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It  has been  argued elsewhere [1-5] that some of the features of anelastic deforma-  
tion, change of phase, "necking",  and yield are predicted by nonlinear elastic and 
thermoelast ic  theories. For the most  part,  the analyses have been confined to the 
simpler static nonlinear rod and bar  theories, or to three-dimensional  problems that 
can be t reated by local analyses or that can be reduced to one dimension [6], since 
occasionally unfamiliar methods of nonlinear analysis are required. The results of 
these simple theories do, however,  provide incentive for further investigation; in the 
simplest elastic bar  theory designed to describe the cold drawing of polymers,  even 
the positions and number  of phase boundaries that  form can be predicted. 

Still, serious gaps remain in our understanding of the capability of nonlinear 
elasticity theory to describe such phenomena ,  and there remains some degree of 
inconsistency in the various approaches  that have been followed. Two notable 
observations of certain importance have been ignored; first, the effect of surface 
energy of a phase boundary,  and second, the observat ion that  the symmetry  of a 
body may change after the passage of a phase boundary,  though the latter has been 
analyzed for second order  phase transitions by Ericksen [7]. 2 

Most of these investigations begin with the assumption that the free energy 
W(F, T) regarded as a function of the deformat ion gradient and tempera ture  defined 
on a domain S x ~  1, fails to be elliptic in part of  its domain:  

OaW 
OF~OF~ (F, T)aiajb~b ~ < 0 V$ '~  S~ c S 

(0.1) 
Va,  b ~ ~=3. 

This kind of assumption permits stationary shock surfaces to exist in elastostatic 
solutions and slow moving large ampli tude shocks to propagate  in elastodynamic 
ones. 

t In the present work I shall be concerned with transitions ordinarily designated as first order transitions. 
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In one dimensional theories the analogue of (0.1) is simply the failure of convexity 
of the stored energy function. Thus, in the theory of the elastica, in which the stored 
energy is a function only of the curvature of a plane curve, W =  W(~), the 
requirement  is that on some proper  subdomain of the stored energy 

d 2 W  
~-~ (~) < 0. (0.2) 

A reasonable assumption would make (0.2) hold on each of a pair of intervals 
bounded away from, and separated by, ¢ = 0. On the remaining intervals (including 
an open set about  ~ = 0) the reversed inequality would hold. Fosdick and James [1] 
adopt  this kind of assumption in the theory of the elastica and classify those 
configurations that can be produced by pure bending. When a certain value of the 
applied bending momen t  is reached, the configuration of minimum energy consists of 
arcs of circles of two different radii joined together  with a continuously turning 
tangent. The jump in curvature across each discontinuity, as well as the critical 
bending moment ,  can be calculated f rom the constitutive function, whereas the 
port ion of the curve having one or the other  curvature is indeterminant.  As a curious 
side issue, it was found that certain weak relative minimizers of the total energy 
(which, of course, must satisfy the Euler  equation) do not satisfy the first integral, or 

"energy  integral",  of the Euler  equation. 
In the present  work, I t reat  the problem of an elastica with a nonconvex energy 

function loaded by a dead load. I discuss in full detail only the traditional problem of 
an elastic curve with a fixed tangent at one end and a force parallel to this tangent at 
the other end. Most of the results of the analysis apply without change to the 
fixed-fixed, the fixed-pinned or the pinned-pinned elastica, since all of these prob-  
lems lead to essentially the same expression for the total energy (equation (1.10)). 
The fixed-fixed elastica does, however,  have certain configurations of equilibrium 
which I do not discuss in detail. All possible configurations of strong relative 
minimizers of the total energy must  look qualitatively like parts of one of the graphs 
in Figure 3. To arrive at this picture, I must  again confront possible failure of the 
energy integral. It  is proved that an energy integral can be deduced for strong 
relative minimizers of the total energy. Each loop of the elastica associated with a 
strong relative minimizer must contain either two discontinuities or no discon- 
tinuities of the curvature. The appearance  of this pair of discontinuities is governed 
by a surprisingly simple relation (equation (4.17)) involving the applied force, the 
angle of the elastic curve at the point where the force is applied, and a certain 
constitutive constant. The region along the curve between the discontinuities is a 
region of large curvature relative to the adjacent  regions. 

The traditional postbuckling problem is discussed in Section 6. The results are 
fundamental ly different f rom those obtained in the classical theory ( W =  c~ 2, c = 
const.) and, needless to say, f rom those obtained in the linearized version of the 
classical theory. Like the classical theory, I find that some columns buckle first at the 
Euler  load, but then, as the load is increased, a discontinuity forms at the base of the 
column and moves up the column. The region between the discontinuity and the 
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base is a region of large curvature relative to the rest of the column. However, 

unlike the classical theory, I find that for some constitutive relations the column can 
buckle over abruptly at loads below the Euler buckling load. In these abruptly 

buckled configurations, the discontinuity can appear some distance up the column. 
The region between the discontinuity and the base of the column is a region of 

large relative curvature and is associated with "plastic" or "permanent"  deforma- 
tion, or the formation of a new phase. The appearance of the discontinuity then 

represents true failure of the column, though this kind of "failure" is often desirable. 
I refer here to the isothermal behavior of certain shape-memory alloys in which just 

this permanent  deformation is sought. A complete description of thin rods of shape 
memory alloy would require a thermodynamic analysis, though their isothermal 
behavior appears consistent with the description I shall present. 

1. Theory of the elastica 

In [1] the foundation of the theory of the elastica has been presented with a view 
toward deducing it from second grade elasticity theory. Building upon this founda- 

tion, I shall begin with the prescription of a stored energy function 

W = W(~), ~ = curvature. (1.1) 

' /he  m o m e n t  corresponding to the curvature ~ is then defined by 2 

M=~-~(~). (1.2) 

The variable s ~ [0, L]  will always denote the arclength, and primes will indicate 
derivatives with respect to s. The curvature may be calculated in the following way. 

Given a continuously differentiable plane curve 

x(s)  = x ( s ) i  + y(s)], (1.3) 

representing a placement  of the elastica, we associate with it a function 0 = 0(') 
defined uniquely by the equations 

cos 0(s )=  x'(s),  sin 0(s)= y'(s), 0=< 0(0) <2~r. (1.4) 

The value O(s) represents the angle between x'(s) and i, measured counterclockwise 
from i. Then, the curvature at x(s)  is defined by 

~ = O'(s). (1.5) 

Conversely, the function O(s) always determines a placement according to the 

2 Explicit smoothness assumptions will be deferred until the end of this section. Occasionally, we shall 
use the subscript K to denote the derivative with respect to K. 
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rules 

i0 x(s)= cos O(r) dr+cons t .  

(1.6) 

i0 y(s) = sin O(r) dr + const. 

We shall always assume that x(0) or x(L)  is assigned, so that this determinat ion is 
unique. 

In the basic problem we shall consider, the elastica will be loaded at x = x(L)  by a 
dead load. A constant force F = Fli + F2j is prescribed and the total energ~ is then 
defined by 

I0 El0 ]  = W(O'(s)) d s - F .  x(L). (1.7) 

We shall adjoin the side condition 

0(0) = 00 0<-- 0o<27r, (1.8) 

0o being an assigned constant;  for the classical postbuckling problem 00 = 0 and 
F2 = 0. In (1.7) the first te rm is interpreted as the energy stored in the elastica, and 
the second is the energy of the dead loading device. We interpret  (1.7) and (1.8) as 
delivering the total energy of an elastic r ibbon or thin rod, fixed in position and 
tangent at one end, and loaded at the other  with a constant force. 

Leaving momentar i ly  aside precise conditions of smoothness and the exact defini- 
tion of the competing class of functions, my aim is this: to find the function O(s) 
which minimizes E[.]  subject to the side condition 0(0) = 0o. In particular, I shall be 
concerned with relative minimizers which are defined precisely at the beginning of 
Section 3. According to the usual interpretat ion of the energy criterion for stability, 
the functions we seek deliver stable or, in the case of relative minimizers, metastable  
configurations of the fixed-free elastica. I shall not a t tempt  to connect this interpre- 
tation of stability with criteria for dynamic stability. 

By using the definitions (1.6)1,2 and assuming x ( 0 ) =  0, equations (1.7) and (1.8) 
may be written 

I? E[0]  = {W(O'(s))-F1 cos O(s)-F2 sin 0(s)} ds (1.9) 

0 ( 0 )  = 0o. 

It  is always possible to rotate  the elastica about  x = 0 ,  use the condition that the 
stored energy is Galilean invariant and thereby obtain a new problem which is 
equivalent to the old one in a sense presently to be made definite. Let  to be a 

constant  direction satisfying F 1 sin tO = F2 COS to, and define R =---(Fa cos to + 
F2 sin q~),/~[0] =-- E[O + q~], rio --= 0o + to. Then (1.9) becomes 

I? /~[0] : {W(O'(s))+R cos O(s)} ds. (1.10) 

0(0) = ~o 
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Figure 1. The moment-curvature relation. 

