= 1- 01, 0-<i < 1 and =
_

elasticity tensor C of rank-j laminate with core material 2 is

(2.8) 02(C-Cl)-1= (C2-Cl)-1 -- {91 ..,Tl(n).

Remark 2.2. If we choose material 1 as the core material, then the effective
elasticity of the resulting rank-j laminate is given by

(2.9) 01(C C2) -1-- (el-C2)-1 -- 02
i=1

where

(2.10) T2(n) 3/2
3t2-+- 42

1
(n) +2--- ((n) (n)).
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688 RICHARD JAMES, ROBERT LIPTON, AND ADAM LUTOBORSKI

Remark 2.3. Incompressible, isotropic, elastic materials 1 and 2 are characterized
by their shear moduli/xi, 1, 2, only. The analogues of (2.8) and (2.9) for incompress-
ible rank-j laminates are

(2.11)

and

02(C C1) -1-- (C2- el) -1-1t-
2/Xl i=1

(2.12) O1 (CI C2)--I (C C2)--1 "11- 0’’2 L =iT(ni),
2/z i=

where

(2.13) T(n) P(n) -R(n)

see [10], [11]. Equations (2.11) and (2.12) may be obtained by passing to the limit
Ki c, i= 1, 2 in (2.8) and (2.9).

3. Symmetries, transformations and spectral properties of degenerate compliance
tensors. We investigate the algebraic properties of the degenerate compliance tensors
T1, T2, and T given in (2.4), (2.10), and (2.13). It is evident from (2.4), (2.10), and
(2.13) that the algebraic and spectral properties of the degenerate compliance tensors
follows from those of the tensors P and given by (2.5).

It follows directly from (2.5) that both tensors have the symmetries

M1 I(v)M2 M2:(v)M,, M, (v)M2 M:I(v)M,,(3.1)

and

(3.2) I(v)M=((v)M), P(v)M=(P(v)M)T

for all unit vectors v in 3. It follows also from (2.5) that P(v) and (v) are even in v:

(3.3) (-v) (v),

(3.4) a(-v) =a(v)

for all unit vectors v in 3. In general, an orthogonal transformation of v transforms
the tensors according to the rule

(3.5) (Qv) F( v) QQQQ,

(3.6) (Qv) R(v)QQQQ.

DEFINITION 3.1. Let v be a unit vector. The matrix representation of a
subgroup of 03 that has v as a fixed point is defined by G:

Go={Q03: Qv=v}.

DEFINITION 3.2. If G is a matrix representation of a subgroup of 03 then the
subspace T of $3 is said to be invariant under G if and only if QKQ T for every
Q G and every K T.

In the following we establish the spectral properties of the tensors P and . It is
easily seen from (2.5) that 1/2(v) is a projection onto the one-dimensional subspace of
$3 spanned by v(R) v. The spectral properties of (v) are given by Lemma 3.2.

LEMMA 3.2. Let a, b, and v form an orthonormal basis of 3. If U and V are
subspaces of S3 defined by

(3.7) U=span{v(R)v}, V=span{x/v(R)a,x/v(R)b}

D
ow

nl
oa

de
d 

09
/0

4/
13

 to
 1

34
.8

4.
75

.1
08

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



ELASTIC COMPOSITES WITH SYMMETRIES 689

then the degenerate compliance tensor P(v) given in (2.5) is expressible as a linear
combination of two orthogonal projections P t:(v) S3 U and P v(v) S3 V:

(3.8) (v) 2(v)+v(V).

Moreover, the subspaces U and V are invariant under
Proof It is evident from Definition 3.2 that U is invariant under Gv. We now

demonstrate that V is also invariant under G. The matrices

(3.9) x/v(R)a, x/v(R)b, v/a(R)b, a(R)b, b(R)b, v(R)v

form an orthonormal basis in $3. Direct calculation shows that for all Q G the
matrices

Q(x/v(R)a)Qr and Q(x/v(R)b)Qr

remain orthogonal to the last four matrices in (3.9). Therefore, according to Definition
3.2 V is invariant under G. To obtain the spectral decomposition (3.8) of the tensor
(v) we operate (v) on each matrix in the basis (3.9) and observe that

a(R)a, b(R)b,

span the null space of (v) and that

and

and x/(a (R) b)

(v)A A for A in V

P(v)A 2A for A in U.

