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It has been argued elsewhere [1-5] that some of the features of anelastic deforma-
tion, change of phase, “necking”, and yield are predicted by nonlinear elastic and
thermoelastic theories. For the most part, the analyses have been confined to the
simpler static nonlinear rod and bar theories, or to three-dimensional problems that
can be treated by local analyses or that can be reduced to one dimension [6], since
occasionally unfamiliar methods of nonlinear analysis are required. The results of
these simple theories do, however, provide incentive for further investigation; in the
simplest elastic bar theory designed to describe the cold drawing of polymers, even
the positions and number of phase boundaries that form can be predicted.

Still, serious gaps remain in our understanding of the capability of nonlinear
elasticity theory to describe such phenomena, and there remains some degree of
inconsistency in the various approaches that have been followed. Two notable
observations of certain importance have been ignored; first, the effect of surface
energy of a phase boundary, and second, the observation that the symmetry of a
body may change after the passage of a phase boundary, though the latter has been
analyzed for second order phase transitions by Ericksen [7].}

Most of these investigations begin with the assumption that the free energy
W(F, T) regarded as a function of the deformation gradient and temperature defined
on a domain S xR*, fails to be elliptic in part of its domain:

2
ﬂ(F, T)a;a;b*b? <0 VFeS,<S

[ B
9F9F® ©.1)

Va, bel>.

This kind of assumption permits stationary shock surfaces to exist in elastostatic
solutions and slow moving large amplitude shocks to propagate in elastodynamic
ones.

! In the present work I shall be concerned with transitions ordinarily designated as first order transitions.
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In one dimensional theories the analogue of (0.1) is simply the failure of convexity
of the stored energy function. Thus, in the theory of the elastica, in which the stored
energy is a function only of the curvature of a plane curve, W= W(k), the
requirement is that on some proper subdomain of the stored energy

a>w

di?
A reasonable assumption would make (0.2) hold on each of a pair of intervals
bounded away from, and separated by, x = 0. On the remaining intervals (including
an open set about k = 0) the reversed inequality would hold. Fosdick and James [1]
adopt this kind of assumption in the theory of the eclastica and classify those
configurations that can be produced by pure bending. When a certain value of the
applied bending moment is reached, the configuration of minimum energy consists of
arcs of circles of two different radii joined together with a continuously turning
tangent. The jump in curvature across each discontinuity, as well as the critical
bending moment, can be calculated from the constitutive function, whereas the
portion of the curve having one or the other curvature is indeterminant. As a curious
side issue, it was found that certain weak relative minimizers of the total energy
(which, of course, must satisfy the Euler equation) do not satisfy the first integral, or
“energy integral”, of the Euler equation.

In the present work, I treat the problem of an elastica with a nonconvex energy
function loaded by a dead load. I discuss in full detail only the traditional problem of
an elastic curve with a fixed tangent at one end and a force parallel to this tangent at
the other end. Most of the results of the analysis apply without change to the
fixed-fixed, the fixed-pinned or the pinned-pinned elastica, since all of these prob-
lems lead to essentially the same expression for the total energy (equation (1.10)).
The fixed-fixed elastica does, however, have certain configurations of equilibrium
which I do not discuss in detail. All possible configurations of strong relative
minimizers of the total energy must look qualitatively like parts of one of the graphs
in Figure 3. To arrive at this picture, I must again confront possible failure of the
energy integral. It is proved that an energy integral can be deduced for strong
relative minimizers of the total energy. Each loop of the elastica associated with a
strong relative minimizer must contain either two discontinuities or no discon-
tinuities of the curvature. The appearance of this pair of discontinuities is governed
by a surprisingly simple relation (equation (4.17)) involving the applied force, the
angle of the elastic curve at the point where the force is applied, and a certain
constitutive constant. The region along the curve between the discontinuities is a
region of large curvature relative to the adjacent regions.

The traditional postbuckling problem is discussed in Section 6. The results are
fundamentally different from those obtained in the classical theory (W= cK?, ¢ =
const.) and, needless to say, from those obtained in the linearized version of the
classical theory. Like the classical theory, I find that some columns buckle first at the
Euler load, but then, as the load is increased, a discontinuity forms at the base of the
column and moves up the column. The region between the discontinuity and the

(k) <O0. (0.2)
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base is a region of large curvature relative to the rest of the column. However,
unlike the classical theory, I find that for some constitutive relations the column can
buckle over abruptly at loads below the Euler buckling load. In these abruptly
buckled configurations, the discontinuity can appear some distance up the column.

The region between the discontinuity and the base of the column is a region of
large relative curvature and is associated with “plastic” or “permanent” deforma-
tion, or the formation of a new phase. The appearance of the discontinuity then
represents true failure of the column, though this kind of “failure” is often desirable.
I refer here to the isothermal behavior of certain shape-memory alloys in which just
this permanent deformation is sought. A complete description of thin rods of shape
memory alloy would require a thermodynamic analysis, though their isothermal
behavior appears consistent with the description I shall present.

1. Theory of the elastica

In [1] the foundation of the theory of the elastica has been presented with a view
toward deducing it from second grade elasticity theory. Building upon this founda-
tion, I shall begin with the prescription of a stored energy function

W= W(k), K = curvature. (1.1)

‘the moment corresponding to the curvature k is then defined by?

M=ivy(:<). (1.2)
dk

The variable se[0, L] will always denote the arclength, and primes will indicate
derivatives with respect to s. The curvature may be calculated in the following way.
Given a continuously differentiable plane curve

x(s) = x(s)i + y(s)j, (1.3)

representing a placement of the elastica, we associate with it a function 6= 6(-)
defined uniquely by the equations

cos 6(s) = x'(s), sin 0(s) = y'(s), 0=90(0)<2m. (1.4)

The value 6(s) represents the angle between x'(s) and i, measured counterclockwise
from i. Then, the curvature at x(s) is defined by

k= 0'(s). (1.5)

Conversely, the function 6(s) always determines a placement according to the

2 Explicit smoothness assumptions will be deferred until the end of this section. Occasionally, we shall
use the subscript « to denote the derivative with respect to «.
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rules

s

x(s) =J. cos 6(r) dr+ const.
0 (1.6)

y(s)= I sin 6(r) dr + const.
0
We shall always assume that x(0) or x(L) is assigned, so that this determination is
unique.
In the basic problem we shall consider, the elastica will be loaded at x = x(L) by a
dead load. A constant force F= F,i+F,j is prescribed and the total energy is then
defined by

E[0]= J. LW(O’(s)) ds—F - x(L). (1.7)
(1]

We shall adjoin the side condition
0(0)= 6, 0=6,<2m, (1.8)

8, being an assigned constant; for the classical postbuckling problem 6,=0 and
F,=0. In (1.7) the first term is interpreted as the energy stored in the elastica, and
the second is the energy of the dead loading device. We interpret (1.7) and (1.8) as
delivering the total energy of an elastic ribbon or thin rod, fixed in position and
tangent at one end, and loaded at the other with a constant force.

Leaving momentarily aside precise conditions of smoothness and the exact defini-
tion of the competing class of functions, my aim is this: fo find the function 6(s)
which minimizes E[-] subject to the side condition 6(0)= 6,. In particular, I shall be
concerned with relative minimizers which are defined precisely at the beginning of
Section 3. According to the usual interpretation of the energy criterion for stability,
the functions we seek deliver stable or, in the case of relative minimizers, metastable
configurations of the fixed-free elastica. I shall not attempt to connect this interpre-
tation of stability with criteria for dynamic stability.

