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Frustration in ferromagnetic materials 

R, D.  James and D. Kimlerlehrer 

Dedicated to the memory of Stella Dafermos 

We examine the theory of micromagnetics developed by W. F. Brown. We 
show that in the case often considered, with exchange energy omitted, the mini- 
mum of  the free energy is not attained for uniaxial materials but is attained 
for cubic materials. A study of the minimizing sequences reveals that these 
accurately model many features of observed domain structure. Finally, we 
reexamine the so-called "coercivity paradox" from the viewpoint of nonlinear 
stability theory. 

1 Introduction 

Predictions of the domain structure of real ferromagnetic materials are usually 
derived from either domain theory or micromagnetics. Domain theory, often 
favored by experimentalists, has its origins in the famous 1935 paper of Landau 
and Lifshitz. Landau and Lifshitz [1] calculated the energy of a domain wall 
dividing an infinite cylinder with magnetization vector m depending smoothly 
on only the axial variable. They accounted for exchange energy, the energy that 
arises from gradients of the magnetization, and for anisotropy energy, the energy 
that favors axial magnetization, but not for magnetostatic energy. The main result 
of their calculation is an expression for the energy stored in the region of rapid 
variation of m, i.e., the interfacial energy of the domain wall. 

Domain theory takes the expression of  the interfacial energy from the cal- 
culation of Landau and Lifshitz, or one of the improvements which accounts 
better for the wall structure 1, and assigns this energy to sharp discontinuities of 
magnetization. In practice, domain theorists begin with a divergence-free field 
of magnetization having a certain specific arrangement of  interfaces specified by 
several parameters, and then adjust the values of these parameters so as to mini- 
mize energy. 

1 See K16man [2] for a discussion of different wall models 
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W. F. Brown [3] criticized domain theory on the grounds that it contains 
too many geometric restrictions. He remarks that "The mere existence of a lower 
energy configuration does not guarantee that that configuration will be attained; 
if it did, there would be no such phenomenon as hysteresis. Second, the particular 
configuration devised is dependent on the ingenuity of the theorist who devised 
it; conceivably a more ingenious theorist could devise one with even lower free 
energy." Brown introduced an alternative approach termed micromagnetics that 
avoids the geometric restrictions. The theory of micromagnetics develops an ex- 
pression for the free energy of a general magnetization field and then seeks to 
determine that field so as to minimize energy in an appropriate space. 

Despite the general attractiveness of Brown's philosophy, micromagnetics 
has not gained general acceptance. This is apparently due to two features of 
micromagnetics. First, in the case often considered (e.g., Brown [3]) with ex- 
change energy omitted, the minimum of the free energy is not generally attained. 
Minimizing sequences for the energy exhibit finer and finer structure. Non- 
attainment of the minimum does not occur for all crystal symmetries, and we 
suggest that this explains in some way the huge dichotomy of scales exhibited 
by ferromagnetic materials, whereby large cubic ferromagnets may exhibit a 
few huge domains while large uniaxial ferromagnets always exhibit relatively fine 
columnar or laminar domains. We show this in Sects. 3 and 4. Second, we gen- 
eralize in Sect. 8 a metastability calculation of Brown that also seems to be an 
origin of the distrust of micromagnetics. The calculation leads to the so-called 
"coercivity paradox". Our calculation sheds light on the coercivity paradox by 
showing precisely when the metastable state becomes unstable relative to finite 
disturbances. 

Martensitic materials also exhibit extremely fine twinned microstructures 
often appearing as layers or layers within layers. In recent years a new theory of 
martensite has been developed which involves free energies that do not have 
attained minima. See, e.g., Ball and James [4, 5], Chipot and Kinderlehrer [6], 
Fonseca [7], James and Kinderlehrer [8], Pedregal [9] and Kohn [10]. The 
theory of martensite that has emerged is in many ways analogous to micro- 
magnetics without exchange energy (with one significant difference described be- 
low) and the analogy can be stretched to include the crystallographic theory of 
martensite, the analog of domain theory for the martensitic materials. As in the 
martensite, a study of the minimizing sequences (Sects. 2 through 5 below) gives 
a rather complete picture of the macroscopic aspects of the domain structure, and 
is particularly useful for predicting where in the body fine structure will occur, 
in addition to the averaged properties of this fine structure. It is also anticipated 
that information on where fine structure must occur will be useful in setting up 
reliable micromagnetic computations with exchange energy included, such as those 
under development by Luskin. 

A remarkable feature of ferromagnetic materials is that the single domain 
state is generally unstable. This contrasts with martensite, where the single variant 
configuration is stable for arbitrarily large samples. In other physical systems, 
such as the blue phase of cholesteric liquid crystals, the failure of stability of the 
uniform state relative to an array of defects is termed "frustration". Our calcula- 
tions could be interpreted as one possible interpretation of this phenomenon at 
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a macroscopic scale. The frustration in our system arises from the competition 
of an anisotropy energy which demands constant magnetization strength with an 
induced field energy which prefers to tend to zero. A consequence of this is to 
promote development of a fine scale structure which seeks to compromise the 
constraint of  constant magnetization strength. A different mechanism is given by 
Sethna [11] for the blue phase. He associates the term frustration with the failure 
of  existence of a pointwise minimizer of the energy density, such as occurs in the 
problem 

min flVu - FI2 dx, 
g2 

where F(x) is a smooth vector valued function which is not a gradient. This agrees 
with our interpretation in the case of zero applied field and in some other special 
cases, but differs from our interpretation in that his energy functional does have 
an attained absolute minimum in an ordinary function space whereas ours gen- 
erally does not. 

Some of the results of this paper were announced by James [12]. 

2 Energy of ferromagnetic materials 

The conventional theory of ferromagnetic materials is based on the classical 
assumption of Weiss, Landau and Lifshitz that the magnetization m varies with 
position x E f2 but has a fixed, temperature dependent magnitude: 

[m(x)l = f ( T ) ,  xC f2, (2.1) 

with f ( T )  = 0 for T >= To, Tc being the Curie point. In this paper we shall not 
vary the temperature so, without loss of  generality, we shall consider vector 
fields 

m: ~ - +  S 2, (2.2) 

the unit sphere in R 3, or, more generally, with Q C Rn and 

m: .Q-+ S "-~ . 

