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Internal variables and fine-scale oscillations in
micromagnetics

R. D. James and Stefan Miiller

We derive the field energy of micromagnetics by computing the limiting
energy of a lattice of dipoles as a typical lattice parameter goes to zero.
Different limiting energies are obtained, depending upon whether the dipoles
do not oscillate (strong convergence), oscillate on a scale much larger than
the scale of the lattice (weak-long) or oscillate on the scale of the lattice
(weak-short). The analysis suggests a framework and some methods for the
direct derivation of continuum theory from molecular theory.

1 Introduction

The theory of micromagnetics developed by W. F. Brown [1963] is based on
the free energy

{Vm - AVm + p(m)dx + ! [ vy Pdx (1.1)
Q 2R3

where ¥ is determined by m from the equation
div (-=V¢ +m) = 0 on R*. (1.2)

Here, m : R* — R® is the magnetization, ¢ : R*> — R is the magnetostatic
potential, h = —Vy is the magnetic field and b = —Vi/ + m is the magnetic
induction. The magnetiztion is assumed to vanish on R*\Q and the expression
(1.1) is subject to a saturation condition |m(x)| = f(6), x € Q, where 9 is the
temperature and f : R — R vanishes at the Curie temperature, f(6,) = 0. The
term @(m) represents the anisotropy energy density and the term Vm - AVm
represents the exchange energy density. The remaining term

. 2
ER/g |V 2dx (1.3)
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is the field energy. This paper is concerned with the derivation of the field
energy.

With improvements in high resolution microscopy, it is becoming evident
that a variety of materials develop lattice-scale oscillations of field quantities at
certain temperatures, stresses or fields. Examples of such oscillations are tweed
structures (Van Tendeloo, Chandrasekaran, Lovey [1986], Tanner, Schryvers and
Shapiro [1990], Schryvers [1991], Sethna, Kartha, Castan, Krumhansl [1992]),
9R/18R structures in CuAl (Adachi, Perkins, Wayman [1988], Lovey, Van Ten-
deloo, Van Landuyt, Delaey, Amelinckx [1984]) microtwinning (Schryvers
[1992]) and various incommensurate phases (Van Landuyt, Van Tendeloo, Ame-
linckx {1988]) in materials that undergo martensitic or structural transforma-
tions and antiferromagnetism or ferrimagnetism (and related phases) in mag-
netic materials. The appearance of such fine scale structures calls into question
the derivation of the standard continuum theories and, in particular, the theory
of micromagnetics. In such cases the question arises “Is it a phase or is it a
microstructure?” That is, the observed structure is evidently a microstructure
if it is modeled by one of the standard theories but with an extremely small
surface energy; in the context of micromagnetics this would mean that the con-
tribution of the exchange energy is small relative to the other energies. In that
case the appearance of fine-scale oscillations is attributed to the frustration of
the energy (1.1), when the exchange energy is omitted (see e.g., James and
Kinderlehrer [1990]). On the other hand, it is a phase if there is in some sense a
special potential-well of the free energy density assigned to the observed struc-
ture. Usually, it is only possible to assign such a potential well if new variables
are introduced into the continuum theory to describe the geometry or nature of
the observed structure. In nonclassical continuum theories these variables are
called “internal” or “hidden” variables.

Our general goal is to revisit the underlying molecular basis for such con-
tinuum theories. We want to determine whether the standard continuum theory
persists in the context of lattice-scale oscillations and, if not, to prescribe the
necessary revision. We are particularly interested in what information from the
molecular picture survives at continuum level and what information can be safely
neglected at the continuum level. In this paper, we confine attention to the field
energy term (1.3) in a classical framework.

As explained by Brown [1962, 1963, 1966}, or in the corresponding dielectric
context by Toupin [1956], the derivation of (1.3) is related to Lorentz’s [1909]
calculation of the field of a lattice of dipoles. We adopt this framework except
that we consider a family of Bravais lattices L,, A € (0, 1], in which A is a
typical lattice parameter, L, = AL;. We place a dipole of moment d;(x) on
cach lattice point x € L, and we identify continuum quantities as limits of
corresponding lattice quantities as A — (. Two issues arise in the calculation of
these limits. First, the field of a dipole has non-integrable singularities at each
lattice point and at oo. Second, the calculation of the limiting energy involves
products of oscillating sequences, so weak-convergence techniques are useful,
with the added feature that weak limits are affected by the relation between the
wavelength of a typical oscillation and the scale of the lattice.
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In Section 2 we explain the notation and the method of treating the nonin-
tegrable dipole field. In Section 3 we compare different methods of imposing
convergence conditions on the dipole field d;. For the purpose of this introduc-
tion we may think of extending d, (x) to all of R?, using a piecewise constant
extension (constant on each unit cell), and then multiplying by A* vol. (U) where
U/ is a unit cell of the lattice L;. Convergence conditions can then be imposed
on the extended and scaled field, d; (z) = 33 vol. Ud, (x), z € x+ AU. In our
terminology strong convergence of d in L? corresponds to “no oscillations,”
Whil;: fine-scale lattice oscillations are modeled by weak convergence dy — m
in L°.