By using the definitions (1.6); , and assuming x(0) =0, equations (1.7) and (1.8)
may be written

E[6]= jL{W(B'(s))—Fl cos 0(s)— F, sin 6(s)} ds (1.9)
(1] .

0(0) = 6.

It is always possible to rotate the elastica about x =0, use the condition that the
stored energy is Galilean invariant and thereby obtain a new problem which is
equivalent to the old one in a sense presently to be made definite. Let ¢ be a
constant direction satisfying F;sin{¢ =F,cosy, and define R =-—(F;cos ¢+
F,sin ¢), E[0]=E[0+ ¢], 6,=0,+ . Then (1.9) becomes

E[6]= J’L{ W(0'(s))+ R cos 6(s)} ds. (1.10)

6(0)= 6,
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M(K)-dK

1

Figure 1. The moment-curvature relation.

Any minimizer (relative, weak or strong®) of (1.9) is also a minimizer (relative, weak
or strong) of (1.10), and vice versa. Of course,  can always be chosen such that
0=6,<2m.

We shall confine attention to a certain class of non-convex stored energy func-
tions. Let constants a <o, <a,<0<B;<B,<fB be prescribed, and assume W(k)
satisfies the requirements,

W:la, Bl R,

We CYa, B],

{>0 Kk €(a, a;)U(ay, B1)U (B2, B),
<0 ke(ag, a)) U(B;, Bo),

W.(B) = W.(BY), W (o) =W (ay),
W(0)=0.

W,

KK

(1.11)

Figure 1 shows an example of M(k)=dW/dk versus k. The two dotted lines are
called Maxwell lines; they cut off equal areas of the curve above and below. The
points M* and M~ are the ordinates corresponding to the Maxwell lines. We shall
also assume that the constitutive function is defined spﬁp that

M">0>M". (1.12)

The Maxwell lines have an important significance for the mathematical analysis

3 Cf. equations (3.2) through (3.5) for precise definitions.
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which shall follow. They delineate a certain domain
D =la, af]U[aF, BTIV[BS, B], (1.13)

pictured in Figure 1. All points in & have the property that they are points of
convexity of the function W. Therefore, we shall term & the domain of convexity.
The proofs of these remarks are contained in [5].

When permitting nonconvex stored energy functions, it is to be expected® that
minimizers (or relative minimizers) 6(s) of (1.10) will not have everywhere continu-
ous derivatives. Hence, we shall assume that 6(s) is only absolutely continuous and
that

a=0(s)=p (1.14)

holds at almost every s in [0, L]. Thus, the basic function space of this problem will
be

F(6,)={0:[0, L]>R" | 6(0) = 6,, 6 is absolutely

_ (1.15)
continuous, and a =60'(s)=p on [0, L1}

A placement of the elastic curve delivered by a function in %(6,) always has a
continuous tangent vector, though the curvature may be discontinuous. It is prefera-
ble to use the class of functions %(6,) given by (1.15), rather than just the set of
piecewise differentiable functions, since it is in %(6,) that one should expect to be
able to prove existence of minimizers of E[6] (see [10] for a prototype of this kind of
proof).

We shall think of points s at which 6'(s) exists and belongs to the set [e, a]U
[B5, B] as points in a different phase from points where 6'(s) belongs to [a,, 8;]- In
this sense two phases are represented in the graph of Figure 1, one of large
curvature and one of small curvature. Note that points of the two different phases
may correspond to the same value of the moment.

2. Related problems

Though we shall treat in detail only the classical “fixed-free” postbuckling problem,
two other problems can be framed in a similar way. If both ends of the elastica are
pinned, the loading device contributes no energy, so the total energy is calculated
according to the rule

E,= jLW(O’(s)) ds, (2.1)

to which is adjoined the constraint

lx(L)|=d, 2.2)

4 See [1], [2], [3] or [5]. James [5] has given arguments in support of the choice F(6,) as the underlying
function space in a related problem.
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d being the assigned distance between the pins. By appeal to Galilean invariance, we
can replace (2.2) by

x(L)=d,
(2.3)
y(L)=0,
or alternatively,
L
j cos 6(s) ds =d,
¢ (2.4)

L
I sin 6(s) ds = 0.
0

It is customary to remove the constraints by using Lagrange multipliers. Let
Lagrange multipliers A;, A, be associated with the constraints (2.4); and (2.4),,
respectively. If we seek minimizers, or relative minimizers, of

Ep= j L{W(G’(s)) —A; cOS 8— A, sin 0} ds, (2.5)
0

from among all 6 € %(-), and we find one which satisfies the constraint, then it will
also be a minimizer or relative minimizer of the energy E, under the constraint
(2.4). It is not at all clear, however, that every relative minimizer of the constrained
problem can be obtained in this way, especially when the minimizers are not smooth.
Nevertheless, the functional (2.5) is the same as the functional (1.9), so every
property of minimizers of the fixed-free problem will also be shared by minimizers of
the functional E, As far as I know, the equivalence between the constrained
problem and the associated problem with Lagrange multipliers is only formal.

There is, however, a rigorous connection between the ‘“‘fixed-free” and the
“pinned-pinned” problems. It can be shown directly that strong relative minimizers
(see equations (3.2) and (3.3) for the precise definition) of the energy E, under the
constraint (2.3) satisfy the Euler equation (3.6) and the condition of convexity (3.7).
We shall show in the next section that (3.6) and (3.7), in turn, are sufficient for the
validity of the energy integral. In Section 4 we shall make a complete study of
functions which satisfy the energy integral, unrestricted by side conditions, so the
analysis will apply also to the constrained problem. It is from the energy integral that
we develop a detailed picture of placements of the elastica.

In the “fixed-pinned” problem, we wish to minimize the functional E, subject not
only to the constraint (2.3) but also to the condition

6(0) = 6,. (2.6)

The *‘fixed-fixed” problem adjoins to the problem just mentioned the additional
condition

(L) = 6y. (2.7)

The remarks we have made about the “pinned-pinned” problem apply also to the
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“fixed-pinned” problem. The “fixed-fixed” elastica, however, may equilibrate in
certain placements, derived from non-inflectional solutions of the energy integral
(Section 4), which I shall not discuss.

3. The energy integral

We seek a proof of the energy integral for strong relative minimizers of the total
energy

L
E[6]= J {W(6'(s))+ R cos 6(s)} ds. 3.1
(3]
A function 6 € %(6,) is a strong relative minimizer of E[-] if for some £ >0
E[6]1=E[6], (3.2)
whenever 6 € %(6,) and
max |6(s)— 6(s)| <e. (3.3)
se[0,L]

We shall also require that 6’ lic in the interior of the domain of W; for some
sufficiently small 6> 0,

a+85=0'(s)=B—é. (3.4)

When (3.4) is not satisfied, certain difficulties arise which have been discussed in [5];
in particular, the familiar Gteaux variation 6'(s)+ &n’(s) is not necessarily contained
in the domain of W(:) for & sufficiently small unless (3.4) is met. A function fis a
weak relative minimizer of E[-] if (3.2) holds for all 6 € %#(6,) such that

sup [0'(s)—8'(s)| <e, (3.5)
se[0,L]

for some preassigned &>0.
If 6 is a strong relative minimizer satisfying (3.4), then two conditions must be

fulfilled:
1. the Euler equation (or balance of moments)

dw . : Lo
—(0'(s)) = RJ sin 8(r) dr a.e., (3.6)
dx B
2. convexity at 6'(s)—for almost every s [0, L],
W(k) is convex at k = 0'(s).’ 3.7)

For the validity of the Euler equation it is sufficient that 6 be only a weak relative

> For the proofs of these statements see [5]. If @ is a weak relative minimizer, W(«) is only locally convex
at k= 6'(s).
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minimizer; however, neither the convexity condition nor the energy integral (equa-
tion (3.27)) need follow for weak relative minimizers. The condition of convexity is
equivalent to the familiar Weierstrass condition: for almost every fixed se€[0, L],

W(G'(s)+ ) — W(G'(s)) - M%V (6(s)=0 .

