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Abstract Microstructural properties of materials, especially crystalline solids, are implicated in
many of their properties. Vice versa, there are macroscopic environments which limit microstructural
configurations. Certain iron/rare earth alloys, eg, TbDyFe2, display both a huge magnetostriction and
frustration, i.e., minimum energy not achieved, in which microstructure plays an important, if puzzling,
role. We discuss this example in the framework of continuum thermoelasticity theory, where symmetry
demands energy densities which are highly degenerate. This leads to novel analytical and computational
issues, many of which we have been unable to resolve.
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1. Introduction

Crystals are idealized as materials with a high degree of configurational order1. As a

consequence, the continuum energy densities ascribed to them are invariant under discrete groups

and have multiple potential wells. Such densities are not lower semicontinuous. The infimum of

energy may be obtained only in some generalized sense, while a minimizing sequence may develop

successively finer oscillations. The limit deformation alone need not be sufficient to characterize

many of the properties of the limit configuration. Martensitic materials, in particular, exhibit fine

structure in the form of fine twinned microstructure, often appearing as layers or layers within

layers.

A remarkable feature of ferromagnetic materials is that the single domain state is generally

unstable. This constrasts with martensite, where the single variant configuration is stable for

arbitrarily large samples. In the blue phase of cholesteric liquid crystals, the failure of stability of

the uniform state relative to an array of defects is termed frustration, cf. Sethna [62]. Our

1 Research group Transitions and Defects in Ordered Materials, funded by the NSF and the AFOSR (DMS 87-
18881) and by the ARO (DAAL 03 88 K 0010).
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calculations here could be interpreted as one possible interpretation of this phenomenon at a

macroscopic scale. The frustration in our system arises from the competition of an anisotropy

energy which demands constant magnetization strength and direction with an induced field energy

which prefers to tend to zero. A consequence of this is to promote development of a fine scale

structure which seeks to compromise the constraint of constant magnetization strength. A different

mechanism is given by Sethna for the blue phase.

Certain iron/rare earth alloys display both frustration and a huge magnetostriction. There

are cubic Laves phase RFe2 (R = rare earth) compounds, for example, where magnetically

induced strains "overwhelm the conventional thermal expansion of the material", Clark [16].

TbDyFe2 (terfenol) solidifies from the melt with a textured microstructure which plays an

important, if puzzling, role in its magnetostrictive properies. Our objective in this note is to

describe briefly a theory of magnetoelastic interactions based on the micromagnetics of W. F.

Brown, Jr. [10,11,12] and the symmetry considerations introduced by Ericksen [23-31]. It has

some similarities with Toupin's theory of the elastic dielectric [70]. We shall then illustrate how

the equilibrium microstructure of TbDyFe2 is consistent with this theory. Our information about

the properties of TbDyFe2 comes primarily from Lord [53].

For relatively rigid materials one may assume the free energy to depend on magnetization

alone, [39,40,51]. The theory in this case gives good qualitative agreement with experiment,

explaining why cubic magnets have a few large domains and why uniaxial ones have a fine

structure. Domain refinement at the boundary is also predicted when the normal to the boundary

has a suitable orientation with relative to the crystal axes, in agreement with observations.

The analysis introduced to study the micromagnetic theory is based on the study of

minimizing sequences, or devices used to summarize their oscillatory behavior. This gives a

reasonable description of microscopic aspects of domain structure and macroscopic state functions.

The particular averaging device used by us is the Young measure, Young [72], and first introduced

in partial differential equations by Tartar [68,69]. The Young measure is particularly useful for

predicting where in the body fine structure will occur. We refer to Ball [3], Ball and James [4,5],

Chipot [14], Chipot and Kinderlehrer [13], Collins and Luskin [17,18,19], Collins, Kinderlehrer,

and Luskin [20], Firooze and Kohn [32], Fonseca [33,34,35], James [36,37], James and

Kinderlehrer [38], Kinderiehrer [43], Kohn [48,49], Matos [57], Pedregal [58,59], Sverak [64-

67], and Zhang [73,74].