The energy of a rigid ferromagnetic material is assumed to consist of the sum 
o f  three parts (cf. Brown [13], Landau, Lifshitz and Pitaevskii [14]). The ex- 
change energy models the tendency of neighboring magnetic moments of atoms to 
align and has the form 

f Vm" A Vm dx, (2.3) 
Q 

where A is a linear transformation on constant 3 • 3 matrices. The anisotropy 
energy models the tendency of the magnetization to point in specific crystallo- 
graphic directions and is given by an even function 9(m) which exhibits crystallo- 
graphic symmetry. We shall discuss two cases: 
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(i) Cubic case. There are orthonormal vectors {mi} such that z 

0 = ~o(4-m~) = ~0( :~m2)  = ~v(+ma) < 9(m) for all 

m r (~ml, ~m2, ~m3}. (2.4) 

(ii) Uniaxial case 

0 = 9 ( I r a , )  < ~0(m) for all m 4= ~ m , .  (2.5) 

Without loss of generality we have made the minimum values of  q) equal to zero. 
Finally, the magnetostatic energy is the energy of the magnetostatic field set up 
by the magnetization m. The form of this energy is calculated, for example, by 
identifying m with the quantity (i/c) da where i is the current in a plane filamentary 
circuit of vector-area da and then by regarding D as a continuum field of  such 
circuits. The form of  the magnetostatic energy is 

f i Vu 12 dx, (2.6) 

where 

div [--Vu + mza  ] = 0 on R 3 . (2.7) 

Here, the presence of the term mza  is a reminder that (2.7) is solved on all of  
R 3 but with nlge = 0 on N3 _ / 2 .  Equation (2.7) arises f rom the two Maxwell 's 
equations 

div B = 0, 

curl H = 0 (2.8) 

and the definition (omitting unessential constants), 

B = H + m .  

Using (2.8), we have introduced the potential u with H = --Vu. Thus, the total 
energy is formally 

E~(m) = f [Vm. A Vm + 9(m)] dx + �89 f lVul 2 dx. (2.9) 
D ~ a  

Here u is obtained from m by solving (2.7) subject to the appropriate conditions 
at oo (see Sect. 3). See Rogers [15] for further remarks on (2.9). 

An odd feature of  the constitutive part  o f  this energy, namely, the first two 
terms of (2.9), is that it does not embody the most general frame-indifferent energy 
of the form q)(Vm, m, ei), which would seem to represent the minimal assumption. 
Here, for a rigid crystal, {e~, e2,  e3} denote lattice vectors of  the crystal and for a 

2 This is the simplest assumption appropriate to cubic symmetry. It corresponds 
to having the easy axis along (100) directions such as in iron. Here, an easy axis is de- 
fined as a line containing a minimizer of the anisotropy energy % Other cubic materials 
such as nickel have a greater number of minima. Because ~0 exhibits crystallographic 
symmetry, it always has a set of minimizers of the form (orbit P) e where P is the point 
group of the material and e is a unit vector on the easy axis 
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rigid ferromagnet are restricted to lie in the domain SO(3)ei with ei constant, 
linearly independent vectors. Frame indifference would require that 

~o(R VmR r, Rm, Rei) = ~(Vm, m, ei) for all R E SO(3). (2.10) 

Hence, even frame-indifferent quadratic terms normally found in the energy for 
liquid crystals, for example (Frank [16]) 

~2(m" curl m q- q) + x3 ]m A curl ml z, 

are missing from (2.9). It is possible that the molecular theories used to derive 
(2.9) contain hidden geometric assumptions which forbid certain interactions, 
such as was the case in the theory of liquid crystals before the appearance of Frank's 
paper referenced above. We shall not pursue this issue here. 

The exchange energy can be thought of as giving rise to a surface energy on 
domain boundaries. The calculation which justifies this fact in an asymptotic 
sense is given in a recent paper of Anzellotti, Baldo and Visintin [17]. Their cal- 
culation qualitatively is similar to the calculation of the asymptotic behavior 
of minima for a van der Waals fluid with surface energy measured by the volume 
integral of IV v[ z where v is the specific volume, cf. Kohn and Sternberg [18]. 
The scaling used in these papers -- e in front of the exchange energy and e -1 in 
front of the anisotropy energy with e -+ 0 -- might be inferred from the [1935] 
paper of Landau and Lifshitz in the magnetic case. 

Except in certain situations which we treat explicitly in Sect. 5b, crystals of 
mm or greater size exhibit fine domain structures, either fine bands in the material 
or coarse bands that show splitting into finer and finer domains at the surface 
of the crystal. In these cases the crystal exhibits a large surface area of  domain 
walls, suggesting that the essential domain structure can be obtained by omitting 
the exchange energy. A similar point of view in theories for martensitic materials 
has been successful in predicting their twinned structures and macroscopic pro- 
perties (cf. Ball and James [4, 5], James and Kinderlehrer [8]). The operating 
principle in those calculations has been that the surface energy only selects some 
(fine) scale while the minimization of bulk energy determines the possible micro- 
structures on that scale. A major advantage of this approach is that detailed stable 
domain patterns in a great many cases can be calculated rigorously without resort- 
ing to approximate methods. This viewpoint has also been useful in setting up 
reliable computations of domain patterns in martensitic materials, such as those 
of Collins and Luskin [19], which necessarily must cope with domain refinement. 
Analyses of the type presented here are particularly helpful for deciding where in 
the body one should expect to find fine domain structures. 

To explore this idea further, we shrill put A = 0 in (2.9). Set 

Eo(m) ---- fg(m) dx + �89 f IVul 2 dx (2.11) 
f2 p~3 

subject to 

div (--Vu + mz.~ ) = 0 in g3  (2.12) 

and consider 

inflml=l Eo(m). (2.13) 
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Obselwe that there is an alternative expression for (2.11). Since (2.12) means that 

f (--Vu § raze)-  Vr dx = 0 

whenever V~ E L2(R3), then if we set ~ = u we get 

flVu[2dx= fmze.Vuax.  
E3 ~3 

Hence 

Eo(m) -- f~(m)dx + �89 f Vu-m dx. (2.14) 
O D 

3 The minimum of the functional 

From (2.11) it is clear that Eo ~ 0. In this section we show that 

inflml= 1 Eo(m) = 0 (3.1) 

provided ~0 has minimizers of the form 4-m~. Recall that inf,0 = 0. This covers 
both the uniaxial and cubic symmetry hypotheses, (2.4) and (2.5). First let us 
verify that Eo(m) is well-defined. In particular, we check the sense in which we 
understand the equation (2.12). Throughout this paper we make the standing 
assumption that ~ is open and bounded and has a Lipschitz boundary. 