V. such that a =6'(s)+u =8.

The condition (3.7) is also equivalent to the restriction 6'(s)e P ae., @ being
defined by (1.13).

Our procedure will be the following: assume the existence of solutions of (3.6) and
(3.7)° show that these solutions have only a finite number of discontinuities of the
curvature, establish that they satisfy the energy integral, and prove that certain of
them are strong relative minimizers. Along the way, we shall develop a detailed
picture of the solutions and explicit formulae for the positions and number of
discontinuities which occur.

To begin we assume 6(s)e %(6,) satisfies the Euler equation (3.6) and the
restriction (3.7).7 6'(s) exists only almost everywhere but we may adjust its value on
a set of measure zero, and thereby not change the function 6(s), so that (3.6) holds
everywhere. We do this in the following manner. Give 6'(s) any values in [a, 8] on
the set where it does not exist, so it is then defined everywhere. Now suppose (3.6)
does not hold at a point 5. There is a sequence of points {s,,}_; such that

@) s,,— § as m —x, and
(i1) (3.6) holds at s,,, m=1,2,3,...

Since the range of dW/dk() is closed, there is a value < in [a, B] such that if §' = &,
and if the right hyd side of (3.6) is evaluated at 5, then (3.6) is satisfied. We simply
redefine

§(5)=x (3.9)

Having carried out this procedure for each such point 5, we may assume (3.6) holds
everywhere.

The Weierstrass condition also holds only almost everywhere. Suppose it does not
hold at 5. Then, k = §'(5) does not belong to the domain of convexity of W, that is,
af<k<a¥ or B¥<k<p% Therefore, at &, W.(-) has a triple valued inverse; in
fact, there is always a value K such that

d

AW = _dW
—— R =—= ("), (3.10)

and K lies in the domain of convexity of W. We redefine

é’(;)Ek. (3.11)

8 In Section 4 we shall prove the existence of such solutions, and in Section 5 we shall explicitly construct
those for which 6,=0.
7 See footnote p. 246.
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Because of (3.10) this redefinition will not alter (3.6), which will still hold everywhere.
In this whole process of redefinition we have only changed 6'(s) on a set of measure
zero, so 6(s) remains unaltered. In a sense, we have removed all the bogus
singularities.

From now on we assume that (3.6) and (3.7) hold at every se[0,L]. The
restriction (3.7) now holds at every s so that 6'(s) is contained in the domain of
convexity of W for every s€[0, L]. Let us denote

. dw .
M(s)EgK— (6'(s)). (3.12)

The Euler equation (3.6) implies that M(s) is continuously differentiable. Suppose
M(sy) # M* or M. Then there is a neighborhood of values of s near s, where
M(s)# M" or M~. When s lies in this neighborhood, W, (-) is uniquely invertible on
the domain of convexity of W:

6'(s)= W:1<RLLsin a(r) dr>. (3.13)

Therefore we have

LemMa 1. If W, (8'(s))) # M* or M, 68(s) is twice continuously differentiable in a
neighborhood of s,.

Now we wish to show that 6'(s) can only have a finite number of discontinuities in
the bounded interval [0, L]. Suppose not; Then #'(s) has an infinite number of
discontinuities at points sy, S5, 3, . . ., all contained in [0, L]. From Lemma 1 it
follows that

M(s,)=M, or M_, n=1,2,3,... (3.14)

Since [0, L] is compact, there is a subsequence {s,,}7~; which converges: s, — s, as

[ — . We may assume by starting sufficiently far out in the subsequence that
M(sm) =M, or

- I=N,N+1,N+2,... (3.15)

M(s,)=M",

In the case (3.15),, since M* >0 and M(-)€ Cjo 5, 6'(s) must be bounded away from
Zero: :

6'(s)>K>0, K =const.>0, s near sg. (3.16)
On the other hand, by Rolle’s theorem applied to (3.15),,

M'(s¥) =0 for some s* €[s,, s,,,.], (3.17)
which, upon differentiation of (3.6), implies that

R sin 8(s¥)=0. (3.18)
If R=0, (3.6) has the unique solution 6(s)=const.= §,. If R#0, we have for [
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sufficiently large,

f(s* =§+m77, I=N,N+1,N+2,..., (3.19)

m being some fixed integer. But (3.19) and (3.16) contradict each other. If (3.15),
holds we are led to the same conclusion with 8'(s)<—K. Thus, summarizing this
argument and related facts, we have

LemMa 2. 6'(s) has only a finite number of discontinuities in [0, L]. If '(s) has a
discontinuity at s,, the limiting values 6'(s,+0) and 6'(s,—0) exist and,

aw (6'(s,+0)) A (0'(sy—0))=M" or M". (3.20)
d dk

K
If W (6'(so+0)) =M™, then
§'(so+0) = BE(or BF)

(3.21)
0'(so—0) = B¥(or B¥, respectively).
Otherwise W, (8'(s,+0)) =M™ and
6'(so+0) = a¥ (or a¥) (3.22)

0'(so—0) = a¥ (or oF, respectively).

Between each consecutive pair of points of discontinuity of 6'(s), the energy integral
is satisfied by a classical argument. Hence, if s, and s; are two such consecutive
points,

W(6'(s))— 0'(s) W, (6'(s))~ R cos 6(s) = ¢, = const., s €(5g, $1). (3.23)

On the next interval of continuous differentiability of 6, say (sy, s,), it follows by the
same argument that
W(0'(s))— 6'(s) W,_(6'(s))— R cos 8(s) = ¢, = const., s€(sq, S5) 3.24)

If we evaluate (3.23) at 5, —0 and (3.24) at s;+0, use the continuity of 6(-) and
W, (6'(+)), and subtract (3.23) from (3.24), we obtain

W(0' (s, +0)) = W(6'(s,—0)) = (8'(s, +0) — (5, — 0)) W, (8'(5))) = ¢, — ¢, (3.25)
Assume W,_(6'(s;))=M™* and 6'(s, +0)= B¥. Then, (3.25) becomes
W(BH - W(EH—-BE-BHM =c,—c,. (3.26)

However, the signed area under the moment curvature relation in Figure 1 between
B¥ and B¥ is zero; thus, the left hand side of (3.26) is zero, so ¢; = ¢,. In other cases
not covered by the assumption given just before (3.26) the same conclusion is
reached. The argument is partially reversible; if 6(-) is continuous and has piecewise
continuous first and second derivatives, if W, (6'(-)) is continuous and vanishes at
s=L, and if 6'(*) vanishes only on a set of measure zero, then  satisfies the Euler
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equation. The proof of this statement follows simply by differentiation of the energy
integral. Thus, we have

TueoreM 1. Suppose 6(s) satisfies the Euler equation (3.6) and the condition of
convexity (3.7) at every s€[0, L]. Then, the energy integral holds:

W(6'(s))— 0'(s) L;—‘:/(é’(s)) + R cos 6(s) = ¢ = const., sel0, L]. (3.27)

Therefore, if 0 is a strong relative minimizer of E[-] in the class %(6,), then (3.27) is
satisfied.