In addition to Brown's work, general references to the theory of ferromagnetism and

ferromagnetic domain structure include Clark [16], Craik and Tebble [21], K16man [47], Landau

and Lifshitz [50], Landau, Lifshitz and Piatevskii [51], and Lifshitz [52]. Recent mathematical

analysis includes Anzellotti, Baldo, and Visintin [1], Brandon and Rogers [9], Rogers [60,61],



Frustration and microstructure

and Visintin [71]. Computational aspects of micromagnetics have been studied by Luskin and Ma

[54] and Ma [55].

2 . Energy of magnetostriction

Equilibrium configurations of the system are interpreted as stationary points of a variational

principle which consists of the sum of a stored energy and the induced magnetic field energy. In

this section we describe the energy of a configuraticxi and in §3 we discuss a variational principle.

The stored energy density of the material will depend on the deformation gradient F e M, 3 x 3

matrices, magnetization (per unit mass) m G R3, and temperature 9 G R. We suppose it given

by a nonnegative function

W(F, m, G) F G D, m G R3, 9 G R, (2.1)

where D c M is a suitable domain of matrices with positive determinant. It is subject to the

condition of frame indifference

W(QF,mQT9) = W(F,m,0), Qe SO(3), (2.2)

and F, m, 9 as in (2.1). We also impose a condition of material symmetry which is derived from

a Cauchy-Born rule applied to the symmetry imputed to the underlying crystal lattice. This is

explained in [41] and relies on the ideas set forth by Ericksen [24]. This symmetry is that

W(FP, m, 9) = W(F, m, 9), P e P , (2.3)

where P is a crystallographic point group. We are hesitant to impose full magnetic symmetry

including invariance under time reversals for reasons explained in [41].

In the spatial configuration, Maxwell's equations hold. Let y denote the spatial variable

and B, H, and M denote the magnetic induction, the magnetic field, and the magnetization (dipole

moment per unit volume), respectively. Then, for an appropriate choice of units,

B " " + * (2.4)

divy B = 0 and curly H = 0 in R3.

Introducing U(y) for which H = -VyU, we obtain that (2.4) is equivalent to

divy(-VyU + M) = 0 in R3. (2.5)

The field energy density is given by
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| l H P = j lVyUI 2 .

The material is assumed magnetically saturated, leading to the constraint

I —I = f(6) in the body, (2.6)
P

where p is the density, cf. Brown [11], James and Miiller [42], Landau and Lifschitz [50].

Assume now that initially the material occupies a reference configuration Cl c R3 and

has constant density po. As discussed below, Q is interpreted as an undistorted single crystal

above the Curie temperature. By an abuse of notation, let y(x) denote the defonnation of Cl to

y(ft), assumed for the purposes of discussion to be 1:1. Since p(x) = p0 / det Vy(x), the

magnetization per unit mass previously introduced,

m = — det Vy M,
Po

so the constraint (2.6) assumes the form

Iml = f(6).

For our purposes it suffices to assume that p0 = 1, m = m(x) and

m = 0 if 6 > 60 and

I m I = 1 in Q at 6 < e0,

where 60 is the Curie point (associated with the onset of magnetization) and 6 is fixed for our

purposes.

In this fashion we may write the virtual energy of the configuration y = y(x), m = m(x)

in the mixed reference/spatial form

E(yjn) = f\V(Vy,m,e)dx + \ | l V y U I 2 d y (2.8)

subject to the constraints, cf. (2.4) and (2.7),

divY (-VyU + — - — m) = 0 in R3. (2.9)
det Vy

I m I = 1 in y(£2).
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From (2.9), we may also write the energy in the form

E(yjn) = fw(Vy,m,6)dx + \ f—— mVyU dy . (2.10)
d n Ct y

To express this in terms of reference variables alone, introduce u(x) = U(y(x)), so Vu(x)

= VyU(y(x))F(x), F(x) = Vy(x). With C = F ^ , the constraint equation (2.9) becomes

div(-VuC-1detF + mF"T) = 0 in R3 , (2.11)

and the saturation condition is simply

Iml = 1 in £2. (2.12)

The virtual energy of y = y(x), m = m(x) in reference form is

E(yjn) = fw(Vy,m,e)dx + l- f Vu C ^ V u det F dx, (2.13)

subject to (2.11) and (2.12). Analogous to (2.10), we may also write (2.13) as

E(y,m) = Jw(Vy,m,0)dx + \ fVumF- T dx . (2.14)

We wish to note here in a parenthetical fashion that in (2.11), (2.13) and (2.14) we have conveniently
ignored the behavior of y outside of the region Q, occupied by the material. Without entering into a complete
discussion of this issue, let us consider the most naive point of view. Suppose that y is a 1:1 deformation of
Cl defined on all of R3 and that y'(x) = yCn(x)) where ij(x) = x in Cl. The potential U(y) is then
independent of the choice of mapping y or y' and so is the expression (2.10). Thus the energy of a
configuration does not depend on the particular extension of y(x) if yi is 1:1.