Any minimizer (relative, weak or strong 3) of (1.9) is also a minimizer (relative, weak 

or strong) of (1.10), and vice versa. Of course, ~ can always be chosen such that 

0=< ~0<2rr.  
We shall confine attention to a certain class of non-convex stored energy func- 

tions. Let constants a < oq < ~2 < 0 </31 </32 </3 be prescribed, and assume W(~) 
satisfies the requirements, 

W:[~,/3]-~ ~1, 

W~ C~[~,/3], 

> 0  K ~ (0~, O-~1) U (O~2, /31) U (/32, /3) , ( 1 . 1 1 )  
wK. < 0  K ~ (~1, ~2) u (/31, t32), 

w,(/3)_-> w~(/31), w~(~)--< wK(~2), 

w(0) = 0. 

Figure 1 shows an example of M ( ~ ) - - d W / d ~  versus ~. The two dotted lines are 
called Maxwell lines; they cut off equal areas of the curve above and below. The 
points M ÷ and M -  are the ordinates corresponding to the Maxwell lines. We shall 
also assume that the constitutive function is defined S,.u~h that ' ~, 

M ÷ > 0 > M  -. (1.12) 

The Maxwell lines have an important significance for the mathematical analysis 

3 Cf. equations (3.2) through (3.5) for precise definitions. 
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which shall follow. They delineate a certain domain 

~--=[~, ~1"3 U[~*,  ~ ' 3  U[~*,/33, (1.13) 

pictured in Figure 1. All points in ~ have the proper ty  that they are points of 
convexity of the function W. Therefore,  we shall term ~ the domain of convexity. 
The proofs of these remarks  are contained in [5]. 

When  permitt ing nonconvex stored energy functions, it is to be expected 4 that 
minimizers (or relative minimizers) O(s) of (1.10) will not have everywhere continu- 
ous derivatives. Hence,  we shall assume that O(s) is only absolutely continuous and 
that 

a <= O'(s) <-- ¢t (1.14) 

holds at almost every s in [0, L]. Thus, the basic function space of this problem will 
be 

~(00) = {0 :[0, L]--~ N1 I 0(0) = 00, 0 is absolutely (1.15) 

continuous, and a <= O'(s) <--_ ~ on [0, L]}. 

A placement  of the elastic curve delivered by a function in ~(0o) always has a 
continuous tangent vector, though the curvature may be discontinuous. It  is prefera-  
ble to use the class of functions o~(00) given by (1.15), ra ther  than just the set of 
piecewise differentiable functions, since it is in ~(00) that one should expect to be 
able to prove existence of minimizers of /~[0]  (see [10] for a prototype of this kind of 
proof). 

We shall think of points s at which O'(s) exists and belongs to the set [a, a l ]  CI 
[/32,/3] as points in a different phase f rom points where O'(s) belongs to [a2,/31]. In 
this sense two phases are represented in the graph of Figure 1, one of large 
curvature and one of small curvature.  Note  that points of the two different phases 
may correspond to the same value of the moment .  

2. Related problems 

Though we shall t reat  in detail only the classical "f ixed-free" postbuckling problem, 
two other problems can be f ramed in a similar way. If both ends of the elastica are 
pinned, the loading device contributes no energy, so the total energy is calculated 
according to the rule 

Io Ep = w(0 ' ( s ) )  ds, (2.1) 

to which is adjoined the constraint 

Ix(L) I = d, (2.2) 

4 See [1], [2], [3] or [5]. James [5] has given arguments in support of the choice ~(00) as the underlying 
function space in a related problem. 
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d being the assigned distance between the pins. By appeal to Galilean invariance, we 
can replace (2.2) by 

x ( L )  = d, 

y(L) = O, (2.3) 

or alternatively, 

IoLCOS O(s) = d, ds 

L (2.4) 

Io Sin O(s) ds = O. 

It is customary to remove the constraints by using Lagrange multipliers. Let  
Lagrange multipliers &l, &2 be associated with the constraints (2.4)1 and (2.4)2 , 
respectively. If we seek minimizers, or relative minimizers, of 

Io ~p = {W(0 ' ( s ) ) - /~1  cos 0 -  ,~2 sin 0} ds, (2.5) 

from among all 0 c ~( . ) ,  and we find one which satisfies the constraint, then it will 
also be a minimizer or relative minimizer of the energy E e under the constraint 
(2.4). It is not at all clear, however, that every relative minimizer of the constrained 
problem can be obtained in this way, especially when the minimizers are not smooth. 
Nevertheless, the functional (2.5) is the same as the functional (1.9), so every 
property of minimizers of the fixed-free problem will also be shared by minimizers of 
the functional /~p. As far as I know, the equivalence between the constrained 
problem and the associated problem with Lagrange multipliers is only formal. 

There is, however, a rigorous connection between the "fixed-free" and the 
"pinned-pinned"  problems. It can be shown directly that strong relative minimizers 
(see equations (3.2) and (3.3) for the precise definition) of the energy Ep under the 
constraint (2.3) satisfy the Euler  equation (3.6) and the condition of convexity (3.7). 
We shall show in the next section that (3.6) and (3.7), in turn, are sufficient for the 
validity of the energy integral. In Section 4 we shall make a complete study of 
functions which satisfy the energy integral, unrestricted by side conditions, so the 
analysis will apply also to the constrained problem. It is from the energy integral that 
we develop a detailed picture of placements of the elastica. 

In the "f ixed-pinned" problem, we wish to minimize the functional Ee subject not 
only to the constraint (2.3) but also to the condition 

0(0) = 0o. (2.6) 

The "fixed-fixed" problem adjoins to the problem just mentioned the additional 
condition 

O(L) = 0c. (2.7) 

q-he remarks we have made about the "pinned-pinned"  problem apply also to the 



246 R. D. James 

"f ixed-pinned" problem. The "fixed-fixed" elastica, however,  may equilibrate in 
certain placements,  derived f rom non-inflectional solutions of the energy integral 
(Section 4), which I shall not discuss. 

3. The energy integral 

We seek a proof  of the energy integral for strong relative minimizers of the total 

energy 

Io E[O] = {W(O'(s)) + R cos 0(s)} ds. (3.1) 

A function ~ ff(0o) is a strong relative minimizer of E[-] if for some e > 0  

E[6]<_E[O], (3.2) 

whenever  0 e ~(0o) and 

max IO(s)- O(s) I < e. (3.3) 
SE[0,L] 

We shall also require that ~' lie in the interior of the domain of W; for some 

sufficiently small 8 > 0, 

c~ + 6 =< O'(s) ~/3  - 6. (3.4) 

When  (3.4) is not satisfied, certain difficulties arise which have been discussed in [5]; 
in particular, the familiar Gfiteaux variation O'(s)+ ~ ' ( s )  is not necessarily contained 
in the domain of W(-) for ~ sufficiently small unless (3.4) is met.  A function ~ is a 

weak relative minimizer of E[-] if (3.2) holds for all 0 ~ ~'(0o) such that 

sup 10 ' (s)-  O'(s) I < e, (3.5) 
s~[0,L] 

for some preassigned e > 0 .  
If 0 is a strong relative minimizer satisfying (3.4), then two conditions must be 

fulfilled: .' 
1. the Euler equation (or balance of moments)  

Is (~i'(s)) = R sin ~i(r) dr a.e., (3.6) 

2. convexity at ~ ' ( s ) - for  almost every s ~ [0, L],  

W(~) is convex at ~ = 0'(s). 5 (3.7) 

For  the validity of the Euler  equation it is sufficient that ~ be only a weak relative 

5 F o r  t h e  p r o o f s  of  t hese  s t a t e m e n t s  see [5].  If (~ is a w e a k  r e l a t ive  min imize r ,  W(K) is on ly  loca l ly  c o n v e x  

a t  ~ = ~'(s) .  
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minimizer; however, neither the convexity condition nor the energy integral (equa- 
tion (3.27)) need follow for weak relative minimizers. The condition of convexity is 
equivalent to the familiar Weierstrass condition: for almost every fixed s ~ [0, L], 

w (  O'(s) + ~ ) - w(6 ' (s) )  - ~ d_;_W ( O'(s) ) >= 0 
tab( (3 ~8) 

~//~ such that a _--< 0'(s) + /z  ~/3. 

The condition (3.7) is also equivalent to the restriction ~ ' ( s ) ~  a.e., ~ being 
defined by (1.13). 

Our procedure will be the following: assume the existence of solutions of (3.6) and 
(3.7) 6 show that these solutions have only a finite number  of discontinuities of the 
curvature, establish that they satisfy the energy integral, and prove that certain of 
them are strong relative minimizers. Along the way, we shall develop a detailed 
picture of the solutions and explicit formulae for the positions and number of 
discontinuities which occur. 

To begin we assume 6(s)~@(Oo) satisfies the Euler  equation (3.6) and the 
restriction (3.7). 7 fi'(s) exists only almost everywhere but we may adjust its value on 
a set of measure zero, and thereby not change the function 0(s), so that (3.6) holds 
everywhere.  We do this in the following manner.  Give 6'(s) any values in [a,/3] on 
the set where it does not exist, so it is then defined everywhere.  Now suppose (3.6) 
does not hold at a point ~. There  is a sequence of points {s,~}~_l such that 

(i) s,~ -~ ~ as m --~ ~, and 
(ii) (3.6) holds at sin, m = 1, 2, 3 . . . .  

