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Abstract

We present a new approach to magnetostriction that is formulated to describe mate-

rials with large magnetostriction. The main idea of the theory is to derive precisely from

lattice considerations the potential wells of the anisotropy energy. The theory exhibits

frustration in the sense explored by the authors in the rigid case (James and Kinderlehrer

[1990]), with fine domains modeled by minimizing sequences. The theory is applied to the

material TbxDyi-xFe2. The theory predicts accurately the domain structures observed

by Lord[1990] in growth twinned crystals, and suggests a mechanism of magnetostriction

involving a switch from a coarse domain structure to a different finer domain structure.



1. Introduction

In this paper we present a new theory of magnetostriction that is particularly well-

suited for predicting the microstructure and domain structure of materials that undergo

large magnetostriction. We apply the theory to the material TbxDy\-xFe2(x == 0.3), the

material that undergoes the largest known magnetostrictive strain at room temperature.

For this material we give detailed predictions of the microstructure that minimizes the

energy appropriate to a growth-twinned specimen, and we discuss the implications for the

macroscopic behavior of a specimen.

The energy that we write down for TbxD\j\-xFt2 exhibits frustration in the sense

explored by the authors in an earlier paper [1990]. That is, the minimum value of the energy

is not generally attained. This means that there is no deformation or magnetization that

minimizes the total energy, but there are sequences of deformations and magnetizations

(y(*), m ^ ) , k = 1,2,3... that drive the total energy to its smallest value as k —• oo. Our

point of view in this situation is to study these minimizing sequences and to interpret them

as representing the fine microstructures observed in magnetostrictive materials. This kind

of theory is appropriate for large bodies, as discussed by DeSimone [1992]. The fact that a

sequence is a minimizing sequence is a strong restriction on the nature of its oscillations,

which can be quantified by the use of Young measures and H-measures (see James and

Kinderlehrer [1989,1990,1991], Tartar [1990,1991], DeSimone [1992]; Ball [1989], Ball and

James [1992], Bhattacharya [1991], Chipot and Kinderlehrer [1988], Gerard [1992], James

and Miiller [1992], Kinderlehrer and Pedregal [1991], Kohn [1991] Pedregal [1992]). In the

present paper, in order to make the treatment accessible to a wide audience, we deal with

the sequences directly and suppress some technical arguments.

Our main idea in formulating the theory is to focus on the potential wells of the en-

ergy. We think that this approach brings a simplicity to the subject that is not obvious

in approaches that involve large numbers of magnetoelastic constants and their associated

symmetry restrictions. For many aspects of the behavior of TbxDy\-xFe2 most of these
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constants are not essential. The important constants are those that determine the poten-

tial wells, so we forget about the constants altogether and focus our effort on a precise

specification of these wells. For aspects of domain structure near saturation, we would

need to know more than the locations of the potential wells.

The basic theory is given in Sections 1-3 and summarized in Section 4. Readers mainly

interested in applications of the theory to TbxDy\^xFe2 can pass to Section 4, then to

Remark 5.6 and then on to Section 6.

The specification of the theory for TbxDy\^xFe2 owes much to the interpretations

of micrographs of Lord [1990,1992] and to discussions with Savage [1990,1992]. We have

essentially taken the deformations and magnetizations observed by Lord and assigned them

as minimizers of the anisotropy energy. The full potential-well structure is then determined

by the basic theory. The theory for TbxDy\-xFe2 turns out to have some features in

common with a theory for martensitic transformations specialized to a cubic-to-trigonal

transformation (Section 6a).

We show that the theory (specialized to TbxDy\~xFe2) admits lamellar minimizing

sequences with interfaces on {100} and {110}; both of these kinds of laminates axe ob-

served by Lord tt ah [1988]. The theory as given is appropriate for a single crystal. We

rewrite the energy in Section 6c for a crystal with growth twins on (111), since nearly all

specimens of TbxD\j\-xFt2 have these twins. We model the growth twinned crystal as a

coherent composite, and we study its minimizing sequences. We do a complete analysis of

all minimizing sequences which are lamellar above and below the growth twin boundary

(Sections 6d,e). We find a variety of such sequences, some of which agree accurately with

Lord's photomicrograph (Figure 6). Among these sequences we find some that exhibit

exact compatibility, or attainment, in the terminology given above.

All of these minimizing sequences found for the growth twinned crystal have a free

parameter 7 € [0,1], which represents the volume fraction of one of the variants. We

calculate in Section 6g the macroscopic strain of a rod oriented along [—211] for all of the
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minimizing sequences. As 7 passes from 0 to 1, the theory says that the growth twinned

rod experiences a macroscopic uniaxial strain that is approximately 8/9 of the theoretical

maximum. However, the maximum strain is not achieved by all of the laminates and, in

particular, the attained minima do not achieve maximum magnetostriction. Going beyond

the theory, we are led to speculate on a mechanism for magnetostriction that involves a

switch from attained minima to minimizing sequences (Section 6g). Our mechanism is

related to, but different from, the "A-jumping11 of Clark, Teter and McMasters [1988].

The theory highlights two features of the potential well structure of TbxDyi-xFe2.

The first is that for minimizing sequences under no applied field, the magnetic domain

structure does not have to be much finer than the wavelength of oscillations of distortion.

This is explained in Remark 5.4 and the conditons for this to be possible are given in Lemma

6.1. The second feature is that the growth twin planes happen to exactly coincide with

planes on which lamellar microstructures can be compatible and, moreover, some of these

lamellar microstructures yield a magnetostrictive strain that is very near the theoretical

maximum. For this reason we conclude that there will be minimal benefits, with regard to

actuator applications, in trying to remove the growth twins in this alloy. On the contrary,

our calculations suggest that improvements in large amplitute actuator performance will

be gained by trying to eliminate waviness of the growth twin boundaries.

1. Lattice considerations

The form of our energy will be based on a simple and classical lattice picture. A

magnetic Bravais lattice is a pair L(e,-,d) consisting of an infinite set of points

L(e{) = {x € R3 : x = j/e t , uk £ Z, A: = 1,2,3}

determined by the three lattice vectors {ei, e2, e$} together with a magnetic dipole field

d : £(e,-) -> R3.
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Here Z represents the integers and the summation convention is used. As is typical of

studies of micromagnetics, we ignore fluctuations of the lattice positions and dipoles asso-

ciated with nonzero temperature. We regard this as being sufficient to suggest the forms

of the terms in the energy and their symmetry restrictions.

The symmetry of a magnetic Bravais lattice is normally treated in the context of point

group and time reversal symmetry. The usual treatment is described in terms of linear con-

stitutive relations and is not sufficient for our purpose of treating large magnetostriction.

Also, there is not universal agreement on the transformation laws under a time reversal.

In Pauli's treatment of the spin of an electron a time reversal in the time-dependent
Schrodinger equation does not affect charge, whereas the electronic spin is reversed.
These transformation laws are consistent with the effect of a time reversal in Maxwell's
equations if we transform p —> /?, d —• d, h —•> — h, b —> —b, e —* e, where p is
the charge, d is the electric displacement, h is the magnetic field, b is the magnetic
induction and e is the electric field. Equally valid, from the point of view of Maxwell's
equations, are the transformation laws p —• ~/9, d —? "~d, h —> h, b —• b, and
e —• —e under a time reversal. The former point of view, combined with the idea
that in equilibrium a quantity and its transform under a time reversal have the same
free energy, implies that certain property tensors vanish, leading to various forbidden
effects (Birss [1964]). The argument against the conventional viewpoint, mentioned to
us by Jerry Ericksen, are the existence of certain materials that exhibit these forbidden
effects and prejudices that Maxwell's equations should be transformed according to the
second set of rules above. This prejudice stems from the assumption that the four-
dimensional formulation of electromagnetism (e.g., Truesdell and Toupin [I960]) should
be invariant under tensor transformations of space-time, together with the universally
accepted assumption that b is an axial vector. Putting these together, it is found
that under a time reversal b —• b. For these reasons we adopt in this paper the
unconventional viewpoint that free energy functions are not necessarily invariant under
the transformation m —> — m.

This issue does not affect the calculations in this paper concerning our application

to TbxDy\-xFt2, because our calculations on TbxDy\^xFt2 only make use of the energy

wells of the free energy function, and these energy wells are necessarily invariant under

the transformation m —• — m by virture of the special symmetries of this alloy. However,

for the behavior oiTbxDy\-xFt2 under large stress, this point could conceivably become

relevant.



Linear transformations of the magnetic Bravais lattice will be sufficient for our pur-

poses. Adopting the viewpoint expressed above for time reversals, we say that the linear

transformation G € L(R3,R3) belongs to the magnetic lattice group G(L, d) of the mag-

netic Bravais lattice (L, d) if there is a c € R3 such that

L = GL + c, d(Gx + c) = d(x) V x € l . (2.3)

The presence of c permits translations of the lattice whicli may be necessary to bring the

dipoles into coincidence (The necessity of introducing c can be appreciated by considering

a BCC lattice with d = (100) at body centers and d = (-100) at the body corners).

Suppose L = L(e,) for some lattice vectors {e,} . It is easily seen that (2.3)i is satisfied

if and only if c is of the form n*ei for integers n% and then that (2.3)i is equivalent to the

statement

L = GL. (2.4)

The general solution of (2.4) is given by a classical theorem of crystallography (e.g.,

Ericksen [1977]) which states that for a Bravais lattice L = £(e,-),

L = GL & Ge* = fi]ej where /r- are integers and det /z = ±1. (2.5)

The group specified by (2.5) is too large to serve as an invariance group for the free

energy, as it includes the large shears associated with plasticity. Our constitutive equations

will not be appropriate for plastic deformations. This issue has been confronted during the

development of recent theories of martensitic transformations (cf. Ball and James [1992])

and has been resolved by a theorem due to Ericksen [1980] and Pitteri [1984] (for a slight

generalization of this theorem see Ball and James [1992], Theorem 2.4). To state the result,

we use the notation QN for the set (Qf,, Qf2, Qf3), Q G 0(3), {ft} € N, N being a set

of vector-triples, whereas we denote by fi[N] the set of all vector-triples of the form ji{fj

where fi\ is a 3x3 matrix. The theorem says that given any triple of lattice vectors {e,}
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there is a bounded open neighborhood iV(et) of {e,} in the space of all vector-triples with

the properties

Nl N is frame-indifferent: QN = N V Q € 0(3),

N2 For each ft € G := lv{ € M3x3 : i/f are integers and det 1/ = ± l | ,

/i[JNT] = Nor n[N) DN = <f>,

N3 If /x € G satisfies /i[JV] = JV, then /i^e,- = Qe, for some Q 6 0(3).