Remark 3.3. For future reference we note that it easily follows from (2.13) and
(3.8)that the sum of eigenvalues for the tensor T(v) is 2, i.e.,

(3.10) trT(v) =2

and from (2.4) and (2.10) that

(3.11) trT
3 1

+--, 1, 2.
3Ki+4/zi

4. Finite rank laminates with crystallographic symmetry. Let G be a matrix rep-
resentation of a subgroup of O-. We say that a material has a G-group symmetry if
its elasticity tensor C is invariant under G, i.e.,

(4.1) C =CQQQQ,

for all Q in G.
LEMMA 4.1. If a fourth order-tensor C with the symmetries C ijkl =Cjikl C klij is

invariant under G then its eigenspaces are invariant under G, and C has the spectral
decomposition

(4.2) C= lii,
i=1

where 1 <-_j <= 6 and D are orthogonal projections onto the eigenspaces of C.
Proof From the index symmetries of C it follows that C is a symmetric linear

transformation on the vector space $3. Therefore, the eigenspaces of C are pairwise
orthogonal. From the invariance of C under the group G it is evident that if M is in
the eigenspace E then so is QMQr for Q in G, hence the lemma follows.

Remark 4.2. The inverse of C given by (4.2) is written

(4.3) C-’
i=1
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690 RICHARD JAMES, ROBERT LIPTON, AND ADAM LUTOBORSKI

In the following we work with elastic materials possessing cubic and icosahedral
symmetries.

Let O denote the matrix representation ofthe cubic group for a cubically symmetric
material with crystal axes el, e2, e3. This subgroup of O- has 24 elements and is the
symmetry group of the cube with face normals el, e2, e3, (cf. [4]). It follows from
Lemma 4.1 that any elasticity tensor C with O group symmetry has the spectral
decomposition of the form

(4.4) C ,l)off-t-/2)diag--

where Don is the projection onto the three-dimensional subspace Sor, )diag is the
projection onto the two-dimensional subspace Sdiag and i is the projection onto the
identity matrix. The formula (4.4) follows easily from Table 16.4 of [22]. We note that
the eigenvalues A1, A2, and A are usually written A1:2/x", A2=2/z’, A3--3t< where
/x",/x’ are the Lam6 moduli and is the bulk modulus.

We introduce the icosahedral group. This subgroup of O- has 60 elements and
is the symmetry group of the regular icosahedron [4], (see Fig. 1). This group has the
12 axes of 5-fold symmetry Vl," ", Vl given by

v/+l
2

vl (0, ’, 1), v5 (1, 0, "/’), v9 (-/" 1, 0),

v (0, ’, 1 ), /)6 (1, 0, --’), Vl0 (’, 1, 0)
(4.5)

v3 (0, -’, 1), v7 (-1, 0, ’), vii (-’, 1, 0)

/)4-- (0, -’F, -1), v8 (-1, 0, -’), v12 (-’, -1, 0).

We denote the matrix representation of the symmetry group for the icosahedron
given above by Y.

FIG. 1. The regular icosahedron.

LEMMA 4.3. The spectral decomposition ofelasticity tensors C with Ygroup symmetry
is of the form
(4.6) C 2 ([l)off + [[])diag) -]- 3KI.

Remark 4.4 (cf. [6]). An isotropic elasticity tensor C is a tensor of the form (4.5),
or equivalently (2.1). Thus, Lemma 4.3 states that an elastic material with icosahedral
symmetry is an isotropic material.
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ELASTIC COMPOSITES WITH SYMMETRIES 691

Proof of Lemma 4.3. Consider a cube with face normals el, e2, e3, and consider
a tetrahedron with 3-fold rotation axes being the vertices of the cube given by (1, 1, 1),
(- 1, 1, 1), 1, 1, 1 ), and 1, 1, 1 ). It is evident that any rotation leaving the tetrahedron
invariant simply permutes the axes el, e2, e3. It then follows from (4.5) that any
rotation leaving the tetrahedron invariant simply permutes the symmetry axes of the
icosahedron. Thus the tetrahedral group is a subgroup of the icosahedral group. The
energy of a material with tetrahedral symmetry is given by

