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1 I n t r o d u c t i o n  

The aim of this report is to explore a constitutive theory able to predict macroscopic state 

functions and the detailed microstructure of a crystal which suffers a diffusionless solid-solid 

transformation involving a change in symmetry. A principal feature of this theory is that we are led 

to consider energy functionals which fail to be lower semi-continuous, with respect to an 

appropriate notion of weak convergence. In these circumstances, the infimum of energy may be 

achieved only in some generalized sense while a minimizing sequence may develop successively 

finer oscillations reminiscent of a finely twinned microstructure. 1 

To understand very briefly the consequences of material symmetry in this regard, let us 

consider an energy density W(F) defined for an elastic body in three dimensional space at some 

fixed temperature. The condition of frame indifference is that 

W(QF) = W(F) for QTQ = 1, de tQ = 1, and de tF  > 0. (1.1) 

The variant structure of certain crystals, for example, many ionic solids, shape memory alloys, and 

ferroelectrics, suggests that coexistent symmetry related phases may be present in an configuration. 

An example of this is twinning. A deformation A is symmetry related to F provided 

1 This research was supported under NSF MSM 86 12420 and by the NSF and ASOFR under DMS 87 1881 
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A = QFH (1.2) 

for some proper rotation Q and some H in a given "symmetry group" and 

W(A) = W(F) .  (1.3) 

The two variants coexist in a configuration when there is a piecewise linear deformation y(x) 

with, say, 

f F i f  x . n  < 0 
Vy(x) (1.4) / A i f  x . n  > 0 ' 

for some unit vector n ~ R 3. This is only possible if rank (A - F) = 1, provided A e F, as 

Hadamard pointed out, and in fact, 

A = F + o~® n for some nonzero o ~  R 3. 

Fig. 1 Schematic drawing of a single crystal 

Fig. 2 Schematic drawing of a twinned crystal 
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Fig 3. Illustration of the motion of a lattice element on the twin plane 
according to (1.4). The upper triangle undergoes simple shear which renders 

its deformed state congruent, in three dimensions, to its undeformed state. 

Suppose, for clarity, that W(F) = min W = 0. Then the function fit) = 

W(F + tot ® n) vanishes together with its derivative at t = 0 and t = 1 and thus at some ~. e 

(0,1), 

f~O~) = ~ O~iO~hnjnk < O, 

unless f is constant. 

Thus the familiar Legendre-Hadamard condition is violated for W. Of  course, we know 

that lower semi-continuity of  the functional 

E(v) = j W ( V v )  dx 

implies the Legendre-Hadamard condition, cf. Morrey [51]. So our ability to understand variant 

structures in crystalline solids depends on our willingness to study functionals which are not 

lower- semicontinuous. 

On the other hand, let us write 

A = F(1 + a ® n ) .  (1.5) 

Given ~, c (0,1), introduce the characteristic function Z(t) of  the interval (0,~,) c (0,1), 

extended periodically to (~,o,oo), so Z(t) = Z(t + k), k e Z. Let 



so that 
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kx.n 

1 J a) (1.6) uk(x) = F(x  + ~" X(t) dt 

Fk(x) = Vuk(x) = F(1 + x(kx.n) a ® n )  (1.7) 

F i f  X = 0 

l A i f  X = 1 

Now the ( F k ) do not converge in a usual pointwise sense, but they do converge in the weak* 

topology. Indeed, 

F k --) (1-~ , )F  + )~A in L~(f~) weak*, (1.8) 

when f2 c ~3 is bounded, since the sequence of periodic functions x(kt), 0 < t < 1, converges 

weak* to its mean value ~.. Inspection of the ( F k ) shows that it represents a sequence of 

twinned states with successively finer structure. From the viewpoint of energy, 

W ( F )  i f  Z = 0 
W(Fk(x)) = W ( A )  i f  X = 1 

= 0 ,  fora l lk .  (1.9) 

We see in this way that the macroscopic limit deformation, which itself is not a minimizer of 

energy, is obtained by successive shearing of minimum energy configurations. In the sequel we 

shall illustrate how the energy of the limit configuration may be interpreted as lim k -~ o~ W(F k) = 

0 by use of the parametrized measure or Young measure [74], cf. also [67]. This measure serves 

as an accounting device to record the oscillations of the process through which the limit 

configuration is achieved. 
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Fk_-F 

Fk=A 

Fig. 4 Illustration of fine phase behavior, as given by F k in (1.9). 

The phenomenological theory we are about to describe has its origins in the work of 

Ericksen [21-29]. Our idea of equilibrium follows from Gibbs [34]. Important contributions are 

due to Gurtin [35], Mtiller [52], Mfiller and Wilmanski [53], Parry [54], and Pitteri [61-63]. 

Some of our thoughts about phase transitions have been motivated by studying 

[10,12,16,20,71,72,73]. This report is based primarily on [6],[14]. The paper by Ball [5] has 

some connections with this one. Computational work related to the theory and analysis presented 

here has been undertaken by Collins and Luskin [17]. Other work of possible interest to the reader 

includes [38-41,42,43]. 

2 Cons t i tu t ive  equa t ions  

We now describe how particular energy density functions W(F,0) are obtained. 

Sometimes we shall depress the dependence of the energy on temperature 0. We begin with lattice 

considerationS. Our idea of a crystal is that it consists of a regular lattice consisting of identical 

atoms, molecules, or more general symmetry elements L(el,e2,e3) determined by linearly 

independent lattice vectors { ei } according to the rule 

L(el,e2,e3) = { x ~ R3: x = I.t i e i ,  ~ti~ Z }. (2.1) 



56 

The summation convention is understood to be in force. A common procedure involves assigning 

a central force potential and then summing the contributions of all the energies due to pairs of 

atoms in a large volume. The temperature dependence of the energy density is then calculated by 

recognizing that the atoms vibrate about the definite positions in L(el,e2,e3). Standard statistical 

arguments then provide a temperature correction. It is well known that this procedure fails in that it 

predicts the Cauchy relations which are not satisfied by many materials of interest in studies of 

phase transformations. As discussed by Christian [16, Chapter 5] modem attempts to improve the 

calculation have been largely unsuccessful, and, in fact, many of these calculations once again give 

back the Cauchy relations! 