Here, 0(3) := {Q € M3x3 : QTQ = l} is the group of orthogonal matrices. Briefly, this

theorem says that the neighborhood N(ei) is frame-indifferent and invariant under the

point group of the "central" lattice vectors {e,}, and also that any symmetry transfor-

mation for the lattice not in the point group of {e,} maps the neighborhood far away.

The neighborhood will provide a domain for the free energy with a consistent and finite

symmetry group. We note that the point group P(e,) of the lattice X(e,) is the set

(2.6)

The point group is a property of the lattice, as indicated by the terminology, i.e., two sets

of lattice vectors that generate the same lattice give the same point group.

3. Symmetry restrictions and the passage to continuum theory

In passing from the lattice picture to a continuum theory, we first consider the dipole

field d : i (e t ) —> R3. In the classical framework the magnetization arises as a volume aver-

age of the dipole field over a sphere that is small relative to the wavelength of oscillations

of d and large relative to the lattice spacing (Lorentz [1909]). This calculation has been

examined recently by James and Muller [1992]. Adapting that treatment, we consider a

family of scaled lattices X7 := L(7e,), 7 > 0, defined for a fixed set of lattice vectors {e,}.

Let

tf:={re,-:0<r<l, * = 1,2,3} (3.1)
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be the unit cell of the 1-lattice L\. We identify macroscopic quantities as limits of corre-

sponding lattice quantities as 7 —* 0. We assume that for each 7 > 0 there is a dipole field

d 7 : Ly —> R3 and a given background field m € L2(R3,R3) with support on a bounded

open set ft' such that

d7(y)= J m(z)dz, y€X7. (3.2)

We identify m as the (macroscopic) magnetization and ft' as some deformed configuration

of the body.

More generally, we could allow m to depend on 7 in the formula (3.2), as long as we
assume that m 7 —> m in «L2(R3,R3). In this case we identify the limit m as the
magnetization and note that the expression (3.6) for the limiting energy continues to
be valid (James and Muller [1992]).

We caution that the assumption of strong convergence of m^ forbids oscillations on the
scale of the lattice that would occur with extremely fine magnetic domains (such as in
ferrimagnetism). Oscillations on the scale of the lattice can be modeled by expressions
of the form m 7 (x) = mo(x/7)^>(x), where m 0 is say a periodic function on R3 and ip
has compact support on ft', and correspond to weak convergence of m 7 . Expressions
for the macroscopic energy in such cases are given by James and Muller [1992] and differ
from (3.5).

The expression for the total energy of the dipoles is obtained by summing the work

done in bringing each dipole dT(x) from 00 to a point x on the lattice Z,7. This gives

(Brown [1962,1963], Toupin [1956]) the energy

<Mx)-K(x-y)d7(y), (3.3)

Here, d7 is given by (3.2) and we interpret the limiting value of e7 as 7 —* 0 as the

macroscopic field energy. This limit is (James and Muller [1992])

If 1
e7 -> o / r ~ m ( y ) ' h(y) + m(y) • Sm(y) + -|m(y)|2]rfy (3.5)

£ J o



and this agrees with the classical formula (Brown [1962,1963]). Here, h = —Vu is the

unique solution (in L2 (R3, R3), see James and Kinderlehrer [1990]) of the equations

h = - Viz, div(h + m) = 0, (3.6)

and S = S(ej) is a spatially constant symmetric matrix that depends on the lattice vectors

only, i.e., it does not depend on the arrangement of dipoles on the lattice. We shall use

the expression on the right hand side of (3.5) for the field energy. In this expression h is

determined from m by the equations (3.6).

Turning to the anisotropy energy, we consider a fixed Bravais lattice L°, termed the

reference lattice, which is interpreted as the undistorted crystal at the Curie temperature

0C. Let L° = I/(e?) for some lattice vectors {e?}. The lattice vectors {e?} determine

an Ericksen-Pitteri neighborhood N° := N(e°t) C (R3)3 satisfying properties Nl, N2, N3

listed at the end of Section 2. Let M C (R3)3 x R3 x R be a set with the property

{(e,-, m, 6)€M: (m,0) are fixed} = {JV°,in,0} . (3.7)

The assumption (3.7) is formulated to allow for a variety of constraints on the magne-

tization m which would model magnetic saturation. We assume M is objective in the

sense that if {et, m, 0} € M then so does {Ret, Rm, 6} for all R G 50(3). Here,

50(3) := {R € 0(3) : det R = +1} is the group of 3 x 3 rotation matrices. We dis-

cuss such constraints at the end of this section. We assume the existence of a function

if : M —> R with the interpretation that

£(e,-, m, B) (3.8)

represents the free energy per unit volume of a lattice L(ei) with magnetization m at

temperature 6.

In (3.8) we have mixed macroscopic quantities m and 0 with the lattice scale quantity
{e,}. In an expanded treatment, we would consider a family of reference lattices £° :=
"fL° and deformations of these lattices y : L° —> R3, by analogy with the discussion of
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dipoles above. Accounting for short range interactions between atoms, we would then

pass to the limit 7 —• 0 to get the internal energy. The temperature dependence might

then be treated by statistical mechanics, using a model that allowed small vibrations of

atoms and dipoles. Lacking good molecular models of magnetostrictive materials, we

are unable to carry out these calculations.

On the other hand, rudimentary calculations of this type do give the form (3.8). We

are able to specify details of the form of Kp by phenomenological considerations, as

described below. As in the discussion of the energy of a lattice of dipoles, if we allow

the deformation to depend on 7, y 7 : L^ —> R3, which would be necessary to treat

oscillations of deformation on the scale of the lattice, then we would not get (3.8).

Having adopted (3.8), it is clear how to proceed. Any reasonable molecular model

will have the property that the dipole moments and the lattice vectors will transform

as objective vectors under a change of frame. Hence, the principle of material frame-

indifference states that

£ ( Q e n Qm, 0) = £(e,-, 111, 0) V Q € 50(3), V(ef, m, 0) e M. (3.9)

The restriction (3.9) makes sense because S0(3)N° = N° by Nl and because M has been

assumed to be objective. Also, the free energy at a given temperature should only depend

on the lattice and the dipole field on that lattice. Hence, if two sets of lattice vectors

generate the same lattice via (2.1), then the free energy should be the same, so long as we

leave the dipole field unchanged. This gives the restriction

£>(et-, m, 0) =£>(£,•, m, 0), whenever

(e,-, m, 0) and (e t, m, 0) belong to M and (3.10)

e, = ^ e , ; for some /u € G.

Note that the domain of the dipole field is L(e{) wliich by (3.10) is the same as £(&,-);

hence, it makes sense to keep the magnetization the same in (3.10) (c/. (2.2)).

We shall pass to continuum theory by using the Cauchy-Born rule. This seems to be

adequate for TbDyFe2 and works well in the analogous case of martensitic transformations

(c/. Ball and James [1992]). Arguing formally, we consider a bounded open set fi that
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we interpret as the imdistorted crystal at 8C. Deformations of Q, are given by functions

y : fi -+ R3, with gradient F = Vy(x).

We define for (Fe?, m, 8) € M,

<p(F,m,6) :=£(Fe?, m, B) det F,

/ ~ x ( 3 - n )
(=v?(Fe?,Fe^FeS, m, 0)detFj.

Here the factor det F serves to make <p the free energy per unit volume in 17. The Cauchy-

Born rule states that the free energy of continuum mechanics is given by

), m(y(x)), 0) dx. (3.12)
17

We obtain the total free energy by adding (3.12) to the field energy given by the right

hand side of (3.5).

The free energy <^(F, m, 6) inherits certain properties from (3.9), (3.10). First we

note that by (3.11) <p is defined on the domain M, where

M := {(F, m, 0) € M3x3 x R3 x R : (Fe°, m, 0) € M and det F > 0} . (3.13)

We have added the restriction det F > 0 in (3.13) because, by adopting the Cauchy-

Born rule, we are naturally led to restrict attention to deformations that are invertible

and orientation preserving, these being the only physically allowable deformations. The

domain (3.13) objective by Nl and assumptions on M, and the principle of material frame-

indifference (3.9) yields

£(RF, Rm, 0) = £(F, m, 0) (3.14)

for all R £ SO(3) and for all (F, m, 0) 6 M. Standard arguments in continuum mechan-

ics applied to (3.14) show that

s5(F, m, 0) = £ ( F r F , F r m , 0) (3.15)

for some function (p with domain inherited from (3.15).
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Now we turn to the implications of (3.10). Recalling N3, let the Laue group of the

lattice L(e°) be given by

P° := {Q e 50(3) : Qe° = ̂ e<\ /i € G] . (3.16)

The restriction (3.16) to 50(3), which restricts the point group P(e°) to its Laue subgroup,

is in anticipation of being restricted to det F > 0 in (3.11) (cf. N3, (2.6), (3.13)// and

(3.16)). Expressed in terms of <£, the condition (3.10) becomes

£(FQ, m, 0) = £(F , m, 0) V Q € P° V (F, m, 0) € M. (3.17)

Hence, the governing symmetry group of the energy is the Laue group of the reference

lattice L(e°). In TbxDy\-xFe2 this will mean that, despite the fact that no observed

configuration of TbxDy\-xFe2 for 0 < 0C is cubic (because of magnetostriction!), the free

energy will be invariant under one of the cubic Laue groups.

At this point it is simplest to combine the free energy (p with the local contributions

to the field energy, i.e., the last two terms of (3.5). To this end, we define the anisotropy

energy by

ip{F,mJ) ~ <p{F,m,0) + {^m - S(F)m+ l\m\2) del F. (3.18)

2 6

Here, S(F) := S(Fe?) and the anisotropy energy </? retains the properties (3.14) and (3.17)

of ip (to see this, it is necessary to look at the particular form of S(F), cf. James and

Miiller [1992]).