(4.7) CE:E=(C-C44)(trE)2+(C2-2Cl)(EE22+EE33d-E2E33)d-C44E:E,
where CI, C2, and C44 are the components of the elasticity matrix for a material with
tetrahedral symmetry given in Table 16.4 of [22]. The invariance property of the tensor
C under Y is equivalent to

(4.8) CE :E =CQEQT QEQT

for all E $3 and for all Q Y. Imposing (4.8) for E e (R) el and Q in Y given by

Q Rotation of
27r

about the symmetry axis (0, ’, 1)
5

we find that

27/"
Qel cos -:- ex + ye2- "rTe3

where -= (cos2 27r/5)/(1 + r2), and it follows from (4.7) that

(C12- 2C) =0.

Hence from (4.7) we conclude

CE E Cll- C44)(tr E)2 + C44E :E
and therefore C is of the form (2.1). According to Remark 4.4, C is an isotropic tensor.

In the following we establish the relation between the symmetries of effective
elasticity tensors of rank-j laminates given in (2.8), (2.9), (2.11), (2.12) and convex
sums of degenerate compliance tensors.

Remark 4.5. From Lemma 4.1 and Remark 4.2 we observe that the rank-j laminate

C given in (2.8) possesses a G-group symmetry if and only if the convex sum
"iTl(ni) ..i= 1 possesses G-group symmetry. Similar statements hold for=1 =1

laminates given by (2.9), (2.11), and (2.12).
We now show how to construct a rank- v laminate that is invariant under a symmetry

group of order u.
DEFINITION 4.6. Let G {Q,’’ ", Q,} be the matrix representation of a finite

subgroup of O-. The group average C of the fourth-order tensor C is given by

C E C QvQvQvQv.
/" /:

The fundamental property of C is that it is invariant under G, i.e.,

(4.9) CoQQQQ=Co,

for all Q G.
LEMMA 4.7. Let G {Q,.’., Q} be a matrix representation of a finite subgroup

ofO- and T(v) be the tensor defined in (2.4). If i 1/, and ni Qivfor 1 <= <= , then

(4.10) ,,iTl( ni) T’( v)o.
i=1
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692 RICHARD JAMES, ROBERT LIPTON, AND ADAM LUTOBORSKI

Proof Equations (3.5) and (3.6) imply that

(4.11) TI(Qv) TI(v)QQQQ,
thus the lemma follows from our choice of vectors ni.

Lemma 4.7 and Remark 4.5 imply that we can construct a laminate invariant under
any finite crystallographic symmetry group. We note, however, that because of the
special form of T these laminates might have greater symmetry than that represented
by the group G used in the group average. We do not pursue this issue further here.

5.A. Attainability of the eigenvalue bounds by laminates with cubic symmetry. We
are interested in where all points on the boundary of the region described by (1.6),
(1.7), and (1.8) are realized by the eigenvalues of incompressible laminates defined in
(2.11) and (2.12).

In the following we formulate the attainability problem. We then completely
describe the set of incompressible elastic laminates with cubic symmetry and describe
the subset of points on the boundary of the region (1.6), (1.7), and (1.8) attained by
these materials. Introducing the variable ai given by

202/x1( 1 1
(5.1) a,-

01 A,-2/z-----202(/z-/Zl)’ 1=<i-<5’

Paul’s bounds (1.6) become

(5.2) 0<= ai <= 1

and the lower eigenvalue bound (1.7) becomes

(5.3) ai<=2.
i=1

Similarly for

(5.4) fl 20/z2( 1 1

2 i--2/Z2 201(/z2--/*,)
Paul’s bounds are

1=<i=<5,

(5.5) 0--</3,=<1,

and the upper eigenvalue bound (1.8) is written

(5.6) Y /3,_-<2.
i=1

We claim that under the change of variable (5.1) the set of all points on (1.7) satisfying
Paul’s bounds is given by a region A