Moreover, as we shall illustrate shortly, the infimum of E(y,m) depends only on y i in situations of

interest.

The symmetry condition (2.3) induces a potential well structure on W. Our schema for

understanding this well structure begins by choosing for P the symmetry group of a putative high

temperature non-magnetic parent phase of the material. For example, in the case we shall consider

here, P is the cubic group of order 24: relative to a cubic basis, these are the proper orthogonal

matrices of the form P = ( py), py = ±1 or 0. This is the appropriate assumption for

TbDyFe2- For 6 < 6O, we assume there exists a pair (Ui,mi) with I mi I = 1 and Ui = U^

positive definite satisfying

W(Ui,mi,6) < W(F,m,6) for F e D, I m I = 1. (2.15)
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Generally, Ui and mi depend on temperature. The conditions (2.7) and (2.8) imply the
existence of other minima by (2.9). We shall assume that the full set of minima is determined by
the orbits of (Uijni) under these actions. Thus

infW = W(RUiH,miRT) < W(F,m) for R e SO(3), He P

and F G M, Iml = 1, with (F,m) * (RUiH,miRT). (2.16)

The potential wells may be described as

(RUi,miRT), R E SO(3),
(RU2,m2RT), R 6 SO(3),

(2.17)

(RUn,mnRT), Re SO(3),

where

{(Ui,mi),(U2,m2),...(Un,mI l)} = { (QUiQTmiQT): Q e p } .

An orbit of the form ( R U ^ R 1 ) , R e SO(3), will be called a variant.

3 . A variational principle

We would like to investigate variational principles compatible with minimizing the
functional (2.8) or (2.13). A first requirement is that a variational principle be capable of
delivering the possible minimum energy configurations determined by the well structure described
in the preceding section. We formulate here a requirement for this which is a slight modification of
our treatment of the rigid femomagnet [40]. In this section we suppress the dependence of
various quantities on temperature 6.

THEOREM 3.1 Assume that there exists a pair (F0,m0) with detF0 > 0 and lmol = 1

such that

W(Fo,mo) = W(FOr-mo) = minW.

Then there is a sequence (yk,mk) such that

yk:R3 -^ R3 is 1:1 and m*: Q -» S2
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with det Vyk = det Fo such that

= minWIQI. (3.1)

PROOF. In fact, we choose y*(x) = yo(x) • FQX for all k. Let n € S2 satisfy

n • moF^T = 0. Set

- 1 0 < t < \

+1 \ < i < \

and extend •& to be periodic of period 1 on R. Define

f*(x) = d(kn • x) moF^T, k = 1,2,3,... and

mk(x)F;T = xfl^Kx) = fl(kn • x) xnmoF;T, k = 1,2,3,...

Note that by the choice of d and n,

f* -^ 0 in L~(R3;R3) weak* and (3.2)

div fk = 0 in H^(R3). (3.3)

Now let us note the lemma below, cf. Rogers [61] or [41].

LEMMA 3.2 / / (f*) satisfy (3.2) and (3.3), then

-> 0 in H-!(R3).

For the proof of the lemma, we refer to [41]. To continue the proof ofthe theorem, note that

C^ det Fo is positive definite, hence there is a solution

uk € V: div (-Vuk C^1 det Fo + mk F^T) = 0 in H"1, where

V = { v e H ^ ) : VveL2(R3)},

which satisfies

Vuk|lL2(R3) < const II m k ^ l ^ j ^ M.

Finally,
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minWIfll < E(yk,mk) = minWIQI+ j fVukmkF~T dxQ I + j f

< minWI«l + i

= m i n W l f t l + \

Applying the lemma to the last term,

^m^ = minWIfll. QED

Since the right hand side of (3.1) is the minimum possible value of E(yjn), the theorem

serves us as a criterion in several ways. Any variational principle must recover the infimum of the

functional. Also, later on, we can use THEOREM 3.1 to check that a given configuration is of

minimum energy.