Since we observe discontinuities of strain and magnetization in magnetostrictive ma-

terials, it is natural to expect that tp has potential wells so that, roughly speaking, the

observed discontinuities represent jumps between potential wells. The simplest assumption

of this type seems to work well. We assume that there are functions Ui : I —* M3x3, mi :

I —> R3, I being a suitable temperature interval, such that (Ui(0), mi(0),0) € M and

*>0) V (F,m,0) € M. (3.19)
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The pair (Ui(0), nii(0)) represents a pair of easy stretch and corresponding magnetization

of the material at the temperature 6. Typically, we will have Ui(0c) = 1 and mi(0c) =

0, 6C being the Curie temperature. Without loss of generality (by (3.14) and the polar

decomposition theorem) we can take Ui to be symmetric and positive-definite.

The conditions of frame-indifference (3.14) and material symmetry (3.17) imply im-

mediately that if necessarily has other minimizers besides (Ui, mi). According to (3.14)

and (3.17), the full set of minimizers of tp is given by all pairs of the form (RUiQ, Rmi)

where R € 50(3) and Q € P°. To describe these potential wells, we use the notation

5O(3)(A, m) := {(RA, Rm) : R € 50(3)} . (3.20)

Note that in this definition both A and m are premultiplied by the same rotation. Again

using the polar decomposition theorem, it is easy to see that the potential wells (the

minimizers of tp) given by (3.14) and (3.17) are

5O(3)(U,, m,),

5O(3)(U2, m2),
(3.21)

5O(3)(Un, mu),

where

{(Ulf m , ) , . . . , (U,,, mn)} = {(QU1QT , Qm, ) , Q € P0} (3.22)

By analogy to the theory of martensitic transformations, we call each orbit of the form

5O(3)(Ui, mi) a variant By (3.22) the number of variants n is less than or equal to the

order of the Laue group P°, because there can be duplication (In TbxDy\-xFe2 there will

be 8 variants, but the order of P° will be 24). In (3.21) and (3.22) we have suppressed the

temperature dependence.

For all the calculations of this paper it will only be necessary to know where the

potential wells lie, assuming the <p is otherwise a continuous function on M.. The variants

14



(3.20) represent all minimizers of <p delivered by frame-indifference and symmetry. We

assume that (3.20) represents all minimizers of tp. That is, if we denote

U.. . U SO(3)(Un(0), mn(0)), (3.23)

then
, m, ^) =

Z (3.24)

(F, m, 6) € M(0).

It is easy to see that, regardless of the choice (Uj, nil), it is possible to assign a smooth

function <p with these potential wells.

Finally we discuss conditions of magnetic saturation. The idea used by Brown [1966]

is that at constant temperature the magnetic moment of each atom has a fixed magnitude,

regardless of the deformation. To formulate this constraint, let Uo be a unit cell of the

reference lattice L(e°) so that U = FU0 is a unit cell for the lattice £(e,) where e, =

Fe£, i = 1,2,3. Then, the condition that the magnitude of the magnetic moment of each

atom is a function of temperature is

lim
7—0 7*vol Uo

(3.25)

Combining (3.25) with (3.2) we get the constraint

|(detF)m(y)| = (/(#), y G R3. (3.26)

Now using the Cauchy-Born rule in the same way as in (3.11)-(3.12), we get the continuum

version of (3.26),

|(detVy(x))m(y(x))| = g{$), x € 12, B € I. (3.27)

The constraint (3.27) restricts deformations and magnetizations. It is naturally imposed

as part of the definition (3.13) of M.
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For materials with large magnetostriction like TbzDy\-xFe2 we are less inclined to

believe the reasoning leading to the constraint (3.27). Note also that with our treatment

a constraint of the form (3.27) is automatically satisfied on the potential wells:

(F, m) € M(0) => |(det F)m| = |(det Ui(0))mi(0)|, (3.28)

(Hence, to check the constraint experimentally, we expect it would be necessary for ex-

ample to apply sufficiently large fields on non-easy axes.) Because of the fact that in

the applications studied in this paper we only essentially use deformations from the po-

tential wtvis, the constraint (3.27) is irrelevant anyway. An alternative to this constraint

that is perhaps more phjrsically realistic is to impose conditions of rapid growth of tp for

deformations and magnetizations that depart from (3.27).

4. The energy of a magnetoelastic configuration

We now summarize and simplify the theory as developed above. We have obtained

an anisotropy energy (̂ >(F,m, 9) defined on a domain M. A natural choice of M, which

includes Brown's condition of saturation, is

M = {(F, m, 9) : Fe° € No, |(det F)m| = g(9), det F > 0} . (4.1)

Here, No is the Ericksen-Pitteri neighborhood based on the fixed reference lattice vectors

{e?}, these being interpreted as the lattice vectors for the undistorted crystal at the Curie

temperature 9C. The function g is given with g(9) = 0 for 9 > 9C. The reference configura-

tion fi C R3 is interpreted as the region occupied by the crystal at 9 = 9C. Deformations

of the crystal, including deformations arising from either applied forces or intrinsic mag-

netostriction, are described by functions y : ft —* R3, m : R3 —> R3 with m(z) = 0 for

z € R3\y(ft). (For the present we omit detailed smoothness assumptions and proceed

formally.)
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Combining (3.5), (3.6), (3.12) and (3.18), we arrive at the total energy of a magne-

toelastic configuration:

ft

Here u is determined from m by the magnetostatic equation

^ dx. (4.2)

div (-Vu + m) = 0 on R3. (4.3)

Stable magnetoelastic configurations are found by minimizing E$ in a suitable class of

pairs of functions (y, m) and with 0 = const.

The existence theorem for the Ericksen-Pitteri neighborhood shows that a bounded

neighborhood can always be chosen which also satisfies

Fe° € No =* det F > c > 0. (4.4)

We shall make this choice. With this assumption any (weakly differentiable) deformation

in M. is in W1>oo(£2, R3). We make the natural additional assumption that y is 1 — 1. For

technical reasons we assume Q is bounded and open with a Lipschitz boundary. With these

assumptions y(fi) will be bounded, open and have a Lipschitz boundary, which allows us to

do various manipulations on the magnetostatic equation (4.3). The natural setting for the

magnetostatic equation is u € iy](R3) and m € £2(R3, R3), with supp m C y(^) (James

and Kinderlehrer [1990]; see also Prop 5.1 below). Putting these assumptions together, we

shall minimize E$ over the space

A. : {(y, m) € Wl>°°(n, R3) x I2(R3, R3): y is 1 - 1,
(4.5)

supp m C y(ft), (Vy(x), m(x), 9) € M on fi}.

Assuming (y, m) € A§ we shall inteipret the magnetostatic equation (4.3) in the weak

sense

u£H\R*): /(-Vu + m)-VCdz = 0 V( 6 Hl(R\R). (4.6)

R3
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By James and Kinderlehrer [1990] or Rogers [1991], there exists a unique solution u 6

ifa(R3) of (4.6), whose properties are described in these references. We can take ( = u

in (4.6) and then substitute for the second term in (4.2), after having used the change of

variables formula. This gives the alternative form for the energy

E. (y, m) = J v>( Vy(x), m(y(x)), 6)dx +±J | Vu(z)|2dz (4.7)

n R3

The formulae (4.2) and (4.6) can be recast entirely in a referential setting, as in James and

Kinderlehrer [1991].

Finally, we summarize the important properties of ip. By assumption <p is frame-

indifferent

m,0) V (F,m,0) € M, V R 6 50(3), (4.8)

and satisfies the condition of material symmetry

^(FQ,m,0) = ̂ (F,m,0) V(F,m,0)e ,M, V Q G P°, (4.9)

see (3.16). It also has potential wells summarized by

^(F ,m,0)<^(G,p ,0 ) V(G,p,0)€-M V (F,m,0) € M(0), (4.10)

where M(0) represents the potential-well minimizers of ip,

M(0) = SO(3)(U,(0),m,(0)) U.. .U SO(Z)(Vn(6),mn(9)). (4.11)

By the assumption (3.27) all minimizers of ip are given by (4.11).

5. Minimizing sequences

As mentioned in the introduction, the problem

inf

y=yo on (Oil)i
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where y0 is some assigned function on {dQ)\ C dQ. is not generally attained. Whether we

have attainment or nonattainment depends sensitively on y0, the constraints embodied in

A$ and the detailed structure of y>, especially the location of its potential wells. At present,

very little is known of the precise conditions for attainment/nonattainment for the problem

(5.1). In this situation our point of.view will be to study the minimizing sequences for

(5.1), i.e., sequences of pairs (y'*',m(fc)) € A$, k = 1,2,3,... with the property

% ( W inf£* (5.2)

We argue that for large specimens a great many features of observed microstructures as

well as reliable predictions of new structures can be made on this basis.

Since we are holding the temperature fixed throughout, we shall without loss of gen-

erality add a suitable constant to (p such that

yo(U1,m1^) = 0. (5.3)

Below we find minimizing sequences that reduce the total energy E$ to zero. In various

places we suppress the temperature dependence.

In preparation for the construction of these sequences, we record the jump conditions

for a surface of discontinuity of (Vy,m). Letting (F + , m+ ) , (F"~,m~) € -M denote the

limiting values of (Vy, m) at a simple siuface of discontinuity, we have

- F " = a®n, (m+ - m") • n' = 0, n' = p ^ p ^ j (5-4)

for some a € R3, n € R3, |n| = 1. Equation (5.4)] expresses the fact that F± are limiting

values of a gradient, and (5.4)2 is the jump condition arising from (5.3) with Vu = 0,

the case of interest with no applied field. The relation (5.4)3 is the standard relation of

continuum mechanics relating reference n and deformed n' normals.

Recalling that M(0) represents the potential well minima of <̂>, we note that a common

situation is to have

( F , m ) a n d ( F , - m ) € M(0). (5.5)
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In this situation the infimum of E$ is zero as shown below by a slight variant of our earlier

argument (James and Kinderlehrer [1990, Section 3]).