Since the range of dW]dK(.) is closed, there is a value g in [a, /3] such that if ~ '=  g, 
and if the right h~nd side of (3.6) is evaluated at ~, then (3.6) is satisfied. We simply 
redefine 

~'(g) ~ g (3.9) 

Having carried out this procedure for each such point g, we may assume (3.6) holds 
ev'erywhere. 

The Weierstrass condition also holds only almost everywhere. Suppose it does not 
hold at ~. Then, ~ = ~'(~) does not belong to the domain of convexity of W, that is, 
a~*< Y< a2* or /3~*< ~ </3~*. Therefore,  at ~, W~(-)has a triple valued inverse; in 
fact, there is always a value ~ such that 

~_~W(~) = ~ _  (~), (3.10) 

and ~ lies in the domain of convexity of W. We redefine 

6'(~)------ ~. (3.11) 

6 In  S e c t i o n  4 w e  sha l l  p r o v e  the  ex i s t ence  of  s u c h  so lu t ions ,  a n d  in Sec t i on  5 w e  shal l  expl ic i t ly  c o n s t r u c t  
t hose  fo r  w h i c h  ~o = O. 
7 See  f o o t n o t e  p. 2 4 6 .  
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Because of (3.10) this redefinition will not alter (3.6), which will still hold everywhere. 
In  this whole  process  of  redefini t ion we have  only changed  O'(s) on a set  of measu re  
zero,  so ~(s) r emains  una l te red .  In a sense,  we have  r e m o v e d  all the bogus  

singularit ies.  
From now on we assume that (3.6) and (3.7) hold at every s ~ [ 0 ,  L].  T h e  

restr ic t ion (3.7) now holds at every  s so that  0'(s) is conta ined  in the domain  of 
convexi ty  of W for  every  s ~ [0, L].  Le t  us deno te  

hT/(s)------ ~-~W (~'(s)).  (3.12) 

T h e  Eu le r  equa t ion  (3.6) implies  tha t  /XT/(s) is cont inuous ly  different iable .  Suppose  
~/(s0) ~ M + or M . T h e n  there  is a n e i g h b o r h o o d  of values  of s nea r  So where  
)~/(s) ~ M + or M - .  W h e n  s lies in this ne ighborhood ,  W~(-) is uniquely  inver t ible  on 

the doma in  of convexi ty  of W: 

(i O'(s )=  W~ 1 R sin O(r) d . (3.13) 

T h e r e f o r e  we have  

LEMMA'I. I f  "WK(O'(S0)) ~ M + or M - ,  ~(s) is twice continuously differentiable in a 

neighborhood of So. 

N o w  we wish to show that  ~'(s) can only have  a finite n u m b e r  of discontinuit ies  in 
the  b o u n d e d  interval  [0, L].  Suppose  not ;  T h e n  O'(s) has an infinite n u m b e r  of 

discont inui t ies  at points  sl, s2, s3 . . . . .  all con ta ined  in [0, L].  F r o m  L e m m a  1 it 

fol lows that  

hT/(s~) = M+ or  M_, n = 1, 2, 3 , . . .  (3.14) 

Since [0, L ]  is compac t ,  there  is a subsequence  {s,,}~-i which converges :  sn,--> So as 
l--> ~.  W e  m a y  assume by s tar t ing sufficiently far  out  in the subsequence  that  

hT/(s,,) = M +, or  
l = N ,  N +  1, N + 2  . . . .  ( 3 . 1 5 )  

hS/(sn~ ) = M , 

In the case (3.15)1, since M ÷ > 0  and M ( . ) ~  C[0,L],I O'(S) must  be  b o u n d e d  away f rom 

zero:  •. 

O ' ( s ) > K > 0 ,  K = c o n s t . > 0 ,  s nea r  So. (3.16) 

On  the o the r  hand,  by  Rol le ' s  t h e o r e m  appl ied  to (3.15)1, 
~ r  ~ ~ 

M (sn,) = 0 for  s o m e  sn,~ Is,,, s .... ], (3.17) 

which,  upon  dif ferent ia t ion of (3.6), implies  tha t  

R sin ~(s~) = 0. (3.18) 

If R = 0, (3.6) has the unique solut ion ~i(s)= const .  = ~o. If R 7  ~ 0, we have  for  l 
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sufficiently large,  

~ ~ _ T r  
O ( s ~ ) - ~ + m w ,  I = N , N + I , N + 2  . . . . .  (3.19) 

m being s o m e  fixed integer .  But  (3.19) and (3.16) cont radic t  each other .  If (3.15)2 
holds we are led to the  s ame  conclusion with O ' ( s ) < - K .  Thus,  summar iz ing  this 
a r g u m e n t  and re la ted  facts, we have  

LEMMA 2. ~'(s) has only a finite number of discontinuities in [0, L].  I f  ~'(s) has a 
discontinuity at So, the limiting, values O'(s o + O) and O'(s o -  0) exist and, 

~W(~'(So + 0 ) ) = - ~  ( ~ ' ( S o - 0 ) ) =  M ÷ or M - .  (3.20) 

If  WK(~'(so+O))=M +, then 

~'(So + O) = [3"2(or [3"~) (3.21) 

O'(so- O) = [3*~ (or [3*2, respectively). 

Otherwise W~ (~'(So + 0)) = M -  and 

~'(So + O) = a*2 (or a*~) (3.22) 

~'(So-O) = a*a (or a*2, respectively). 

B e t w e e n  each  consecut ive  pair  of points  of discont inui ty  of ~'(s),  the energy  integral  
is satisfied by a classical a rgument .  Hence ,  if So and  sl are two such consecut ive  
points ,  

W(~'(s)) - ~'(s) WK (~'(s)) -- R cos ~ (s) = cl  = const. ,  s e (So, sI). (3.23) 

O n  the next  in terval  of con t inuous  different iabi l i ty  of  ~, say (sl, s2), it fol lows by the 
s ame  a r g u m e n t  tha t  

W(~'(s)) - ~'(s)WK (~i'(s)) - R cos ~(s) = c2 = const. ,  s e (sl, s2) (3.24) 

If we  eva lua te  (3.23) at S l - 0  and (3.24) at s~+0 ,  use the cont inui ty  of ~(-) and 
W~(~'(-)), and subt rac t  (3.23) f rom (3.24), we obta in  

W(~t(SI-~-O))--  W(~"(s I - -O)) - - (~ t (SI -~-O)- -~; (s I - -O))W~(~t (S1) )~-C2--C1 . (3.25) 

A s s u m e  - '  m + WK(O (sa) )= and  O'(sa + 0)=/3*2. Then ,  (3.25) b e c o m e s  

W([3.2) - W(/3 ~*) - ([3*2 - [3 ~*)M + = c2 - ca. (3.26) 

H o w e v e r ,  the s igned a rea  under  the m o m e n t  curva tu re  re la t ion  in Figure  1 b e t w e e n  
[3~* and [3*2 is zero;  thus,  the  left  hand  side of (3.26) is zero,  so ca = c2. In o the r  cases 
not  cove red  by  the a s sumpt ion  given just  be fo re  (3.26) the  s ame  conclusion is 
r eached .  T h e  a r g u m e n t  is par t ia l ly  revers ib le ;  if ~(.) is con t inuous  and  has p iecewise  
cont inuous  first and second der ivat ives ,  if WK(O'(')) is con t inuous  and vanishes  at 
s = L, and  if ~'(.) vanishes  only on a set  of m e a s u r e  zero,  then  ~ satisfies the  Eu le r  
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equation. The proof  of this s ta tement  follows simply by differentiation of the energy 
integral. Thus, we have 

THEOREM 1. Suppose O(s) satisfies the Euler equation (3.6) and the condition of 
convexity (3.7) at every s~ [0 ,  L]. Then, the energy integral holds: 

- ~'(s) ~ -  (O'(s)) + R cos ~(s) = c = const., s ~ [0, L]. (3.27) W(~'(s))  

Therefore, if ~ is a strong relative minimizer of E[.]  in the class ~(0o), then (3.27) is 
satisfied. 

Conversely, suppose the energy integral (3.27) is satisfied by a continuous, once and 
twice piecewise continuously differentiable function 0(') such that 

(i) W~(O'(.)) is continuous, 
(ii) W~(O'(L) )  = O, 

(iii) 0' = 0 on at most a set of measure zero. (3.28) 

Then, the Euler equation (3.6) holds for 0(.). 

The advantage of the energy integral is that it t ransforms the Euler  equation to a 
standard initial value problem. In the next section we shall find and characterize 
solutions ~ of the energy integral such that ~'(s) lies in the domain of convexity of 
W. Thus, we shall obtain a characterization of strong relative minimizers. As 
discussed in [1], weak relative minimizers need not satisfy (3.27), even though they 
satisfy the Euler  equation. This kind of "fai lure" of weak relative minimizers is 
brought  about  by the failure of convexity of the stored energy function. 