Recognizing that for numerous calculations of the type illustrated in the introduction we 

will not need the detailed form of W, we adopt a more modest but general point of view. A 

derivation of W from first principles will have the property that once the positions of the lattice 

elements are known, the energy density is determined. Following this line of thought, we 

postulate the existence of O(el,e2,e3,0) which represents the energy per unit volume of a lattice 

L(el,e2,e3) at temperature 0. The danger in this procedure is that two different sets of lattice 

vectors may generate the same lattice, i.e., the same atomic positions. This possibility is addressed 

by a classical theorem in crystallography, cf. [24 ] or [29], stating that the energy does not depend 

on the choice of lattice basis, leading to the invariance statement 

qb(g{ej, gJej, gJej,0) = ¢(el,e2,e3,0) forall M = ( g l ) e  Z 9, de tM = +1.(2.2) 

We may pass to a continuum theory by adopting the Cauchy - Born Rule [24,27]. For 

this, we fix a basis of reference lattice vectors { e ° } and define 
1 

0 0 0 
(FelAFe2)-Fe3 

W(F,0) = ~(Fel,Fe2,Fe3,0), det F > 0 .  (2.3) 
O O. O 

elAe2)'e 3 

The factor in front of q) merely converts the energy per unit volume to an energy per unit 

reference volume to be more consistent with standard continuum mechanics. This factor is really 

just det F .  With this rule, the f2 introduced in §1 becomes identified with the lattice 

L(e 1, e~, e~). 
Clearly W should be frame indifferent at each fixed 0 and so satisfy (1.1). As well, it 

inherits the invariance from (2.2) 

O W(FH,0) = W(F,0),  for all H ~ (3({ e i }), where (2.4) 



57 

~3({ e ° }) = E ° GL(Z 3) (E°) -1 , (2.5) 

where E ° is the matrix whose columns are { e ° }. Note that if Fo minimizes W at some fixed 
o o 

0, then so does FOG({ e i }). No matter what the choice of Fo, det Fo > 0, the set FOG({ e i }) 

is infinite. So W(A,0) has an infinite number of potential wells, and there are H k ~ ~({ e ° }), 

k = 1,2,3 .... such that I HkFo I --~ oo. In fact, if ~[ + a ® n ~ ~({ e ° }), then 

W(A(~ + ~.a ® n)) is a periodic function of ~,. ff we associate F with the actual deformation of 

the body, it is clear that we will not be able to deform the body into one of these far away potential 

wells without compromising our notion of the lattice. That is, we expect dislocations to appear and 

to move with such large deformations, and they should surely contribute to the energy density. 

Calculations of energy minima for an energy displaying the invariance (2.4) and (2.5) by 

Chipot and Kinderlehrer [ 14] and Fonseca [31,32] support the inference above. However, they 

are useful for special loading devices, as we point out in the next section, and give some general 

insight into the nature of instabilities. At the present time, energy densities satisfying (2.4),(2.5) 

are the only ones for which the relaxed energy have been calculated. 

Since dislocation movement appears unimportant for many transformation, it is plausible that the 

remarks above may be irrelevant. What is working remarkably well for many transformations is the 

assumption that W has the form (2.4) but that it has a domain D restricted to include only a finite 

number of potential wells. In this framework, we choose { e ° } to be associated with the undistorted 

more symmetric phase and assume that 1 belongs to D. The objective is to delimit an appropriate 

neighborhood D of 1. A remarkably useful guide for this purpose has been nonlinear elasticity theory in 

its more classical form with invariance governed by the subgroup (3({ e ° }) c~ SO(3), which is essentially 

a point group, in (2.4). A distillation of many recent calculations is this: choose D to include the 

transformed lattice, i.e., to include a matrix U such that L(Ue~, o o Ue 2, Ue3) is the transformed lattice, 

require that D be invariant under (3({ e ° i }) o SO(3) in the sense that F ~ D ¢:~ 

F ~ D[G({  e ° }) c~ SO(3)], and finally require that D not include any potential well minima not forced to 
1 

be in it by the above criterion. Details of derivations of this type are given by Ball and James [7], 

Bhattacharya [11], Ericksen [30]. 

To understand what emerges of these considerations, let us consider a simple cubic to 

tetragonal transformation. 
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stable high temperature cubic phase 

F =Ctl 

0 
O 

Stable low temperature tetragonal phase and variants 

U 1 

Fig. 5 

u 2 

Illustration of a cubic/tetragonal lransition 

u 3 

In this situation, 

for 0 > 0o: W(A,0) 

for 0 < 0o: W(A,0) 

has strict minima on the orbit a(0)SO(3) and 

has strict minima on the union of orbits 

SO(3) UI(0) u SO(3) U2(0) u SO(3) U3(0),  

with Ui(0) = "01(0)1 + ("02(0) - '01(0)) e ° ® e ° (no sum), where the { e ° } are orthonormal 
1 1 1 

and the scalar valued functions ~, "01, and "02 are positive and continuous. Since W is 

continuous, we necessarily have at the critical temperature 

W(1,0o)  = W(U1,0o)  = W(U2,0o)  = W(U3,0o)  (2.6) 
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U1  1 U 2  

Fig. 6 Cubic phase at minimum energy above Iransition temperature. 

w / 

U1 1 U 2  

Fig. 7 Cubic and tetragonal phases at minimum energy at critical temperature 
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U1 1 U2 

Fig. 8 Tetragonal phase at minimum energy below lransition temperature 

With these assumptions, as we shall describe in the ensuing sections, we may consider 

inf A ~ W(Vy,0)  dx (2.7) 

in a suitable class of functions A for various values of 0, and we are quickly led to consider the 

possibility that (2.7) has minimizers of the type (1.4), whatever that may mean. To describe 

these minimizers we frequently use the terminology 

a(0)SO(3) Austeni te  well ,  

S0(3) UI(O) u S0(3) U2(O) u SO(3) U3(O ) Martensi te  wells.  

The typical situation for measured transformation strains is r 11 ~ 1 and 112 # 1. In several 

known cases (111)2112 = 1. We assume that 111 # 1 # r12. An easy calculation shows that there 

are no solutions of (1.4) with F and A on the same well. However we do find rank - one 

connect ions between any pair of martensite wells. The definite planes which can be planes of 

discontinuity, those of normal n in (1.4), arise from this calculation and provide an immediate 

first comparison between theory and experiment. In the cubic to tetragonal case, the planes are of 

the { 110} family and agree with those observed below the transformation temperature in many 

cubic to tetragonal transformations. 
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However, there are no rank-one connections between austenite and martensite, whereas 

crystals at 0 = 0o are observed to contain certain austenite/fmely twinned martensite interfaces. 

These can be understood in terms of certain minimizing sequences similar to those constructed in 

§ 1. We describe them in §4. 

A notable feature of this development is that it contains no contribution for the surface 

energy which might be assigned to such surfaces of discontinuity. Thus some features of the 

microstructure which appear fine in the microscope are modelled as infinitely fine by the present 

theory. Typical interlaminar distances that occur in austenite/finely twinned martensite interfaces 

range from about 10 ~tm down to a few atomic spacings, depending on the material. In a given 

material the fineness is approximately fixed. It is easy to ascribe such limited fineness to a small 

energy per unit area on the surfaces of gradient discontinuity, which would function to penalize the 

formation of arbitrarily fine laminates. Scaling calculations based on this idea do give reasonable 

qualitative results [6]. They predict, for example, that sufficiently small crystals will not contain an 

austenite/finely twinned martensite interface, an observed fact. A reasonable point of view is that 

in sufficiently large crystals, for example of diameter > 1 mm, the surface energy serves just to 

pick out some fine scale, while the minimization of the bulk energy deten-nines the kinematical 

properties of the microstructure on that scale. Furthermore, it is believed that the minimizing 

sequences of the bulk energy give reasonable values of the bulk properties like deformation, free 

energy, and stress, cf. §4. 