Proposition 5.1. Let (F,m) and (F,-m) belong to M(0). Then,

inf Ee(y, m) = 0.
(y, m) e A$

Proof. Let y = Fx, x € ft , and let £ : R —• R be periodic of period 1 satisfying

1,

- 1 ,

(5.6)

(5.7)

(5.8)

Choose p € R3 with p • m = 0, |p| = 1, and let

m(( i 'P 'Z) , z €

0, zG

Since p-m = 0 then div m{k) = 0 in FS7 and in R3\Fft, and also the choice of half-and-half

domains shows that

m < * ) _ 0 iiiI2(R3,R3). (5.9)

We compute the expression

)
(5-10)

div(-Vu(fc) + m(fc)) = 0.

By our choice of y and m(fc\ y>(Vy,m*fc)) = 0. We turn our attention to the field

energy. First we recognize that the distiibution T^ — div m(**, given by

= f
R3

(5.11)

is a continuous linear functional on iT'(R3), that is, T(A) € H '(R3) with, in fact,

. , « sup / v C - m ( f c ) d z = sup /vu<*>.VCd*=||Vu<*>|| . ( 5 1 2 )

liven < 1 1 liven < I J t. y - )IIVCII <
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To show that \\T{k)\\ -> 0 in the H~l norm, we observe that m{k) = xof(*\ where

D = F£2 is bounded, and
—0 in L2(R3;R3),

(5.13)
divf(*> = 0 in Hfo](R3).

This is sufficient to prove that ||T(*)|| —> 0 by combining the compactness of the

injection from L2 to H~l with an approximation argument.

Hence,

£,(y, m(A:))-+0 asfc-+oo. (5.14) D

For our analysis of domain structures of TbxDy\-xFt2 below we shall need sequences that

have greater flexibility with regard to elastic deformations than those given by Proposi-

tion 5.1. The situation encountered in TbrDy\-xFt2 is that (5.5) is satisfied by certain

pairs (F^m4") and (F"\m~), and the pairs also have the property that F"1" and F"~ are

compatible.

Theorem 5.2. Let (F + ,±m + ) , (F~,±m~),€ M(8) have the property that for some

nonzero vectors a, n € R3,

F + - F ~ = acg)n. (5.15)

Suppose No contains the line {Fet : F = 6F+ + (1 - £)F~~, 6 € [0,1]} . Let

F 7 : = 7 F + + ( 1 - 7 ) F - , 7 €[0,1]. (5.16)

Then
uif £*(y,m) = 0. ,

y=F^x on dft

Remark 5.3. To prove this we construct deformations with alternating gradients F + , F~,

F+, F " , . . . on layers of width 7, (1 — 7), 7, (1 — 7) , . . . On each of these layers, we su-

perimpose a domain structure consisting of layers with magnetization ± m + or ±m~ at a

finer scale. See Figure 1.
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Proof. As the case 7 = 0,1 is covered by Prop. 5.1, let 7 € (0,1). Let C : R —> [0,7(1-7)]

be the continuous periodic function of period 1 given by

( + 7 ) for - 7 < r < 0,
C(r) = < (5.18)

[ - 7(T - 1 + 7) for 0 < r < 1 - 7.

Let

y ( f c)(x):=F7x + fc"1C(itx-n)a, x € ft. (5.19)

Then yW € W1'00 and Vy(fc) takes the two values F + and F~ on alternating layers. The

sequence y^ has the property

y(*)iyin^lW(fl)R
J), (5.20)

where

y(x) = F^x, x € fi, (5.21)

but it does not quite satisfy the boundary conditions y(x) = F7x. We therefore alter y1-^

near dQ. using a construction of Chipot and Kinderlehrer [1988, Section 2]. For e > 0

sufficiently small, let

Qt = {x € ft : dist(x, OSl) > e) (5.22)

and let fe € CJ(R3, [0,1]) satisfy for each e > 0

{ 1 for x € ft£,
(5.23)

0 for x € R3 - fi,

and

|V£e(x)| < const. £~\ x € R \ (5.24)

Now let

y (*^(x) := ef(x)y(fc)(x) + (1 - k(x))F,x. (5.26)

For each sufficiently small e > 0 y(fc-e)(x) = F^x, x € 9ft, and y(fc-e)(x) = y(fc)(x),x €

S7e. Also,

fc) - F7x) 0 V 6 + (6Vy(fc)(x) + (1 - ^e)F7), x € tl. (5.27)

22



±m

Figure 1. Microstructure and domain structure used in the proof of Theorem 5.2. The

domain structure in the boundary layer fi — Q,€ is not shown.
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Since by (5.20) y^k\x) —•> F 7 x uniformly on ft and since N° is open and contains the

line {£F+ + (1 - 6)F~",6 € [0,1]}, then we can choose ke so large that Vy (*"e )(x) € No

for a.e. x € fi and every sufficiently small e > 0. It is easily checked that the sequence

y e ._ y(*c,e) ig J . J a n c j m a p g Q _> p^Q Let xff : F7ft -> ft be the inverse of y€.

Now we construct the magnetization. Let p + - m + = 0, p ~ m ~ = 0, p * € R3, Ip1*1! =

1. Let ̂  be defined as in (5.7). Recalling the definition (5.18) of £, we let

mO»(y) .— ̂  \('(kex
e(y) • n) - (1 - 7)|^(jp • y)m

(5.28)

n) + 7] « J P + • y)m+ ) d e t V y , ( x . ( y ) ) , Y €

and we put m^''e^(y) = 0 for y € R 3 \F 7Q. Since £' talces only the values (1 — 7) and —7,

£ takes only the values ± 1 , and de tF + = de.tF" by the definition of M(#), we have

|det Vy*(a-)m(>'-r)(y«(x))| = g(6), x € fi. (5.29)

Therefore, for every sufficiently small e > 0 and every j = 1,2,.. . ,

(yf, mli'r))eA.. (5.30)

The simple structure of ye(x) on fif allows us to conclude that

x € at : = {x € ne : Vyf(x) = F+} =» m>-'(ye(x)) € {±m+},
(5.31)

x € ae" : = {x € fte : Vyf(x) = F"} =• mJ'«(y*(x)) € {±m~}.

Since Q+USlj = Qe and F + ^ F" , we have that

9(Vy f(x), mJ'e(y£(x)), 0) = 0, x € Qe. (5.32)

Hence, using the boundedness of v? on .M and (5.32), we have

/ v? (Vy'(x), m>-'(y'(x)), «) fix -4 0 as e -> 0, (5.33)

n

24



uniformly in j .

It remains to examine the field energy. Fixing e momentarily, we note that m(j'*) is

the sum of three fields

m<^(y) = mj"'r)(y) + m(i'e)(y) + n # » ( y ) , y € R3, (5.34)

where
m!f c)(y) = e(iP+ • y)m+Xy.<n+> (y),

and

m 0 » ( y ) = o forx€y c ( f i , )U(R 3 \F 7 n) . (5.36)

We apply Proposition 5.1 to each of the fields in (5.35) (see (5.8)-(5.11)) and see that the

corresponding potentials satisfy

M 0» + u 0 » _ 0 i n L2(dSlf) as j -> oc, (5.37)

for each fixed e > 0. On the other hand, mJ
r
e —> 0 in X2(R3,R3) as e —> 0, uniformly in

j , implying that the corresponding potential satisfies u/1 —* 0 in i f^R^R) as e —> 0,

uniformly in j . Putting these facts together and letting u^}^ be the potential corresponding

to m^'^, we have for the field energy,

n
\ J (m^ + m^-Viu^ + u^dy

yc(fi.)
(5-38)i r

5 / ( m ^ + m ^

)

| i>> «> dy.

Given e we may choose j€ sufficiently lai-ge such that the first term on the right hand side

of (5.38) is less than £, by the argument presented in (5.13)2,3- The remaining terms tend
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to zero as e —> 0 uniformly in j , and therefore tend to zero as e —> 0 with j = j e . Therefore,

(yc, m^"*)) is a minimizing sequence for the total energy. D

Remark 5.4. There are a variety of alternatives to the construction given in Theorem

5.2. Particularly interesting are those constructions which do not require the oscillations

of magnetization to be much finer than the oscillations of the deformation gradient. Such

is the case when, in addition to the hypotheses of Theorem 5.2, the pairs satisfy (5.4).

Then constructions as shown in Figure 2 serve as minimizing sequences.

Generalization 5.5. Theorem 5.2 can be generalized immediately to more complicated

constructions involving layers within layers, layers within layers within layers, etc., as long

as the appropriate compatibility conditions on the deformation gradient are satisfied. One

such generalization follows by combining Theorem 5.2 with Theorem 6.1 of Ball and James

[1991]: Let S0(3) ( F + , ± m + ) and S0(3) (F",±m"") belong to M(0) and suppose that for

some nonzero vectors a, n 6 R3, |n| = 1,

F + = (l + a ® n ) F - (5.39)

Suppose No contains the set

{Fe, : F = (6F+ + (1 - 6)F~) + fib <g> m, 6, // € [0,1], <SF+

+ (1 _ 6)F~ + b ® in € SO(3)F+ U SO(3)F~}.

Then

^ £,(y,m) = 0. (5.40)
y=F.,x on dtl

where

:= {G<EM3*3 :G T Ge = ( F - ) r F - e , e = (F")-1(a A n), det G
1 (5-41)

| | 2 I G C F " ) " ^ ! 2 < | | 2 }
1 1

= detF±, |G(F-)- 1 (n- ia) | 2 <l + -|a|2, IGCF")"^!2 < |a|2}

In fact the set 5ft represents all macroscopically linear deformations that can be obtained by

using energy minimizing niicrostructures involving just the four variants SO(3)(F+, ±m + ) ,
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Figure 2. A minimizing sequence involving only one scale wliich is possible under the

condition (5.4) and the hypotheses of Theorem 5.2.
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5O(3)(F , ±m ). Descriptively, the set 9? represents the "easy deformations" of the

material using four variants of the given type. Since all boundary conditions y(x) =

Fx, x € ft, F € 3? have the same energy, it should be possible by applying slight forces to

deform the specimen while staying in this set. Further remarks along these lines are given

below in the context of the material TbxDy*[-.xFt2.