Rather than survey all the possibilities for minimum principles, let us adopt a point of view

convenient for analytical purposes by choosing a reference formulation. In finite elasticity we do

not generally require that the admissible deformations be 1:1, although there are occasions where

this is feasible to prove (Ball [2], Ciarlet and Necas [15], Fonseca [35]), but we do ask that local

orientation be preserved. So one generally imposes the condition that either det Vy > 0 for an

admissible deformation y or that

W(Aan) = oo when det A < 0.

In the present situation, we are also asked to resolve the constraint equation (2.11), which we

interpret to mean, cf. LEMMA 3.2,

u € V: dhK-VuC^detF + mF"T) = 0 in H-!(R3), where (3.4)

V = { V E H * ( R 3 ) : V V E L 2 ( R 3 ) , Jvdx = 0 } ,
10C {I x I < 1 }

when F = Vy, with y an admissible variation. For this it is convenient to assure that the

matrix CHdetF is positive definite and that the term div(mkF~T) is in KH. Our technique is to

adopt a van der Waals condition and to assume in addition that y has bounded derivatives. This

will permit us to infer, for example, that

(i) if u e V satisfies (3.4), then II u lly < const, and (3.5)
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(ii) if ^ fVuk(Ck)-1-VukdetFkdx -> O,then uk - • 0 in V (3.6)

As we have been suggesting, there are many ways to achieve these conditions, but we

should like to consider one which has been under discussion for some time, although it may not

have appeared explicitly in the literature, and is common in the study of duality theory. Recently it

has been taken up by Ball and James [5] and Kinderlehrer and Pedregal [44,45].

We shall assume that there is a subset D c M such that

A € D
A g D

About D we impose these requirements:

I = {A: W(Ajn) = infW } c D , (3.8)

D c {A: det A > 8 } , where 8 > 0 is given, (3.9)

DP c D, i.e., D is invariant under the symmetry group P, and (3.10)

D is the closure of a bounded open convex set (3.11)

Let us assume that the symmetry group P c SO(3). Suppose that any A in the potential

wells defined by (2.17) satisfies

| t r ( A T A - l ) | = l l A P - 3 1 ^ r (3.12)

with r so small that (3.12) ensures that detF > 8 > 0. We let the domain D where W(F,m)

is defined as a function of F be determined by (3.12). It is invariant under the action of P and

is convex. Thus all the properties (3.8)-(3.11) are satisfied. (3.9) and (3.11) imply that the

constraint equation is well behaved, (3.5) and (3.6). In [5] it is shown how to obtain a D

satisfying (3.8)-(3.10) with a general well structure.

A first advantage of (3.12) is that it permits us to understand the relaxation of the energy
functional. In general, let K be the closure of a bounded open convex set. Given y e C(K), set

A

**> - \ ** o L m i l • <3'13>
Let
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V»(A) = infHi.~(Q;R3) .j-̂ -f J v(A+VQdx, A e M (3.14)

Then y#(A) = -H» for A € K,

A ,

\|/*(A) is quasiconvex, and

4*(v) = Jy#(Vv)dx, veHjftfWR3),

is sequentially weak* lower-semicontinuous [44]. In addition a relaxation result is valid. Suppose

Oat

yo€H1>M(ii;R3): J v ( V y o ) d x < + ~ .

Then

J\|/(Vy)dx = inf̂  j y#(Vy) dx, (3.15)

4 = {y€ H1>O°(£2;R3): y = y0 on dQ }.

We have not at present identified the relaxation of a functional of the form

Mn) dx, y e H1>o°(fl;R3), m € L

nor of

fv(Vy,

J \Jr(Vy,m) dx, y € H1(~(Q;R3), m e L~(£1;S2).

However, it is possible to give the partial result that, for m e L°°(Q;S2) fixed,

»nf/i J v(Vy^n)dx = infA I V#(Vy,m) dx, (3.16)

A = { y e H1>oo(ftR3): y = y0 on 9Q },
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where for each fixed unit vector \i,

\ |/(A+V^)dx, A € M . (3.17)-̂ -j J

This can be proved by modification of a known method, Marcellini [56], Dacorogna [22].