Let BQIR n be a fixed ball with ~ C B ;  suppose n > 2 ,  and let 

V={vE H~(B): VvEL2(R ") and ~fvdx-=0}" (3.2) 

V is a Hilbert space with inner product 

(u,v)= fVu.Vvdx + f uvdx. 
Rn B 

By Poincar6's inequality, 

fu2dx<c flVul~dx<c flVuI2dx, uEV, (3.3) 
B B i~n 

fi'om which it follows that a norm equivalent to (v, v) ~/2 on V is given by 

(f]VulZdx) '/2 (3.4) 

We shall regard (3.4) as the norm on V. 

Lemma 3.1. Let m C L2(f2; ~n). The equation 
u c V: div (--Vu § m;4~) = 0 (3.5) 
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admits a unique solution in V. The mapping 

T: LZ(f2; R ") --~ V, 

m - - > u  

is linear and continuous. 

The equation (3.5) means that 

f (--Vu + mZ~ ) �9 V~ dx = 0 for ~ E V. (3.6) 
3Rn 

Proof. The functional 

I ( v ) = � 8 9  f EVvI2 dx + f V v ' m z o d x ,  vE V, (3.7) 
I~n l~n 

is convex and lower semicontinuous with respect to weak convergence in V. 
Owing to the elementary estimate 

1 
I(v) ~ (�89 - -  e) f I v v  12 dx -- f I m [2 dx, 

~n 

it is bounded below. T admits a unique minimizer in V and this minimizer satis- 
fies the Euler equations, (3.5). If  m, m' E L2(D) have solutions u, u' E V respec- 
tively, setting ~ = u -- u' in (3.6), subtracting, and applying the Schwarz in- 
equality gives that 

llu - u'llv =< c !Ira -- m'llL2. 

It follows from general principles, and is easy to check, that T is also continuous 
from L2(f2; R n) in the weak topology to V in the weak topology. Hence if 

m k ~ m in L2(O; A n) weakly, then 

Vuk-+ Vu in LZ(Rn;R n) w e a k l y .  (3.8) 

By the Rellich and trace theorems, it then follows that 

uk-+ u in L2(O) and L2(&Q). (3.9) 

In fact, owing to the compact support of  m, (3.5) admits a solution in H~(R').  
The proof of this, although not difficult, is not germane to our considerations here. 
We turn now to the proof of(3.1). Assume that 9~(m~) = 9(--m~) = 0, and choose 
p E R  ~ with p . m ~ = 0 .  Let 0 : R - + ] K  be periodic of  period 1 with 

{ 11 t C [0, 1/2) 
O(t) = _ t C [1/2, 1)" 

Referring to Fig. 1 a, set 

m~(x ) = {o~O(kp" x E R  ~ x )  x E_ .Q,f2, (3.10) 

and note that 9(m ~) - -O.  
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Fig. 1. Construction for the minimizing sequence 

We assert two properties of ink: 

(a) d ivm ~- -  0 in D. 

This is because ml �9 p = 0. 

(b) mk--> 0 in L2(R n) weakly. 

This is standard. It suffices to show that for any cube D, 

limk~ ~ f m dx = 0 
D 

Now let u ~ be the solution of (3.5) corresponding to mk. Then by (3.8) 

uk---> 0 in V weakly, 

S O  

uk--> 0 in L2(/2) and in L2(9~).  

Now we may calculate 

Eo(m k) = fg(m~) dx + � 8 9  ,*" Vukdx 

= --�89 fdivmkukdx + � 8 9  k" vukdS (3.11) 
D. 0s 

= +�89 f m  k 'vu  kdS 
at2 

- + 0  as k--> oo. 

Obviously there are many other choices of minimizing sequences for Eo. For  
example, fine columnar domains as pictured in Fig. 1 b, as long as they have the 
property that they have equal volumes on average, generate a minimizing sequence. 
Uniaxial materials often have the general kind of domain structure pictured in 
Fig. 1 b. A great variety of cross-sectional shapes are observed as shown, for ex- 
ample, by Carey and Isaac [20] or Chikazumi [21]. On the other hand, there are 
restrictions on the minimizing sequences. We explore these in Sect. 5. 
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4 Attainment of the minimum 

We turn now to the question of whether or not the infimum 

E o = 0  

is attained by an m ~ L2(.Q; sn--1). The answer is different in the uniaxial and 
cubic cases. The former will exhibit the frustration described in the introduction 
while the latter admits a solution. 

I f  m E L 2 ( ~  ; S n -  1) with 

Eo(m) = O, (4.1) 

then 

re(x) E K : =  {In : ~v(m) ----- 0, [ml -= 1} in [2 a.e. (4.2) 

and the corresponding magnetostafic potential u vanishes identically. By (3.5) 

div mzo = 0 in I%", 

that is, 

f m z a "  Vr dx = 0 for all r C V. (4.3) 
Rn 

(a) Uniaxial case 

We show here that Eo does not attain its minimum. 

Lemma 4.1. Suppose that .rE Lz(R ") with 
mapping from C~(R ") to I-~ n given by 

~-+ f f V C dx 
F,.n 

either has rank n or f vanishes Mentically. 

supp f Q R" compact. Then the 

(4.4) 

Proof. Suppose the rank of the mapNng in (4.4) is less than n. Then there 
is a (unit) vector ~ ~_ P~" such that 

ffgr ~ dx = 0 for ~ C~~ 
y n 

o r  

ffT-~ dx = 0 for g C C~(Rn). 
P. 