Incidentally, I see no way of proving the energy integral (3.27) directly f rom (3.6) 
and (3.7) without first showing that there are only a finite number  of discontinuities 
of the curvature.  

4. Structure of solutions of the energy integral 

We now shall find and characterize solutions of the Euler  equation (3.6) which also 
fulfill the condition of convexity (3.7). If there is such a solution 0, then it must 
satisfy 

O'(L) = 0 (4.1) 

according to (3.6). The condition (4.1) distinguishes the several problems ment ioned 
in Section 2. Both the dead loaded elastica and the one pinned at s = L will yield 
(4.1), but the elastica with tangents fixed at both  ends will generally not. The 
condition (4.1) distinguishes the inflectional elastica, which always contains a zero of 
0', f rom the noninflectional elastica which contains no zero of 0'. We shall study in 
detail only the inflectional elastica; it is easy to construct the non-inflectional 
solution f rom the methods below. 
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Each function which is a minimizer of the total energy will satisfy an assigned 
initial condition 0(0) = 00.3-o classify all possible solutions of (3.6) and (3.7) we find 
it easier to disregard this initial condition and, instead, to classify solutions according 
to their terminal directions O(L). 

Thus, let O(L)= 0c, and define 

d W  
f ( K ) - - ~ K ~  W. (4.2) 

The energy integral (3.27) can be written 

f(O'(s)) = R(cos O(s)-  cos OL), S • [0, L].  (4.3) 

To obtain (4.3) we have evaluated the constant c in (3.27) by using (4.1), so the 
form (4.3) is only valid for the inflectional elastica. 

From (4.2) and (1.11)4, we deduce that f ( 0 ) = 0 ;  from (3.8) it follows that if ~ 
belongs to the domain of convexity of W, 

f(K) = W ( 0 ) -  W ( ~ ) -  ( 0 -  ~) W~(K) >=0. (4.4) 

Furthermore,  

L = ~W~K (4.5) 

and 

f(/32") - f(/3 ~*) = W(/3 ~*) - W(/3z*) - (/3t* -/32")M + = 0, (4.6) 

f ( o ~ * )  - f (o~ ~*) = W(o~  ~*) - W ( a 2 * )  - (o~* - a ~ * ) M -  = O. 

From (1.11), (4.4), (4.5), (4.6) and the requirement f ( 0 )=  0 which follows from (4.2) 
and (1.11) we build up the graph of f(~) shown in Figure 2. It will be convenient to 

f (~¢)  

~ ~ I ~ I~ 
% 

F i g u r e  2. f ( ~ )  = KW~ - W. 

/¢ 
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call 

C +-=f(t3~*) C -=f(~l*). 

W e  shall  ob t a in  a p ic ture  of  the  p l a c e m e n t  x(s)  assoc ia t ed  with O(s) by solving 

(4.3) b a c k w a r d  f rom s = L. If R = 0, we have  the so lu t ion  0 = 0, which  is the  only 

so lu t ion  of  (4.3) if we res t r ic t  0' to  lie on  the  d o m a i n  of convexi ty  of W. N o w  assume 
R~0. 

N e a r  s = L ,  ~ C  2 by L e m m a  1 and (4.1). Thus  we m a y  d i f fe ren t ia te  (3.6) to 

d e t e r m i n e  the b e h a v i o r  of ~ nea r  s = L :  

WK~(O'(s))O"(s) = - R  sin O(s) 

O'(L) = 0 (4.8) 

O(L) = OL. 

T h e  on ly  so lu t ion  of  (3.6) poss ib le  when  0L = n~r, n = in teger ,  is the  cons tan t  so lu t ion  

O(s) = 0L. Tha t  is, any  so lu t ion  O(s) of (3.6) mus t  sat isfy (4.8) on some  n e i g h b o r h o o d  

W of  L. Bu t  O(s)= n~r is the  un ique  so lu t ion  of (4.8)1,2 in W u n d e r  the  cond i t ion  

O(L) = nw. S u p p o s e  O(s)= nw con t inues  to ho ld  on  the  m a x i m a l  closed  in te rva l  

s ~ [ a ,  L ] ;  the  so lu t ion  again  be ing  C 2 in a n e i g h b o r h o o d  of s = a we m a y  app ly  

again  the  s ame  a r g u m e n t  at  s = a and  conc lude  tha t  O(s) = nTr in a n e i g h b o r h o o d  of 

a. Bu t  this s t a t e m e n t  con t rad ic t s  the  a s sumpt ion  tha t  [a,  L ]  is max ima l .  Thus ,  

O(s) = n'rr is the  un ique  so lu t ion  of (3.6) on  [0, L]  which satisfies 0L = nTr. 

H a v i n g  d i spensed  with this case,  we a s sume  f rom now on tha t  

0 L fi n'w, n = any in teger .  (4.9) 

W e  shall  a lso assume,  w i thou t  loss of genera l i ty ,  s tha t  

0 < OL < ~r. (4.10) 

Then ,  it fo l lows f rom (4.8) tha t  in some  n e i g h b o r h o o d  [a,  L]  of L 

1. R > 0 ~ 0'  s t r ic t ly  m o n o t o n e  dec reas ing ,  (4.11) 

2. R < 0 ~ 0'  s tr ict ly m o n o t o n e  increas ing,  (4.12) 

and  wi thin  this  n e i g h b o r h o o d  the  so lu t ion  of (4.8) is un ique .  W e  t r ea t  s e pa r a t e ly  the  

two poss ib le  cases.  

Case A .  R > 0 

Beg inn ing  at  the  po in t  a, we con t inue  to cons t ruc t  O(s) by solving the  ene rgy  in tegra l  

(4.3). Since  by  (4.11) and  ( 4 . 8 ) 3 0 ' ( a )  > 0 ,  the  ene rgy  in tegra l  can be  r e g a r d e d  as a 

s t a n d a r d  ini t ia l  va lue  p r o b l e m  with  ini t ia l  va lue  O(a), which we beg in  to  solve 

b a c k w a r d  f rom s = a. By a s imple  app l i ca t ion  of the  c o m p a r i s o n  t h e o r e m  for 

o r d i n a r y  d i f fe ren t ia l  equa t i ons  to (4.3) [see 11, C o r o l l a r y  4.2],  we see tha t  as s 

dec rea se s  f rom a, O'(s) inc reases  and  O(s) decreases .  W e  con t inue  solving for  O(s) in 

8 The assertion of "no loss of generality" is not plain at this point. It will become clear that solutions with 
other end positions are either covered by the change R -~ - R  or contradict the assumption 0 N 00 < 27r. 
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this fashion until one  of the fol lowing occurs:  

(i) O(s) reaches  zero,  or  

(ii) R(cos  0 - c o s  0L) reaches  C ÷. 

Suppose  case (ii) occurs  before  case (i) at a point  g, i.e. 

R (cos 0(~) - cos 0L) = C ÷, 0(~) > 0. 

W e  cannot  cont inue  solving the energy  integral  in the ordinary  sense for s < g  

because  O'(s) would  then no  longer  be long to the domain  of convexi ty  of W, and so 
our  solut ion would  violate (3.7). Howeve r ,  if we pose the initial value p rob lem (4.3), 

with 0(~) ob ta ined  f rom the solut ion already cons t ruc ted  but  with O'(s)~ [/32*,/3], we 
may  cont inue  9 solving (4.3) until 0 = 0 is reached;  assume this occurs at the point  So: 

0(s0) = 0. (4.14) 

Equa t ion  (4.14) now coincides with condi t ion (i) above,  so by cont inuing f rom (4.14) 

we shall cover  the o ther  case. For  s < So, define 

O(s) -~ - 0(2 So - s). (4.15) 

Ex tended  in this fashion, O(s) will cont inue  to satisfy (4.3) until 0 reaches -0~_ at 

s = 2 So - L. ~ 
The  funct ion O(s), s ~ [ 2 s 0 -  L, L], const ructed  in this manne r  is the unique solut ion 

of (3.6) and (3.7) in the class of absolutely cont inuous  funct ions which satisfy 
O(L) = 0~_, 0 < 0~_ < w. Tha t  is, there  is only one solut ion to the initial value p rob lem 

(4.8) in this class when  s is near  L. Having  shown O'(a)>0, we see that  there  is a 
unique  solution of the energy  integral  until (4.13) or  (4.14) occurs.  If (4.13) occurs,  

we use the cont inui ty  of 0 to pose a new initial value problem,  which again has a 

unique  solut ion if 0' is restr icted to be long to the domain  of convexi ty  of W. The  
extension of 0 via (4.15) is also unique;  it solves a well posed  initial value p rob lem 
until (4.13) occurs again. A t  this point ,  by  account ing for  (3.7), we begin a new 

initial value p rob lem which has a unique  solution. 