___
Es where

(5.7) A {(a,, ., as) 0_<-ai=<l, Y ai 2
i=1

To see this, we take the trace of the laminate tensor given in (2.11) and get

(5.8) 02 Z]l
--1 .., T(n,)

i=1 /i -- ([d’2-- ’/’1) -{- tr
2/x i=1

where A1,..., As are the five eigenvalues of the effective tensor. From Remark 3.6,
equation (5.8) reduces to

1 5 01(5.9) 02 E (jt2- j[.l) -14---
i= Ai 2/Zl 2 /Zl
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ELASTIC COMPOSITES WITH SYMMETRIES 693

An elementary computation shows that (5.9) is the same as the equality in (1.7). Hence
the eigenvalues hi of the laminate tensor naturally attain the lower bound (1.7).

Under the change of variables given by (5.1), equation (5.8) reads

(5.10) a=tr
i=1 i=1

where, from (5 1) and (5.9) i=10i 2.
Therefore, the question of attainability by laminates of all points on (1.7) subject

to Paul’s bounds is given by Problem 5.1.
PROBLEM 5.1. Attainability of the eigenvalue bounds by laminates. Given a point

(a,. ., as) in find an integerj 1, a point (E,. ., E) in

= (,...,E) 0NZN1,2 =1
=1

and unit vectors n,..., n in N, such that the tensor

i=1

has ,..., s as eigenvalues.
For the case of the upper bounds we take the trace of (2.12) to find that all

laminates made using (2.12) automatically satisfy (1.8) with equality. Moreover the
question of attainability of all points on (1.8) by laminates reduces under (5.4) to
Problem 5.1.

Remark 5.2. As of this writing the set of points in attained by laminates is
unknown.

However, in the following we solve an easier problem. We give a complete
characterization of the set of laminates of the form (2.11) and (2.12) with cubic
symmetry, and describe the set of points in the region of Problem 5.1 realized by
this class.

Remark 5.3. It is evident from (2.11) and (2.12) that the complete characterization
of the set of effective elasticity tensors of laminates reduces to the characterization of
the set of all tensors of the form T* given by (5.11).

Remark 5.4 For the case of incompressible elasticity the elasticity tensor has the
traceC 0. Thus it follows from (4.4) that the spectral decomposition of an elasticity
tensor for incompressible elasticity invariant under the cubic group O is given by

(5.12) C loff+ diag-
Under the restriction of cubic symmetry the region

(5.13) ,=((,’’’,ffs)ff=ff=ff=,4=5=,3ff+2=2,0N1).

Thus it follows from Remark 4.5 that if we limit ourselves to materials with cubic
symmetry, Problem 5.1 becomes Problem 5.6.

PROBLEM 5.6. Attainability of the eigenvalue bounds by laminates with cubic
symmetry. Given a point (1," ", s) in. find an integerj 1, a point (, ,)
in the simplex z, and unit vectors n,. ., n in 3 SUCh that the tensor T* given by
(5.11) has cubic symmetry and and as eigenvalues.

The solution to Problem 5.6 is given by Theorem 5.7.
TOM 5.7. All tensors T* of theform (5.11) with cubic symmetry are oftheform

(5.4)
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694 RICHARD JAMES, ROBERT LIPTON, AND ADAM LUTOBORSKI

where the eigenvalues and " lie on the line segment given by

(5.15) 3& +235 =2 for

"iT(ni)Moreover, there exist unit vectors n to n such that there exist tensors T*
with eigenvalues , " satisfying (5.15) for every / in 0 <-_ :y <= . Finally, it is evident from
(5.15) and (5.13) that Problem 5.6 has no solution forpoints in ,rfor which < "<- 1.

It follows immediately from Theorem 5.7 that the complete characterization of
incompressible elastic laminates with cubic symmetry is given by Corollary 5.8.