Without loss of  generality, assume that ~ =- %. Then by Fubini's Theorem and 
the Lemma of duBois Reymond it follows that . f= f ( x i  . . . .  , x , ,1) ,  a function 
of n - -  1 variables. Hence if s u p p f  is compact,  J" vanishes identicMly. 
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Assume as above that 
and that (4.1) holds. Then 

m = zAm~ --  Xn-am~ 

= [~A - -  (~Q  - -  2 A ) ]  m l  

= (2X, - -  Zn) ml 

and 

div m = 0. 

Hence 

R. D. James, D. Kinderlehrer 

{m:~v(m)=0 , [mE- - - - -1}={•  has two points 

0 =  f m - V g d x =  f (2)&--za)m, .Vgdx .  
Rn p~n 

Thus, with f = 2Xa --  Xn, the mapping 

~ f fVCdx  
p;n 

does not have full rank, so 3"= 0, or 1/21 = 0,  which violates om hypothesis 
about  s Thus, in the uniaxial case the minimum is not attained in V. 

This argument is sensitive to the form of 9. For example, if we consider a 
function q)(m, x) with explicit dependence on x appropriate to a "locally uniaxiaI" 
crystal obtained by bending a uniaxial crystal into the shape of  a ring, e.g. 

9(m(x), x) ~ 9(m, x), x E S 1 • S *, for all I ml -= I ,  (4.5) 

where 

~ X  A e 3 

m(x) --  ix A e3--- - -~ ' (4.6) 

then Eo has an attained absolute minimum of  the form (4.6) and in fact ( + )  can 
be imposed on all of  S t • S 1 so that the minimizer exhibits a single domain (note 
that m defined by (4.6) is divergence-free). However, with unbent uniaxial crystals 
of  sufficient size, we expect always to see fine structure throughout the crystal, as 
is observed. 

(b) Cubic case 

The preceding statement is untrue for cubic crystals where mm size single crystals 
of  iron often exhibit the classic domain structure pictured in Fig. 2a, if the faces 
of  the crystal have been cut on (100) planes (cf. Carey and Isaac [20], Fig. 101). 
In fact Fig. 2a  clearly represents a minimizer of  Eo since the field m pictured there 
is divergence-free on R" (and therefore has the corresponding potential u = 0 
on R 0, and also m assumes only the values -bin1 and -1 -m 2. 

The question arises whether attainment of the minimum in the cubic case 
occurs only if ~s exhibits (I00) normals. To investigate this question we let D, 
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[0011 

,- [010] 

Fig. 2. a, b Minimizing domain structures in the cubic case. e after Craik and 
Tebble [22, Fig. 6.8a, b] 

the prototype being the domain shown in Fig. 2a, be some particular, open set 
in E"  on which the minimum is attained by a field mo E LZ(D; S n-l): 

E~(mo) :0 ,  

where 

(4.7) 

E~(m) := f 9(m(x)) dx + �89 f 1~Tul 2 dx 
D Rn 

(4.8) 

The following shows that the minimum of E~ is attained for any open bounded 
.Q CR" .  

Theorem 4.2. Let  [2 Q R ~ be open and bounded and let the open bounded set 
D Q R ~ have a smooth boundary. Suppose 

0 ---- inf Eo D = EoD(mo), mo E L2(D; S" -  1), 

Then there & a function mELZ(.Q; S n-l) such that 

0 = inf Eg = Eo~(mo). (4.9) 

Proof. By the Vitali Cgvering Theorem, there is a countable collection of 

disjoint closed sets of  the form ai-[-ei  D such that 

-(2 = kJ (a i  -~- e i D) U N (4.10) 

where meas N = 0. Since mo is a minimizer on D 

f m o g o ' V ~ d x = O  for all ~EV.  (4.11) 
Rn 
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=2; 

= Z  

Let miE L2(ai + ei D; S n-l) be defined by 

mi(x) " :  m0 ( x -  a l l ,  x E a i §  
'~ ei  l 

and let mE L2(D; S "-1) be defined by 

m(x) :=  mi(x), x E ai + ei D. 

We have for any (E  V 

f mozD " V r dx = f m .  Y r dx 
B n -Q 

f mi'V~dx 
ai+siD 

(4.12) 

(4.13) 

e~ f mo(z) �9 V ~ ( a / +  eiz) dz,  
D 

where the series converges because the left hand side is  finite. Since ~i(z) : =  
~ (a /+  eiz) belongs to V, up to an additive constant, each term in the series (4.13) 
vanishes. Therefore if u is the potential corresponding to m then, by (4.13), u(x) ---- 0 
a.e. x E R", so m is a minimizer. 

Since on domains with non-(100) boundaries there does not exist a piecewise 
smooth minimizer having a finite number of domains, the implication of Theorem 2 
is that any minimizer will have the property that it will have a finer and finer 
domain structure at the boundary. This inference is made precise in Sect. 5. Various 
constructions are possible in addition to the one given by the Vitali Covering Theo- 
rem. For  example, the construction shown in Fig. 2b also delivers a minimizer. 
Here it is important to observe that the average magnetization in Fig. 2b on a 
sequences of translates of ~f2, which tend to ~D, goes to zero. Figure 2c shows 
an actual domain structure near the curved boundary of an iron crystal. 

5 Further analysis of domain structures 

As illustrated by Fig. 1, there is extensive lack of uniqueness associated with 
minimizing sequences for uniaxial materials. However, both of the minimizing 
sequences illustrated by Fig. 1 have magnetization fields whose average is zero, 
in the sense of weak convergence. In this section we quantify this idea of uniqueness 
for any minimizing sequence in the uniaxial case using the notion of a Young 
measure. 