We next wish to investigate the limit configurations available to the energy E(y jn). These
are given by the posssible minimizing sequences in terms of the Young measures they define.
Suppose that (y^1^), Vyk = Fk, is a minimizing sequence with the property

(yk,mk) -» (y,m) in tf^R^xL^fljS2) weak*. (3.18)

Then there is a family v = (vx)XeR3 of probability measures such that whenever

V G C(M x S2),

y(Fk,mk) -4 \jf in L°°(M x S2;R) weak*, where

y(x) = J\|f(A,^)dvx(A,^i) in R3 a.e.
MxS2

Let us isolate several basic features of the variational principle in this context Since

lim k -> oo E(y^n) = I ft I min W,

it is immediate that

W(x) = minW and suppv|^ c {(A,^i): W(A,̂ i) = minW} i L (3.19)

i.e., the support of v is in the energy wells, and, since we have already constructed one sequence

for which the field energy tends to zero,

\ |Vu k (C k ) - 1 -Vu k detF k dx -> 0, (3.20)

whence uk —> 0 in V.

The limit deformation y(x) has gradient

F(x) = J A dvx(A,^t) in R3 a.e. and
MxS2
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F(x) = fAdVx(A^) in ft a.e. (3.21)

so that

F(x) G convex hull I c D. (3.22)

This suggests several questions. First consider any gradient Young measure v = (v x )x e Q.
with suppv c X. Is it true that there is a sequence (u k ) with

range Vuk c D (3.23)

such that (Vuk) generates v ? What is known is that there is such a sequence with

range Vuk c tX, (3.24)

where t > 1 depends only on the well structure, [44]. It has also been established that if Z
consists of two variants, then any F(x) satifying (3.21) may be achieved by a v which consists
of a convex combination of 3 ([5]) or 4 ([46]) Dirac masses. The associated sequences (u k )
satisfy (3.24) with t = 1 + e, for e chosen arbitrarily small. Also in some interesting cases of
self-accomodation, (3.23) may be shown to hold, Bhattacharya [7]. A general open question is
whether any function y whose gradient satisfies (3.21) is a limit of finite rank laminates with
support in D.

Let us now consider briefly the magnetostatic energy. In the limit, this term vanishes
according to (3.20). It follows that

mkpk-T ^ a in L°°(R3;R3) weak*, a = 0 for x g ft, and

) -^ 0 in H" 1 ^ 3 ) . (3.25)

Thus

diva = 0 in H^OR3). (3.26)

It need not be true in general that a = 0. We briefly inquire about the relationship between a

and

m = Jtidvx(A,ji) .

To a product of the form
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= (p . Vyi,p • Vy2,P • Vy3)

we may seek to apply the div-curl lemma [68] provided p is the limit of quantities pk with div

p* compact in H"1. In our situation, pk = m ^ " 1 satisfies this condition, (3.25), so

pk • Vyf -• a • Vyi in D'.

Since ( m ^ - 1 ) and (Vy k ) are bounded,

m = <xFT or a = mF" T . (3.27)

We shall use this relation in the next section to illustrate the necessity of magnetic fine structure in

certain configurations.

4 . Description of the equilibrium microstructure

The magnetostrictive material TbxDyi_xFe2, x « .27, in equilibrium exhibits a

herringbone configuration, with two sets of laminar fine structures separated by a (111) plane2,

cf. Figure 1. We shall focus attention on a single set of lamellae, eg., that below the indicated

plane of separation in the region labelled CT. Ignoring dependence on temperature, as usual, we

assume that W(F,m) is invariant under the group P, the cubic group of order 24. As we have

noted

P = { P € SO(3): P = ( P i j ) , py = ±1 or 0} . (4.1)

We choose the pair (Ui,mi) with

Ui = 1 + emi®mi, mi = -j=O»M)» le i small. (4.2)
\3

2 Ciystallographic directions are referred to the putative high temperature cubic configuration.



Frustration and microstructure 14

Figure 1 Schematic diagram of microstructure in TbDyFe2, illustrating herringbone structure of two
sets of laminar fine structures. Crystallographic directions are indicated.