Conversely, suppose the energy integral (3.27) is satisfied by a continuous, once and
twice piecewise continuously differentiable function 6(-) such that

(i) W_(0'()) is continuous,
(i) W, (e'(L))=0,
(iii) 6'=0 on at most a set of measure zero. (3.28)

Then, the Euler equation (3.6) holds for 6(-).

The advantage of the energy integral is that it transforms the Euler equation to a
standard initial value problem. In the next section we shall find and characterize
solutions 6 of the energy integral such that 6'(s) lies in the domain of convexity of
W. Thus, we shall obtain a characterization of strong relative minimizers. As
discussed in [1], weak relative minimizers need not satisfy (3.27), even though they
satisfy the Euler equation. This kind of “failure” of weak relative minimizers is
brought about by the failure of convexity of the stored energy function.

Incidentally, I see no way of proving the energy integral (3.27) directly from (3.6)
and (3.7) without first showing that there are only a finite number of discontinuities
of the curvature.

4. Structure of solutions of the energy integral

We now shall find and characterize solutions of the Euler equation (3.6) which also
fulfill the condition of convexity (3.7). If there is such a solution 6, then it must
satisfy

0'(L)=0 4.1)

according to (3.6). The condition (4.1) distinguishes the several problems mentioned
in Section 2. Both the dead loaded elastica and the one pinned at s =L will yield
(4.1), but the elastica with tangents fixed at both ends will generally not. The
condition (4.1) distinguishes the inflectional elastica, which always contains a zero of
0’, from the noninflectional elastica which contains no zero of 6’. We shall study in
detail only the inflectional elastica; it is easy to construct the non-inflectional
solution from the methods below.
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Each function which is a minimizer of the total energy will satisfy an assigned
initial condition 6(0) = 8,. To classify all possible solutions of (3.6) and (3.7) we find
it easier to disregard this initial condition and, instead, to classify solutions according
to their terminal directions 6(L).

Thus, let 6(L)= 6,, and define

aw

f(K)EKFE—W. 4.2)

The energy integral (3.27) can be written
f(0'(s)) = R(cos 6(s)—cos 6;), se[0,L]. (4.3)

To obtain (4.3) we have evaluated the constant ¢ in (3.27) by using (4.1), so the
form (4.3) is only valid for the inflectional elastica.

From (4.2) and (1.11),, we deduce that f(0)=0; from (3.8) it follows that if «
belongs to the domain of convexity of W,

flk)y=W(O0)— W(k)—(0—- k)W, (k)=0. 4.4)
Furthermore,

fe=xWe (4.5)
and

(B - f(BT=W(BH—W(BH—(BT-pHM =0,

fla3)—flaT)= W(af)— W(ad) —(af - )M =0.
From (1.11), (4.4), (4.5), (4.6) and the requirement f(0) = 0 which follows from (4.2)
and (1.11) we build up the graph of f(x) shown in Figure 2. It will be convenient to

(4.6)

flx),

Figure 2. f(k)=«W,_—W.
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call
C'=f(BY) C =f(a¥).

We shall obtain a picture of the placement x(s) associated with 8(s) by solving
(4.3) backward from s=L. If R=0, we have the solution 8 =0, which is the only
solution of (4.3) if we restrict 6’ to lie on the domain of convexity of W. Now assume
R#0.

Near s=L, e C? by Lemma 1 and (4.1). Thus we may differentiate (3.6) to
determine the behavior of § near s=L:

W, ..(0'(s))0"(s) = —R sin 6(s)
o'(L)y=0 (4.8)
o(L)=6,.

The only solution of (3.6) possible when 6, = nar, n = integer, is the constant solution
0(s) = 8,. That is, any solution 6(s) of (3.6) must satisfy (4.8) on some neighborhood
N of L. But 6(s)=n is the unique solution of (4.8);, in & under the condition
0(L)=nm. Suppose 6(s)=nm continues to hold on the maximal closed interval
s€[a, L]; the solution again being C* in a neighborhood of s=a we may apply
again the same argument at s = a and conclude that 6(s) = n7 in a neighborhood of
a. But this statement contradicts the assumption that [a, L] is maximal. Thus,
0(s) = n is the unique solution of (3.6) on [0, L] which satisfies 6, = nm.
Having dispensed with this case, we assume from now on that

0, # n, n = any integer. (4.9)

We shall also assume, without loss of generality,® that

0<o, <. (4.10)
Then, it follows from (4.8) that in some neighborhood [a, L] of L

1. R>0> ¢ strictly monotone decreasing, 4.11)

2. R <0 = 0’ strictly monotone increasing, 4.12)

and within this neighborhood the solution of (4.8} is unique. We treat separately the
two possible cases.

Case A. R>0

Beginning at the point a, we continue to construct 8(s) by solving the energy integral
(4.3). Since by (4.11) and (4.8); 0'(a) >0, the energy integral can be regarded as a
standard initial value problem with initial value 6(a), which we begin to solve
backward from s=a. By a simple application of the comparison theorem for
ordinary differential equations to (4.3) [see 11, Corollary 4.2], we see that as s
decreases from a, 6'(s) increases and 6(s) decreases. We continue solving for 6(s) in

8 The assertion of “no loss of generality” is not plain at this point. It will become clear that solutions with
other end positions are either covered by the change R — — R or contradict the assumption 0= 6, < 2.
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this fashion until one of the following occurs:

(i) 6(s) reaches zero, or
(ii) R(cos 6 —cos 6, ) reaches C".

Suppose case (ii) occurs before case (i) at a point §, i.e.
R{cos 0(5)—cos 8, )=C", 0(s5)>0.

We cannot continue solving the energy integral in the ordinary sense for s<§
because 6'(s) would then no longer belong to the domain of convexity of W, and so
our solution would violate (3.7). However, if we pose the initial value problem (4.3),
with 6(3) obtained from the solution already constructed but with 8'(s) e[B%, B], we
may continue’ solving (4.3) until 6 = 0 is reached; assume this occurs at the point s,:

8(s0) = 0. (4.14)

Equation (4.14) now coincides with condition (i) above, so by continuing from (4.14)
we shall cover the other case. For s <s,, define

0(s)=—0(2s,—5). (4.15)

Extended in this fashion, 0(s) will continue to satisfy (4.3) until 6 reaches —6, at
s=2s,— L. p

The function 6(s), s €[2s,— L, L], constructed in this manner is the unique solution
of (3.6) and (3.7) in the class of absolutely continuous functions which satisfy
6(L)=6,, 0<<6, <. That is, there is only one solution to the initial value problem
(4.8) in this class when s is near L. Having shown 6'(a) >0, we see that there is a
unique solution of the energy integral until (4.13) or (4.14) occurs. If (4.13) occurs,
we use the continuity of 6 to pose a new initial value problem, which again has a
unique solution if 6’ is restricted to belong to the domain of convexity of W. The
extension of 6 via (4.15) is also unique; it solves a well posed initial value problem
until (4.13) occurs again. At this point, by accounting for (3.7), we begin a new
initial value problem which has a unique solution.