This completes  the const ruct ion of O(s) for  one  " l o o p "  of the elastica when R > 0. 
I shall omit  the similar analysis for  succeeding loops.  Several examples  of p lacements  

of  the elastica are pic tured in Figure 3. In the second and third of them I have 
pic tured the si tuation in which R(cos  0 - c o s  0~) reaches  C + before  0 reaches zero;  

thus each loop pic tured be low the x-axis  contains exactly two discontinuities of the 
curvature .  E a c h  loop above(below) the x-axis is a t ranslate of every o ther  one  

be low(above)  the x-axis,  but  the loops below the axis are not  necessarily mirror  
images of the ones above  the axis unless, of course,  the s tored energy  funct ion is 
even.  In fact, it is possible to const ruct  solutions for  certain non-even  energy  
funct ions in which the loops above  the axis contain two discontinuities and the loops 
below contain  none.  As  R is increased,  0~. being held fixed, the arclength be tween  

91 tacitly assume here that/3 is large enough, i.e. the domain of the stored energy is large enough, so that 
this can be done. Hence, I ignore questions of non-existence which can arise when the solution hits the 
boundary of the domain of the constitutive function. 
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A. R > 0 ,  O L smol l .  
y 

-M 

_M • 
R 

R(I -cos O L)> 
C + ond C-. - 

_M + 
R 

•"~L 

X 

i S= 

C. R<O,  Y 
R ( I - c ° s e L ) >  -M- 
C + ond C-. -R " 

_M + 
g 

X 

• ~-~ f 4 ,"" 8 L  

~ ~ s  z_~ .... 

Figure 3. Examples of possible placements of the inflectional elastica. Dots indicate 
jump discontinuities of the curvature and the solid and the dashed lines distinguish the 
two phases. 

the  d i scont inu i t i es  l ikewise  increases .  T h e  d i scont inu i t i es  on  the  set  of loops  lying 

b e l o w ( a b o v e )  the  x -ax i s  all fall  on the  ho r i zon ta l  l ine 

a r e l a t ion  which  fol lows i m m e d i a t e l y  f rom (3.6) e v a l u a t e d  at  the  po in t  of d iscon-  

t inui ty ,  e q u a t i o n  (1.6), and  the cond i t ion  y ( L ) = 0 .  E q u a t i o n  (4.16) a p p e a r s  to  

p r o v i d e  the  eas ies t  way  to d e t e r m i n e  the  i m p o r t a n t  cons tan t s  M *  and  M -  f rom 

e x p e r i m e n t .  In  the  sense  i nd i ca t ed  by  (4.16),  the discontinuity always forms so that 
M + (or M-), which depends on the constitutive equation alone, is the moment of the 
force R acting on the point of discontinuity. 
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We emphasize again that  all of the results of this section, since they are conse- 
quences of the energy integral and the condition of convexity, need not hold for weak 

relative minimizers of the total energy. Hence,  weak relative minimizers need not 
have only two discontinuities on each loop and need not lead to (4.16). In fact, 
examples of this kind are not difficult to construct. 

Case B. R < 0 

Analytically, the situation R < 0 is handled the same way as R > 0. As s decreases 
f rom L, 0 will increase until it reaches ,n-. In doing so, if R(cos 0 - c o s  0c) becomes 
equal to ~ before 0 reaches ~-, the loop being constructed will contain exactly two 
discontinuities. Again, simple relations like (4.16) emerge,  and if 0c is held fixed the 
discontinuities move apart  as R increases. In Figure 3 I have pictured placements  
derived f rom an even stored energy function so that the placements  for R > 0 can be 
obtained f rom those for R < 0  by the t ransformation s--~ L - s .  This conclusion 
follows directly f rom the energy integral and the observat ion that if W(.) is even the 
domain of convexity of W is symmetr ic  about  K = 0. 

A simple relation governs the appearance  of discontinuities. The analysis of Case 
A., when R > 0 ,  shows that a pair of discontinuities will first begin to appear  at the 
apex of each loop when (4.13) and (4.14) are simultaneously fulfilled, that is, when 

C if 0 ' ( - ) > 0  on that . loop,  
R ( 1 - c o s  0c )=  C if 0 ' ( - ) < 0  on that loop. (4.17) 

Two discontinuities will always be present  on a loop if = in (4.17) is replaced by > .  
If R < 0 (Case B) a pair of discontinuities will begin to form in each loop when 

/ C+ if 0 ' ( . ) > 0  on that loop, 
~ R  ~ 1 +cos  0L) = (4.18) t c -  if 0 ' ( . )<  0 on that loop. 

Again, if > replaces = in (4.18) then there will always be two discontinuities present  
on the appropr ia te  loops. 

Equations (4.17) and (4.18) have an easy consequence: if IRI <~C+(IR[  < ~ C  ) no 

discontinuities will appear on a loop of  positive(negative) curvatt~.re. 

The relations (4.17) (or (4.18)) and (4.16) are independent  consequences of the 
t h e o r y -  neither by itself can be derived f rom the other. Since both of these relations 
involve only overall forces, distances and constitutive parameters ,  they are easily 
made subject to exper iment  and provide an important  test for the theory. In Section 7 
I shall discuss the implications of these formulae in full detail. 

5. Postbuckling 

Having given a picture of all possible solutions of the energy integral (4.3) in the 
preceding section, we shall here seek those particular solutions which satisfy 

0(0) = 00 = 0. (5.1) 
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Among  these are the null solutions 

O(s)=--O (5.2) 

possible for any R. We  shall look for solutions containing only one half of a loop of the 
elastica, s0-called "first mode"  solutions. Owing to the results of the preceding 
section, these either satisfy (5.2) or have the proper ty  that O'(s) 7 ~ 0 on [0, L]. 1° Thus, 
excluding the null solutions (5.2) 0 is an invertible function of s on [0, L]. If there 
exists one of these non-null first mode  solutions 0(s) satisfying 0(0) = 0, then it must 
satisfy the energy integral 

f(6') = R(cos 0 - c o s  (iL), (5.3) 

which, because fi' is assumed to have one sign, may be rewritten 

0 ' =  k(R(cos  0 - c o s  6L)), (5.4) 

k being the inverse function of f restricted to either [a, a~*] U[a2*, 0] or [0,/3~*]U 
[/32",/3], depending upon the sign of the curvature on the particular loop under 
consideration. Referr ing to Figure 2 we see that k has a jump discontinuity at its 
a rgument  C + if k - - 0 ,  or at C -  if k-< 0. To  fix the discussion, we shall assume that 
0 ' >  0, so that k is the positive valued inverse of f. Since we have chosen K to have 
values only on the domain of convexity of W, (3.7) will be satisfied by ~. From (5.4), 

~'(s) 
k(R(cos  ~ - c o s  OL)) = 1, S ~[0, L], (5.5) 

which yields 

ios k(R(cos  0 ( ~ ) -  0L)) = S. (5.6) 

If we interpret  (5.6) as a Stieltjes integral, we may change variables ~ ~ ~ in (5.6) to 

obtain the identity 

Io ~ = s(~). (5.7) 
dO 

k(R(cos  0 -  cos 0c)) 

Equat ion (5.7) delivers an explicit representat ion for the inverse of the function ~(s). 
Conversely,  if s(6) is defined by (5.7) and if the paramete r  0~_ can be chosen so that 

Io °L 4o = (5.8) L, 
k(R(cos  0 -  cos OL)) 

then the inverse of s(~) is a solution of the energy integral (5.3) and the initial 
condition ~(0)= 0. Fur thermore ,  this inverse is strictly monotone  and its curvature 
lies on the domain of convexity of W. By our method of construction of this inverse, 
the conditions (3.28) will also be fulfilled. Thus, our method of construction will 
deliver a solution of the Euler  equation (3.6) and condition of convexity (3.7). 

10 Recall that we have sought solutions in which O'(s) is defined everywhere; O'(s) may be discontinuous at 
a single point for the "first mode" solutions. 
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Our study of "first mode"  (monotone) solutions of the Euler  equation, the 
condition of convexity and the initial condition (5.1) has been reduced to the study 

of (5.8). 
In (5.8) we view OL as a parameter  so adjusted that (5.8) holds for an assigned 

value L. It is quite possible that no such value 0~_ can be found for some values of L;  
to clarify the situation we change variables; 

toe --=½0E, tO ~-½0 (5.9) 

and rewrite (5.8) as 

fo *~ atO __L (5.10) 
k(R(sifi 2 t 0 t - s i n  2 tO) 2" 

Let  4~ be defined by 

sin tO 
sin q~- . (5.11) 

s i n  tOL ' 
/ 

assuming, of course, that 0 <  tOL < vr/2. The change of variables induced by (5.11) 
puts (5.10) in a form reminiscent of the Jacobian elliptic integrals: 

fo ~/2 sin 0L COS 4~ d4~ L (5.12) 
x / l - s i n 2  tOL sin 2 4~ k(2R(sin 2 tOz. cos 2 40) --~" 

The connection with elliptic functions is best illuminated if we define aa 

h(y) ~ k(y)" (5.13) 