Remark 5*6 In our study of TbxDy\-xFe>2. we shall need a result which is closely related

to Theorem 5.2 but involves four deformation gradients. This will be used in a polycrys-

talline generalization of our theory and for this reason cannot be stated in the form of

Theorem 5.2. Suppose 0 € ft and let A, B, C, D be four 3x3 matrices satisfying for some

vectors a, n, a', n' G R3 the conditions

B - A = a « n, D - C = a' ® n'. (5.42)

Suppose also that there are scalars 7, 6> G [0,1] and vectors b, m € R3 such that

(7B + (1 - 7)A) - (flD + (1 - S)C) = b cg> m. (5.43)

Then, there is a sequence yik) : ft -> R3 (y{k) € Wl'°°) k = 1 ,2 ,3 , . . . , such that

Vy{k\x) e {A, B} for x • m > \ , x G ft,
k , (5.44)

Vy{k\x) G {C, D} for x • m < - - , x G ft,

and

\Vy(k\x)\ < const, on ft, (5.45)

where the constant is independent of k.

To construct this sequence, we simply apply the proof of Theorem 5.2 back-to-back.

That is, we use Theorem 5.2 to construct a sequence on {x G ft : x • in > 0} which takes

gradients A and B in the proportion (1 — 7)/^. We then apply Theorem 5.2 again to the

region {x G ft : x • 111 < 0} using the gradients C and D in the proportion (1 — 6)/6. It
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is then found that (5.43) implies that the boundary values of y^ on {x € fi : x • m = 0}

given by the two constructions agree, completing the proof.

If A, B, C, D belong to the potential wells of an anisotropy energy (having a suffi-

ciently large domain and invariance under m —• —in), then a suitable sequence (y*, m*)

with mk as above can be constructed which would be a minimizing sequence for the total

energy.

Remark 5.7 The Generalization 5.6 also has a converse, which roughly states that if

we assume (5.42) and there is some sequence yW G Wl'°°(il, R3) satisfying Vy^^ €

{A, B, C, D}, except on regions whose volume tends to zero as k —+ oo, then (5.43) holds.

This can be established by a variant of the arguments given by James and Kinderlehrer

[1989]. This kind of result is best stated using the Young measure and is omitted from the

present treatment.

6. Specialization to T

In this section we specialize the theory given above to the alloy TbxDy\-xFe2{x = 0.3)

and we compare the predicted microstructures with those observed by Lord [1990,1992].

a) Structure of the potential wells

According to (3.19)-(3.23), we will have specified the potential wells of the anisotropy

energy <p once we give a pair (U], nil) and a Laue group P°.

We begin by specifying P°. TbxDy^-xFe2 (for values of x of interest and for 9 > 0C)

is a cubic Laves phase of the type MgCii2, the Mg sites being occupied by Tb or Dy.

Work of Simha [1991] shows that this lattice structure can be described as the union of six

interpenetrating FCC Bravais lattices. Ft atoms lie on four of the lattices, while Tb and

Dy form a solid solution on the remaining two. We shall make the hypothesis that the

lattice model of Section 2 refers to one of these FCC lattices, and displacements among

the other FCC lattices are free to adjust themselves to secure equilibrium. See Zanzotto
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[Oil]

[-100]

[111]

[1-1-1]

[111] [01-1]

Figure 3. Lord's interpretation [1990,1992] of magnetostriction in TbxDy\-xFt2.
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[1992] for a discussion of the validity of this kind of hypothesis. This gives P° = (432),

the cubic Laue group of order 24, which also agrees with the macroscopic Laue group

symmetry of TbxDy\^xFe2 for 6 > 0C.

To assign (Ui, mi), we consider Lord's interpretation [1990,1992] of magnetostriction

in TbxDyi-xFe2 summarized by Figure 3. Lord's picture suggests that we should take

mi in a [111] direction, wliile Ui should represent a stretch in the mi direction. We shall

make the simplest assumption consistent with this observation:

m, = vo
(6.1)

U i = 7/1I + (?/2 — 7/] )iiii (>o i i i ] , riii = TT—r = ~~7=[Hl]o
|ixii I v3

Here, [ . . . ]c represents components relative to an orthonormal basis coincident with the

cubic axes (at 0C). The parameters 0,7/, and 7/2 depend upon temperature but we have

suppressed this dependence (For the record, g(6) in (4.1) is given by g(8) = r)\ 7/2c*).

The full set of variants is now determined by (6.1) and the choice of P°. Referring to

(3.21), (3.22), we calculate that the theory delivers the 8 variants

5O(3)(U,,m,),

SO(3)(U2,m2),

SO(3)(U3,m3),

SO(3)(U4,m4),

5O(3)(U1,-m1),

5O(3)(U2,-m2),

5O(3)(U3,-m3),

5O(3)(U4,-m4),

(6.2)

where
m, =

m2 =

m3 =
(6.3)

and Uj := 7711 + (7/2 — Vi)1*1* ® A,, m, = rii;/|m,|, i = 1,. . . ,4. The energy wells are

represented schematically in Figure 4. Specializing the notation, we let M denote the union
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of the sets given in (6.2). We postpone the evaluation of r/i and r/2 from measurements to

Section 6b.

The potential well structure given above has something in common with energies for

cubic-to-trigonal martensitic transfonnations as constructed using methods of Ball and

James [1991, Section 2]. The origin of this remark is the observation that

{ R € P ° : R U 1 R T = U1} (6.4)

is a representation of the trigonal Laue group (32). Such energies would have only 4 vari-

ants, as the magnetization would be missing, but much of what we say below would carry

over to the martensitic case, including the normals to planes of discontinuity of Vy and

various results on macroscopic deformations. An example of a cubic-to-trigonal marten-

sitic transformation is the /?-phase transformation in near equiatomic TiNi (Miyazaki and

Wayman [1988]), Miyazaki, Kimura and Otsuka [1988]).

b) Lamellar microstructures

We can construct various minimizing sequences for TbxDy\-xFe2 using the results of

Section 5 if we can satisfy certain jump conditions for pairs (F^im"1") and (F"~,±m~)

belonging to different valiants. Here, we work out these conditions.

The condition of interest is (5.15), since the variants for ThxDy\-xFe2 already have

the property (F,m) G M =4> (F , -m) G ML Note that

F + - F " = a ® n => RF+Q - RF~Q = Ra ® QTn V R G 50(3),
(6.5)

V Q G P 0 .

By (6.5) it is only necessary to look at one pair of variants; that is, given i, j G {1 , . . . ,4}

there is a Q G P° such that

QTU IQ = U1, Q T U i Q = U2, (6.6)

for example. This is easily checked by looking at the various cases. Hence, using suitable

choices of Q G P° and R G 50(3) in (6.5), we find that it is only necessary to consider
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2,-m2

Figure 4. Minimizers of the anisotropy energy ip in the model of TbxDy\-xFe2- Each

circle represents a set of the fonn (QU, Qm), Q 6 50(3) , with (U,in) assuming the

indicated values. The pairs (U, ± m,-) are given by (6.2) and (6.3). Dashed lines connect

compatible pairs (Section 6b).
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the case

R U 2 - U ! = a®n. (6.7)

Here U2 and Ui are given in (6.2)-(6.3) and we seek solutions (R, a, n) of (6.7) with

R € S0(3).

The equation (6.7) is the twinning equation that arises in the study of martensitic

transformations. While the general solution is known for any Ui, U2 (Ball and James

[1987]), it is easier in the present case to calculate directly. Introduce the orthonormal

basis

e, = [100]c, e2 = - i? ! 0 1 1 !" ** = 4=[0 - ll]c, (6.8)

and note that

mi = ~ 7 ^ i

m 2 = - ^ ( - e 1 + \/2e2),
v 3 (6.9)

Ui =r/il + -(?/2-Vi)[ei ®ei + 2e2 0 e2 + \/2(ei ®e2 + e2 ® ei)],

U2 =r?1l + ~(?/2 - in)[ei 0e}+ 2e2 <g> e2 - \/2(ei ® e2 + e2 ® ej)].

Thus,

U!e3 = U2e3 = 7/163 and |XJ1e2| = |U2e2|. (6.10)

The conditions (6.10)i^2 imply that there is a unique R + € 50(3) such that R+e3 = 63

and R + U 2 e 2 = Uie2, i.e.,

( R + U 2 - U , ) e 3 = 0 and (R+U2 - U,)e2 = 0. (6.11)

Hence, there exists a"1" € R3 such that

R + U 2 - U, = a+ ® ei (twin), (6.12)

giving us one solution. The (100)c planes emerge as planes of discontinuity and a+ is given

by the formula
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To calculate (6.13), it is helpful to notice the identities

det U2 = det R + U 2

= det (1 + a+ ® Uf
(6.14)

= ( l + a + . U r 1 e 1 ) ( d e t U 1 ) ,

and e2U2 • ei — e2 • Ufej = a+ • U]e2.

The second of these follows by operating (6.12) on ei, then dotting by Uie2 and using the

relation (R + ) T U ] e 2 = U2e2.

The theory of (6.7) says that it has exactly one other solution that we now calculate.

By (6.9)3,4

(6.15)

Hence, there is a unique R~" 6 50(3) such that R~e.3 = £3 and R""U2ei = Uiei, and we

therefore have the existence of a~ 6 R3 such that

R"~U2 — Ui = a"" ® e2 (reciprocal twin). (6.16)

In this case the planes of discontinuity are the (Oil)r planes and a"" is given by

^ | '/i + J/2)e, + y/2{V2-m)e2]. .(6.17)

These results allow us to construct various minimizing sequences using the results of

Section 5. The most interesting cases are those that do not require the magnetic domains

to be at a much finer scale than the domains of distortion. As mentioned in Remark 5.4

this is possible when the additional jump conditions

n' =

are satisfied. It is a feature of the potential-well structure of T6IDt/i_Ii
rie2 that (6.18)

can also be satisfied. Using the terminology in (6.12) and (6.16), we need to show that

(±R + m 2 - mi) • Uf r e , =0 (for the twin),
(6-19)

(±R m2 - ill]) • U, e2 =0 (for the reciprocal twin),
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for an appropriate choice of ± . The "accident" that (6.19) holds is really a consequence

of compatibility, the constancy of the determinant of the deformation gradient for the

variants, and the fact that m, is an eigenvector of Uj in the present case, as shown below.