Of course, bulk theory alone will be useless for determining the scale of fineness or the 

precise details of the microstructure. It also will not give a complete description of growth 

phenomena. Recent work on this general problem is due to Gurtin [36]. Parry [55] and Fonseca 

[33] have discussed surface energy based on Herring's interpretation of the Wulff construction 

[37]. Recently, some thought has been given to the implications of minimizing the sum of bulk 

and surface energy [44]. 

Our lattice considerations here have been restricted to simple lattices where only mechanical 

interactions are presumed. Similar considerations are applicable to lattices with shifts or to 

polarizable dielectrics where W also depends on electrical polarization. In the latter case, the 

energy of a configuration as measured by (2.7) must include a potential which delivers the 

Maxwell stress. The theory for quartz is worked out in [40]. The paper [42] contains a 

discussion of ferroelectrics. 
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Common prejudice is to represent an equilibrium configuration at fixed temperature by a 

deformation y(x) of a reference domain f~ which renders stationary the energy functional; that is, 

5 j W ( V y , O )  dx = O. (3.1) 

In the present situation, it is not easy to justify this since any affine y(x) satisfies (3.1) and we 

have seen that many are unstable. We prefer to think in terms of stability criteria, but, 

unfortunately, we are lacking guidelines in this regard. About these issues, much has been 

written, [2,3,9,14,57,58]. To surmount these difficulties, at least from the analytical point of 

view, we shall resort to direct methods. 

Provisionally, this issue may be separated into two parts. The first is to seek the minimum 

energy available to a configuration, which is the topic of this section. Second, we may ask about 

the deformation which delivers this minimum, the values of various state functions, and the 

determination of fine scale or microstructural features. Recall that the two parts are separate 

because the functional of (3.1) is not lower semicontinuous. Hence, as illustrated in the previous 

sections, the loading may give rise to a macroscopic deformation which only represents a local 

spatial average over potential wells, whose energy need not be a minimum. 

Given a domain f~ c R 3 with suitably smooth boundary and Yo ~ HI"°(~2) with 

det Vyo > 0, let 

and set 

A = Af~(yo) = { u e HI,°°(Y~): det Vu > 0 and u = Yo on Of~ } (3.2) 

Ef~(yo,0) = infA [ W ( V u , 0 )  dx . (3.3) 
O 

Here we briefly discuss the evaluation of (3.3). An analysis undertaken in this spirit is sometimes 

called "relaxation," and one objective is to replace, at least temporarily, the original density W by 

a density W # which is lower semicontinuous and for which 

Ef~(yo,0) = infA d W#(Vu'0) dx . (3.3) 
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Necessarily, if (3.3) holds, then in particular whenever yo(X) = Fox is aff'me, det Fo > 0, 

we have that 

W#(Fo,0) I~1 = infH j W(Fo + V~,0) dx , (3.4) 

H = { ~ ~ Hl'~(f~): det (Fo + V~) > 0  } . 

The proof of (3.4) follows from an easy adaptation of the argument of [6]. Were the kinematical 

constraint on the competing functions absent, it would be possible to show that (3.3) is verified 

for any data Yo ~ HI'~(Y2), but we are only able to establish this in limited, albeit useful, 

circumstances. On a deeper mechanical level, it is very difficult to actually know the function W # 

in terms of W. 

In his discussion of the Gibbs phenomenon for thermoelastic solids, Ericksen [25] 

observed that the energy of a homogeneously deformed body in equilibrium with a heat bath might 

tend to assume the value of a certain subenergy which he defined as 

(p(det F,0) = inf det A = det F W(A,0). (3.5) 

Ericksen illustrated that this was consistent with certain types of thermodynamical thought where 

critical temperatures state functions were computed or measured in terms of specific volume alone, 

ignoring other features of the deformation. 

We are able to give an additional interpretation to this subenergy for a crystalline solid 

when (2.4) and (2.5), namely, invariance under the full lattice group, is assumed. Here it is 

possible to show that 

W#(F,0) = q~**(det F,0), detF > 0, (3.6) 

where ~p**(t,0) is the convexification of the function q0(t,0) as a function of the real variable t. 

For the proof of this we refer to [14,32]. In this case, W # is polyconvex, namely, a convex 

function of A, adj A, and det A, but for more restricted invariance groups, we do not expect this. 

Two examples where (3.3) holds may be worthwhile mentioning. 
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Assume that W satisfies (2.4) and (2.5) so that W # is given by (3.6). I f  

Yo ~ C I ( ~ )  satisfies 

de tVy o = ~ in f2,  

where ~ is constant, then 

E~(yo,0) = infA ~ 9 * * ( d e t  Vu,0) dx = cp**(aJ,0) I ~ I .  

B. Assume that inf W = 0 and that Ef~(yo,0) = 0. Then 

Ef~(yo,0) = infA f W # ( V u , 0 )  dx = 0 
6 

Although it appears a banality, a consequence of part B is that it assists us to calculate all 

possible deformation gradients F for which W#(F,0) = 0 when W is assumed to have a given 

well structure. 

There is an extensive literature about relaxation and lower semicontinuity of variational 

integrals, [ 1,2,13,18,19,45-49,59,66]. 

4 Young measures: state functions, and microstructure 

We now arrive at the place where we wish to relate the minimum energy of a configuration 

with the deformation which arises as the limit of a minimizing sequence. As we have suggested 

earlier, the technical device we adopt for this purpose is the Young measure, or parametrized 

measure. We shall give to it an interpretation in terms of local spatial averages and illustrate how it 

may be employed to analyze properties of equilibrium configurations. The use of Young measures 

in differential equations was first introduced by Tartar [68-70], especially in order to study 

hyperbolic conservation laws. It will serve us as an accounting tool to summarize the oscillatory 

properties of a minimizing sequence. 

Let us assume that we are in the favorable situation where (3.3) holds, so the infimum of 

energy is the same as the infimum of the relaxed energy. Further, suppose we have in hand a 

sequence yk ~ Af~(yo) such that 
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= l i m k ~ j W # ( F k , 0 ) d x  = l i m k ~  j W ( F k , 0 )  dx, (4.1) 

F k = Vy k , 

yk ~ y in HI,~(f~)weak*. (4.2) 

By choice of a subsequence, if necessary, this will be the case provided II F k IIL~,(~2) < C < ~, 

for some constant C. 

First let us remind ourselves that (4.2) means 

yk __~ y uniformly in 

IFkdx  ~ f F d x  
E E 

and 

for all (measurable) E c f~, 

where F = Vy. Pointwise convergence of the sequence ( F k ) will ordinarily fail. 

A general fact is that given a sequence ( fk ) which is bounded in L'*(f2), it has a 

subsequence ( fk' ) and an f e L°°(Y~) such that 

fk' ~ f in L°~(Y2) weak*, 

(4.3) 

Inasmuch as usually the function 

which the Young measure responds. In the present framework, there is a family ( Vx ) x e f~ of 

probabability measures defined on the set M of matrices, and depending measurably on x e f2, 

such that 

g(Fk) -~ tg in L~°(~2) weak*. (4.4) 

is not the same as ~(F), what is it? This is the question to 

namely, (4.3)2. So given a continuous function ~(A) defined on 3 x 3 matrices, the sequence 

( ~(F k) ) is bounded in L~(f~) and thus for some subsequence, which we continue to denote by 

( ~(F k) ), there is a ~ e L~(f~) for which 
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~(x) = I~g(A) dvx(A) a.e. in f~. 
M 

(4.5) 

Since F k -~ F in L**(f~) weak*, we have immediately that 

F(x) = I A dVx(A) a.e. in 
M 

(4.6) 

In the simple but important case of (1.6), one easily verifies that 

Vx = ( 1 -  ~,) 8F + ~,SA. 

