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A characterization of plane strain 
BY J. M. BALL1 AND R. D. JAMES2 

1Department of Mathematics, Heriot-Watt University, Edinburgh EH114 4AS, U.K. 
2Department of Aerospace Engineering and Mechanics, University of Minnesota, 

Minneapolis, Minnesota 55455, U.S.A. 

A new characterization of plane strain is given that holds even under weak regularity 
hypotheses on the deformation. 

1. Introduction 

In this paper we present a new characterization of plane strain that holds even under 
weak regularity hypotheses. 

Let Q c Rn, n > 1, be a bounded, connected, strongly Lipschitz, open set. A 
mapping ye W' 1(Q; FRn) is a plane strain (with respect to Xn) if it has the form 

y(x) = Q(Zl(x), ...,n_1(x), xn+,u))a, a.e. , (1.1) 
where QeSO(n), A, e u , and i, n=O for l i < n-1. Thus Zl,...,_ z have 
representatives that are functions only of xl, ..., n_ in any open subset of Q which 
is convex in the xn direction. In a plane strain, apart from the rotation Q, the planes 
perpendicular to the xn direction all experience the same plane deformations, while 
the lines in the xn direction experience a given pure stretch in that direction. 

If y is a plane strain then 

Zi,1 ... Z1, n-1 0 

Dy(x)=Q =' 
' 

, (1.2) 
n-1,1 ... Zn-l, n-1 

0 

,0 ... 0 A 

and so Dy(x)TDy(x) e = A2en, a.e. xeQ. (1.3) 

Furthermore, we have formally that 

a-detDy(x) = 0. (1.4) 
8xn 

The aim of this paper is to show that the necessary conditions (1.3), (1.4) are also 
sufficient for y to be a plane strain. We consider the case detDy(x) > 0 which is of 
interest in continuum mechanics. In fact the example 

y(x1,x2) = (0,0(x2)), '(x2) = sgn(x2) (1.5) 

shows that if detDy(x) = 0 then conditions (1.3), (1.4) are not sufficient for y to be 
a plane strain. With detDy(x) > 0 both (1.3) and (1.4) are restrictions on the strain 
matrix Dy(x)TDy(x). Condition (1.3) says that there exists a constant principal axis 
of strain en with a corresponding constant principal stretch, while (1.4) says that the 
specific volume is locally independent of xn. 
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The need for such a result arose in a study of the macroscopic deformations that 
can be obtained by compatibly mixing two variants of martensite (the two-well 
problem). In this case the variants are specified by the 3 x 3 matrices 

SO(3)S+ U SO(3)S-, S? = 1?e3? el, (1.6) 
where 8 > 0 is constant, and the macroscopic deformation gradient Dy satisfies (Ball 
& James 1990) Dy(x)TDy(x) e = e2, detDy(x) = 1, (1.7) 

as well as certain other constraints. It follows from our result that y is a plane strain 
with respect to x2. 

2. Invertibility 

We make the following hypotheses: 

(A 1) yeWl'P(2Q; Rn) for somep > n, 

(A 2) detDy(x) > fora.e. xe, and 

yLa2 = yola (2.1) 
for some mapping yo CC(f2; In) which is -1 in 2. 

In (2.1) and below we choose the representative of y that is Holder continuous in 
Q2; this representative exists thanks to (A 1) and Morrey (1966, p. 83). The 
assumption (A 2) is made to ensure that y is invertible almost everywhere; in fact we 
have the following result. 

Theorem 2.1. If (A 1), (A 2) hold, then 
(i) y(Q) = y,0() = yO(Q); 

(ii) y maps measurable sets in Q to measurable sets in yo(Q), and the change of 
variables formula 

f (y(x))detDy(x) dx = f(v) dv (2.2) 
^~~A 8J~fy(A) 

holds for any measurable subset A c Q2 and any measurable function f: RIn > [R, provided 
only that one of the integrals in (2.2) exists; 

(iii) y is 1-1 almost everywhere, that is the sets 

S = {v e yo(Q) :y-l(v) contains more than one point} 
and y-l(S) are of measure zero; 

(iv) If v yo(Q2) then y-l(v) is a continuum contained in ?2, while if v E dy(Q2) then each 
connected component of y-l(v) intersects aQ2; 

(v) Let x: yo(Q)-f 2 with x(v) y-l (v) for each vey yo(). 
Then Then 

~x(y(x)) = x for a.e. xe , (2.3) 

and xe W1 l(yo(Q2); ERn) with Dx(v) = Dy(x5(v))-l a.e. v yyo(Q). 