This completes the construction of 6(s) for one “loop” of the elastica when R >0.
I shall omit the similar analysis for succeeding loops. Several examples of placements
of the elastica are pictured in Figure 3. In the second and third of them I have
pictured the situation in which R(cos 6 —cos 6, ) reaches C* before 6 reaches zero;
thus each loop pictured below the x-axis contains exactly two discontinuities of the
curvature. Each loop above(below) the x-axis is a translate of every other one
below(above) the x-axis, but the loops below the axis are not necessarily mirror
images of the ones above the axis unless, of course, the stored energy function is
even. In fact, it is possible to construct solutions for certain non-even energy
functions in which the loops above the axis contain two discontinuities and the loops
below contain none. As R is increased, 6, being held fixed, the arclength between

91 tacitly assume here that § is large enough, i.e. the domain of the stored energy is large enough, so that
this can be done. Hence, I ignore questions of non-existence which can arise when the solution hits the
boundary of the domain of the constitutive function.
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A.R>0, 8, small.
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Figure 3. Examples of possible placements of the inflectional elastica. Dots indicate
jump discontinuities of the curvature and the solid and the dashed lines distinguish the
two phases.

the discontinuities likewise increases. The discontinuities on the set of loops lying
below(above) the x-axis all fall on the horizontal line

a relation which follows immediately from (3.6) evaluated at the point of discon-
tinuity, equation (1.6), and the condition y(I.)=0. Equation (4.16) appears to
provide the easiest way to determine the important constants M* and M~ from
experiment. In the sense indicated by (4.16), the discontinuity always forms so that
M™ (or M), which depends on the constitutive equation alone, is the moment of the
force R acting on the point of discontinuity.
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We emphasize again that all of the results of this section, since they are conse-
guences of the energy integral and the condition of convexity, need not hold for weak
relative minimizers of the total energy. Hence, weak relative minimizers need not
have only two discontinuities on each loop and need not lead to (4.16). In fact,
examples of this kind are not difficult to construct.

Case B. R<0

Analytically, the situation R <<0 is handled the same way as R>0. As s decreases
from L, 6 will increase until it reaches 7. In doing so, if R(cos 6 —cos 6, ) becomes
equal to C before 0 reaches m, the loop being constructed will contain exactly two
discontinuities. Again, simple relations like (4.16) emerge, and if 6, is held fixed the
discontinuities move apart as R increases. In Figure 3 I have pictured placements
derived from an even stored energy function so that the placements for R>0 can be
obtained from those for R<0 by the transformation s — L ~s. This conclusion
follows directly from the energy integral and the observation that if W(-) is even the
domain of convexity of W is symmetric about k =0.

A simple relation governs the appearance of discontinuities. The analysis of Case
A., when R >0, shows that a pair of discontinuities will first begin to appear at the
apex of each loop when (4.13) and (4.14) are simultaneously fulfilled, that is, when

C* if 6'(-)>0 on that loop,

4.17
C™ it 6'(-)<0 on that loop. ( )

R(1—cos 6, )= {
Two discontinuities will always be present on a loop if = in (4.17) is replaced by >.
If R<0 (Case B) a pair of discontinuities will begin to form in each loop when

C* if ¢'(-)>0 on that loop,

4.18
C if '(-)<0 on that loop. ( )

—R(1+cos 6,)= {
Again, if > replaces = in (4.18) then there will always be two discontinuities present
on the appropriate loops.

Equations (4.17) and (4.18) have an easy consequence: if |[R|<iC(|R|<3C™) no
discontinuities will appear on a loop of positive(negative) curvature.

The relations (4.17) (or (4.18)) and (4.16) are independent consequences of the
theory — neither by itself can be derived from the other. Since both of these relations
involve only overall forces, distances and constitutive parameters, they are easily
made subject to experiment and provide an important test for the theory. In Section 7
I shall discuss the implications of these formulae in full detail.

5. Postbuckling

Having given a picture of all possible solutions of the energy integral (4.3) in the
preceding section, we shall here seek those particular solutions which satisfy

6(0)=6,=0. (5.1
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Among these are the null solutions
0(s)=0 5.2)

possible for any R. We shall look for solutions containing only one half of a loop of the
elastica, so-called “first mode” solutions. Owing to the results of the preceding
section, these either satisfy (5.2) or have the property that 6'(s) # 0 on [0, L].*° Thus,
excluding the null solutions (5.2) 6 is an invertible function of s on [0, L]. If there
exists one of these non-null first mode solutions 6(s) satisfying 6(0) =0, then it must
satisfy the energy integral

f(8"y= R(cos 8 —cos 6, ), (5.3)
which, because 6’ is assumed to have one sign, may be rewritten
6" = k(R(cos 6—cos 6, )), (5.4)

k being the inverse function of f restricted to either [a, aF]U[aZ, 0] or [0, BFU
[8%, B], depending upon the sign of the curvature on the particular loop under
consideration. Referring to Figure 2 we see that k has a jump discontinuity at its
argument C* if k=0, or at C™ if k=0. To fix the discussion, we shall assume that
6’ >0, so that k is the positive valued inverse of f. Since we have chosen « to have
values only on the domain of convexity of W, (3.7) will be satisfied by 6. From (5.4),

6'(s)

k(R(cos 6—cos 6,)) L sel0. L (5.5)

which yields

o d@de
L k(R(cos 8(8)—6,) (5.6)

If we interpret (5.6) as a Stieltjes integral, we may change variables £ <> 6 in (5.6) to
obtain the identity

’ de .
J; k(R(cos 8—cos 6,)) =s(6). 5.7

Equation (5.7) delivers an explicit representation for the inverse of the function a(s).
Conversely, if s(6) is defined by (5.7) and if the parameter 6, can be chosen so that

[ de B
.[) k(R (cos 6—cos 6,)) L, (5.8)

then the inverse of s(8) is a solution of the energy integral (5.3) and the initial
condition §(0)=0. Furthermore, this inverse is strictly monotone and its curvature
lies on the domain of convexity of W. By our method of construction of this inverse,
the conditions (3.28) will also be fulfilled. Thus, our method of construction will
deliver a solution of the Euler equation (3.6) and condition of convexity (3.7).

10 Recall that we have sought solutions in which 8'(s) is defined everywhere; 6'(s) may be discontinuous at
a single point for the “first mode” solutions.
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Our study of “first mode” (monotone) solutions of the Euler equation, the
condition of convexity and the initial condition (5.1) has been reduced to the study
of (5.8).

In (5.8) we view 6; as a parameter so adjusted that (5.8) holds for an assigned
value L. It is quite possible that no such value 6, can be found for some values of L;
to clarify the situation we change variables;

Yp =30, =30 (5.9)
and rewrite (5.8) as
2 ds L
=—, 5.10
J:) k(R(sin? i, —sin®> ) 2 ( )

Let ¢ be defined by

sin ¢ = .. (5.11)

assuming, of course, that 0<<i; <a/2. The change of variables induced by (5.11)
puts (5.10) in a form reminiscent of the Jacobian elliptic integrals:

I“’z sin Y cos ¢ do _L
o V1—sin? Yy sin®> ¢ k(2R(sin? ¢y, cos? ) 2

(5.12)

The connection with elliptic functions is best illuminated if we define''

_Yy
k(y)’
After the introduction of (5.3), the basic condition (5.12) becomes
1 J’”’2 h(2R sin” ¢y cos® ¢) dp L
4]

H()=—=
2 V2R V1 —sin® ¢, sin® ¢ 2

h(y) (5.13)

(5.14)

in which I have denoted the left hand side by H(yy ).