After  the introduction of (5.3), the basic condition (5.12) becomes 

~fo~ /2h(2Rs in2 toECOS2ch)  dch L 
H(toE) =-- = -- 

~/1 -  sin 2 toL sinZ 4~ 2 
(5.14) 

in which I have denoted the left hand side by H(toL). 
Now we observe that 

h(0) = }i~m0 k~yY)= lim @ ~ ) -  lim 
~ 0  K K--~0 

~w2 ~+o(,, ~) 

= ( ½ W 2 )  1 /2 ,  (5.15) 

the constant w2 being defined by 

w2 = W ~  (0) > 0. (5.16) 

If we evaluate (5.14) in the limit as toL tends to zero, and use the elementary theory 

11 In the classical theory,  W = gb~ 2, g = const.,  the funct ion h is simply c 1/2. 
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of elliptic integrals [12], we obtain 

i f (  W2~ 1/2 
lim H ( 6 ~ ) =  2 \ 4 R ]  ' 

q~L ~--~0 

according to the same theory 

(5.17) 

lim H(OL) = ~. (5.18) 
~c --* -rr/2 

If H(-)  happens to be monotone  increasing, as it is in the clasical theory, then its 
smallest value is the right hand side of (5.17), and to each length L greater  than 

{ W2 ~ 1/2 
7r~--~j (5.19) 

there corresponds one and only one nontrivial solution q~L of (5.14). However ,  this 
will not always be the case, and in the generality embraced here we can only state 
that each length greater  than w ( w ~ / 4 R )  1/2 will produce at least one nontrivial 
solution. Equivalently, regarding the length as assigned, each force R greater  than 

wzw~ (5.20) 
4L 2 , 

will produce a nontrivial solution. The constant w2w2/4L 2 is the familiar Euler  
buckling load associated with the "f ixed-free" problem. 

Thus, the possibility is left open that there be nontrivial solutions corresponding to 
lengths less than (5.19), or equivalently, to loads less than the Euler  buckling load. 
This will be possible if H decreases near  0L = 0. Hence,  we are led to examine the 
derivative H'(~L)  when O~ is small. This derivative will certainly exist when ~c is 
sufficiently small, because h experiences a discontinuity only if its argument  equals 
C + > 0 .  By looking at this derivative in detail, we establish 

THEOREM 2. Let  W ( ~ )  be represented by 

W(~:) = ~:~;(n). (5.21) 

Then  

~K~ (5.22) 
h '(y) - 2 h K W ~  ' 

K being evaluated at k(y). I f  W e  C 3 n e a r  ~ = O, then 

W~K~ (0 ~ H'(0) > 0 
-- ~--0 

respectively. I f  ~,,~(~) >= 0 for ~ ~ (0, [3"~) ~ ([3"2, ~),  then 

H'(tpL) > 0, 0 <  0L < 7r/2; 

(5.23) 

(5.24) 
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that is, the convexity of ~ is a sufficient condition that H be strictly monotonically 
increasing. 

Finally, suppose that W e  C 4 near ~ =-0 and that WK~K(O)=0. Assume that 

W,,,,,,,, (0) < - ~  ~ . (5.25) 

Then H(tOL) is a strictly decreasing, function of ~O L for ~_ sufficiently small. 

A proof of this theorem is contained in the appendix. 

COROLLARY. I f  W(K) is even, then H'(O)= 0. 

The proof  of the corollary follows f rom (5.23)3; if W is even, then WKK~(0)= 0 SO 
that H ' (0)  = 0. 

We  have ment ioned above the possibility that abrupt  buckling occurs before the 
Euler  buckling load is reached. The theorem shows that this situation is indeed 
possible, even if the energy function is symmetric  about  ~ = 0. The test for this 
possibility is an easy one; we only need to check the simple condition (5,25). 

If the energy function were not even, we might expect this abrupt  kind of buckling 
to occur, but according to (5.25) it can also occur when W is even. In fact, (5.25) 
implies that if W~K~(O)<0, there is always a value of R such that H(.)  will decrease 
from zero. This value of R may have to be large, so that the length L associated with 
the bifurcation, that is, the length calculated f rom (5.19), is small. 

Away from q& = 0 the behavior  of H has not been determined,  except for the 
qualitative result (5.18). It  also can be easily shown that H is continuous and has a 
single discontinuity in its derivative when (4.17)1 is satisfied: 

R(1 - c o s  20~) = C +. (5.26) 

This condition, as before,  delivers the value of 0L at which a discontinuity of the 
curvature first forms at the base of the column. This discontinuity moves up the 
column as ~Ot~ is increased, and the region between the discontinuity and the base will 
be a region of large curvature (¢ ~[/3~*,/3]). If we had done the same analysis for 
¢_--<0, we would have found that H is smooth at ~ = 0. From these facts I have 
constructed the schematic bifurcation diagrams of Figure 4. The significance of the 
dotted lines shown has not yet been  explained, but will become apparent  in the next 
section. 

It  can be easily shown by an argument  based upon the appropr ia te  form of (4.16) 
that the discontinuity of H'(.)  can occur either on a monotone  decreasing branch of 
H(-),  or not. Of course, it is easiest in simple cases to numerically integrate (5.14) to 
determine this point of discontinuity. Therefore ,  it is possible to produce the 
solutions which buckle over  abruptly at loads below the Euler  load, and for which 
the buckled solution contains a region of the phase of large curvature. 

T h e o r e m  2 has an obvious counterpar t  for negative curvatures. 
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H 

a. W = KT.., ~ 
~:Z~_> 0 

b. W~:~.~ (0) < 0 

2 

2 

/ 
Ig,+ I~. 

2 

...__/ 
Iq~+ I.,. 

2 

C. 
2 

W ~  (0) = O, 

W , : ~  (0) < - W ~  (0) 2 / R. 

.,../ 
Iq,. t~r 

2 

Figure 4. Schematic bifurcation diagrams. A monotone 
placement corresponds to each solution 4'L of H(4,L)= 
L/2. H has a discontinuous derivative at q~- and 4~ +, 
these being the solutions of R(1-cos2q~+)=C +, 0< 
q~+<~r/2, and of R(1-cos2q~-)=C , -~r /2<q,-<0.  
~ ==-½0(L). 

6.  Stabi l i ty  

A l t h o u g h  the funct ions  ~ found  in the  p r e c e d i n g  sec t ion  are  so lu t ions  of the  E u l e r  

e q u a t i o n  (3.6) which  also fulfill the  cond i t i on  of convexi ty  (3.7), they  do  no t  all turn  

ou t  to  be  min imize r s  of the  to ta l  ene rgy  (1.10).  I p r o p o s e  in this sec t ion  to lay down  

sufficient cond i t ions  tha t  ce r ta in  of t h e m  be  s t rong  re la t ive  min imize r s  of the  to ta l  

ene rgy  ( T h e o r e m  3). 

Class ical  m e t h o d s  for  the  s tudy  of r e l a t ive  min imize r s  b a s e d  u p o n  the  w o r k  of 

We ie r s t r a s s ,  Jacob i ,  and  H i l b e r t  gene ra l ly  fai l  when  the  min imize r s  a re  no t  smoo th ,  

or  the  ene rgy  is no t  convex.  T h e  i m p o r t a n c e  and  sub t leness  of n o n c o n v e x  p r o b l e m s  
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were recognized later by Carath60dory [13] and Graves  [14], but  the thrust of their 
work was directed toward the parametr ic  p rob lem with fixed end points. Therefore ,  I 
have adopted another  procedure,  not wholly divorced f rom "field theory"  of the 
calculus of variations, but  which bypasses the construction of a field of extremals in 
favor of a direct approach based on the energy integral. 

I shall focus at tention upon the monotone  solutions ~(.), ~(0)= 0, obtained in the 
preceding section. Two results of a local nature can be deduced f rom the classical 
theory, which I state below without proof:  12 

(i) the straight solution ~=--0 is a strong relative minimizer of E[ .]  in the class 
~(0)  for loads R less than the Euler  buckling load w2zr2/4L 2, and 

(ii) the straight solution ceases to be even a weak relative minimizer for loads R 
greater  than the Euler  buckling load; there is always a function t o ~ o~(0), arbitrarily 

close to ~--=0 in the sense that ]tol and [to'[ are less than any given positive number ,  
for which E[to] < E[O]. 

The  mono tone  solutions 0 of the energy integral whose curvature lies on the 
domain of convexity of W satisfy (cf. equation (5.4)) 

~'(s) = k(R(cos  O -  cos 6L)), (6.1) 

k(y)  being the inverse of the function f ( ~ ) =  ~ W K -  W (cf. equat ion (4.2)), with ~ 
restricted to [0,/3~*]k3(/32",/3] for the solutions which buckle upward and with ~ 
restricted to [a, a~*]U(a2*, 0] for the ones which buckle downward.  To fix the 
discussion, we shall assume that k(.)>=0, and that R is greater  than the Euler  
buckling load so that (6.1) has a nontrivial solution ~(.). We shall silence the 
dependence  of the right hand side of (6.1) upon R and write 

K(O, Or_)-~ k(R(cos  0 - c o s  0~_)); (6.2) 

note that K is only defined f,or R(cos  0 - c o s  0 t ) > 0 .  