This uniqueness is proved in the uniaxial ease only. No such average behavior 
is expected for cubic magnets because of the dichotomy of scales illustrated by 
Figs. 1 and 2a. However, whether or not a minimizer in the cubic case exhibits 
refinement at the boundary, we expect the average magnetization at the boundary 
to be tangential, and hence to satisfy in some sense the equation div m - - 0 .  
We prove this below. It follows immediately from this fact that if ~$2 is smooth 
and has a normal V(Xo) at Xo E ~ not perpendicular to (100), (010) or (001), 
then any minimizer must exhibit refinement at Xo. 
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First we make a few observations about the general situation. Let m~E L~(s 
]mkE= 1, be a minimizing sequence for Eo, with potentials (uk). Thus 

Eo(m k) = f 9(m ~) dx + -I f I Vu ~ ? dx--> 0 as k -+  oo, 
O ~ n  

which tells us that both 

f ~(m ~) dx -+ 0 

and 

f ]Vukl 2 dx --> 0. (5.1) 
R n  

Thus 

9~(m I') --> 0 in L1($2) 

and 

u k--> 0 in V (in norm). (5.2) 

The boundedness of the (m ~) means that there is a subsequence, not relabeled, 
and an ~ E L~176 ") such that 

f m . V ~ d x =  0, 
~ n  

ink-+ N in L2(R ~) weakly and 

supp N C f2. 

Since for each k, 

f (--Vu ~ + mk) �9 V~ dx -- 0, ~ E C~'(R"), 

we obtain from (5.2) on passing to the limit that 

~ Cg(•"), 

o r  

(5.3) 

The existence theorem for Young measures (e.g. Ball [23], Young [24]; see 
also Dacorogna [25], Tartar [26]) states that there is a subsequence of (m~), not 
relabeled, and a family of  probability measures (/z,,)x~o such that for every ~p E 
C(a"), 

~0(m k) --+ v~ in L~(R  ~) weakly, where 

~(x) -- f ~(m) db~x(m), x E ~ .  (5.5) 
n 

div N = 0. (5.4) 
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Part of the conclusion of the theorem is that ~ is measurable. It follows from (5.5) 
that #x has an interpretation as a local spatial average: 

1 
#x(E) ----- limr_~o ~__,~ [ - ~  ] [ l i m  {z E B(x, r): mk(z) C E}[ 

Also note that the limit magnetization given in (5.3) has the representation 

~(x) = f m d/zx(m ). (5.6) 
~ n  

The limit anisotropy energy density is 

~(x) = f g(m) d#,,(m) 
R n  

but since 0 ~ ~o(m I') --> 0, cf. (5.2)2, 

f ~(m) d~x(m) ---- O. 
l~n 

It follows immediately that 

supp/~x C {m: 9(m) = 0} = : K. (5.7) 

We now restrict attention to the uniaxial case, where K = {ml, --ml}. In 
this case from (5.7) 

#x = 2(x) ~,~ -k (1 -- 2(x)) 8-ml in ~ ,  and 

N(x) = (22(x) -- 1) mmZe in ~ ,  

where 0--<2--<1. 
On the other hand, by (5.4) 

0 = f m .  V~ dx = f (22(x) -- 1) m~zg. V~ dx, ~ C Cg(R'). 
I~n ~ n  

From Lemma4.6, 22(x)-- 1 = 0  in Q, or 2 ( x ) ~ � 8 9  and ~ = 0 .  It is easily 
seen that these conclusions apply to the whole sequence. 

We have proved the uniqueness theorem. 

Proposition 5.1. Assume that 9 satisfies the uniaxial assumptions (2.5). Every 
minimizing sequence (m k) for Eo satisfies 

m k ---> 0 in L~176 ~) weak* 

and generates the Young measure 

~ = �89 ~.~ + �89 

Now we turn to the cubic case. Let m be a minimizer of Eo, so in particular 
the potential corresponding to m is u = 0 and div m = 0, or 

f m .  V~ dx = O, ~ ~ C~(R0.  
l~n 
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This is just a special case of (5.4). Let a 6 022 and ~ 6 CG~ r)). We assume 
that ~22 is smooth near a. Integrating by parts, we get 

0 - -  f m . V ~ d x  
B(a,r) 

= f m - V ,  dx 
B(a,r)A f2 

= f m .  v~ dS. (5.8) 
O f 2AB(a,r) 

Here ,m]0.o is defined by routine mollification, i.e., 

m!o~2 = !im ~ m, in L~176 weak* (5.9) 

where 

me(x) = f 0,,(x - x') m(x') dx' (5.10) 
l~n 

and (~,) is a sequence of mollifiers. Formula (5.8) may be seen directly from the 
fact that 

divm, = 0. 

Indeed, 

0 -- f div m,~ dx 
B(a,r)(3 f2 

- - -  f m , . V ~ d x +  f m , . v ~ d x .  
B(a,r)A $2 O DAB(a,r) 

Now let e - + 0  so 

o - - -  f m - V ~ d x +  f m . v ~ d x .  
B(a,r)A-q 0s 

But m = mzs~, whence 

f m - V ~ d x =  f m . V ~ ' d x = O ,  
B(a,r)A D B(a,r) 

which yields (5.8). From (5.8), we obtain that 

mlos~ "v ---- 0 on 0-(2. (5.11) 

Returning to the issue of  boundary refinement, suppose that 022 is smooth 
near a 6 022 and that for every sufficiently small e > 0, B(a, e) • s contains 
a single domain: 

in(x) = + m l ,  say, for a.e. x E B(a, e) {5 22. 

Assume for simplicity that n = 3. It follows from (5.9)-(5.11) that v is perpen- 
dicular to m~. Conversely, if v at a6  022 is such that v �9 mi 4: 0, i = 1, 2, 3, 
then there must be a sequence ek --~ 0 such that each set B(a, ek) contains at least 
two sets of  positive measures on which m takes on different values in {~:m~, 
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-}-m2, Jcms}. Hence, boundary refinement is necessary in cubic materials if the 
boundary normal is not perpendicular to one of the directions (100), (010), (001). 

This result does not explain the refinement observed in Fig. 2c, since the normal 
in that case is perpendicular to (100). This is explained by the following argument. 
The disc shown in Fig. 2c is a cylinder with the top normal to m~ = (100). The 
domains viewed theie are on the top. Suppose that a C O.Q lies on a corner of 
the cylinder and the normal v(a) to the lateral boundary of the cylinder at a is 
v(a) = c~ml § with both c~ ~ 0 and /3 4= 0. Furthermore, suppose there 
is a single domain re(x) = +m~, kE {1, 2, 3} in B(a, e )A  f2. Then by (5.11), 
m~- ms = 0 and v(a) �9 mk = 0. This is a contradiction, in other words, there is 

no single domain in a ball of any size. This leads to boundary refinement. 