The oscillatory nature of the sequence ( u k ) is recorded in the variant proportion 7V. In fact, it is 

obvious that given Xo a f~, 

1 , [ {  X E  Bp(Xo); Vuk(x )  = F }1 1-~ ,  = l i m p ~  l imk~oo i Bpl  

The analysis of the Young measure ( Vx ) x s f~ rests upon understanding the role of 

weak* continuous and lower semicontinuous functions ~(A). In general, these are the minors of 

the matrix A, explicitly, the nineteen functions A, adj A = det A A -T, and det A. This means 

that 

adjF k --~ adjF and detF k --~ detF in L~(ff~)weak *. 

Employing our notation (4.5), we may write 

adj F(x) = I adj A dvx(A) and 
M 

det F(x) = I det A dvx(A) 
M 

a.e. in fL (4.7) 

(3.3) that 

Now W # is lower semicontinuous, so we obtain from (4.1) and our hypothesis 

~ W#(F,0) dx _< l i m k ~ J W # ( F k ,  0) dx 
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Ef~(yo,0) < d W#(F'0) dx 

so that 

d W#(F'0) dx = lim k ~ ~o J W#(Fk,0) dx = lim k -~ 0- d W(Fk'0)  dx . (4.8) 

A consequence of this is that the sequences (W#(Fk,0) ) and (W(Fk,0) ) both converge 

weak* to W#(F,0), so we discover a twentieth weak* continuous function, one particular to the 

minimizing sequence. Again employing our notation (4.5), 

W#(F(x)'0) = IW#(A'0)  dvx(A) = ~W(A,0) dvx(A) a.e. in a (4.9) 
M M 

Since W # < W, we deduce that 

suppvx c { A e  M: W#(A,0) = W(A,0) }, (4.10) 

which is our first statement about the Young measure associated to the minimizing sequence ( yk ). 

It will tum out that the algebraic structure of the set on the right in (4.10) may then limit or 

determine possible configurations and their microstructure. For example, in the 

austenite/martensite transition described in §2, the Young measure ( Vx ) x e f~ corresponding to 

any energy minimizing configuration at critical temperature 0o will have 

supp Vx c austenite well u martensite wells. 

Special choices of V in (4.5) provide us with the state functions of the configuration. 

For example, set S(A,0) = OW(A,0)/OA, the Piola - Kirchhoff stress. We might write that 

S(x,0) = fS (A,0 )  dvx(A) in ~ .  (4.11) 
M 

This has a variational justification if det F(x) > c > 0 in ~.  In this case, 
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d~ f ~ M  f~M 

for ~ e H o' (f~). (4.12) 

Then W - W # achieves its minimium value on supp Vx, so if W # is differentiable, with S#(A) 

= 3W#(A,0)/3A, it follows from (4.9) that 

S(x,0) = S#(x,0) = S#(F(x)) a.e. in f2, (4.13) 

and this expression may be substituted into (4.12). Thus the state of stress in the body may 

always be described by a "relaxed" field equation, 

-d ivS#(F(x))  = 0 a.e. in fL 

Of course, the second derivatives of W with respect to A do not agree with the second 

derivatives of W # . One discussion of linearization in this context and its relationship to 

homogenization is given in [15]. 

A second example of a state function easily computable is the specific heat at constant 

volume, 

1 32W 
C~ = 

0 302 

Again in this case, since ~V(x,0) = W#(F(x),0), 

Cu = 1 32W#(F(x),0) 1 f 32W A 0 
- 0 3(12 = - 0" ~ ' ) dvx(A) . (4.14) 

M 

In the special case of the symmetry of (2.4) and (2.5), where W#(F,0) = (p**(det F,0), 

1 32q)**(det F(x),0) 
C~ = - , (4.15) 

0 302 

which depends only on the specific volume. In particular, the points where the right hand side is 

not differentiable, which are usually the transition temperatures like 0o in (2.6), are determined 
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by the specific volume alone. This is consistent with some views of the matter and some 

experimental practice, cf. eg. Pippard [60]. 

The examples above may be termed "macroscopic" in the sense that the results do not 

depend on the particular Young measure ( Vx )x e f~. Let us now briefly discuss some 

"microstructural" properties, which do depend on the particular Young measure. This will also 

introduce some curious analytical questions as well. 

There are, in essence, two equivalent ways in which the Young measure may be considered 

a local spatial average, Ball [5,§4] and [14,Theorem 7.3]. Given a e f~ and p > 0, define the 

measure v k by a,p 

1 ta)~(Fk(x)) dx . (4.16) (yak, o ' e r )  = I Bp IBp 

This defines a continous linear functional on C(K) for K = { A: IAI < C }, cf. (4.2) et. seq. 

This measure is a probability measure giving the distribution of values of Fk(x) in Bp(a). By the 

weak convergence of the sequence ( F k ), 

v k a,p ~ Va,p weak* as measures as k --4 ,,o, where 

1 j" J" ~t(A)dVx(A)dx (Va, p , g t )  = I B 9 I 
Bp(a ) IV1 

(4.17) 

By Lebesgue's Theorem, 

(Va,p, l l t )  --4 (Va, l l t )  as p --9 0 

from which it follows by the separability of C(K) that 

a.e. in D, 

Va,p --4 v a weak* as measures, a.e. in ~.  (4.18) 

These obvious remarks have the consequence that we may restrict Va for almost every a e ~.  In 

other words, by choosing a diagonal sequence of (k,p), one verifies that the family of measures 

( g x ) x e  ~ ,  where gx = Va forall  x e  ~ ,  (4.19) 
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is also a paramelrized measure which is determined by a sequence of deformation gradients. 

Another view of this is given by Matos [50]. 

The sequence ( Va,p ) admits a convergent subsequence at every a ~ ~,  even if this is not 

an obvious spatial average. This will be useful in what follows. 

We turn now to a few specific examples of the analysis of Young measures. As our first 

example, we shall show that a Young measure ( Vx )x • f~ supported on a single well SO(3)Fo 

for each x ~ ~ reduces to a c o n s t a n t  Dirac mass. 

We may assume that Fo = 1 for the argument that follows by a change of variables. 

Suppose that F(x) = Vy(x) is the underlying deformation in the sense of (4.6) as usual. Then 

/ ,  

F(x) = J Q dvx(Q) 
so(3) 

and 

adjF(x) = O!3 Qdvx(Q)  = F ( x ) ' s  

since adj Q = Q when Q is a proper rotation. Finally, 

1 "  

detF(x) = SO~3I) dvx(Q) = 1. 