Let  0(-)~ @(0) be a compet i tor  for the minimum of E[-]. Suppose that O(s) 
satisfies 

rr>OL=O(L)>----lO(s) [ , s ~[0,  L]. (6.3) 

Since (6.3) implies that K(O(s), 0~_) is well defined, we may write 

Io E[O] = {W(O'(s)) + R cos O(s)} ds 

Io = {W(O'(s)) - W(K(O(s) ,  Or~))-[O'(s) - K ( O ( s ) ,  Or~)]WK(K(O(s), OL)) 

+ [0'(s) - K(O(s), 0~_)] W~ (K(O(s), OL)) 

+ R cos O(s) + W(K(O(s) ,  0c))} ds 

= ~g(O'(s), K(O(s), 0L)) ds + a [ 0 ] ,  (6.4) 

12 In the usual proofs of these results, it must also be assumed that We C~.~ 1. This remark does not apply 
to Theorem 3. 
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in which the Weierstrass excess function ~(-, .) is defined by 

~(b, a)~- W(b)- W(a) - (b -  a) W~(a), (6.5) 

and A[-] is the functional 

A[q~] =-I,~c{[6'(s)--K(4,(s), 4,L)JW~(K(4,(S), ~L)) 

+ R  cos b ( s )+  W(K(4(s), ~L))} ds. (6.6) 

A[O] is well defined for functions O(s) which satisfy (6.3). By virtue of (3.8) and the 
fact that K has values only on the domain of convexity of W we have 

~(0'(s), K(O(s), OL)) ~ O. (6.7) 

Also, since ~ is monotone and satisfies (6.1), 

A[6] = E[0]. (6.8) 

We shall show that A[~],  while it appears to be a functional of G actually depends 
solely as a function upon 6~. That is, since k is the inverse of f, then by (6.2) and 
(4.2), 

K(O, ~ )  W~(K(O, ~ ) ) -  W(K(~, ~ ) ) =  R(cos 6 - c o s  6~)- (6.9) 

Thus, (6.6) can be written 

A[@]= {~'(s)W~(g(~(s), @~))+R cos ~ }  ds, (6.10) 

or equivalently, 

~o ~ A [ + ] =  W~(K(~, ~)) d~+RL cos +z. (6.11) 

Equation (6.11) shows that A[+] is equal to a certain function of +~, which we shall 
denote by a(+c): 

~o ~ A [ + I =  a(+~) ~ W~(g(~, ~ ) )  a ~ + R C  cos +~. (6.~2) 

The function of a(-) is continuous because K is continuous except when its value 
equals ~ or ~ ,  but W ~ ( ~ ) =  W~(~) .  It is also differentiable except possibly at the 
single point where 

0c = arccos ( 1 - ~ )  . (6.13) 

We wish to show that a(.) has a minimum value at Oc = ~ .  By differentiating (6.9) 
with respect to +c, we derive that 

OK 
W~(K(O, ~))  ~ g(o, +c) = R sin O~, (6.14) 
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which permits us to write the derivative of (6.12) in the following way: 

da _ WK (g(t)L, tOc))+ R sin tO c L 
d~b~ K(/x, ~ )  

= R  sin O~ g ( ~ ,  Oc) L . (6.15) 

But (6.15)2 is simply 

(1 L) da _ 2(R sin 0c) H ( s t h c ) - 5  ' (6.16) 
d4,~ 

and from the results of Section 5 (summarized by the bifurcation diagrams of Figure 
4), we deduce that 

da 
- 0  when ~bL = ~ ,  (6.17) 

dq~ 

If H is monotonically increasing on a neighborhood of OL, then a has a minimum at 
tbL = ~ .  Thus, if H is monotonically increasing on a neighborhood of ~, 

A[O]>=A[~]=E[O], OL near ~L, (6.18) 

so (6.4) becomes 

Io E[O]-E[~]>= g(O'(s), K(O(s), 0~)) ds>=O, (6.19) 

whence 

LEMMA 3. Let ~(s) be a monotone solution of the energy integral (6.1) with k 
restricted to have values on the domain of convexity of W. Suppose the function H(tOL ) 
defined by (5.14) is monotone increasing (decreasing) in a neighborhood Ac -~ [½ ~ - a, 
½~L + b], a, b > 0, of ½Oc > 0 (<0). Let O(s) ~ ~;(0) satisfy the condition 

~>o,~>=lo(s)l ( - ~ <  0~ _<-I0(s)l), s~[O,L; (6.20) 

and assume that 

0L ~ .  (6.21) 

Then, 

E[~]<=E[O]. (6.22) 

Lemma 3 states simply that the "first mode"  solutions are minimizers with respect 
to functions 0(-) whose terminal values satisfy (6.20) and (6.21). The assumption 
(6.21) is necessary for the proof, but (6.20) is actually not essential. To see this, let 
0 ~ @(0) be a competi tor  and assume 

7r > 0m = max I o(s)l = 0(~) > 0. (6.23) 
[0,L] 
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Of course O(s) may not satisfy (6.20), but the function 

~ = { O(s) s ~ [0, ~] (6.24) 
0~ s ~ (g, L],  

does satisfy (6.20). Since cos O(s) >= cos ~(s), s ~ [0, L], and W(0) = 0, then for R > 0, 

E[O]-E[~]= {W(O'(s))+ R(cos 0 ( s ) - c o s  ~(s))} ds. 

=>0. (6.25) 

Thus we can evidently weaken (6.20), and we summarize the improved result below. 

THEOREM 3. Let ~(s) be a monotone solution of the energy integral with k restricted 
to have values on the domain of convexity of W. Suppose the function H(tOL) defined 
by (5.14) is monotone increasing (decreasing) in a neighborhood W==- 
(½OL -- a, ½OL + b), a, b > O, of }6r > 0 (<0). Let O(s) ~ g~(O) satisfy the condition 

max O(s) ~ W (min O(s) e ~ ) .  (6.26) 
[0,L] [0,L] 

Then, 

E[6]<_--~[0]. (6.27) 

The theorem implies that the monotone  solutions ~ 0 of the energy integral are 
strong relative minimizers of the total energy if H is monotone increasing, when 
0'_-- > 0, or monotone  decreasing, when ~'_--< 0, but the theorem has global implications 
as well. In particular, if W = KE is an even function and ~ >= 0 whenever ~ belongs 
to the domain of convexity of W, then each of the two possible monotone solutions is a 
global minimizer. That  is, if ~NKK >= 0 on the domain of convexity of W, Theorem 2 
shows that H is monotone  increasing when its argument is positive. Theorem 3 then 
shows that ~(-) is a minimizer relative to functions 0(-) for which O(L)> 0; but since 
W is even ~(.) has the same total energy as -~(-) ,  which by the same argument has 
"less total energy than all 0(') with 0 ( L ) < 0 .  Thus ~(') and -~(- )  are global 
minimizers, proving the assertion. 

7. Discussion 

While Theorem 3 clarified the status of the first mode solutions whose half terminal 
angles lie on a monotone  increasing branch of H (cf. (5.14) and Figure 4), other 
possibilities are left open. If H(tOc) decreases fo;  tOc > 0 and q~c small, then there will 
be nonstraight solutions with lengths less than the length corresponding to the Euler  
buckling load. The straight solution is a strong relative minimizer for lengths less 
than the Euler  length, but the classical theorem which delivers that result gives no 
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information about  the size of the neighborhood in which the straight solution is a 
minimizer.  Therefore ,  without deeper  analysis we cannot deduce anything about  
solutions of the energy integral whose half terminal angles ~b L - ~ -~0L lie on monotone  
decreasing branches of H(-).  I conjecture that they are not strong relative minimizers 
of the total energy. 

I wish to emphasize again that the phenomenon  of abrupt  buckling at loads below 
the Euler  buckling load is not necessarily connected with the failure of convexity of 
the stored energy, al though it can be accompanied by the presence of a new phase if 
the energy does lose convexity. To  have a positive Euler  buckling load, we must 
assume W ~  ( 0 ) >  0. If W ~  (0)=  0, the question of abrupt  buckling below the Euler  
load is meaningless, since only the straight solution is possible for R < 0 .  The 
inequality WKK~(0)~0 or the inequality W~KK~(O)<-W~(O)2/R (cf. Theo rem 2) is 
sufficient that there shall be a nontrivial solution of the Euler  equation which also 
fulfills the condition of convexity for loads below the Euler  buckling load. These 
inequalities place no restriction upon the domain of convexity W. 

It is common to obtain the moment -curva ture  relation by comparison with the 
solution in linear elasticity for pure bending, and to assert that the resulting relation 
(M(~) = ElK; E = extensional modulus;  I = the appropr ia te  momen t  of inertia) rep- 
resents well the behavior  of a thin rod for small values of the curvature. This 
constitutive equat ion does not permit  abrupt  buckling at loads below the Euler  
buckling load. That  is, if M(K)=EI~  then W(~)=½EI~ 2 so that WK~(0)= 
W ~ ( 0 ) = 0 ;  in fact, based on this constitutive equation, H(Ot )  is monotone  
increasing for tOc > 0 and is even. Since the analysis of Theorem 2 was carried out 
under  the restriction of arbitrarily small curvature,  the observation just made 
provides another  example of a phenomenon  for which the deformat ion is arbitrarily 
small, but the linear theory is misleading. 