Lemma 6 .1 . Suppose TJ\ and U2 are symmetric 3 x 3 matrices with detUi = detU2 ^ 0,

and assume there is an R G 50(3) and vectors a, n G R3 such that

- U ! = a®n. (6.20)

Suppose mi,ni2 G R3 satisfy Uinii = 7iiii,U2ni2 = 71112 for some nonzero 7 G R. Then

(Rm2 - mi) • n' = 0 <=> (m2 - m}) • n = 0, (6.21)

where n' = U^n.

Proof. If we premultiply (6.20) by UJ"1 and take its determinant, using detUi = detU2 =̂

0, we get

U1-1a-n = 0. (6.22)

We now multiply (6.21 )i by 7, use 7111, = U,-nii, and then substitute (6.20) to show that

(6.21)! yields

(Uim2 + a(n • m2) - U^Hj) • U"1!! = 0. (6.23)

Using (6.22), the middle term vanishes, so we get

( m 2 - m O - n s 0. (6.24)

The converse is proved by reversing the argument. D

We apply the lemma to (6.19) and get the equivalent equations

(±m 2 — iri]) • ei =0 (for the twin),
(6.25)

(±1112 — ni]) • e>i =0 (for the reciprocal twin).

It follows immediately from (6.9) 1,2 we can satisfy (6.25) if we take — for the twin and +

for the reciprocal twin.
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\

twins reciprocal twins

Figure 5. Pictures of the two families of solutions (6.12) and (6.16).
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Combining these results with those of Section 5, we get various minimizing sequences.

We shall not pursue the mathematical description of these sequences or the ones implied

by the Generalization 5.5.

We now evaluate iji and ?/2- The theory, as set up above, has as reference configuration

the undistorted single crystal at the Curie temperature 6C. This is a little inconvenient at

this stage, since we would have to follow the deformation of line elements from Bc down

to room temperature; this is further complicated by the fact that the thermal expansion

data in the literature does not appear to be consistent. The theory retains its present form

if the reference configuration is allowed to be any configuration that is related by a pure

dilation to the undistorted single crystal at 9C. This dilation scales r/i and r\i uniformly.

We shall make the convenient choice that at room temperature, there is no stretch along

< 100 >, i.e.,

|U, e,| = l. (6.26)

The assumption (6.26) also remains closely satisfied as the temperature is changed. The

equation (6.26) implies that

i$ + 2i/? = 3. (6.27)

A measurement is necessary to establish another relation between ?/i and ?/2- We prefer

a direct measurement, rather than evaluating r/j and ij2 by forcing a correspondence with

linear theory. Such a direct measurement is given by Al-Jiboory and Lord [1990] who

measure the angle a shown in Figure 5. Using the results (6.8)-(6.13), we have the relation

cos2a = Ui ei • R + U 2 ei / |Ui ei||U2 ei|, (6.28)

which yields

cos 2 a = 1 - 2
4 ( ? / r ; l ) 2 i - ( 6 - 2 9 )
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Combining (6.27) and (6.29) with the value a = \/5(1.6±0.2) x 10~3 given by Al-Jiboory

and Lord, we get (at room temperature)

?;i = 0.9992 (±0.0001),
(6.30)

7/2 = 1.0016 (±0.0002).

There is another solution corresponding to r/j > r/2 which we have discarded. We now

turn attention to modifications of the theory for growth-twinned specimens.

c) Energy of a composite crystal with growth twins on (111)

Typical specimens of TbxDxj\-xFe2 are not single crystals but rather contain growth

twins on a family of parallel {111} planes. A photograph taken by Donald Lord of the

microstructure with no applied field on a (0-11) plane is shown in Figure 6. The horizontal

boundaries in this picture are the growth twins.

Since these growth twins are created at high temperature during growth of the rod

from the melt, we shall model these as material surfaces. Lord [1990,1992] makes a dis-

tinction between the plane horizontal boundaries in Figure 6 and the slightly curved ones,

referring to the latter as grain boundaries, but we ignore this distinction here and treat

them all as twin boundaries. The crystallography of these twins has been discussed by

Lord [1990,1992] and analyzed by Simha [1991], and is a typical growth twin for MgCu2

structures. These analyses show that these are type I twins; the crystal structure of the

twin is obtained from that of the parent by rotation of 180° about mi. Let Ro be such a

rotation,

Ro = - 1 + 2m, ® mi = R j \ (6.31)

and consider for simplicity two regions

fli := {x € fl : x • m, > 0} , fi2 = {x € Q : x • mj < 0} (6.32)

On Q,i we use the energy already described above with the potential-well structure given

in (6.2) and (6.3). Modeling the growth twinned crystal as a coherent composite, we use

standard continuum mechanical arguments (e.g. James [19S4]) to show that the energy of
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Figure 6. Distortion of TbzDy\-xFe2 on a (0-11) plane. The photograph taken with

DIC microscopy to show distortion of the surface but not the magnetic domain structure.

Photograph courtesy of D. Lord.
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, m(y(x)))dx

The total energy for the growth twinned crystal is therefore

Egt{y, m) = J v>(Vy(x), m(y(x))) dx

where, as before,

div (-Vu + m) = 0 on R3

(6.33)

(6.35)

In this formulation y(x) is the actual deformation of Q = Qi U 1̂ 2, and therefore we

shall still assume (y,m) € A$ (cf. (4.5)) with the obvious adjustment to M. We have

suppressed the ^-dependence in (6.34). We have also considered only two regions Q] and

172- However, the arguments leading to (6.34) apply to the case of many twinned layers

as well; we may simply allow S7j to be a disconnected set of disjoint parallel layers and let

The key observation concerning (6.34) is that the energy density <^(FR0, m) does not

have the same potential wells as v?(F, m). For later use we calculate the potential-well

minima of <̂ >'(F, m) := <̂ >(FR0, m). It follows directly from the definition of ip' that these

are given by

where

S0(3)(U;, m',),

5O(3)(Ui, m'2),

SO(3)(U'3, mi),

S0(3)(Ui, mi),

m'i =Rom,,

U'- =R 0 U i Rj ' = 97,1 + {

S0(3)(U;, -m',),

5O(3)(Ui, -m^),

5O(3)(Ui, -mi),

- 171 Wi ® mj, * = 1,..., 4,
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and mj = m|/|m(-|, i = 1,. . . ,4. Note that one of the variants remains the same, U'j =

Ui, itij = ni], but all the others change. Extending the notation, we let M' denote the

union of the sets given in (6.36).

For the rest of this paper all indices < a b c > of vectors are referred to the cubic axes

of the "parent," i.e., the cubic axes of P°.

d) Energy minimizing micro structures for the growth twinned crystal

Now we minimize the energy (6.13) appropriate to the growth twinned crystal. To

minimize energy, we would like to place (Vy(x), m(y(x))) 6 M for x G fii and (Vy(x),

m(y(x))) 6 Mf for x € SI?* but there is the obvious problem of compatibility at the growth

twin boundary (i.e., y is a continuous function).

Motivated by Lord's picture (Figure 6), we shall look for minimizing sequences in

which V y ^ is a laminate in Q\ and another laminate in Q21 together with a suitable

magnetic domain structure. Sequences of this kind are governed by Remark 5.6. Combining

this remark with the potential-well structures M and M', we can construct minimizing

sequences (y*\ m*) for the energy Egt (6.34) if we can satisfy the equations

B - A = a 0 n,

B' - A' = a' Cg) n',

(7B + (1 - 7)A) - (SB9 + (1 - 6)A') = b ® m,, (6.38)

(A, ±p), (B, ±q') € M,

(A', V ) , (B\ *q') € M\

for some 7 G [0,1], 6 € [0,1], a, a', n, n', b, p, p', q, q' G R3, and for some 3 x 3

matrices A, B, A', B'. Here, M is the union of the orbits in (6.2) and M' is the union

of the orbits in (6.36). Note that the vectors p, p', q, q' can always be chosen to satisfy

(6.38)3,4 because both M and M' exhibit the invariance (F,m) —» (F,v —m). Hence, these

vectors play no further role in the analysis of (6.38).

The equations (6.3S)M have already been solved in (6.12), (6.13), (6.16), (6.17). From

these explicit solutions all crystallographically equivalent solutions can be read off using
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the method explained in (6.5)-(6.7). In fact, we have also secretly solved (6.38)2,5- This

follows because, by the construction of M' from M, any solution (B, A, a, n) of (6.38)1,4

yields a solution

j \ iT, Roa, Ron) (6.39)

of (6.38)2,5 and conversely. Alternatively, all solutions of (6.38)2 are crystallographically

equivalent (via the group R0P°R^) to the pair of solutions

^ - U; = (a')± ® (n /)± , (6.40)

where

• + (M) (||^|) fa », - <„, H- 2»* H-)• =Roa+ - (M) (| |^|) fa -

\/3 (6.41)

(a')" =Roa" = (^f\ (Jjffjjl) (-(2ii + m)h + V2(m - r/2)e2 + ^

Oy/0

(n')~ =Roe2 = - e 2 + ^ - ^ rii

To complete the analysis, we take all pairs (A, B) and (A', B') of solutions of

(6.38)1,4,2,5 and check to see if they satisfy (6.3S).3. Counting all combinations of twins

and reciprocal twins, we have 144 possibilities to check. There are certain crystallographic

equivalences that reduce this number, but crystallographic equivalence is now less useful

because the vector nil in (6.3S)3 is given. We summarize the equivalence below:

a. We can premultiply (6.3S) by a constant rotation matrix and get another solution.

This allows us to make one of the matrices (A, B, A' or B;) symmetric.

b. If Q € P° n (R0P°R0) and Qm, = mi we can premultiply (6.38)3 by Q and post-

multiply by Q r to get another solution. The matrices Q satisfying these conditions

axe

Q € { l , Q, Q2}, (6.42)
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where Q[a b c) = [c a b] in the cubic basis.

c. If Q € P° fl (ROP°RO) and Qni! = - m i we can premultiply (6.38)3 by Q and post-

multiply by QT to get another solution. The matrices Q satisfying these conditions

are

Q € { Q , , Q2 , Q3} (6.43)

where Qi [a b c] = [—a — c — 6], Q2 [a b c] = [—c — 6 — a], Q3 [a b c] = [—6 —a — c],

all in the cubic basis.

To describe the reduced number of possibilities, we shall use the following notation.