Thus 

F(x) = det F(x) F(x) -T = F(x) -T , (4.20) 

so F(x) is a rotation. Now SO(3) c sphere of radius 43 in R 9, which is strictly convex, so the 

only way (4.20) can hold is if 

Vx = 8F(x) a.e. in fL 

A more efficient and general proof of this is given in Ball [4]. 
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The second part of the argument is due essentially to Reshetnyak [64,65]. Of course we 

know that any smooth deformation gradient F(x) satisfying F(x) • SO(3) must be constant. Let 

1 ]2 (4.21)  U(A) = ~-IA - detA , 

which has UA(A) = A,-  det A .  Since det A is a null-lagrangian, the Euler equation of U is 

- d ivUA(Vu)  = A u .  

If Q is any rotation, det Q = 1, then UA(Q) = 0, so for the F(x) of (4.20), UA(F(x)) = 0; 

whence, 

Ay  = -d ivUA(Vy)  = 0 in f~, 

in the sense of H l, say. Hence y is smooth and by the remark above about smooth 

deformations, Vy(x) = F(x) = R, for some rotation R, and 

Vx = 5R a.e. in ~2. (4.22) 

This conclusion agrees with our abundant observations that pure austenite or a pure variant 

of martensite cannot form a microstructure. It is a sort of Young measure regularity theorem: 

knowledge of the support of the measure at each point determines its global behavior. 

5 Young Measures: the Austenite/Martensite Transition 

As a second example, consider the most common microstructure observed in a 

thermoelastic martensitic alloy at the transformation temperature, the austenite/finely twinned 

martensite interface, shown schematically in Fig. 9. As explained in §2, there are no rank-one 

connections between the austenite well and any of the martensite wells, so we cannot understand 

this microstructure in terms of piecewise differentiable functions. Moreover, the observation that 
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the martensite variants are always observed to be finely twinned suggests the study of  minimizing 

sequences. Our analysis is in the style of  [6]. 

Fig. 9 Austenite/finely twinned martensite interface showing variants of 
martensite and the kinematical quantities m and n. 

Observation of the photomicrographs quickly convinces one of  a salient feature: there are 

essentially three deformation gradients involved, two of which belong to martensite wells and 

which differ by a rank-one matrix and one which belongs to the austenite well. Being noncomittal 

about the precise geometry of  the microstructure, we therefore assume simply that we have in hand 

a sequence yk _.~ y in H1, ~ which is a minimizing sequence for the problem (2.7) and that its 

Young measure ( Vx )x • ~ ,  according to remark B of  §3, satisfies 

s u p p v x  c { M1,M2,C } a.e. in f~, where (5.1) 

M2 - M1 = a ®  n ,  C - M1 ~ rankone ,  and C - M2 ~ r ankone ,  (5.2) 

for vectors a,n e R 3. Of  course we have in mind that Mi = RiUi ,  i = 1,2, and C = R, where 

R1, R2, and R ~ SO(3), and Ui are from (2.6). 

Our interest lies in the observation that the presence of a microstructure involving the 

austenite and the martensite imposes restrictions on the matrices M1, M2, and C. We shall show 

that for some o, 0 < o < 1, 
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r a n k [ C  - ( (1 -~ )M1 +~M2)I  = 1, (5.3) 

that is, the two martensite variants are capable of averaging among themselves so that the result is 

kinematically compatible with the austenite. In addition, we illustrate how the presence of an 

austenite/martensite interface determines how the microstructure propagates in the sample. We 

shall show that there is a "propagation region", cf. (5.28), consisting of a mixture of austenite and 

finely twinned martensite which occurs with the fixed variant proportions 1 - ~ and g. This is 

summarized by the reperesentation of the Young measure given in (5.29). 

For simplicity, we shall assume that the reference configuration f~ is convex. Given the 

sequence ( yk ) ,  let ( Vx )x s f~ denote the Young measure. By (5.1), 

Vx = ~,l(X) 5M1 + ~,2(x) 5M2 + )~3(x) 5C ' ~ , i ( x )  = 1 a.e. in fL (5.4) 

Step 1 If { 0 < )~3 < 1 } has positive measure, then (5.3) holds. 

In this case, for almost every a ~ { 0 < ~,3 < 1 }, we may consider the restricted Young 

measure Va. Let us set g = Va. Since a may be chosen a Lebesgue point of ~.i, we may write 

g = '~1 5M1 + '~2 5M2 + '~3 ~i C , 2 '~i = 1, 0 < "C 3 < 1. (5.5) 

Let F denote the underlying deformation of g. Again we have the relations for the minors of F, 

which are 

F = "elM1 + '~2M2+'~3C, 

adjF = Xlad jMl  + x 2 a d j M 2 + x 3 a d j C ,  

de tF  = "CldetM1 + "c2de tM2+x3de tC .  

and (5.6) 

We now consider the identity 

3 3 
a d j ( 2 a i A i )  = ~ o~iadj Ai (XlO~2 

1 1 1 - ~3 
adj (A2 - A1) - 

(x3(1 - a3) adj [ ( ~-----k--1 A1 + 
1 - ~ 3  

~2 

1 - ~ 3  
 a2) - a3 ] ,  (5.7) 
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which holds for any scalars oq with ~1 + o~2 + ~3 = 1, ~3 ~: 0,1, and 3 x 3 matrices A i .  

Applying this to (5.6)1 and comparing it with (5.6)2, using that adj (M2 - M1) = 0, gives 

"c 2 adj [ 'gl M1 + ~ M 2  - C ]  = 0. 
1 - x3 1 - '~3 

Hence, 

C -  [ ( 1 - o )  M1 + o M 2 ]  = b ® m ,  

for some b,m e R 3 with t~ = 

result (5.3) follows. 

~2 

1 - ~ 3  
~ (0,1).  Since b ® m is not zero, by (5.6)2,3, the 

In the rest o f  the discussion, we shall assume that ~.3 = 0 or 1. So we may write 

~,3 = % f ~ - E  and ~,1 + ~,2 = %E (5.8) 

where E is the "martensite" set and f2 - E is the "austenite" set with respect to the reference 

configuration. We assume that E is not of  full measure. The major issue here will be to show 

that (5.3) holds. 

Step 2 The basic relation 

SO 

From (5.4) and (5.8), 

F(x) = Vy(x) = ZE(~-IM1 + ~,2M2) + ( 1 - % E ) C  in 

F(x) - C = % E (~,I(M1 - C) + ~,2(M2- C)) in £2. 

Introduce 

z(x) = y(x) - Cx and Ni = Mi - C ,  i = 1,2. (5.9) 

With these notations, 

Vz = ZE(~,IN1 + ~,2N2) in f2, where (5.10) 
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~-1 + 3-2 = 1 in E and N2 = N1 + a ® n .  (5.11) 

By the hypothesis (5.2), rank Ni > 2. 

Observe that since, by the equality of mixed second partials, 

we have that 

f l"0z i O¢ _ 3 z  i ax 
fl 

= 0 ,  

i f ~ , l  ~x~@.ff~ dx + i f ~ , 2  0x~.ff~ d x i f OX]~ a i / 9 ~ 2  ~x~ad x N la  N2a = NI[} ~-1 dx + N2[ ~ . 