COrOLLarY 5.8. The set of all effective tensors C* for finite rank incompressible
laminates with cubic symmetry made using isotropic core material 2 and isotropic layer
material 1 as in (2.11) is the set of tensors C* given by

(C,_/z,)_l ( 1

02([./,2 /d’l
}- [[])off + -’ " ])diag
2/102 02(/d,2 , 1) 2/1,102

where (,, ) is any point on the line segment given by (5.15).
Remark 5.9. An analogous statement holds for finite rank laminates made using

material 1 as the core and layering with material 2.

Proof of Theorem 5.7. We start by showing that the set of tensors T* with cubic
symmetry is not empty. It follows directly from Lemma 4.7 that for the choice of
’’j--4, ni--Qiv, 1<--i=<24, QiGO in (5.11) we obtain

T*=T(v)o.

Thus the set of tensors T* with cubic symmetry is not empty. From Remark 5.4 we
have T(v)o is of the form

(5.16) T(v)o a(v)Dof+ Y(V)Ddiag,

where a (v) and y(v) are the eigenvalues of T(v) o. In general, if T* has cubic symmetry
we have

(5.17) T* )off-- ")diag,
where c is an eigenvalue of multiplicity 3 and is of multiplicity 2. We appeal to
Remark 3.6 and take the trace of (5.17) to obtain

(5.18) 2=3c +2.
To complete the proof we obtain bounds on 3. First we note that any convex combina-
tion of tensors of the form T(v)o is also a tensor of the form T*.

To obtain tight bounds on 3 we show that any tensor T* with cubic symmetry is
equivalent to a convex combination of tensors T(v)o.

LEMMA 5.10. Ifa tensor T* is of theform (5.11) with cubic symmetry and spectrum
as in (5.17) then T* has the same spectral decomposition as T*o, i.e.,

(5.19) T*o-- E ----iT(ni)o )off -+" ")diag.
i=1

From (5.19) and (5.16) we observe that

(5.20)

and

(5.21)

= iol.(ni),
i=1

J= E iT(ni)
i=1
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ELASTIC COMPOSITES WITH SYMMETRIES 695

Therefore we obtain bounds on 3 by finding the extrema of y(v) over all unit vectors
v in 3. We choose the trace-free 3 x3 diagonal matrix M I-3e3@e3 and use (5.16)
to write

(5.22) T(v)oM" M T(v)l[])diagM" M.

Without loss of generality we consider the projection on diagonal trace-free matrices
given by

and obtain

l/
+

(R) -1/x/
0 0

(5.24) ])diagM M 6.

We expand the left-hand side of (5.22) noting that e3 is a face normal to the cube
centered at the origin with face normals el, e., e3 and obtain

T(v)oM" M=- T(v)(I-3ei(R)e,)’(I-3ei(R)ei)
i=1

(.2)
2 212{v21v+v,v3+vZv}.

Equations (5.22), (5.24), and (5.25) yield
2 2 2 2(5.26) y(v) 2{vv2+ viv3 + vv3}.

An easy calculation shows that the range of 3’(v) is the closed interval [0, ] with

(5.27) y(v)= for v= ’x/’

and

(5.28) T(v)=0 for v=ei, i=1,2,3.

It is evident from (5.21) that 0-< 35-< .
Moreover, let d c (v) and 3 y(v), where c (v) and 3/(v) are the eigenvalues

of the cubically symmetric tensor given by (5.16). It is easily seen from (5.27), (5.28),
and the continuity of y(v) that all materials with eigenvalues satisfying (5.15) for every
3 in 0-< =< can be constructed.

5.B. The complete characterization of the set of compressible elastic laminates with
cubic symmetry. In this section we characterize the set of effective elasticity tensors
for compressible elastic laminates given by (2.8) and (2.9) with cubic symmetry. It is
evident from (2.8) and (2.9) that the problem of describing the set of effective elasticity
tensors obtained from laminates reduces to characterizing the set of tensors of the form

(5.29) "i"= E .,iT’(ni), 1= 1,2
i=1

with cubic symmetry.
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696 RICHARD JAMES, ROBERT LIPTON, AND ADAM LUTOBORSKI

The set of all tensors of the form (5.29) with cubic symmetry is given by Theorem
5.11.