Proof. Parts (i)-(iv) are the statement of Ball (1981, Theorem 1); the only extra 
remark is that meas y-1(S) = 0, which follows from (2.2) withf = 1 and A = y-1(S). 

Part (v) is essentially due to Sverak (1988, Theorem 8); for the reader's 
convenience we give a proof based on his ideas. We first note that, since y maps 
measurable sets to measurable sets, x is measurable. Hence, by (iii), Dyx( ()) is also 
measurable. Also, (2.3) follows from (iii). Next, since 

-(adj Dy),i = 0, 

Proc. R. Soc. Lond. A (1991) 

94 

This content downloaded from 160.94.45.157 on Wed, 4 Sep 2013 17:09:50 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


A characterization of plane strain 

the identity (adjDy)ijdx =- x(adj Dy)r-x i dx (2.4) 

holds for any y CoC(Q; Rn), q5 e C (Q). Since p > n, by approximation (2.4) holds also 
for ye Wl'P(Q, [pn), E W0, P(?2). Now let V eC (yO((Q)) and define ( = r(y( )). Since 
y is continuous on Q2, and 

?(x) a~ (y(x)) ayj(x) 
- - a.e., aX7 ayj ax, 

it is easily proved that 5e Wo,' (Q). 
Applying (2.2) with f(v) = Dy(x(v))-ll we deduce using (2.3) that 

y IDy((v))-lldv = f adjDy(x)I dx < o. (2.5) 
Jo(Q) 

In particular, Dy(x( ))-> fr( ) is integrable over yo(fQ). Thus from (2.4) and (2.2) 

o() (Dy(x(v))- )j Vi(v) dv = - x ai (Y(x)) detDy(x) dx 

r _ 

-= J_(2) (v) 
- 

() dv. 

Together with (2.5) this proves (v). [] 

3. Main result 

Theorem 3.1. Assume (A 1), (A 2). Then y is a plane strain if and only if (1.3) holds 
for some constant iA 0 and (1.4) holds in Q in the sense of distributions. 

Proof. Necessity. The calculation leading to (1.2), (1.3) given above is rigorous, 
while detDy(x) > Oa.e. implies A - 0. Let 0 e CO (Q). Mollifying zl, ..., z1 we obtain 
sequences z(,) ..., z of smooth functions converging to z1, ..., z- respectively in 
W1' (E), for some open set E containing supp 9, and z()=...= = 0 in E. 
Thus 

a(z(J)' ) Z(J) 
n,det Dydx =lim n, A> ?, ...l dx 0, 

~Q j-~oo E 1^^io x n-l) 

and so (1.4) holds in '(Q2). 

Sufficiency. Let x be the inverse of y given by Theorem 2.1 (iii), (v). We first 
show that xn is harmonic in y0(Q2). Let feCC(yo(Q2)). Then since xe W1,1(yo0()), 
,i nfi eL(yo0()) and from (2.2) 

J: n i,(v),i(v ) )dv = f (Dy(x))1 ,i (y(x)) detDy(x) dx. (3.1) 
o(Q) 

From (1.3) we have 
y,n(x) =A2(Dy(x))n fora.e.xeQ2. (3.2) 

Let f = r(y( )), so that (cf. the proof of Theorem 2.1) 5 E Wo1, (Q). From (3.2) we 
deduce that 

A2(Dy(x))n r, (y(x)) =5 n(x) a.e., 
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and so by (3.1), , detDyeL(Q2) and 

A22f 
X 
n, i() r, i(v)dv = f n(x) detDy(x) dx. (3.3) 

o(Q) 

We now use the following lemmas. 