(5.12) 

Let us set 

~ = j ~ l  V~dx  and rl = j ~ , 2  V~ dx = j ( X E - ~ , 1 ) V ~  dx , (5.13) 

so (5.12) becomes our basic relation: 

i i i 
Nila~[3 + N2arll3 = Nl!3~a + N21311a, (5.14) 

or ,  

( c ' 0 N 1  + (c-rl)  N2 = N l C ® ~  + N 2 c ® r l ,  forany c e R 3 .  (5.15) 

Note that if ~ = 0, then 

c . ~ l N 2  = N 2 c ® r l ,  

so N2 is of rank one, unless rl = 0. This is a contradiction. Similarly, 11 = 0 implies that 

= 0. We conclude that 

= 0 ¢:* rl = 0 and { + r l ¢  0 for some ~ e  C : ( f~ ) .  (5.16) 

The last assertion follows from the assumption that E is not of full measure. 
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There are vectors b,m ~ •3 with b ® m unique and a unique G ~ R such that 

N1 = - o a ® n  + b ® m  and 

N2 = ( 1 - 0 )  a ® n  + b ® m  . 

(5.17) 

But we do not yet know in (5.17) that 0 < o < 1. 

Case 1 Assume that ~ II +1 for some ~ e Co(f~). Write r I = x { for some real z 

with x e -1  by (5.16). Setting this in (5.15) with c chosen such that c .  ~ = 1, we obtain 

N1 + z N 2  = (N1 + " ~ N 2 ) c ® ~  = b ® m  (5.18) 

is rank one. We may now solve (5.11) and (5.18) to deduce (5.17) with c = and 
1 + ' ~  

m = j % E V ~ d x  = ~ + 11. 

The choice of  m is not unique; it may be any vector proportional to ~ + 11 • 

Case 2 Suppose that ~ is not parallel to 11. Choosing c ~ IR 3 such that c .  ~ = 1 and 

c . r l  = 0, then 

N1 = N l C ® ~  + N 2 c ® I ]  = p ® ~  + q ® ' q .  (5.19) 

Similarly, 

N2 = N 1 c ' ® ~  + N 2 c ' ® T 1  = q ' ® ~  + r ® r l .  (5.20) 

Substituting (5.19) and (5.20) into (5.15) yields that 

( q - q ' ) ® n ( c - ~ )  = ( q -  q ' ) ® % ( c . r l ) ,  

whence q = q'. Since N 2 -  N1 = a ® n ,  

( q -  p ) ® ~  + ( r -  q ) ® r l  = a ® n .  
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Since { is not parallel to 11, it is necessarily the case that q -  p II r -  q II a .  Let us write q = 

p + t a  and r = q + s a  = p + ( s + t ) a  so 

N1 = p ®  ~ + ( p + t a )  ®11 and N2 = ( p + t a )  ® ~  + ( p +  (s +t )a)  ®11 (5.21) 

Note that p is not parallel to a and t *  0 because rank N1 > 2. Now 

(1 - It) N1 + bt N2 = (p + Itta) ® { + (p + (Its + t)a) ® zl 

which is rank one if and only if p + ~tta = p + (gs + t)a,  whence 

t t 2 
g = t - s and p + g t a  = p + ( g s + t ) a  = p + 7 2 - - 7 a .  

With this choice of  B, 

( 1 - ~ ) N 1  + BN2 = 
t 2 

( p  + ~-Z---~a) ® (~ + T1) = b ® m .  (5.22) 

From (5.11) and (5.22) we again obtain (5.17) with, for example, 

m = f Z E V C d x  = ~ + 11. 
6 

To show uniqueness, suppose that for some o, b, and m, 

Then 

N1 = - < J a ® n  + b ® m .  

adj (NI + cYa®n)  = 0 .  

The left hand side o f  this equation is linear in c~ with nonzero slope. Thus o is uniquely 

determined and so is b ® m. 

The implication of  the uniqueness is that the mapping 

-'-> f Z E V C d x  = ¢ + r I (5.23) 
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has a one dimensional range. Since the formula (5.23) provides us intuitively with the direction 

of  the normal to E, we see that DE is in some sense planar. 

S tep4  There are real valued Lipschitz functions of  a single variable g and f such that 

z(x) = g(x.n)  a + f ix .  m) b .  (5.24) 

Substituting the reperesentation (5.17) into the formula (5.10), with k2 = ~. and kl  = 1 - k ,  

Vz = % E ( % - i s ) a ® n  + % E b ® m .  (5.25) 

Choose a vector c with c .  a = 0 and c - b  = 1, possible since rank N1 > 1. Then for 

u ( x )  = c .  z (x ) ,  

Vu = % E m ,  

and hence, since ~ is convex, there is a Lipschitz function f(t) such that 

In addition, we may write the set E as the cartesian product o f  two dimensional planes with an 

interval of  the m - axis. More precisely, there is a (measurable) subset I c R such that 

E = { x e  f~: x . m  = 0c, 0 c ~ I }  (5.26) 

Similarly, choosing c' ~ R3, with c ' .  a = 1 and c' • b = 0, w(x) = c' • z(x) has the 

Vw = % E ( ~ . - i s )  n 

hence 

w(x) = g ( x . n ) .  

Step 5 Equation (5.3) holds with is e (0,1) and ~.(x) - is in a "propagation region." 

Note that is ~ 0,1 since Ni have rank two. The assumption that E is not of  full 

measure means, by Fubini's Theorem for example, that there is a set 

Y~ -- { x e  f~: x - m  = o % } ,  f o r some  0%~ I ,  

u(x) = f i x . m ) .  

property 
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such that almost every x ~ Y~ is a Lebesgue point o f  Vz and f ~ - E .  Hence Vz = 0 in ~ by 

(5.25) and z = const, in ~ .  We may assume that z = 0 in ~ .  Thus 

0 = g ( x . n )  a + f(ao)  b in Y~. 

Since a and b are independent, 

g(x.n) = f(tx o) = 0 in E .  (5.27) 

Let us set 

D = { x ~ f2: x lies on a plane x .  n = 13 which intersects the plane ]~ } , (5.28) 

which we call a propagation region for Y.. From (5.27) we have that g(x.n) = 0 in D, 

hence 

Vg = (~.-  •) )~ E = 0 in D .  

Thus ~.= ~ in E n D  a.e. ,so (i) ~ (0,1) and (ii) ~, = t~ = const, in E n D a.e. 

Fig. 10 Sketch of the propagation region D of ~ .  

Inside the propagation region of  ~,  there may be a mix of  martensite and austenite but the 

martensite occurs with fixed variant proportion t~, cf. Fig. 10. Outside the propagation region of  
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~, there may be pure martensite, if such a domain does not intersect with any other propagation 

region, possibly of varying proportions, but usually a single variant, cf. Fig. 11. So, for example, 

under the assumption (5.8), we may write that the Young measure (5.4) 

Vx = )~ E ((1 - O) 5M1 + O 5M2 ) + (1 - ~ E) ~C' x e D. (5.29) 

An analogous representation of the Young measure may be given under the assumptions of Step 1. 

In this case, 

= ~.3 = 9~3(x'm) and 

Vx = (1 - ~) ((1 - ~) 5M1 + (I 5M2 ) + ~ 8C, x e D, 

where the propagation region is determined in a fashion analogous to (5.28). We have not 

observed this configuration in the laboratory, but it remains a mathematical possibility. 