We let

& (6-44)

denote the set of four calculations using variants i and j above the plane {x • mi = 0}

and variants k' and /' below this plane, that is, the special cases of (6.38) in which A =

RjUj , B = R2UJ, A' = R3U'k, B ' = R4U / . There are four calculations represented by

(6.44), as we can use either twins or reciprocal twins above the plane and twins or reciprocal

twins below. Accounting for the invariance listed in a, 6, c above, the 144 calculations

represented by (6.3S) can be reduced to the 24 calculations

1 2 1 2 1 2 1 2 2 3 2 3 <
1' 2'1 V 3r 2' 3 r ' 3 ' 4 ' ' 2' 3 ' ' 2' 4'*

We have examined each of these cases in detail. Assuming here and below the mild

conditions 771 7̂  7/2, */i > 0, ?/2 > 0, ?/i < 2?/2, 7/2 < 2?/i, we find after lengthy calculations

that the only solutions of (6.38) are found among the 8 problems

TT' H 7 ' (6'46)

In executing the computations whose results are reported below, we employed several

principles which we review now. Returning to (6.38), we write

F = (1 - 7)A + 7 B , F' = (1 - 6)A' + SB', C = F T F , and C = F T F , (6.47)
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where A,B, A', and B ; determine a jip- growth twin laminate as described above. Given

F, we seek F ' so that

(6.48)

The following consequences of compatibility are given by, e.(/., Ball and James [1987],

Ericksen [1991].

(1) If C = F T F , and C = F ' T F ' are two symmetric, positive-definite 3 x 3 matrices

satisfying

C - C = g ® m + m ® g, |m| = 1, (6.49)

then the two wells are compatible with normal m, that is, there is a rotation

R € S0(3) and a € R3 such that

RF' = F + acom. (6.50)

On the other hand, any Cauchy Green strain is compatible with its 180° rotation about

ail axis:

(2) If C and C above are related by C = P C P , P a 180° rotation about the axis

m, then there is a 180° rotation with axis Q||F~Tm such that

QFP = F + a ® m . (6.51)

Finally, in the special case where F and F ' are essentially stretches in given directions, it

is easy to compute the normals and amplitudes.

(3) If C, = i;,U?,Ut- = 1 + (V2 - i;,)gt. ® g,-, |g t| = l,t = 1,2, then

RU2 = Ui( l + a ® n ) (6.52)

for two choices of (a, n) which satisfy n||g! +g2, a||g] ~g2 and n||g! - g 2 , a||gj +g2.

In both cases the axis of R is parallel to gi A g2.
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We find immediately that if we have solutions of the form (6.46) only in the case that

twins are used above and below or reciprocal twins are used above and below, for otherwise

the appropriate C and C satisfy rank ( C — C) = 3, violating (6.49) above.

Examining the well structure in (6.36), (6.37) we see that

C - C = g ® m + m (g> g, |m| = 1, (6.53)

with m = mi only when 6 = 7. But, there are planes with normals near mi at which

we have compatible laminates when S is close to 7. We are, at present, uncertain of the

implications of this. It may possibly add to the ability of the material to have certain low

energy, compatible domain structures when the growth twin boundaries are slightly wavy.

We now describe the four solutions given by (6.46).

I. 12/1'2;. In this case the explicit solutions of (6.3S)li2 are given by (6.12), (6.13),

(6.16), (6.17), (6.40), (6.41). We insert these equations into (6.3S)3 and use a) above

to get

{ 2 J ) ( { } ) (6"54)

which is to be solved for R € 50(3), b € R3, 7, S 6 [0,1].

Equation (6.54) is equivalent to the equation

_ ® *l i g = 0 Vg • mi = 0, (6.55)

which is a little more useful. As mentioned above, (6.47) has solutions if and only

if we use + throughout or — throughout. All solutions have the important property

that

6 = 7, (6.56)

and we obtain exactly two solutions (corresponding to + and —) for each 7 € [0,1].

For each 7 € [0,1], the two solutions have R = Ro( —1 + 2f eg) f) where f satisfies,

respectively,
r-2a-n
lv/2a-J

•f = 0, (6.57)
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and e = [—211]. The vector b may be obtained by operating (6.54) on ei.

II. 2 3/2' 3'. In this case we first must obtain the solutions of (6.3S)i?2- These are found

by first letting Q G P° be given by Q[a b c] = [—c b a] and then observing that

= U2, QU 2QT = U3. (6.58)

Operating Q .. . Q T on (6.12), (6.13), (6.16), (6.17), we get

where Tlf = QR^Q7^ Now we operate R o . . . R^ on (6.59) to get the solutions of

(6.38)2,

(^W,-U^(R*Q a + 0 R o QM, (6.60)
\RrJ 3 2 \RoQa-0RoQe2/' l '

where R^ = RoR^Rj,. The explicit forms are easily calculated but we do not give

them here. The remaining equation (6.3S).3 becomes

which is to be solved for R € 50(3), b € R3, y,S € [0,1]. Equation (6.61) can

also be recast in a form similar to (6.55). All solutions of (6.61) are obtained with +

throughout or — throughout and all have the property that

S = 7. (6.62)

For each 7 € [0,1] the two solutions of (6.61) have R = R 0 ( - l + 2f <g) f) where f

satisfies, respectively,

where e = [11 — 2]. In fact, ni] is the only possible vector that can appear in (6.61),

at least for I7 — 6\ sufficiently small.
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4
4 ' '
4
4 ' '

Before closing this subsection, we retrace the reduction from all laminates to the 24

represented by (6.45). We find that all solutions of (6.38), not accounting for crystallo-

graphic equivalence, are given by

(6.64)

Here, ~ means that the problems are related by the equivalence given in a), b) or c) above.

The solutions for the crystallographically equivalent cases can be read off immediately. A

comparison of these solutions and Figure 6 will be given below in Section 6f.

The fact that there are solutions of (6.3S) of the form ij/i'jf and with equal volume

fraction is not surprising, as can be seen from the following argument. This argument is a

direct application of (6.51) above. Let A and B be as in (6.38) and let F-y = 7B + (1 — 7)A.

Set F^ = F7R0 . It is easily verified that if we let Q-, be the 180° rotation with axis parallel

to F^Tm!, then Q7F^ - F^ = b-, & m^ for some b 7 e R3. Clearly F'7 = 7B' + (1 - 7) A'

for some B' and A' satisfying (6.3S)s by our construction, so in fact we have solved (6.38).

The miracle of the structure of ThxDxj\^xFt2 is that, because it is constructed from growth

twins, B' = BR0 and A' = AR0 lie on the energy wells M' of the growth twin whenever

A and B lie on the energy wells M of the parent, which makes this procedure of "twinning

the whole laminate" possible.

e) Exact compatibility at the growth twin boundary

The minimizing sequences found in Section 6f all have the property that by refining

the laminates on either side of this boundary (k —» 00), the energy in the transition layer

at the growth twin boundary can be reduced to zero. It remains possible, and is permitted

by the analysis given above, that this layer can be made to vanish at a finite value of k.

This is the case of exact compatibility of two laminates at the growth twin boundary. We

examine this possibility here.

If two variants (A,p) € M and (A',p') € M' meet at the growth twin boundary at
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finite £, we have for some x0 • mi = 0, ?• > 0,

Vy(*)(x) = J A ' x€finB(xo,r),
y W \A', x€finB(xo,r), l ;

where B(xo ,r) is the ball centered at x0 of radius r (see Figure 7). As usual, necessary

and sufficient conditions for (6.65) are that

(6.66)

or, more explicitly,

RU^U^s^ni!. (6.67)

Here, we have premultiplied (6.66) by a suitable rotation matrix without loss of generality.

It is easy to see, using U^ = R0UjR0 and the explicit forms of U, and U ; , that (6.67)

has a solution (i, j , R € SO(3), s € R3) if and only if i = j . In this case the solution is

with s obtained from (6.67).

Tliis result covers trivially the cases 7 = 0,1 of I and II above, but leaves open the

interesting possibility that the whole laminate is also exactly compatible with variants i

and i' and j and j ' , respectively, meeting at parts of the growth twin plane. We now

examine this. The relevant microstructure is pictured in Figure 7, and we have, as usual,

premultiplied by a constant rotation matrix to eliminate the rotation matrix in front of U' .

The matrices shown in Figure 7 embody the restriction found from (6.67). In addition,

we found in Section 6d that if we have a compatible microstructure of the type shown in

Figure 7, we must have twins paired with twins or reciprocal twins paired with reciprocal

twins; from this result, the matrices shown in Figure 7 satisfy

RU t - Uj: = a © n,
(6.69)

R'U; - u; = a; ® n \
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where R' = R0RR^, a' = Roa, n' = R0n, for suitable a, n € R\ R € 50(3). There

is a continuous function y^^ whose gradients assume the values shown in Figure 7 (with

n ^ mi) on the indicated domains if and only if (6.69) holds together with the conditions

(6.70)

(In this statement we have ruled out the possibility that n||mi. If n||mi, then the analysis

of (6.68) clearly applies. In fact, n||nii, does occur for the paired reciprocal twins of

variants 2 3 and 2 4.)

It is straightforward to analyze (6.69) and (6.70). To do this we solve (6.70) by the

method given in (6.67)-(6.68), then combine with (6.69)//. The result is that there is a

solution (t\ j , R € 50(3), b , € R\ ty € R3) of (6.69), (6.70) with n ^ mi if and only if

U - ^ - n i ! =0 . (6.71)

A laborious examination of (6.71) for all variants shows that it is satisfied for exactly the

twins (but not the reciprocal twins) of the variants

2 3, 3 4, 2 4. (6.72)

(Note that a depends on the choice of i and j via (6.69).) We discuss possible implications

of these results for the magnetostrictive behavior of TbxDy\-xFt>2 in Section 6g. This

section concerned the exact compatibility of laminates at the growth twin boundary. It

is conceivable that more complicated arrangements of variants (e.g. those shown by Ball

and James [1987]) could be exactly compatible at this boundary. For further remarks in

this direction in a model that includes exchange energy, see Kohn and Miiller [1992].

f) Comparison of predicted and observed micro structures

So as to correspond to Lord's picture (Figure 6), we now fix the plane on which

the domains are observed to be the (0-11) plane. The growth twins are on itij planes,
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Vy =

Vy =

ieure 7. Exact compatibility of two laminates at the growth twin boundary.
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which intersect (0-11) on [—211] lines. Having fixed these planes, we have lost all crystal-

lographic equivalence so we must examine all the compatible variants.