Lemma 3.2. Let geL1(Q), g ,, = 0 in n '(Q). Then g has a representative which is 
constant on every open interval in the set 

def 

Q(x') = {x,nE R: (X', xn) e } 

for every x' e Rn- 

Proof. Mollifying g it is easily shown that for any open cube Q c c2 Q with edges 
parallel to the axes there is a representative independent of x, in Q. The argument 
is completed by covering 

def 

=2j = {x Q :dist (x, Q) > l/j} 

by a finite family of such cubes, for each j. C 

Lemma 3.3. Let 0E WO, 1('Q). Then 5(x', ')E Wo' 1(Q(x')) for a.e. x'e Rn- with Q(x') 
non-empty. 

Proof. Let 0(j)eC (Q), q(j)-b in Wl'l(Q). Then 

lim [1( -- l + Dq(j)-D ]dx= lim [ -lim f [' 
j-aoo Q jj->oo J n-1 (x') 

+ ID (j) -DlI] dx, dx' = 0. 

The proof is completed by choosing a representative of 0 in Wl, 1(Q(x')) for a.e.x', 
extracting a subsequence such that the inner integral converges to zero for a.e. x', and 

noting that (j)(x', ')E C (Q2(x')). [C 

Lemma 3.4. Let geL1(2Q), g, n= 0 in '(Q2), 0qeWl "'(Q) and q, ngeLl(Q). Then 

f ,angdx = 0. 

Proof. We have that 

, n dx = ,x'n Xn) g(,x n)dxdx'. 
J~Q <J~~n-1 Q(x') 

Pick x' such that the conclusion of Lemma 3.3 holds. Now 2(x') is a union of 
countably many maximal disjoint open intervals. For any such interval I we have 
that 0(x', ) e W0' 1(I), while by Lemma 3.2 we have g(x', x,) independent of x,. Hence 

,n(X, Xn) 9(x',xn)dxn = 0, 

and the result follows. F 

Lemma 3.5. Let Q2' c Rn be a bounded domain, u be harmonic in Q' and IDul = 
const. a.e. in Q'. Then Du is constant a.e. in 2'. 
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Proof. Since u is harmonic, u CC?(2Q'). The result follows from the identity 

U, i U, ij - 2U, i,i),jj-U i , ji.' D 

Continuation of proof of Theorem 3.1. Applying Lemma 3.4 with g = detDy, 
we deduce from (1.4), (3.3) that 

f ,f , dv = 0 for all f eC (yo0()), 
O(yQ) 

so that xn is harmonic in y0(Q). Furthermore, from (3.2) and Theorem 2.1 (iii), (v) 

n, i(V) ) _= A-2 a.e.-vyO(Q). 

Thus by Lemma 3.5, Dxn(v) = aa.e. in yo2() for some aE Rn with la = A-1. Therefore 

xn=a'y(x)+k a.e.xeG2, (3.4) 

for some constant k. 
Let Q e SO(n) satisfy Qen = a/al. Then 

QTy(x)' en =A(xn- ) a.e.xeQ2, (3.5) 

while for i v n, using (3.2), (3.4), 

(QTy(x) e), = Qji yj n(x) 

= Qji A2n, j(y(x)) 

= A2Qjiaj =0 a.e. x . 

Thus y has the form (1.1) with u =-kA. D 

Remark 3.6. The key point in the proof of sufficiency in Theorem 3.1 is to show 
that ~x is harmonic. This is reminiscent of the technique of Reshetnyak (1967). For 
the convenience of those readers content with proving the result for smooth 
diffeomorphisms y we give a quick proof of this fact. In fact, from (3.2) and 

(adj Dx)in = 0 

we deduce that 

h2, a 

- [(adj Dx)in det Dy = a [(adj Ix),, detDy] ayi 

= (adj Dx)in a (detDy) 
ayi 

1 
de DYi, n a (det Dy) 

= (n detDy), = 0, 

as required. 
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Remark 3.7. Theorem 3.1 remains valid if (A 1), (A 2) are replaced by the 

hypotheses of Sverak (1988, ?5), namely that Q is of class C? and 

def 

(A 1') y E 5p,q(Q) = {z WI'P(Q; Rn) adj DzEL(Q ;Mnxn)} 

for some p > n -, q p p/(p-1). 