6 Bound on the minimum energy via a Lagrangian formalation 

In preparation for the discussion of the effect of  an applied field, we find a lower 
bound on the infimum of  the total energy. The presence of a divergence-free applied 
field ho E L2(Rn; R n) contributes a term - -m �9 ho to the local part of the energy 
resulting in a total energy 

E(m; ho) = f @(m) --  m .  ho) dx + �89 f lVul 2 dx, (6.1) 
Q Nn 

subject to 

div (--Vu + mza ) = 0 in V.: (6.2) 

The field ho is interpreted as the field that would be present were the ferro- 
magnetic material absent, cf. Brown [3]. Using (6.2), we can write 

E(m, u; ho) = f (~(m) -- m .  (ho -- Vu)) dx -- �89 f lVul 2 dx.  (6.3) 

Regarding ho as fixed, we introduce a "Lagrangian", 

L(m, u) = ~ f I Vu 12 dx + f {m.  (ho - -  Vu) - -  ~o(m)} dx 
~ n  -Q 

-~ --E(m, u; ho). (6.4) 

Let us regard L(m, u) as a mapping from N • V -+ ~,, where V is defined by 
(3.2) and 

N = {mC L~176 : [ml ---- l}. 

So, in (6.4) we ignore the equation (6.2). The reason for this is that it may be di- 
rectly incorporated into the variational principle by observing that 

- - p*  = inf E(m) = --supK infvL(m, u). (6.5) 
mEN 

u satisfies (6.2) 

Formally, if we compute the first variation ~L(m, u), we get (6.2) as well as the 
Euler equation of (6.1). Indeed, --L(m, u) is often regarded as the Helmholtz free 
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energy of the system. The proof  of  (6.5) is an immediate consequence of our proof  
of Lemma 3.1. 

Let 

P = infv supK L(m, u). (6.6) 

By an elementary computation (cf., e.g., Ekeland and Temam [27] or Moreau 
[28]), 

P* =< P .  (6.7) 

Thus ( - - P )  provides a lower bound for the energy attained by the system. The ad- 
vantage of (6.6) is that there is always a pair (m, u) which attains (6.6), and this 
gives a sharp bound in some cases. 

Let us calculate P from a variational problem. Define 

~(~) = sup ( m - ~ -  q)(m)). (6.8) 
I m [ = l  

Then for each uE V, we set 

I(u) = sup~ L(m, . )  = �89 f I Vu I' dx + f W(ho -- Vu) dx. (6.9) 
pon O 

Assuming that q) is even and inf q) = 0, we easily deduce that 
I m l = l  

(i) "q~ is convex and continuous, 

(ii) ~o(--ff)= g,(~), and 

(iii) inf W = ~(0) = infjml=l ~0 = 0. 

To check (iii), note that a convex even function assumes its minimum at the origin. 
Thus I is convex and coercive on V. Hence there is a (unique) ~ 6 V such that 

~r(~) = infv I(u) = P.  (6.10) 

As a means of estimating P, let us note a special case. Let 

Vo = {uC V: Vu = ho in ~}. 

I f  the closed, convex set Vo is not empty, there is a unique ~ ~ Vo such that 

f [V~] 2 dx = infvo f lVul 2 dx, 
B.n R n  

by Stampacchia 's  Theorem [29]. Hence ~v(ho-  V ~ ) =  0 on O and, by (6.9) 

P < l(h) = �89 f IVhl ~ dx. (6.11) 
n 

When ho 4 = 0, (6.11) will provide an optimal bound only for special domains 
i n O .  Of  course, if h o = 0 ,  then ~ = 0  and P = 0  as well. In Sect. 3 w e h a v e  
shown that  P* = 0 in this case, so the bound given by this formulation is opti- 
mal. 

Another simple case, when ~ is an ellipsoid and ho = const., is treated in 
Sect. 7. 
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The numbers P and P* would be equal were it possible to interchange the " inf"  
and "sup" in (6.5) or (6.6). For general fields ho this may not be possible. First 
of all, P* is not attained in general, which renders less tractable the computations. 
A true saddle point does not exist in this case. Moreover, ~v is not the dual function 
q~* of q~ owing to the constraint that [ml = 1, which refers to the assunlption 
of magnetic saturation. Consonant with this, the set K is not convex. We refer 
to Ekeland and Tomato [27] for a general discussion. 

The idea of the Lagrangian formulation may be recast in an extended setting. 
Let N ~  S "-1 and 

N = (m E L~(X2; Sn-1): m(x)C N} 

and introduce 

~0N(~) = SUpN(~ . m  -- ~(m)), 

which is convex with at most linear growth. For a fixed applied field ho, set 

P*(N) = sup~ inf v L(m, u) and P(N) = infv supN L(m, u). 

As before, P*(N) ~ P(N). The convexity of y~  ensures that there is always a 
UNE V such that 

P(N) = �89 f I VuNI ~ dx + f ~vN(h 0 -- VuN) dx. 
~ n  -Q 

We shall use this extended setting to interpret the notion of metastable solu- 
tions of our problem, and in particular the coercivity paradox, in Sect. 8. 

7 Effect of a constant applied field 

In the preceding section we showed that the minimum energy P*  in the presence 
of an applied field satisfies 

- -P*  = inf E(m; ho) ~ - - P  ~ --�89 f [V~ [ 2 dx, (7.1) 
m~K 

u satisfies (6.2) ]~n 

provided that ~ E Vbo minimizes the field energy 

f IV~{ 2 dx = inf f ] V u [  2 dx, (7.2) 
l~n zho l~n 

among other fields in Vho. 
In this section we consider the case ho = const, on s and we assume n = 3. 
It is well-known from potential theory that if s is an ellipsoid, the infimum 

in (7.2) is attained by a function h that is exactly the magnetic field of a uniformly 
magnetized ellipsoid with magnetization N = D -1 ho. Here D = D r is co- 
axial with the principal axes of s and its positive eigenvalues are the so-called 
demagnetizing factors (cf. :Osborn [30] or Stoner [31 ]). The function h is obtained 
by solving 

~tcv: f(--Vh+mz~).V~dx=O for all ~E V. 
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We now show that equality holds throughout (7.1) in the special case where 
f2 is an ellipsoid with demagnetizing matrix D, and ho satisfies 

ho Ii Dm~, 

[ho[ ~ [Dm~[. (7.3) 

Recall that ml minimizes the anisotropy energy ~0. Assume (7.3) and for 2 E [0, 1], 
let tile 1-periodic function 04 be given by 

Ok(t)  = _ t ~  [,1, 1) .  