Summarizing the results of Sections Gd and 6e, we found that there are minimizing

sequences for the growth twinned crystal. These consist of twinned laminates above and

below the growth twin plane {x : x • nil = 0}. All these sequences have the property

that twins (reciprocal twins) above the plane are paired with twins (reciprocal twins,

respectively) below. They also have the property that the volume fraction 7 of a variant i

above equals the volume fraction of variant V below, but we have a minimizing sequence

for each 7 € [0,1]. The combinations of variants that give compatible microstructures are
1 2 1 3 1 4

I 7 ! 7 ' F 3 7 ' I 7 ! 7 ' /6 7 3x
1± 21 21
2 '3 ' ' 3'4' ' 2'4'*

Some of these give also exact compatibility; these are the variants in the second row of

(6.73), omitting the pairs of variants that are reciprocally twinned.

We first compare the geometry of the minimizing sequences with Lord's picture. Using

the results of Section 6d, we find that twin planes for the different variants are given in

Table 1, together with the lines of intersection of these twin planes with the (0-11) plane.

Data for the region Q> (the primed variants) is obtained by rotating all the data in Table

1 by Ro. It is seen from Lord's picture that the trace of the twin planes on the (0-11)

plane are very nearly [011] directions. The combinations of variants giving this geometry

axe

Here the subscripts r and t mean that we take only the solution corresponding to the

reciprocal twin and twin, respectively. A picture of one of these minimizing sequences,

drawn with accurate geometry and 7 = -j, is shown in Figure 8. The general appearance

is quite similar to Lord's picture. The general appearance of all the minimizing sequences

is shown in Figure 9.
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variants

1 2

1 3

1 4

2 3

3 4

2 4

twin planes

(100) twin

(Oil) reciprocal

(010) twin

(101) reciprocal

(001) twin

(110) reciprocal

(00-1) twin

(1-10) reciprocal

(-100) twin

(01-1) reciprocal

(0-10) twin

(10-1) reciprocal

intersection of twin plane 1

[011]

[100]

[100]

[-111]

[100]

[-111]

[100]

[111]

[011]

parallel to [01 - 1]

[100]

[111]

Table 1. Twinning data for the compatible variants. The third column gives the inter-

section of the twin plane with the (0-11) plane of observation.
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( 3 4 \
——j) >
3' 4 ' / t

since this solution has the correct geometry and is exactly compatible. Lord's picture

suggests exact compatibility to us because of the sharp changes of darkness on crossing

the growth twin boundary and because of the variability of the volume fraction as one

moves along this boundary.

g) Macroscopic magnetostriction in a TbxDy\-xFt2 rod

We have found a surprisingly large variety of minimizing sequences above. Each of

these sequences is parameterized by 7 6 [0,1], and each is a minimizing sequence with no

external forces or applied field. Since they are all minimizing sequences, they all have the

same limiting energy. Hence, it would seem possible with small forces or small applied

fields to easily shift the material from one of these sequences to another. In particular,

we expect that it is quite easy with small fields or loads (of suitable orientation) to easily

shift 7 from 0 to 1.

With this in mind, it becomes interesting to calculate the macroscopic magnetostric-

tion obtainable using each of the minimizing sequences we have found. For this purpose

we choose a particular rod axis to be e := [—211]/\/6. A line segment embedded in the

material in the direction e in the reference configuration will become a zig-zag line segment

at room temperature, if we consider any of the minimizing sequences constructed above at

finite k. However, its end-to-end length will converge to a definite value as k —> 00, and

it is natural to identify this length as relating to the macroscopic magnetostriction (this

identification is the natural interpretation supplied by the Young measure of the sequence,

c/. James and Kinderlehrer [1990]). This limiting length is given by

length =|R(A + 7a c*0 n)e| = |(A + 7a 0 n)e|,
(6.75)

e =[-211]//6

where A = U,, A + a® n = RUj, R € 50(3) for the chosen pair of variants ij. Equation

(6.75) is the limiting length obtained by embedding the line segment in J7i; of course, the
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(100) plane

Volume fraction
is y

[Oil]

Volume fraction
is also y

A possible energy
minimizing arrangement
of magnetic domains

Figure 8. Compatible minimizing sequences of the variants listed in (6.67). The inset

shows a possible minimizing arrangement of magnetic domains.
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[Ill]

[-211]

[Oil]
lf2'A

(cf. Figure 6)

i'4'

[100] (2A\
V2'4*/t

[-in]

[in]

/23_\ /24\
\ 2 ' 3Vr V214"/r

1 4'/r

Figure 9. Appearance of the predicted minimizing sequences on the (0-11) plane.
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same length is obtained by embedding the line segment in fi2? as can be seen by operating

(6.38)3 on e.

We are interested here in computing the maximum and minimum values of (6.76)

as 7 goes from 0 to 1 for a given pair of valiants i and j \ and then comparing among

the different pairs of variants. The results of these calculations are presented in Table 2.

We note that the length (6.75) is a positive-definite quadratic function of 7. Hence, the

maximum value of this length is achieved at 7 = 0 or 1. In all cases it turns out that the

minimum is achieved also at 7 = 0 or 1 except for variants 3 4, for which the minimum is

achieved at 7 = \. For the reciprocally twinned pair (3 4)r the length is independent of

7, so this pair is particularly useless for inducing magnetostriction.

The first remark is that for typical values of 7/j and 7/2 for TbxDy\-xFe2, a growth

twinned crystal as analyzed above achieves nearly the maximum uniaxial magnetostriction

that could be achieved (in a minimizing sequence) for a single crystal or for any other

composite. With 7/2 > 7/1 the maximum strain experienced by a line seqment is less than

(6.77)

This result can be formulated precisely and proved using the Young measure and minors

relations (Ball and James [1992]) but is intuitively clear. The maximum strain given in

Table 2 is

A / Q7? + f ( ' 7 | - ' 7 ? ) ) » 7 i . 8 , 1 / 2 ^

T * - 9(-ir-} (6J8)

Hence, there would hardly seem to be any advantage, from the viewpoint of large magne-

tostriction, to attempt to make single crystals of this alloy.

More interesting is another observation which goes beyond the scope of the present

theory. The present theory treats all minimizing sequences on equal footing, but obviously

there will be a difference between microstructures formed from the pairs (2 3)*, (3 4)/ and
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variants length length with rji = 0.9992, T}2 = 1.0016

mm

1 4

23

34

(3 4)

24

1 2

1 3 min 1

max

mm

m m {

max

min I

max

2 / 2 _ , 2

dn=max=(»;? + | ( i ; | -miii=max=(7/| +

mm

0.9992

1.00133

0.9992

0.99973

0.9992

0.99973

0.9997

1.00133

0.99947

0.99973

0.99973

0.99973

1.00133

Table 2. The minimum and maximum macroscopic lengths of a line oriented along [—211]

which in the reference configuration had unit length. Except for the variant-pair (3 4), the

lengths are independent of whether twins or reciprocal twins are used in the computation.

See text.
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(2 4)t and the other pairs. That is, (2 3)/, (3 4)( and (2 4)< need not exhibit refinement at

the growth twin boundary, in contrast to the variant pairs 12, 13 and 1 4. The total energy

we have given omits any contribution of interfacial energy, either on discontinuities of Vy(*>

or of m**). With the variant pairs 1 2, 1 3 and 1 4, the surface area of discontinuities of

Vy(*) goes to oo as k —» oo. Ultimately, this will be energetically unfavorable and the final

value of k may be determined by a compromise between the energy calculated in this paper

and surface energy. We note that there are alternative explanations for limited fineness

based on dynamic inaccessibility (see Ball, Holmes, James, Pego and Swart [1990]). In

any case our expectation is that the sequences with variants (2 3)/, (3 4)t and (2 4)t are

likely to be preferred, based on considerations of small energies. However, these variants

do not give the largest magnetostrictive strain along [—211], as can be seen from Table

2. More specifically, the variant pairs (2 3)* and (2 4)* have the same maximum length,

but the minimum length of a line segment using (2 3)* or (2 4)( is greater than the

minimum length for variants 1 2. Thus, speculating a little, we could suggest the following

mechanism. With small compressive stress on a [—211] rod we could imagine that the

observed magnetostriction due to an applied field is caused by the variation of 7 between

0 and 1 for the exactly compatible variant pair (2 3)*, (2 4)/ or perhaps (3 4)t. This might

be associated with A-jumping of Clark, Teter and McMasters [19SS]; see also Clark [1992].

The maximum strain available using either variants (2 3)/ or (2 4)/ is

1 07?+ !(»/? -»/?))• y >h '

With a larger compressive stress, we could imagine that the material switches to variants

1 2, because the minimum length of a line segment achieves the smaller value r/i < (r/̂  +

f C7?? ~" ̂ I ) )* - Then, the strain available would be the value given by (6.71). The ratio

of the values (6.72) and (6.71), which is 3/4, would then represent the ratio of observed

magnetostrictive strains with small and moderate compressive stress. This agrees pretty

closely with what we are able to read off the graphs.
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How would we recognize the change from the variant pair (2 3)*, (2 4)t or (3 4)t to 1 2?

First, we might recognize an abrupt increase of the fineness on application of a compressive

stress. Second, if we were observing a (0-11) plane, we could turn to Table 1 and check the

traces of the twin plane on the plane of observation. From Table 1, we expect the [100]

or [Oil] trace at small or zero stress, but 1 2 can have either a [Oil] or a [100] trace. We

also note that if we are only interested in biasing the material toward the smallest strain,

we could also use the pairs 1 3 or 1 4, which can give [—111] traces. One general fact that

emerges from Table 1 is that coarse microstructures have [100] or [011] traces, while all

other traces are expected to exhibit fine mixtures.

We were encouraged to make these speculative remarks based on the apparent good

agreement with Lords' picture, Figure 6. An analysis of minimizing sequences is needed

under applied fields and stresses. With recent results of DeSimone [1992] and computa-

tional advances by Luskin and Ma [1990] it appears that such predictions will be feasible,

at least in the large specimen limit discussed here.
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