Now we observe that
2
\ W2 K o(x?)
f(x) 2

h(0) = lim My _ tim ~25 — fim
y—0 k(y) k—0 K k—0 K

=Gw2)'?, (5.15)
the constant w, being defined by
w, =W, (0)>0. (5.16)

If we evaluate (5.14) in the limit as ¢, tends to zero, and use the elementary theory

In the classical theory, W = c«?, ¢ =const., the function h is simply ¢!/2.
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of elliptic integrals [12], we obtain

T w,\ Y2
lim H :—(—2) )
wLITo () \ar) (5.17)

according to the same theory

lim H(y)=0. (5.18)
Y —>ar/2
If H(-) happens to be monotone increasing, as it is in the clasical theory, then its
smallest value is the right hand side of (5.17), and to each length L greater than

W, 1/2
—= 5.19

7T(4R> (5:19)
there corresponds one and only one nontrivial solution ¢, of (5.14). However, this
will not always be the case, and in the generality embraced here we can only state
that each length greater than m(w,/4R)Y> will produce at least one nontrivial
solution. Equivalently, regarding the length as assigned, each force R greater than

2

ol (5.20)

will produce a nontrivial solution. The constant w,7>/4L* is the familiar Euler
buckling load associated with the ‘“‘fixed-free” problem.

Thus, the possibility is left open that there be nontrivial solutions corresponding to
lengths less than (5.19), or equivalently, to loads less than the Euler buckling load.
This will be possible if H decreases near ¢, =0. Hence, we are led to examine the
derivative H'(ys ) when i, is small. This derivative will certainly exist when ), is
sufficiently small, because h experiences a discontinuity only if its argument equals
C">0. By looking at this derivative in detail, we establish

TueoreMm 2. Let W(k) be represented by

Wi(k) = k2(k). (5.21)
Then

k being evaluated at k(y). If We C? near k =0, then
<0 <0
WW(O){>0 > H’(O){>O (5.23)
=0 =0

respectively. If 3, (k) =0 for k €(0, BF)U(BE, B), then
H'(y )>0, 0<ip <mf2; (5.24)
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that is, the convexity of 3 is a sufficient condition that H be strictly monotonically
increasing.
Finally, suppose that We C* near k =0 and that W,

KKK

(0)=0. Assume that

Wio (0) <5 2, (5.25)

Then H(yr) is a strictly decreasing function of i for s sufficiently small.

A proof of this theorem is contained in the appendix.
CoroLrrary. If W(k) is even, then H'(0)=0.

The proof of the corollary follows from (5.23),; if W is even, then W (0)=0 so
that H'(0) =0.

We have mentioned above the possibility that abrupt buckling occurs before the
Euler buckling load is reached. The theorem shows that this situation is indeed
possible, even if the energy function is symmetric about k =0. The test for this
possibility is an easy one; we only need to check the simple condition (5.25).

If the energy function were not even, we might expect this abrupt kind of buckling
to occur, but according to (5.25) it can also occur when W is even. In fact, (5.25)
implies that if W,,,.(0)<<0, there is always a value of R such that H(-) will decrease
from zero. This value of R may have to be large, so that the length L associated with
the bifurcation, that is, the length calculated from (5.19), is small.

Away from iy =0 the behavior of H has not been determined, except for the
qualitative result (5.18). It also can be easily shown that H is continuous and has a
single discontinuity in its derivative when (4.17), is satisfied:

R(1—cos 24y )= C™. (5.26)

This condition, as before, delivers the value of ¢ at which a discontinuity of the
curvature first forms at the base of the column. This discontinuity moves up the
column as s, is increased, and the region between the discontinuity and the base will
be a region of large curvature (x €[8¥, B]). If we had done the same analysis for
k =0, we would have found that H is smooth at x =0. From these facts I have
constructed the schematic bifurcation diagrams of Figure 4. The significance of the
dotted lines shown has not yet been explained, but will become apparent in the next
section.

It can be easily shown by an argument based upon the appropriate form of (4.16)
that the discontinuity of H'(-) can occur either on a monotone decreasing branch of
H(:), or not. Of course, it is easiest in simple cases to numerically integrate (5.14) to
determine this point of discontinuity. Therefore, it is possible to produce the
solutions which buckle over abruptly at loads below the Euler load, and for which
the buckled solution contains a region of the phase of large curvature.

Theorem 2 has an obvious counterpart for negative curvatures.



260

H
a. W=k%,
KZkr20
] [l | 1
K Yt w
2 2 \I,
L
H
b. Wy (0) <O
1 E\p‘ I‘#+ }
i v
) 2 \pL
H
l’. \
Ir_n_ {‘p_ I\p“ iv
T2 2 \,UL

C. Wi (0) =0,
2
Wi (0) < =W, (0)/R.

Figure 4. Schematic bifurcation diagrams. A monotone
placement corresponds to each solution ¢y of H(yy )=
L/2. H has a discontinuous derivative at ¢~ and ¢,
these being the solutions of R(1—cos2¢)=C", 0<
YT <2, and of R(l—cos2¢y)=C",—nw/2<y~<0.

. =36(L).

6. Stability

R. D. James

Although the functions # found in the preceding section are solutions of the Euler
equation (3.6) which also fulfill the condition of convexity (3.7), they do not all turn
out to be minimizers of the total energy (1.10). I propose in this section to lay down
sufficient conditions that certain of them be strong relative minimizers of the total

energy (Theorem 3).

Classical methods for the study of relative minimizers based upon the work of
Weierstrass, Jacobi, and Hilbert generally fail when the minimizers are not smooth,
or the energy is not convex. The importance and subtleness of nonconvex problems
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were recognized later by Carathéodory [13] and Graves [14], but the thrust of their
work was directed toward the parametric problem with fixed end points. Therefore, I
have adopted another procedure, not wholly divorced from “field theory” of the
calculus of variations, but which bypasses the construction of a field of extremals in
favor of a direct approach based on the energy integral.

I shall focus attention upon the monotone solutions 8(-), 6(0) = 0, obtained in the
preceding section. Two results of a local nature can be deduced from the classical
theory, which I state below without proof:*?

(i) the straight solution (5;0 is a strong relative minimizer of E[-] in the class
F(0) for loads R less than the Euler buckling load w,7*/4L?, and

(i) the straight solution ceases to be even a weak relative minimizer for loads R
greater than the Euler buckling load; there is always a function ¢ € %(0), arbitrarily
close to §=0 in the sense that || and |¢'| are less than any given positive number,
for which E[¢]< E[6].

The monotone solutions 6 of the energy integral whose curvature lies on the
domain of convexity of W satisfy (cf. equation (5.4))

§'(s) = k(R (cos 6 —cos 6,)), (6.1)

k(y) being the inverse of the function f(k)=xW,— W (cf. equation (4.2)), with «
restricted to [0, BT]U(B%, B8] for the solutions which buckle upward and with «
restricted to [a, a¥]U(a¥, 0] for the ones which buckle downward. To fix the
discussion, we shall assume that k(-)=0, and that R is greater than the Euler
buckling load so that (6.1) has a nontrivial solution 6(-). We shall silence the
dependence of the right hand side of (6.1) upon R and write

K6, 6.)= k(R(cos 0—cos 6,)); (6.2)

note that K is only defined for R(cos 8 —cos 6;)>0.
Let 6(-)€ %(0) be a competitor for the minimum of E[-]. Suppose that 6(s)
satisfies

7>6, = 8(L)=|6(s)], se[0, L]. (6.3)

Since (6.3) implies that K(6(s), 6, ) is well defined, we may write

E[6]= J L{W(B’(s)) + R cos 6(s)} ds

= I {W(0'(s) — W(K(6(s), 6.)) —[8'(s) — K(8(s), 6.)]W..(K(8(s), 6.))
0

+[6'(s)— K(6(s), 6. )]W,.(K(6(s), 6,.))
+R cos 0(s)+ W(K(6(s), 6,))} ds

=J‘L%€(0'(s), K(6(s), 6.)) ds + Al 6], (6.4)