Fig. 11 In D there is a mixture of austenite and finely twinned martensite and the 
latter occurs with fixed variant proportions. In G there is pure martensite. 

The condition (5.3) is exactly the condition that is the basis of the crystallographic theory 

of martensite presented, for example, by Christian [16]. For the origins of the theory, see 

Wechsler, Lieberman, and Read [73]. When the matrices Mi and C are only restricted to lie in 

potential wells, (5.3) gives rise to an algebraic problem: Given R e SO(3) with R U 2 -  U1 = 

a ® n, find Q e SO(3), b,m e R 3, and ~ ~ (0,1) such that 

Q - [ o'RU2 + (1 - O)Wl ] = b ® m.  (5.30) 
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An existence theorem for (5.30) is given in [6], not restricted to the cubic/tetragonal 

transformation. To summarize briefly what is known in the cubic/tetragonal case, m, the 

reference normal to the austenite/martensite interface, turns out irrational but near a member  of  the 

family of  { 110} planes, if  U1 is near 1, and the angle between m and n is nearly 60 °, both 

of  which are observed experimentally. Although for one kind of  microstructure, our approach and 

the Crystallographic Theory of Martensite are in complete agreement, the crystallographic theory is 

not based on energy considerations but on a kinematic condition known as the double shear 

mechanism. We think that a distinct advantage of our approach is that we are able to discuss 

general microstructures. To explore its general usefulness, additional predictions of  the theory 

which may be made subject to experimental test are described in [7]. 

The examples of  the preceding two sections illustrate how the behavior of  minimizers of  a 

variational principle may be reduced to questions of  an algebraic character by the introduction of an 

appropriate parametrized measure. In addition to the papers already cited, ideas used in such 

analyses may be found in Matos [50] and Pedregal [56]. 
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We also wish to acknowledge many conversations with Jerry Ericksen and Mitchell Luskin. 

References 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

Ball, J.M. 1976 Constitutive equations and existence theorems in nonlinear elastostatics, Heriot- 
Watt Syrup., I, (R. Knops,ed.) Pitman, 187-241 

Ball, J.M. 1980 Strict convexity, strong ellipticity, and regularity in the calculus of variations, 
Math Proc Camb Phil Soc, 87, 501-513 

Ball, J.M. 1984 Singular minimizers and their significance in elasticity, Phase Transformations and 
Material Instabilities in Solids, (Gurtin, M., ed) Academic Press, 1-20 

Ball, J.M. 1989 Sets of gradients with no rank-one connections (to appear) 

Ball, J.M. 1989 A version of the fundamental theorem for Young measures, these proceedings 

Ball, J. M. and James, R. 1987 Fine phase mixtures as minimizers of energy, Arch. Rat. Mech. 
Anal.,100, 15-52 

Ball, J. M. and James, R. 1989 Proposed experimental tests of a theory of fine microslructure and the two 
well problem (to appear) 

Ball, J. M. and Murat, F. 1984 w l , P  - quasiconvexity and variational problems for multiple integrals, J. 
Fnal Anal, 58,225-253 

Ball, J. M., and Knowles, G. 1986 Liapunov functions for thermomechanics with spatially varying 
boundary temperatures, Arch. Rat. mech. Anal., 92, 193-204 



10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

29. 

30. 

31. 

82 

Basinski, Z. S. and Christian, J.W. 1954 Experiments on the martensitic transformations in single 
crystals of indium-thallium alloys, Acta Met. 2, 149-166 

Battacharya, K 1 9 8 9  Thesis, University of Minnesota 

Burkart, M. W. and Read, T.A. 1 9 5 3  Diffusionless phase change in the indium-thallium system, J. of 
Metals, 5, 1516-1524 

Chipot, M. and Evans, L.C. 1986 Linearisation at infinity and Lipschitz estimates for certain 
problems in the calculus of variations, Proc. R. Soc. Edin., 102A, 291-303 

Chipot, M. and Kinderlehrer, D. 1 9 8 8  Equilibrium configurations of crystals, Arch. Rat. Mech. Anal. 
103,237-277 

Chipot, M., Kinderlehrer, D., and Vergara-CaffareUi, G. 1986 Smoothness of linear laminates, Arch. 
Rat. Mech. and Anal. 96, 81-96 

Christian, J.W. 1975 The theory of transformations in metals and alloys, Pergamon 

Collins, C. and Luskin, M. 1989 The computation of the austenitic-martensitic phase transition 
(these proceedings) 

Dacorogna, B. 1 9 8 2  Weak continuity and weak lower semicontinuity of nonlinear functionals, Springer 
Lecture Notes 922 (1982) 

Dacorogna, B. and Fusco, N. 1985 Semi-continuit6 des fonctionnelles avec contraintes du type "det 
grad u > 0", Boll. U M I, 6, 179-189 

Eftis, J., MacDonald, D. E., and Arkilic, G.M. 1971 Theoretical calculation of the pressure variation 
of second-order elastic coefficients for alkali metals, Mater. Sci. Eng. 7, 141-150 

Ericksen, J.L. 1 9 7 3  Loading devices and stability of equilibriam, in Nonlinear Elasticity, Academic 
Press, 161-173 

Ericksen, J.L. 1 9 7 7  Special topics in elastostatics, Adv. in appl. mechanics, (C.-S. Yih, ed.) Academic 
Press 7, 189-243 

Ericksen, J.L. 1979 On the symmetry of deformable crystals, Arch. Rat. Mech. Anal. 72, 1-13 

Ericksen, J.L. 1 9 8 0  Some phase lransitions in crystals, Arch. Rat. Mech. Anal. 73, 99-124 

Ericksen, J.L. 1981  Some simpler cases of the Gibbs phenomenon for thermoelastic solids, J.of thermal 
stresses, 4,13-30 

Ericksen, J.L. 1983 Ill posed problems in thermoelasticity theory, Systems of Nonlinear Partial 
Differential Equations, (Ball, J., ed) D. Reidel, 71-95 

Ericksen, J.L. 1984 The Cauchy and Born hypotheses for crystals, Phase Transformations and Material 
Instabilities in Solids, (Gurtin, M., ed) Academic Press, 61-78 

Ericksen, J.L. 1 9 8 6  Stable equilibrium configurations of elastic crystals, Arch. Rat. Mech. Anal. 94, 1- 
14 

Ericksen, J.L. 1 9 8 7  Twinning of crystals I, Metastability and Incompletely Posed Problems, IMA Vol. 
Math. Appl. 3,(Antman, S., Ericksen, J.L., Kinderlehrer, D., Miiller, I.,eds) Springer, 77-96 

Ericksen, J.L. 1 9 8 8  Some constrained elastic crystals, Proc. Syrup. Material instabilities in continuum 
mechanics, Heriot-Watt (Ball, J. M.ed.) Oxford, 119-136 

Fonseca, I. 1985 Variational methods for elastic crystals, Arch. Rat. Mech. Anal., 97, 189-220 



83 

32. 

33. 

34. 

35. 

36. 

37. 

38. 

39. 

40. 

41. 

42. 

43. 

44. 

45. 

46. 

47. 

48. 

49. 

Fonseca, I. 

Fonseca, I. 