(A 2') detDy(x) > for a.e. xSe, and 

Y6~ = Yol0[ 

for some yo p, q(Q2o), where Q2 is a bounded open subset of R containing Q and yo 
is a homeomorphism of QO onto y0(Qo) with detDyo(x) > Oa.e. in QO and yolQce 
lp,q(@Q). (For the analogous definition of p,q(dQ) see Sverak (1988, p. 109).) 

While (A 1') is weaker than (A 1), (A 2') is stronger than (A 2). The proof follows 
the same pattern, with Theorem 2.1 (v) being replaced by Sverak (1988, Theorem 8). 
In the proof of Sverak (1988, Theorem 8) and to apply Lemma 3.4, it is necessary to 
show that f = y(y( )) Wo 1(Q) if cECO (yo(Q2)). This follows by considering the 

mapping y: QO -> Rn given by 

f y(x) if xeQ, 

yox) y(x) if xeQ 20\Q, 

and noting that b = -f(y( ' )) E W1' P(2) with 0(x) = 0 for a.e . x E2QQ. If 0() C((Q2o) 
with 0(j) -> q in W1' P(20) then by trace theory applied to W1' P(Q) we have 0(j) -> trace 
0 in LP(Od). On the other hand, the sequence 0(j) interlaced with zero converges 
to zero in Wl'P(0\Q2), so that by trace theory applied to W'P(QO2\Q2) it converges 
in LP(a2) with limit zero. Hence trace 0 = 0 and hence by a standard result 

0 E Wlo P(Q). 

Remark 3.8. Ball (1977, p. 399) has remarked that the constraint of inextensibility 
in a given direction is not weakly continuous in WI' ((Q, R3) for any p > 2. This 
constraint is written in the form 

e Dy(x)TDy(x)e = , (3.6) 

where ee DR, lel = 1. This can be seen by noting that the left hand side of (3.6) is not 
a null lagrangian or, more directly, by observing that each member of the sequence 
y(k)(x): = k-ly(kx), where 

i <xe i<+ 
=y fx) 

F'x, X 2 2<^+2 (3.7) 
( F-x, = 1 < x e2 < +, = 1, 2,..., 

F+: = e1 ) e1 +f+ 0 e2, 

F-: = el ( e e 2 +- ( eg, 
e1, e2 orthonormal, 

If-i = 1,f+ (-1 +2e e2)f 

satisfies the constraint of inextensibility in the e2 direction. However, y()-- z in 
Wl, (R2, R 2) where z(x)= (e1 e + (e2 f-) e2 e?2)x, and z does not satisfy the 
constraint of inextensibility in the e2 direction iff- ?-e2g. On the other hand, the 
conditions (1.3) and (1.4) for a plane strain are weakly continuous in W1' P(Q, Rn) for 
functions satisfying (A 1) and (A 2). This follows immediately by using Theorem 3.1. 
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It does not appear possible to obtain this result directly by applying weak continuity 
results to (1.3) and (1.4). In fact, any such proof would have to use something like 
detDy(k)(x) > Oa.e., as the following example shows. Let 

y(k)(xx, X2): = (0, O(k)(x2)), 

d (k)(x 2) I, x2 > , 
dx2 X (X2), X2 0< O, 

with XI periodic of period k-1 on R satisfying 

Xk(X) =+ on [0,1/2k), 
% (x -1 on [1/2k, 1/k). 

Then, y(k) satisfies the conditions (1.3) and (1.4) but y()- y = (0, ?) in Wl,'(R2, R2) 
where 

(2) = {x 
for x2>0, 

0{o for x2. 0, 

so that y does not satisfy (1.3). 

The research of J. M. B. was supported by SERC grant GR/E69690, that of R. D. J. by the National 
Science Foundation and the Air Force Office of Scientific Research through NSF/DMS-8718881. 
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