THEOREM 5.11. All tensors l oftheform (5.29) with cubic symmetry are of theform
1 t/Doff

__
lDdiag+ ’/DI(5.30)

where

(5.31) g,= 1
l= 1, 2

3K+4/Xl’
and the eigenvalues l and ,7/ lie on the line segment given by

2 1
(5.32) 3 Cl + 2331

3Kt + 4/zt

for
1 1
.l< 1=1,2.(5.33)
31+4/Xl =3/Xl

Moreover, there exist normals nl to nj such that there exist tensors 1==1 ..iTl(ni)
with eigenvalues dl, "1, 81 satisfying (5.31) and (5.32) for every 1 in the interval (5.33).

It follows directly from Theorem 5.11 that the complete characterization of the
set of effective tensors for compressible elastic laminates with cubic symmetry given
by (2.8) and (2.9) is shown in Corollary 5.12.

COROLLARY 5.12. The set of all effective tensors C* for finite rank compressible
elastic laminates with cubic symmetry constructed using isotropic core material 2 and
isotropic layer material 1 as in (2.8) is the set of tensors given by

(C,_C1)_I ( 1

02(/[z2

(5.34)
1 FO1 )" 202(/./;__ t2,1) 02 ’I ])diag

302(2-) - 3+4,u,

where (tl, 31) is any point on the line segment given by (5.32) and (5.33) for l= 1. And
the set of all effective elasticity tensors for finite rank compressible elastic laminates with
cubic symmetry made using material as the core and material 2 for the layers as in
(2.9) is given by

(C2_ C,)_ ( 1 02 .)20( ) O "
1 02 )(5.35) 201(/2,2-/-/,1)- 0-- "2 )diag

301(K2-/1) 01 32q-4/z2

where (t2, "2) is any point on the line segment given by (5.32) and (5.33) for 2.

Proof of Theorem 5.11. The proof of Theorem 5.11 follows the proof of Theorem
5.7, so we provide only a sketch of the proof. Arguing as before, we have that the set
of tensors 1 with cubic symmetry is not empty and

(5.36) l Tl(13)O
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ELASTIC COMPOSITES WITH SYMMETRIES 697

for the choice ..j 4, ni--Qiv, 1-< i-<24, Qi O in (5.29). In general, when 1 has
cubic symmetry it follows from Remark 5.4 that T is of the form

(5.37) ?1= l)off.t. ,/)diag_

Taking the trace of (5.37) and appealing to Remark 3.6 we obtain

3 +(5.38)
3n + 4/Xl

A straightforward calculation shows that

3*TI I --;
3t/+4/xt

therefore from (5.37) we obtain

1
(5.39) gl

3Kl + 4tXl
and (5.38) becomes

2 1
(5.40) 3c/+231

3K+4/x /x

To conclude the proof we obtain bounds on 3;. In analogy to the incompressible case
we have that any tensor "il with cubic symmetry can be written as a convex combination
of tensors T (v) o. Indeed

*l4’ To , .. iT’ ni o.
i=1

It follows that bounds on 3 are obtained by finding the extrema of 3;(v) over all
unit vectors v in R where 33(v) and c(v) are eigenvalues of

(5.41) T/(V)o ,(V)off+ /(V)diag+ ,.
We choose the trace-free 3x3 diagonal matrix M= I-3e3@e3 and compute
T (v) oM M to obtain

1
F (v v2 + v v3 + v2v3)(5.42) l(V)

3+4/ 3+41
for 1, 2. Lastly, a straightforward computation shows that

1 1
/(v)< l=,(5.43)
3u+4 =3

for all unit vectors in 3. The lower bound in (5.43) is attained if v is parallel to any
coordinate axis and the upper bound is attained for

Attainability of every point in (5.43) by (v) follows from the continuity of (v).

ebe syet. The effective elasticity of a cubically symmetric composite is
written

C 2/z"Don+ 2/’[Ddiag-[- 3EI
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698 RICHARD JAMES, ROBERT LIPTON, AND ADAM LUTOBORSKI

where/x" and/x’ are the Lam6 shear moduli and K is the bulk modulus. Bounds on
the bulk modulus K were derived by Hashin and Shtrikman l8] for isotropic composites
and, subsequently, Kantor and Bergman [9] observed that these bounds apply to the
quantity CI" I for composites without any symmetry. The bounds are given by

(5.44) L 1 +

(5.45)

and

02
(2- K)- + 3 01(3 + 4/Xl) -1

0
KU -’/(2 +

(1-K2)-1 + 302(32+ 4/z)-1

KL-- K K U.