Here we have made a special choice of reference configuration (see [41] for details.)Thus the low

temperature phase derives from the high temperature phase by a stretch or contraction along a

principal diagonal. One may easily calculate that there are eight potential wells. With

m2 = m3 = 7=0,-1,1),
\3

= -±=(-1,-1,1),
3

(4.3)

these are given by the S0(3) orbits of

(Ui,mi) and (Ui,-mO, Ui = 1 + emi®mi, i = 1,...,4, (4.4)

according to (2.17). The conclusion of Theorem 3.1 obviously holds in this situation. We now

consider the variant structure, for which we prove a special case of [4], Theorem 7. To

understand the statement of this theorem, we recall a few terms. Two orbits SO(3)Mi and

SO(3)M2 are mechanically compatible, or simply, compatible, provided there is at least one matrix

Fi € SO(3)Mi and one matrix F2 e SO(3)M2 such that F2 - Fi is rank one. If F2 - Fi =

a®n, then there is a continuous piecewise affine deformation y(x) such that

Vy(x) =
Fi

F2

n-x < y

n-x > y
, for any given y.

In fact, if for one Fi there is one F2, there are two such F2's and this property holds for every

F i € SO(3)Mi. The pairs (Fi,mi) and (F2,m2) art mechanically and magnetically compatible

provided that F2 - Fi = a®n, as before, and
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2 — mi F^ ) • n = 0.

This means that the vector field

{ mi FTT n x < y
-T

m 2 F 2
1 n x > y

satisfies

div a = 0 in H-!(R3),

and, does not induce any field energy in the functional E, and is a first step toward constructing a

minimizing sequence. The compatibility of the minimum energy wells of W is assured by the

result below, cf. [41],

THEOREM 4.1 Suppose that

Ui = 1 + emi®mi and U2 = 1 + em2®m2, (4.5)

I mi I = 1 and mi, m2 independent.

Then

SO(3)Ui and SO(3)U2 are compatible wells.

There are rotations R± with axis p = mi A m2 such that

Ui = R±U2(1 + a^n*) , (4.6)

with n+ II p A (mi - 012), i r II p A (mi + m2), and a* • n* = 0.

The pairs

{(Ui,mi),(R±U2,±m2(R
±)T}

are mechanically and magnetically compatible across planes n±-x = y.

For example, with mi and m2 given above, n+ = (100) and n~ = (011), in agreement

with the data of D. Lord. The Theorem applies to other transitions as well; mi could be (100) or

(110) directions and the result specifies the twin planes for more common cubic/tetragonal, etc.,

transitions.
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We now exhibit a minimizing sequence which has Young measure

Vx = ^

(4.7)

where 0 < X < 1. For convenience of notation, denote by fi c R 3 be the region occupied by

the material, instead of Ci~, and suppose it has a sufficiently regular boundary. Set n = n+ and

R = R+ and define the functions

-1 0 £ t < V
i , and

+1 \ < t < 1

f 1 0 < t < X

« = | o x £ , < i •

and extend d and T| to be periodic of period 1 on R. Define y^x) by y^O) = 0 and

Vyk = Fk = (l-ii(kx-n))Ui + Tl(kx-n)RU2, x e R 3 . (4.9)

Now in each layer where Fk = Ui,say, j + X < kxn < j + 1 , define

mk(x) = d(kp-x)mi,

and in each layer where Fk = RU2, define

mk(x) = TXkpx)m2R
T.

Hence,

m^x) = ^(kp-x)((l-Ti(kx-n))mi + Ti(kx-n)m2), x e R 3 . (4.10)

According to this construction,

ffc(x) = m ^ F ^ x ) - 7 = ^P'X)((l-Ti(kx>n))mi + Ti(kx.n)m2), X E R 3 , ( 4 . 1 1 )

satisfies

div f̂  = 0 in lH(R3) and l^ -* 0 in L°°(R3) weak*.

Hence by Lemma 3.2,

div x&fc -> 0 in H-!(R3).
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Since W(Fk,mk) = min W, we have that for this sequnce (yk,mk),

limk-*ooE(yk,mk) = IfllminW.

It is not necessary to be so precise in the construction of the minimizing sequence. It is

possible to have a "slow" deformation variable and a "fast" magnetization variable, for example,

and to exploit Lemma 3.2 in such a way that the magnetic compatibility across planes x • n =

const, is not used.