For the purpose of the design of structures to prevent  abrupt  buckling at or below 
the Euler  load, one should avoid materials for which W ~ ( 0 ) ¢  0 or W ~ ( 0 ) <  

- W~K(O)/R 2. It  is best to insure that H(.)  has a strict minimum at tOc = 0; this will be 
true if ~ => 0, whenever  ~ belongs to the domain of convexity of W (cf. Theo rem 
2). If "fai lure" attr ibuted to the presence of new phases is to be avoided, it is best to 
choose materials for which M + and - M -  are as large as possible. Suppose for 
simplicity that  M = M + = - M - .  Since the m o m e n t  of the applied force acting on the 
point of discontinuity at least for strong relative minimizers is M, the deflection of 
the elastica (that is, ] y ( L ) - y ( 0 ) l  ) which must  be reached to just produce a new phase 
will increase linearly with M. 

If one tries to obtain the stored energy function f rom experiment,  one quickly 
encounters  a delicate p rob lem underlying the connection of theory and experiment.  
In practice the exper iment  is not difficult to carry out; we simply apply moments  to 
the ends of a rod and measure  the radius of the circular configuration, or the two 
different radii of the smoothly joined circular arcs, which the rod assumes. Solutions 
of this kind have been analyzed in detail in [1]. The moment-curva t ion  relation 
obtained in this way will be defined on three disconnected sets, since, referring to 
Figure 1, the relation restricted to the intervals [a~, a2] and [/3x,/3~] can never  be  
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obtained by a static experiment.  3-his is, if 

I0 E [ 0 ] =  W(O'(s)) ds+2g (7.1) 

~ being the expression for the er~ergy of any loading device which depends on the 
values of 0 in an arbitrarily small neighborhood of s = 0 and s = L, then a necessary 
condition that 0(-) be a weak relative minimizer of (7.1) is W~K(O'(s))>=O a.e. 
In terpre ted  in the usual way, this result indicates the instability of placements with 
curvatures on a falling port ion of the moment -curva ture  relation. I do not assert that 
the moment -curva ture  relation cannot be determined in this "unstable region" in 
any way whatsoever.  Constitutive relations can come from molecular  theory, and 
statically unstable solutions can be taken on by dynamic solutions at certain isolated 

values of the time. But, typically, the moment -curva ture  relation will come f rom a 
static experiment ,  and since it will be defined on three disconnected intervals, three 
constants of integration will be needed to obtain the stored energy function on the 
same three intervals. One of these constants is unimportant  since all results of the 
static theory are invariant under  the t ransformation W---~ W +  const.; I have avoided 
this inconvenience by putting W(0)=  0 in (1.11). %he other two constants can be 
evaluated by the relations 

W(t~* ) = W(~ ~*) + M+( t~  * -  t~*) 

W(c~2*) = W(c~*)+M (c~z*- c~*), (7.2) 

i[ the values M + and M -  are known. Of course, naively, these constants can be 
obtained f rom any strong relative minimizer by measurement  of the applied force on 
the point of discontinuity (cf. (4.16)). But herein lies the difficulty. If what I have 
seen of such experiments  is not the solitary exception, it is difficult to decide whether  
a solution is indeed "s table"  (a strong relative minimizer) or just "metas tab le"  (a 
weak relative minimizer). Sometimes a deformed configuration which appears  stable 
will change its shape when excited by ultrasonic vibrations. ~fhe effect seems to 
depend not on the frequency but on the amplitude of the vibrations, a fact which 
indicates that the apparent ly stable configuration corresponds to a weak relative 
minimizer. 

I have focussed attention upon the strong relative minimizers in this paper  because 
they are easy to classify and because they are more  stable than the weak relative 
minimizers, granted the usual interpretation of the theory. There  is a huge class of 
weak relative minimizers; typically, if there is a single weak relative minimizer in the 
postbuckling problem, there are infinitely many  others. They need not have a finite 
number  of discontinuities of the curvature,  need not satisfy the energy integral; the 
momen t  acting on a point of discontinuity need not be M + or M - .  On the other 
hand, weak relative minimizers may have several co-existent phases at zero applied 
force and moment ,  even if M - <  0 <  M +. If configurations corresponding to weak 
relative minimizers are the ones actually observed,  theory would indicate a decided 
lack of reproducibility of experiments.  
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Appendix 

Proof  o f  Theorem  2. L e t  W(K)  = K~;(K). B y  s t r a igh t  f o r w a r d  c a l c u l a t i o n  

( ~ ' ~ '  = 1 (k~y~ 
h ' ( y )  \ k ( y ) /  y l / Z k ( y ) 2 \ - -  ~ -  y k ' ( y ) ]  

1 (k(y) f(k(y))~ 
= y,/Zk(y)~ \- ~ ~ / "  

H o w e v e r ,  

f ( ~ )  = K W ~  - w = ,~ ~Y_,,~, 

(A .1 )  

(A .2 )  
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so that 

K K 3 

~f~ =-~- £~K + f. (A.3) 

Alternatively, 

f~ = ~W~.  (A.4) 

By substituting first (A.3), and then (A.4), into (A.1) we obtain 

h'(y) - ~K~ (k(y)) 2h(y)k(y) W~K(k(y)) ' (A.5) 

which proves (5.22). Now, 

l f~/2{.h'(2Rsin21~cos2~)4Rsintzcostzcos~ ~ 
H' ( /~ ) -  (2R)~/2 ~0 ( 1 -  sin ~/z sin 2 ~)~/2 

(A.6) 
h(2R sin 2/z cos 2 0) sin/z cos/~ sin 2 0} q 

( 1 -  sin 2/z sin 2 0) 3/2 d0 

The second term under the integral sign is positive for 0 < /z  < ~-/2, and according to 
(A.5) the first term is positive if £~K > 0, ~ ~ (0, a*~) U (a2*, a).  This proves (5.24). 

By differentiation of (5.21) under the assumption that W e  C 3 near ~ = 0, we see 
that 

W~K = K£K~K + 3 ~  (A.7) 

so that 

W ~  (0) = 3EK~ (0). (A.8) 

As p. tends to zero, the second term of (A.6) also tends to zero; by use of (A.5) the 
first term becomes 

1 f ~/2 EK,(k(y))2R sin/z cos/z cos 2 0 
(2R) ~/2 [~0 h(y)k(y)W~(k(y))(1-sin 2/~ sin 2 0) ~/2 dO. (A.9) 

y = 2 R  s i n  2 / z  c o s  2 ~ 

As /~ tends to zero, the argument y in (A.9) tends uniformly to zero and 

wK~ - ~  w ~  (0) = w~ > o, 

h(y)--~(½w2) ~/~, as /x-+0.  (A.10) 

( 1 - s i n  2/x sin 2 0)~/2 ---> 1. 

Thus, the  existence and sign of the limit of (A.9) as/x -+ 0 depends on the existence 
and sign of the limit of 

£~(k(Y))k(y) sin/x y=2Rsina/*cos20 (A.11) 
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as /x-~ 0. However ,  k(y) has the expansion 

~ Y '~/~ 
k(y)=\½w2+o(1)] , o(1)--~0 as y---~0, (A.12) 

which is simply the inverse of the expansion for f(K). Thus, (A.11) becomes 

E~ (k(y))(~wz + o(1)) a/z [ 
~ ~  - -  , ( A . 1 3 )  
(2R) cos @ ~ y = ~ i ~ o ~ ¢  

and for ~ small its sign is the same as the sign of E~(0) .  If we put (A.13) back into 
(A.9), the conditions (5.23) emerge. 

It remains to prove (5.25). We suppose W ~ ( 0 ) =  0 from which it follows that 
H'(0) = 0, and we examine closely (A.6) when ~ is small, but positive. Since the 
second term of (A.6) is positive, we can bound H '  in the following way: 

, 1 C ~/~f 

h(y) sin2 0] c o s ~  s i n ~  }d~ ,  (A.14) 
~ 1 ~ ~ y=2Rsin2~cos2O 

in which e = s i n  a ~. Because W ~ ( 0 ) = 0  and W ~ C  4 near ~ = 0 ,  we may write 

E~(~) = ~ + o(~); (A.15) 

here 

~ E ~ ( 0 ) - ~  - ~ W ~ ( 0 ) .  (A.16) 

The square bracketed term in (A.14) determines the sign of H ' (~ )  when ~ is small. 
By use of (A.5) and (A.16) we may write it as 

~ + 2R cos: 0 h 
~ sin 2 • (A.17) 

hW ~ 1 - e  

All of the terms of (A.17) have uniform limits as ~ ~ 0 except cos 2 ~ and sin: ~, but 
these yield equal values when integrated from zero to w/2. Hence,  H ' (~ )  will be 
negative when ~ is small if 

-h(0)~W~(0) 
~ <  2R ' (A.18) 

i.e., if 

-w~  
W ~  (0) < (A.19) 

R 