It is immediate that all laminates given by (5.34) have bulk moduli equal to
Similarly all laminates given by (5.35) have bulk moduli given by u. We take/x",
and as three coordinate axes and observe that the set of laminates given by (5.34)
and (5.35) are pieces of curve on the K x. and u planes, respectively (see Fig.
2). Taking the trace of (5.34) it is easily seen that the curve segment on the K/

plane is given by

3 - +(5.46)
2/x"-2/Xl 2/x’-2/Xl 202(/x2-/x,)+2

for/,’ in the interval

(5.47)
1 201 02 1 201+ =< --<-t-

/at,2 j[2,1 3K + 4/.61 /Z’-- [’1 ]’[’2 [’1 3/1

Similarly the curve segment on the nu plane corresponding to (5.35) is

(5.48)
2/x2-2/x +2/x2-2/x’ 201(/x2-/x1) 0] 3K2+4/x2

!iX4

II

FIG. 2. Representation of set of cubic laminates in K, tx’, Ix" space.
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ELASTIC COMPOSITES WITH SYMMETRIES 699

for tz’ in the interval

(5.49)
1 202( 1 1 ) 0] 1 202

/x2 /x] /-2 3K2+4/z2 --< ----<--
/z2--/z’ /z2--/Zl 32+42

Recently Avellaneda [1] obtained upper and lower bounds on the effective shear
moduli ’, " for cubic composites; they are given by

(5.50) """where

and

(5.51)

where

/
]tt [d’2_ O1 I

\ix-12

6Ka + 20/x2 )-02 9/za(3K2 + 4/z2)

1 201] -/-/
_

/’1 -I- 02 ’/Z __//’2

1 20_ --1

/’= /2--01
2--/Z’ (3/2)/

In 1] it was shown that there exist cubic laminates which attain the end peints of our
Curves (5.46) and (5.48). Also, Avellaneda [1] has shown that finite rank laminates are
in a sense extremal in the set of all composites. Indeed, given any effective elasticity
C*, with crystallographic symmetry q3 made from isotropic components ri,/i (i 1, 2)
in the volume fractions 0i (i 1, 2), there then exist finite rank laminates CL, Cu, made
from the same components and volume fractions in the symmetry class q3’, where_

’_ 03 such that

(5.52) CL<_-- ( <-- Ct.
We note that our analysis shows that if’= for the cubic case. It follows immediately
from (5.52) that our curves (5.46) and (5.48) yield new bounds on the shear moduli.
We summarize our results in the following theorem.

THEOREM 5.13. All composites with cubic symmetry have bulk moduli and shear
moduli lying inside the region given by

KL--- K KU

where for all in [L, Ku the shear moduli ’, x" lie in the intersection of

and

(5.53) 2/,,
3

4 ---< +
--2/Xl 2;’--2p,,--202(P,2--/.t,l) q-2 3, +4/Xl
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700 RICHARD JAMES, ROBERT LIPTON, AND ADAM LUTOBORSKI

(5.54) 2/,2-2, +2/x2 2/ --< +20,(/,2-/z)-l 32+4/x2

(See Fig. 3.)
Remark 5.14. We see that (5.53) and (5.54) give bounds that correlate the two

shear moduli.
Remark 5.15. The endpoints of the curves (5.46) and (5.48) lie on the bounds

given by (5.50) and (5.51) (see Fig. 3).

6. Isotropic elastic laminates and optimal bounds. In their elegant paper, Francfort
and Murat [5] construct a laminated material with layer directions specified by the six
northern hemisphere vertices of regular icosahedron. If we then compute each com-
ponent of the effective tensor, relative to a basis in $3, it is found after a tedious
computation that the resulting tensor is isotropic. This procedure yields a pair of
isotropic materials that attain the Hashin-Shtrikman upper and lower bounds [5] on
the shear and bulk moduli.