Choose p EIZ 3 with p ' m l  = 0 and let 

[m~O~(kx -p), x ~ ~9, 
m~(x)=t  0, x ~ a  3 - Q .  

Then for each fixed 2 E [0, 1], 

m~(x) -+ m~ :=  (22 -- 1) zzml  weakly in L 2, (7.4) 

so by the theory presented in Sect. 3 (cf. equation (3.11)), 

�89 fm~'.VuS~dx-->�89 fm.W,~dx, 

f m ~" ho dx--~ f m .  ho dx, (7.5) 
f2 X? 

k where ua is the potential for m~ and 

u~-+ uz weakly in V. (7.6) 

It follows from (7.4) and (7.6) that ~ is the potential corresponding to the constant 
magnetization Nx on f2. Thus, we can ensure that ~ will be the minimizer of the 
problem (7.2) if  we choose ~ E [0, 1] such that 

Dmz = (22 -- 1) Dml : ho, 

in which case V5z = ho on f2. By the assumption (7.3) it is always possible to 
choose such a 2. 

We now evaluate directly the energy of the sequence m~. By using (7.5)1,2 in 
the expression (6.3), we get 

- �89 f i v ~  l ~ dx =< --P*. 
~ 3  

We have arranged that h~ achieves the minimum in (7.2) so by (7.l) we also have 

- P *  => -I-  f I v~,.1 ~ dx. 

Thus, we have calculated P* and clearly (m~) provides a minimizing sequence 
for the energy. 

In summary, if f2 is an ellipsoid with demagnetizing matrix D subject to a 
constant applied field ho satisfying (7.3), then the infimum of the total energy is 
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given by 

p~3 

where ?z is the potential corresponding to the constant  magnetization N~ = 
(22 - -  1) ml and 2E [0, 1] is chosen so that  (22 - -  1) m~ = D -~ ho. Minimizing 
sequences for the total energy are given by uniformly layered microstructures 
with magnetizat ion ml,  --m~, m~, - - m r  and having the volume fraction 2. 

8 Remarks on the calculations of Brown and Lifshitz 

Despite the general attractiveness of  the phi losophy of  micromagnetics,  it has met 
with limited success. A typical attitude toward micromagnetics by experimentalists 
is the view of  Carey and Isaac [20]: 

Since, in principle, the minimization [of the total free energy] is a straightforward 
problem, micromagnetics needs to postulate no domains or walls; if these are real the 
theory should predict them. While this approach is undoubtedly rigorous, it seems clear 
that the application, at this stage, has most value in the study of particles insufficiently 
large to support domain walls. In bulk specimens, conventional domain theory, despite 
its shortcomings, has the advantage of pictorial guidance from experimental domain 
observations and in most cases has proved successful in accounting for the results ob- 
tained. 

It  appears that  this hesitancy toward micromagnetics arises f rom an interesting 
calculation o f  Brown [3, pp. 125-133; 13, pp. 66-72]. Brown's  calculation con- 
cerns the metastability of  the single domain state under  constant  applied field. 
The idea o f  the calculation is the following. For  an appropriately oriented ellipsoid 
f2 subject to a large, suitably directed, constant  applied field h0, we expect the 
single domain state m = ml to be an absolute minimizer of  the energy. (This 
follows f rom a calculation similar to the one we presented in Sects. 6 and 7, as 
explained below). Brown considers the family of  fields ho = Dml  + -cml  with T 
decreasing f rom + oo toward - -  co. We expect that  for  sufficiently small values 
o f  % the single domain state ceases to be metastable. Brown calculates sufficient 
conditions on T that  the magnetization m(x) = ma, x E ~ ,  makes the second 
variation o f  the energy positive definite at m~. 

We can easily reproduce Brown's  calculation 3 o f  metastability using our  
Lagrangian formulat ion of  Sect. 6. Let  mo be a point  o f  local convexity o f  the 
anisotropy energy corresponding to the conjuagte variable ~o, i.e. assume there is 
an e > 0  such that  

~(m) - -  ~o(mo) - -  (m - -  mo)" r ~ 0 for all m E K~, (8.1) 

3 Actually, this is a slightly improved version of his calculation in that we prove mo 
is a minimizer relative to other fields m satisfying sup I m -- tool < e, i.e. our argument 

does not rely on the use of the second variation 
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where 

IK~ ~ {mCL~176 [m[ = 1 and ] m - -  tool < e } .  

In terms of the extended setting described at the end of Sect. 6, we are choosing 
N = K~. Assume also that .(2 is an ellipsoid with demagnetizing matrix D (cf. 
Sect. 7) and that 

ho = Go + D m o .  (8.2) 

The argument of Sect. 6 leading to (6.9) does not depend on the precise form of 
the compact set K, so in particular we can repeat the argument with ~ replaced 
by [K~ and obtain (7.9), except that ~p is now replaced by ~o~, where 

W~(g) = sup (m. ~ -- 9~(m)), K~ = {m E S 3 ]m -- mo I < e}. 
Ke 

In the present calculation, % remains convex and continuous but is no longer 
even and is not generally minimized at the origin. Since mo satisfies (8.1), we have 

w~(go) = Go "too - ~ ( m o ) .  (8 .3)  

Let Uo E V be the field associated with too" 

f (--VUo + moZ~) �9 V~ dx = 0. 
p n 

By the results from potential theory mentioned in Sect. 7, Vuo = Dmo on .(2 
and Uo, satisfies 

f lVuol2 dx= inf f lVul2 dx. (8.4) 
~ n  VDmo ~ n  

Thus, using (8.2), (8.3) and (8.4), we get from (6.9), 

P = infvI(u) <= I(uo) = �89 f [VUol 2 dx + f ~p(go) dx. 
p n 

Since - - P  is a lower bound for the energy (cf. (6.5) and (6.9) specialized to IK = lt~) 
we have proved that 

inf E(m;ho) > --�89 f lVuo[2dx  - f~o(go)dx. 
mcKe ~ n  D 

u satisfies (6.2) 