12 In the usual proofs of these results, it must also be assumed that W e C[3a,B]' This remark does not apply

to Theorem 3.
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in which the Weierstrass excess function €(-, -) is defined by
€(b, a)=W(b)— W(a)—(b—a)W,(a), (6.5)

and A[-] is the functional

A[qs]EL ['(5)— K(6(s), b)IW.(K(S(5), b0)

+ R cos ¢(s)+ W(K(¢p(s), ¢, )} ds. (6.6)

A[0] is well defined for functions 6(s) which satisfy (6.3). By virtue of (3.8) and the
fact that K has values only on the domain of convexity of W we have

€(0'(s), K(6(s), 6,.))=0. (6.7)
Also, since 6 is monotone and satisfies (6.1),
A[6]=E[6]. (6.8)

We shall show that A[y], while it appears to be a functional of ¢, actually depends
solely as a function upon ¢5. That is, since k is the inverse of f, then by (6.2) and
(4.2),

K(th, ) W (K(h, ) — WK (W, 1)) = R(cos ¢ —cos ¢, ). (6.9)

Thus, (6.6) can be written

AL = [ (6 WKW, b))+ R cos i} ds, (6.10)

or equivalently,

lll]_
AL = [ WK, ) di+ RL cos dy. (6.11)

0

Equation (6.11) shows that A[y] is equal to a certain function of ¢, which we shall
denote by a(y):

l*lfl‘
L= a(y)= | W.(K(s ) di+ RE cos by (6.12)

0

The function of a(-) is continuous because K is continuous except when its value
equals BF or B%, but W, (8%) = W,_(B%). It is also differentiable except possibly at the
single point where

C+
Y, = arccos (1 ——> . (6.13)
R
We wish to show that a(-) has a minimum value at ¢, = 6,. By differentiating (6.9)
with respect to iy, we derive that

K
W, (K(, ) 57 K(d ) = R sin i, (6.14)
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which permits us to write the derivative of (6.12) in the following way:

Wk )+ R [ e ]

dl!lL K(M: l!/L)
—Rsi f_dp
= R sin wL{J; Ko, 90 L}. (6.15)
But (6.15), is simply
da . 1, L
o= 2R sin )G -3). (6.16)

and from the results of Section 5 (summarized by the bifurcation diagrams of Figure
4), we deduce that

da ~
= = =g, . 6.17
au, 0 when ¢ =6, ( )

If H is monotonically increasing on a neighborhood of 6,, then a has a minimum at
Y. = 6,. Thus, if H is monotonically increasing on a neighborhood of 6,

A[0]= A[6]=E[6], 6, near 6,, (6.18)

so (6.4) becomes

E[G]—E[é]éjL%(O’(s), K(6(s), 6,)) ds =0, (6.19)

0

whence

Lemma 3. Let 6(s) be a monotone solution of the energy integral (6.1) with k
restricted to have values on the domain of convexity of W. Suppose the function H(is )
defined by (5.14) is monotone increasing (decreasing) in a neighborhood N =[%6, — a,
16, +b], a,b>0, of 26, >0 (<0). Let 6(s) € F(0) satisfy the condition

m>6, =[0(s)] (—m<6.=[6(s)), sel0, L], (6.20)

and assume that

6, €N (6.21)
Then,
E[0]=E[6]. (6.22)

Lemma 3 states simply that the “first mode” solutions are minimizers with respect
to functions 6(-) whose terminal values satisfy (6.20) and (6.21). The assumption
(6.21) is necessary for the proof, but (6.20) is actually not essential. To see this, let
0 € %(0) be a competitor and assume

7> 0,, =max |6(s)| = 8(3) > 0. (6.23)
[0,L]
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Of course 6(s) may not satisfy (6.20), but the function

éz{e(s) 5€[0,5]

0, se(§ L], (6.24)

does satisfy (6.20). Since cos 6{(s) Zcos 6(s), s€[0, L], and W(0) =0, then for R >0,
E[6]-E[6]= J'_L{ W(0'(s)) + R(cos 6(s) —cos 8(s))} ds.
=0. (6.25)
Thus we can evidently weaken (6.20), and we summarize the improved result below.

THeOREM 3. Let 0(s) be a monotone solution of the energy integral with k restricted
to have values on the domain of convexity of W. Suppose the function H({,) defined
by (5.14) is monotone increasing (decreasing) in a neighborhood N=
(6, —a,%6, +b), a, b>0, of 26, >0 (<0). Let 6(s) € F(0) satisfy the condition

max 0(s)e N (min 6(s) e N). (6.26)
[0.L] [0.1]

Then,
E[0]=E[6]. (6.27)

The theorem implies that the monotone solutions 60 of the energy integral are
strong relative minimizers of the total energy if H is monotone increasing, when
¢’ =0, or monotone decreasing, when 6'=0, but the theorem has global implications
as well. In particular, if W= k3, is an even function and ., =0 whenever k belongs
to the domain of convexity of W, then each of the two possible monotone solutions is a
global minimizer. That is, if k%, =0 on the domain of convexity of W, Theorem 2
shows that H is monotone increasing when its argument is positive. Theorem 3 then
shows that 6(-) is a minimizer relative to functions 6(-) for which 6(L)>0; but since
W is even 6(-) has the same total energy as —é(-), which by the same argument has
less total energy than ail 6() with 6(L)<0. Thus 6(-) and —6(-) are global
minimizers, proving the assertion.

7. Discussion

While Theorem 3 clarified the status of the first mode solutions whose half terminal
angles lic on a monotone increasing branch of H (cf. (5.14) and Figure 4), other
possibilities are left open. If H(¢, ) decreases fo. ¢y, >0 and ¢, small, then there will
be nonstraight solutions with lengths less than the length corresponding to the Euler
buckling load. The straight solution is a strong relative minimizer for lengths less
than the Euler length, but the classical theorem which delivers that result gives no
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information about the size of the neighborhood in which the straight solution is a
minimizer. Therefore, without deeper analysis we cannot deduce anything about
solutions of the energy integral whose half terminal angles y; =36, lic on monotone
decreasing branches of H(-). I conjecture that they are not strong relative minimizers
of the total energy.

I wish to emphasize again that the phenomenon of abrupt buckling at loads below
the Euler buckling load is not necessarily connected with the failure of convexity of
the stored energy, although it can be accompanied by the presence of a new phase if
the energy does lose convexity. To have a positive Euler buckling load, we must
assume W, (0)>0. If W,_ (0)=0, the question of abrupt buckling below the Euler
load is meaningless, since only the straight solution is possible for R <<0. The
inequality W__ (0)#0 or the inequality W, (0)<—W_, (0)*/R (cf. Theorem 2) is
sufficient that there shall be a nontrivial solution of the Euler equation which also
fulfills the condition of convexity for loads below the Euler buckling load. These
inequalities place no restriction upon the domain of convexity W.

It is common to obtain the moment-curvature relation by comparison with the
solution in linear elasticity for pure bending, and to assert that the resulting relation
(M(k) = Elx; E = extensional modulus; I =the appropriate moment of inertia) rep-
resents well the behavior of a thin rod for small values of the curvature. This
constitutive equation does not permit abrupt buckling at loads below the Euler
buckling load. That is, if M(k)=FElx then W(x)=3EI«* so that W_,(0)=
W (0)=0; in fact, based on this constitutive equation, H(;) is monotone
increasing for y; >0 and is even. Since the analysis of Theorem 2 was carried out
under the restriction of arbitrarily small curvature, the observation just made
provides another example of a phenomenon for which the deformation is arbitrarily
small, but the linear theory is misleading.