5 . Magnetic fine structure

Using (3.27), we can investigate the magnetization distribution associated with specific

mechanical microstructures. We give two illustrations of this. We shall show that (4.7) is the

unique Young measure whose underlying defonnation gradient is the constant matrix

F = ( l -X)Ui + >J*U2 in ft, (5.1)

where R = R+ and whose support is given by (5.3) below. Consequently, any equilibrium

configuration of the form described by ft~ in Figure 1 necessarily has magnetic fine structure.

We then extend this to the composite £2+ u Or. Indeed, in both cases our objective is to show

that

m = 0 in ft. (5.2)

Let us assume that v = ( v x )x e Q, is a Young measure generated by a minimizing

sequence (yk,mk) of the functional E with the properties

suppv c X = {(A,n): A = QUi, \i = miQT Q e SO(3), i=l ,2} (5.3)

where

Ui = 1 + emi®mi, I mi I = l , i = 1,2, with mi,m2 independent. (5.4)

We further assume that the underlying defonnation gradient is given by (5.1) in a neighborhood

Cl. In addition, we assume that lelissmall. First of all, it is known ([5],[46]) and easily shown

that under the conditions of (4.8), (4.9) the deformation portion of the Young measure whose

support is given by (5.3) is unique and given by a convex combination of Dirac masses. Hence in

view of the restriction on the support of v given by (5.3),

vx = (l->.){(l-Y1(x))5Ul®5mi +yi(x)6Ul®5_mi}
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M d - Y2(x)) 5RU2®8m2RT + TfiOO S R U ^ S ^ ^ T } , (5.5)

where 0 < Yi(x) < 1. Now

m(x) = fndvx(A,n) in Ci a.e. and (5.6)

a(x) = J V A - T dVx(A,ti) in Q a.e.. (5.7)

Thus

m = ((l-X)(l-2Yi)mi + A,a-2Y2)m2R
T)Xi2 (5.8)

while on the other hand

a = ( l - M ( l - Y l ) m i U 7 T - Y i m i U 7 T } x f l +

M(l-Y2)m2RT(RU2)-T - Y2m2R
T(RU2)-

T}xi2

Since LT = U71, the above simplifies to

a = {(l-A.)(l-2yi)miU71 + X(l -2y2)m2U^1}Xi2 (5-9)

We now seek to identify the quantities in the expression m = odFT, cf. (3.27). Setting

Pi = (l-2Yi),

otFT = { ( l - X ) p i m i U j 1 + Xpim2U^1}{O-^)Ui + XU2R
T} in Q.

Since this expression must equal (5.9),

+ p2m2(RT - ^ U i ) } = 0. (5.10)

Tlie only case of interest is 0 < A, < 1. If the two (constant) vectors

qi = mi( l - IT^R' 1 ) and q2 = m2(RT - ^ U i ) (5.11)

are independent, then pi = p2 = 0. If they are dependent, then the functions pi(x) are
proportional: there is a scalar c € R for which
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p2(x) = cpi(x) or pi(x) = 0 inf l , (5.12)

Hence, since mjtr1 = 1 + mi,

a = r ^ T ( ( l - X ) m i + Um2)xa- (5.13)

Suppose at this point that (5.1) is satisfied in the entire region occupied by the material,
ft. Thus a has constant direction and satisfies

div a = 0 in IH(R3).

This implies that a = 0. In fact any mapping of the form

C -* ffVCdx

where f e L2(R3) has compact support either has full rank or f vanishes identically, cf. [40]
Lemma 4.1. By (5.13),

J TT
»3

dx • ((1 -X)m! + Xcm2) = 0,

SO

f = fri = °-
Consequently, pi = p2 = 0 which implies that Yi = Y2 = ^. This verifies (5.2).

In fact, qi and q2 of (5.11) are always dependent. Manipulation of equation (5.10)
reveals that it is equivalent to

= o,

or

I T T ( M l - p2m2)(Ui - U2RT) = 0. (5.14)

Now

Ui - U2RT = n ® RU2a
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is a rank one matrix. Since mi and m2 are independent, it is always possible to find ft such

that (5.14) holds. In fact, some additional algebra shows that Pi + P2 = 0.

Let us now consider the composite material described in Figure 1, assuming that the variant

proportion is constant in the top and the bottom. An expression for the deformation identical to

(5.1) holds in each of £2+ and £2~\ We find by the preceding reasoning that a has constant

direction in each of Or and Q+. Arguing in a manner similar to the single laminate case, we

conclude again that a = 0.
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