In the first part of this section we present a simple proof of isotropy for the
laminates introduced by Francfort and Murat. Our proof is based on the observation
that the formula of Francfort and Murat is really a group average over the icosahedral
group. In the second part we characterize the set of effective shear moduli /z* for
isotropic homogenized composites of two incompressible elastic materials taken in
prescribed proportion.

THEOREM 6.1. Elastic compressible or incompressible rank-6 laminates obtained

from equations (2.8), (2.9) or (2.11), (2.12) by choosing layer directions ni, 1 <= <= 6
associated with the six northern hemisphere vertices of the regular icosahedron have
isotropic effective elasticity tensors.

Proof. It follows from Remark 4.5 that,the effective tensors defined by (2.8), (2.9),
(2.11), (2.12) are isotropic if and only if the sum of degenerate compliance tensors
appearing in those formulas is isotropic. To fix ideas we will construct an isotropic
tensor of the form= jT2(ni) and note that our method applies to convex combina-
tions of the tensors T(ni) and T(ni) as well.

Consider a regular icosahedron oriented so that one of its twelve vertices is aligned
in the direction of the north pole. For any rotation Q in the group Y of rotations that
leave the icosahedron invariant, we observe that Q acting on any vertex rotates it into

FIG. 3. The set of all shear moduli for cubically symmetric 2-phase composites lie in the shaded region.
Curve is given by (5.46) and curve 2 is given by (5.48).
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another vertex of the icosahedron. We choose vl, v2, , D12 to be the twelve vertices
of the regular icosahedron and form

1
(6.1) ’i": T(vi).

i=1

From (3.3), (3.4), (3.5), (3.6), and (2.10) we see for any rotation Q that

(6.2) T2 v, QQQQ T Qv,

and

(6.3) T(-,)= T2(v,).
Hence we observe that multiplying (6.1) by any rotation QQQQ for Q in Y simply
permutes the indices in the sum (6.1). Therefore "i"2 is invariant under the icosahedral
group and is isotropic by Lemma 4.3. Lastly we observe that all vertices in the northern
hemisphere are antipodal to vertices in the southern hemisphere, so from (6.3),
reduces to

’i"2= T(Vi)
i=1

where vi, 1,. ., 6, are the northern hemisphere vertices of the icosahedron.
It is now possible to characterize the set of effective shear moduli for isotropic

homogenized mixtures of incompressible elastic materials taken in prescribed propor-
tions in three dimensions.

THEOREM 6.2. The set of all effective shear moduli tx* for isotropic, homogenized
mixtures of two isotropic, incompressible elastic components with moduli txl < Iub2 taken in
the proportions O1 and 02 is the closed interval [/zt,/zu] where

(6.4) /"/’1 /’/1 + 02 ( 1 202)
\

+-/
and

(6.5) /x, ---/x2 + 0, ( 1 202 -1

Proof. We begin by constructing extremal materials with shear moduli that attain
the bounds/xt and .

A straightforward calculation shows that the isotropic incompressible laminates
obtained from equations (2.11) and (2.12) using layer directions and volume fractions
given in Theorem 6.1 have shear moduli l and , respectively. To construct laminates
with effective shear moduli * between 1 and , we refer to Corollary 4.5 of [11
and form a finite rank laminate with core and layers I with the overalll volume
fraction of given by p. The resulting tensor C*,

(6.6) (C* 21)- ( )-1 +P --T(n)
2(1

is the effective elasticity for .a mixture with material 1 and 2 in propoions 01 and 02.
Upon choosing the convex combination =1ET(n) exactly as in Theorem 6.1,

(6.6) yields

(6.7) (C* 21)- (" 1)- P
2(1 -p) 5,(1 -p)
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where C* 2/z* and

(6.8) 2/x* 2/x, + (1 -p)
2(/x. -/x,)

+

Thus as p ranges through [0, 1 the effective shear modulus/x* sweeps out the interval
[,, .1.
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