Gibbs, J. W. 

Gurtin, M. E. 

Gurtin, M. E. 

Herring, C. 

James, R. D. 

James, R. D. 

James, R. D. 

James, R. D. 

Kinderlehrer, D. 

Kinderlehrer, D. 

Kinderlehrer, D. and Vergara-Caffarelli, G. 
appear 

1988 The lower quasiconvex envelope of the stored energy function for an elastic crystal, 
J. Math. pures et appl, 67, 175-195 

1989 Interfacial energy and the Maxwell rule, Arch. Rat. Mech. Anal. 

1961 On the equilibrium of heterogeneous substances, The Scientific Papers ofJ. Willard 
Gibbs, Vol 1., Dover 

1983 Two phase deformations of elastic solids, Arch. Rat. Mech. Anal., 84, 1-29 

1986 On phase transitions with bulk, interfacial, and boundary energy, Arch. Rat. Mech. 
Anal., 96, 243-264 

1951 Some theorems on the free energy of crystal surfaces, Phys. Rev. 82, 87-93 

1986 Displacive phase transformations in solids, J. Mech. Phys. Solids, 34,359-394 

1986 Phase transformations and non-elliptic free energy, New Perspectives in 
Thermodynamics (Serrin, J., ed) Springer, 223-239 

1987 The stability and metastability of quartz, Metastability and Incompletely Posed 
Problems, IMA Vol. Math. Appl. 3,(Antman, S., Ericksen, J.L., Kinderlehrer, D., Mailer, 
I.,eds) Springer, 147-176 

1988 Microstructure and weak convergence, Proc. Symp. Material instabilities in 
continuum mechanics, Heriot-Watt (Ball, J. M.ed.) Oxford, 175-196 

1987 Twinning in crystals II, Metastability and Incompletely Posed Problems, IMA Vol. 
Math. Appl. 3,(Antman, S., Ericksen, J.L., Kinderlehrer, D., MiJller, I.,eds) Springer, 185- 
211 

1988 Remarks about the equilibrium configurations of crystals, Proc. Symp. Material 
instabilities in continuum mechanics, Heriot-Watt (Ball, J. M. ed.) Oxford, 217-242 

The relaxation of functionals with surface energies, to 

Kohn, R. V. and Strang, G. 
34, 113-137 

Kohn, R. V. and Strang, G. 
34, 139-182 

Kohn, R. V. and Strang, G. 
34, 353-377 

Marcellini, P. 

1987 Optimal design and relaxation of variational problems, I,CPAM 

1987 Optimal design and relaxation of variational problems, II,CPAM 

1987 Optimal design and relaxation of variational problems, III,CPAM 

1986 On the definition and the lower semicontinuity of certain quasiconvex integrals, 
Ann. Inst. H. Poincar6; Analyse non lin6aire, 3, 391-409 

Mascolo, E. and Schianchi, R. 1983 Existence theorems for non convex problems, J. Math pures et 
appl, 62,(1983), 349-359 

50. Matos, J. 1989 

51. Morrey, C. B., Jr. 

52. Miiller, I. 1979 

53. Miiller, I. and Wilmanski, K. 1980 
Cim., 57B, 283-318 

Thesis, University of Minnesota 

1966 Multiple Integrals in the Calculus of Variations, Springer 

A model for a body with shape memory, Arch. Rat. Mech. Anal., 70, 61-77 

A model for phase transition in pseudoelastic bodies, I1 Nuovo 



84 

54. 

55. 

56. 

57. 

58. 

59. 

60. 

61. 

62. 

63. 

64. 

65. 

66. 

67. 

68. 

69. 

70. 

71. 

72. 

73. 

Parry, G. 1981 On phase transitions involving internal strain, Int. J. Solids Structures, 17, 361- 
378 

Parry, G. 

Pedregal, P. 

Pego, R. 

On shear bands in unloaded crystals, to appear 

Thesis, University of Minnesota 

1985 Phase transitions in one dimensional nonlinear viscoelasticity: admissibility and 
stability, Arch. Rat. Mech. Anal. 97, 353-394 

Pego, R. 1987 Phase transitions in one dimensional nonlinear viscoelasticity: admissibility and 
stability, Dynamical Problems in Continuum Physics, I M A Vol. Math. Appl. 4 (Bona, J., 
Dafermos, C., Ericksen, J. L., and Kinderlehrer,., eds)277-288 

Pipkin, A.C. 1986 The relaxed energy density for isotropic elastic membranes, IMA J Appl Math, 36, 
85-99 

Pippard, A.B. 1957 The elements of classical thermodynamics, Cambridge 

Pitteri, M. 1985 On v + 1 lattices, J. Elasticity, 15, 3-25 

Pitteri, M. 1986 On type-2 twins in crystals, Int. J. Plasticity, 2, 99-106 

Pitteri, M. 1987 A contribution to the description of natural states for elastic crystalline solids, 
Metastability and Incompletely Posed Problems, IMA Vol. Math. Appl. 3,(Antman, S., 
Ericksen, J.L., Kinderlehrer, D., Miiller, I.,eds) Springer, 295-310 

Reshetnyak, Yu. G. 1967 Liouville's theorem on conformal mappings under minimal regularity 
assumptions, Siberian Math J., 8, 631-653 

Reshetnyak, Yu. G. 1967 On the stability of conformal mappings in multidimensional spaces, 
Siberian Math J., 8, 69-85 

Simpson, H. C. and Spector, S. J. 1987 On the sign of the second variation in finite elasticity, Arch. Rat. 
Mech. Anal. 98, 1-30 

Slemrod, M. 1986 Interrelationships among mechanics, numerical analysis, compensated compactness, 
and oscillation theory, Oscillation Theory, Computation, and Methods of Compensated 
Compactness, I M A Vol. Math. Appl. 2, (Dafermos, C., Ericksen, J. L, 309-336., 
Kinderlehrer, D., and Slemrod, M. eds) 

Tartar, L. 1979 Compensated compactness and applications to partial differential equations, 
Nonlinear analysis and mechanics: Heriot-Watt syrup. IV, (Knops, R. J. ed) Pitman, (1979), 
136-212 

Tartar, L. 

Tartar, L. 

1983 The compensated compacmess method applied to systems of conservation laws, 
Systems of nonlinear partial differential equations (Ball, J. M., ed) Riedel, 263-285 

1984 t~.tude des oscillations dans les 6quations aux drrivres partielles nonlinraires, 
Springer Lect. Notes Physics, 195,384-412 

Tisza, L. 1951 On the general theory of phase transformations in solids, (Smoluchowski, R., 
Mayer, J. E., and Weyl, W. A., eds) Wiley, 1-35 

van Tendeloo, G., van Landuyt, J., and Amelinckx, S. 1976 The cc-13 phase transition in quartz and 
AIPo4 as studied by electron microscopy and diffraction, Phys. Stat. Sol., a33,723-735 

Wechsler, M. S., Lieberman, D. S., and Read, T. A. 1953 On the theory of the formation of martcnsite, 
Trans. AIME J. Metals, 197, 1503-1515 

74. Young, L.C. 1969 Lectures on calculus of variations and optimal control theory, W.B. Saunders 