But, in fact, this lower bound is attained by mo E K~ because 

E(mo; ho) = f @(mo) -- mo" ho) dx ' ' T z  f lVuol2dx 
Y2 ~ n  

= f @ ( m o ) - - m o ' h o + m o ' V u o ) d x - - � 8 9  f I V u o l  2dx  
D ~ n 

= -  f~ (go)dX- �89  f l V , o l ' d x .  
Q F~n 

In summary, if mo satisfies (8.1) and ho satisfies (8.2), then 

E(mo ; ho) = inf E(mo; ho), (8.5) 
m~K e 

u sa t i s f i e s  (6 .2 )  
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This is essentially Brown's result on metastability. We note that this result re- 
mains true when exchange energy is included, since the exchange energy itself is 
minimized at the constant state m(x) = too, x E ~Q. 

The metastability result (8.5) yields an interesting prediction which in turn leads 
to what Brown terms the "coercivity paradox". To obtain this prediction, we first 
calculate the set of values of go for which mo is a point of local convexity. (This 
set determines a set of applied fields ho such that mo is metastable, by (8.2)). To 
correspond to Brown's treatment, we assume that 

(i) ~o is even, 

l (ii) min m.  = Iml=l  ~ m] K l > O .  

m'mo=O 

It is then straightforward to determine the set of values of to such that mo is a 
point of local convexity corresponding to to. A convenient method of doing the 

calculation is by writing m = R(t)mo with R ( O ) =  1, / ~ ( 0 ) =  W = - - W  r, 

Jr = W 2 + IV, / ~ r =  --IV. It follows that a sufficient for too, to be a point 
of local convexity is 

to = Vq0(mo) + z m o ,  z > - -~1" (8.6) 

In addition, it is immediate from (i) and (8.1) that if 2 > 0 and ~o(mo) =< ~0(m) 
for all r ml = 1, then mo is a global point of convexity. Using (8.6) and (8.2), 
we conclude that re(x) = mo is metastable if 

ho = Dmo + V~o(mo) + ~mo, ~ E (--K,,  co) .  (8.7) 

1il .1111 
m = m metastable 1 
ho=Dml+gm 1, "ce (-~i,~) 

_N_ 

i I /1 
-K 1- miDm 1 - m i D m  1 /,." 

s 
/ 

s j  "S 

, , t  1 1  

/ -1 
m = -rn I stable 
ho= -Dml+,m 1 , , e  (-=,01 

m = m 1 stable 

ho= Dml+~:m 1 , "~  [0,~) 

N j" 

/ .  finely layered domains of 
/ *~ . . .  magnetization *m 1 and 

/ t  volume fraction X, 
st" ho= (2X - 1)Din 1 

miDm 1 miDml+ K 1 ho' 

.Y 
m = -mlmetastable 

ho=-Dml+'~m 1, ~e  ('~';<:I) 

Fig. 3. Curves showing average magnetization vs. field calculated from minimizers or 
relative minimizers of the total energy. Dark lines ( ) correspond to absolute 
minimizers, dashed dark lines ( m  m )  correspond to minimizing sequences, and dashed 
light lines ( - - - - )  correspond to relative minimizers in the sense of Brown. Fields ho 
corresponding to the various minima and relative minima are as indicated. In all cases O 
is an ellipsoid with demagnetizing matrix D and • minimize the anisotropy energy 
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Brown assumes that Vg)(mo)= 0 and concludes that the single domain state 
re(x) = too, x E/2, is metastable at least until ho reaches Dmo --  Klmo. Since 
H1 is measured for the common ferromagnetic materials, this calculation provides 
a quantitative bound for the fields necessary to prevent a breakdown of the single 
domain state. As discussed by Brown [13, pp. 69-70], this bound is several orders 
of magnitude larger than that actually measured to produce breakdown. For ex- 
ample, in iron the calculation implies metastability for fields up to [ho ] = 500 oe, 
while the measured value is clearly no greater than about 0.1 oe. This discrepancy 
is termed the coercivity paradox by Brown. Brown's results and our results of this 
section and Sect. 7 are summarized by Fig. 3. 

A full discussion of  the coervicity paradox can be found in Brown [~3, Sect. 5.2]. 
He argues that the paradox cannot be resolved by accounting for magnetostriction 
or by domain theory arguments. The general conclusion is that the paradox may 
be resolved by the inclusion of imperfections of some type, possibly even devia- 
tions from perfect ellipsoidal shape. We believe that part of the discussion is 
obscured by the lack of a clear description of what is the absolute minimizer, or 
in this case, the minimizing sequence. For  example, the remark just before equa- 
tion (8.7) implies that the single domain state is absolutely stable only up to the 
field ho = D m ~  and it is possible that a more careful consideration of both stable 
and metastable states may yield a resolution to the coercivity paradox. A full 
analysis of these remarks will be found in a forthcoming paper. 

We now turn to a discussion of  the paper of  Lifshitz [32] which proposes, 
from the point of view of  domain theory, the splitting of layered domains near the 
boundary. At first, this proposal resembles our results of Sect. 5 on the necessary 
splitting of domains near the boundary in cubic materials, but the splitting proposed 
by Lifshitz occurs on (100) planes and therefore is unrelated to our calculation. 
In fact, the splitting predicted by Lifshitz has origins in the magnetostrictive con- 
tribution to the energy. Lifshitz' calculations are highly suggestive that in a set- 
ting that includes magnetostriction, e.g. ~0(m, Vy), where y : f2 -+ R 3 represents 
the deformation, the minimum energy state would not be attained. The case 4 
9)(m, Vy) has also been treated extensively in the literature (e.g. Brown [33]). 
If  this suggestion is true, the various "equilibrium equations" found by putting 
the first variation of the total magnetostrictive energy equal to zero would not be 
useful for finding the minimum energy state. 
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4 As written, we have in mind that the exhange energy is omitted, the case treated 
by most authors. Interestingly, Lifshitz retains the exchange energy 
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