For the purpose of the design of structures to prevent abrupt buckling at or below
the Euler load, one should avoid materials for which W, (0)#0 or W, (0)<
- W,.(0)/R?. It is best to insure that H(-) has a strict minimum at 5, = 0; this will be
true if k2, =0, whenever k belongs to the domain of convexity of W (cf. Theorem
2). If “failure” attributed to the presence of new phases is to be avoided, it is best to
choose materials for which M™ and —M™ are as large as possible. Suppose for
simplicity that M =M™ =—M". Since the moment of the applied force acting on the
point of discontinuity at least for strong relative minimizers is M, the deflection of
the elastica (that is, |y(L)— y(0)|) which must be reached to just produce a new phase
will increase linearly with M.

Ii one tries to obtain the stored energy function from experiment, one quickly
encounters a delicate problem underlying the connection of theory and experiment.
In practice the experiment is not difficult to carry out; we simply apply moments to
the ends of a rod and measure the radius of the circular configuration, or the two
different radii of the smoothly joined circular arcs, which the rod assumes. Solutions
of this kind have been analyzed in detail in [1]. The moment-curvation relation
obtained in this way will be defined on three disconnected sets, since, referring to
Figure 1, the relation restricted to the intervals [y, a,] and [B;, B,] can never be
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obtained by a static experiment. This is, if

L

E[6]= I W(6'(s)) ds+ & (7.1)

Z being the expression for the energy of any loading device which depends on the
values of 6 in an arbitrarily small neighborhood of s =0 and s =L, then a necessary
condition that 6(-) be a weak relative minimizer of (7.1) is W_.(6'(s))=0 a.e.
Interpreted in the usual way, this result indicates the instability of placements with
curvatures on a falling portion of the moment-curvature relation. I do not assert that
the moment-curvature relation cannot be determined in this “unstable region™ in
any way whatsoever. Constitutive relations can come from molecular theory, and
statically unstable solutions can be taken on by dynamic solutions at certain isolated
values of the time. But, typically, the moment-curvature relation will come from a
static experiment, and since it will be defined on three disconnected intervals, three
constants of integration will be needed to obtain the stored energy function on the
same three intervals. One of these constants is unimportant since all results of the
static theory are invariant under the transformation W — W +const.; I have avoided
this inconvenience by putting W(0)=0 in (1.11). The other two constants can be
evaluated by the relations

W(B3) = W(BH +M"(B3—BY)
W(a3) = W(a)+ M (a5 —af), (7.2)

if the values M~ and M~ are known. Of course, naively, these constants can be
obtained from any strong relative minimizer by measurement of the applied force on
the point of discontinuity (cf. (4.16)). But herein lies the difficulty. If what I have
seen of such experiments is not the solitary exception, it is difficult to decide whether
a solution is indeed “‘stable” (a strong relative minimizer) or just ‘“metastable” (a
weak relative minimizer). Sometimes a deformed configuration which appears stable
will change its shape when excited by ultrasonic vibrations. The effect seems to
depend not on the frequency but on the amplitude of the vibrations, a fact which
indicates that the apparently stable configuration corresponds to a weak relative
minimizer.

I have focussed attention upon the strong relative minimizers in this paper because
they are easy to classify and because they are more stable than the weak relative
minimizers, granted the usual interpretation of the theory. There is a huge class of
weak relative minimizers; typically, if there is a single weak relative minimizer in the
postbuckling problem, there are infinitely many others. They need not have a finite
number of discontinuities of the curvature, need not satisfy the energy integral; the
moment acting on a point of discontinuity need not be M or M~. On the other
hand, weak relative minimizers may have several co-existent phases at zero applied
force and moment, even if M~ <O0<M*. If configurations corresponding to weak
relative minimizers are the ones actually observed, theory would indicate a decided
lack of reproducibility of experiments.
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Appendix

Proof of Theorem 2. Let W(k)= k2(x). By straight forward calculation

Y _ 1 (k)
) _yl/zk(y)z\ ) yk ()’))

__ 1 (k(y)_f(k(y)))
y k(N 2 fulk(y)/

h(y)=(2
<k<y> A1)

However,

f(k)=kW,—W=k>3, (A.2)
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so that
f f = Ei 2 +f A3
2 K 2 KK . ( . )
Alternatively,
fe = kW (A.4)

By substituting first (A.3), and then (A.4), into (A.1) we obtain

, 3 (k(y) ‘
h = ;
O = k) W (R (A-5)

which proves (5.22). Now,

1 j N {h’(zR sin® u cos” $)4R sin  cos p cos’ ¢
(2R)1/2 o (1 _Sin2 jiz Sin2 1/1)1/2

H'(u) =
(A.6)

N h(2R sin® p cos® i) sin u cos w sin? lp} i
(1—sin? w sin® )32

The second term under the integral sign is positive for 0<<u < /2, and according to
(A.5) the first term is positive if 3, >0, k€ (0, at)U (a3, ). This proves (5.24).

By differentiation of (5.21) under the assumption that We C? near k =0, we see
that

Wie = K2 32, (A.7)
so that
W (0) = 3%, (0). (A.8)

As p tends to zero, the second term of (A.6) also tends to zero; by use of (A.5) the
first term becomes

1 J’"’2 3. (k(y)2R sin u cos p cos® s
0

dis. A9
GRI )y () k(y) We (k) (L —Sin & ST )7 |, -yt corrs A.9)

As p tends to zero, the argument y in (A.9) tends uniformly to zero and
WKK g WKK (0) = w2 > 07
h(y)— Gwy)'?, as u—0. (A.10)
(1—sin® w sin® )% — 1.

Thus, the existence and sign of the limit of (A.9) as w - 0 depends on the existence

and sign of the limit of

2 (k(y)) sin
—_— ‘ A1l
k(y) y=2Rsin’ucos®ys ( )
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as u — 0. However, k(y) has the expansion

y 1/2
k(y) = (m) , 0(1) — (0 as y— 0, (A.12)
which is simply the inverse of the expansion for f(x). Thus, (A.11) becomes

3. (k(y)Gw,+o(1)'?
2R)"? cos ¢

, (A.13)

y= 2Rsin®wcos?y

and for pu small its sign is the same as the sign of %, (0). If we put (A.13) back into
(A.9), the conditions (5.23) emerge.

It remains to prove (5.25). We suppose W, (0)=0 from which it follows that
H'(0)=0, and we examine closely (A.6) when p is small, but positive. Since the
second term of (A.6) is positive, we can bound H’ in the following way:

1 ™2
(M)<(2R)1’2J‘ {(1 —sin® w sin® ([/)[h’(y)4R cos?

+—= h(y) sin® a,t/] cos W sin w

1—¢

} dis, (A.14)

y=2Rsin®pcos?y

in which & =sin® u. Because W, (0)=0 and We C* near x =0, we may write

2 (k) = o+ 0(K); (A.15)
here
o=32,,.0)=3W,_..(0). (A.16)

The square bracketed term in (A.14) determines the sign of H'(u) when p is small.
By use of (A.5) and (A.16) we may write it as

\:<0' olx )>2R cos? s

hWw,

KK

+ sin? lli:\- (A.17)
1-¢

All of the terms of (A.17) have uniform limits as u — 0 except cos> ¢ and sin® ¢, but
these yield equal values when integrated from zero to #/2. Hence, H'(n) will be
negative when u is small if

_=hOP W, ()

SR (A.18)

ie., if

W, (0)< 22

R (A.19)