We discuss the limiting fields in Section 5. The limiting magnetic induction
b arises in our calculation by cutting out a region rR around each dipole and
by replacing the dipole field by a nonsingular divergence-free field. For the
calculation of macroscopic fields it turns out not to matter whether r is much
larger, much smaller, or of the same order as the lattice scale A. Also, the
limiting fields b, h, m and the relations b = h +m, divb = 0 are insensitive as
to whether the dipoles oscillate on the lattice scale or on longer scales.

The insensitivity of field quantities to the nature of the oscillations is not
shared by the energy. For the case of strong convergence d;” — m in L?, we
obtain the classical formula for the field energy (Section 6). The case of weak
convergence divides naturally into two subcases that we label weak-long and
weak-short; these terms are defined by looking at correlations of d} (-) with its
translates d;’(- + z) where |z| < A (Section 7, (7.2)s¢). The weak-long case
corresponds to oscillations with wavelength much larger than the lattice spacing
but small compared to the macroscopic dimensions. We show that the weak-
long limiting energy is still given by the standard formula (essentially (1.3)
with (1.2)), but that this formula is not evaluated at the magnetization but rather
on the sequence d;” (Proposition 7.1). We give some specific examples of the
weak-long energy in Examples 7.4, 7.5 and 7.6.

New expressions for the micromagnetic field energy are found in the weak-
short case, which models oscillations that are truly on the scale of the lattice
(Section 8). In the periodic case (Section 9) the excess field energy is found to
depend on a finite set of vector fields dy, ..., d,, d; : Q@ — R3. The d,,...d,
are not the actual lattice-scale dipole moments but are related to them by (9.12)-
(9.14). The form of the excess field energy in the weak-short case is

L a0cx) - 30 wydx, (1.4)
2Q

where SV are certain trace-free symmetric matrices given explicitly by certain
remnant lattice sums (they are independent of the dipole field d;’). Further
discussion is given in Section 9.

The three cases — strong, weak-long and weak-short — can be summarized
briefly as follows. In this summary, m;, — m in the appropriate sense and e; (p)
denotes the energy on L, of the dipole field p.

strong: e, (m,) — eg(m)asi — 0,
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weak-long: e, (m;) — }in}) ep(m,) # eg(m) |

# eg(my),

weak-short: e, (m;) — }1_% e;(m;) {75 %1_r>r(1) eo(my) -

Here, # is read “not in general equal to” (see Firoozye {1993] for a more precise
statement). The operator ¢y depends only on the lattice L, while e; depends on
both the lattice and the sequence m,.

Our general impression after doing these calculations is that there is a huge
variety of ways that a material can store energy in weak-long and weak-short
oscillations, this energy not being reflected by the magnetization of the material.
Also, it appears to us that the weak-long/weak-short paradigm will emerge in
the molecular derivation of other continuum theories. In this context the reader
is referred to recent work of Gérard [1990-91] and Lions and Paul [1992].

Dipole calculations of the kind given here also appear in the theory of bubbly
liquids and in the theory of dielectrics (Rayleigh [1892], Sangani and Acrivos
[1983], Toupin [1956]). We do not pursue the application to bubbly liquids.
Throughout the paper, we use the terminology of micromagnetics rather than
the corresponding electric terminology. Many of the mathematical results we use
can be gathered from books on singular integrals; for the most part we avoid
making extensive reference to these books and present complete arguments.
Several of the arguments given here have been recently generalized by Firoozye
[1993].

2 Preliminaries

The field of a dipole is

__ ! 13X X 3
K9 = — s {1 3|X| ® ‘X|}, x e R3. 2.1)

Except at the origin, K is smooth and satisfies

K(x) = -V <@%> — Vv (4;])(]) . 2.2)

We also use the notation u(x) = ﬁ to denote the monopole field.

Because the field of a dipole exhibits a »~> singularity, it is not a locally
integrable function. For this reason, straightforward volume averages of arrays
of dipoles are meaningless. A natural way to interpret both derivatives and
averages in this context is by using the theory of distributions. In this section
we collect several results on distributions that we use later.

The set CP(R™) denotes the set of infinitely differentiable functions with
compact support on R". A distribution is a continuous linear functional on
CP(R™), and the set of distributions is denoted by D'(R™). Here, the continuity
of a distribution 7 refers to the statement T(+;) — T (i) whenever the support
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of each ; is contained in a fixed compact set K and all derivatives of ¢; —
converge uniformly to zero (see Rudin [1991, Theorem 6.4]). We say that T; —
T in D' if and only if T;(¢) — T(¥) for every ¢ € C°(R"). We use the
standard notation 8, () = yr(a) for the Dirac distribution.

Our expression for the field of an array of dipoles will have the form of
a convolution of a distribution with a macroscopic dipole moment per unit
volume. Generally, the convolution of a distribution will be defined as follows.
Let ¥ € C°(R™) and let % (y) := ¥(x —y), y € R". The convolution of a
distribution with ¥ € C3°(R") is the function (T * ¢) : R” — R defined by

(T = Y)(x) = T(7y). (2.3)

We shall also need several variants of the convolution. As a general purpose
notation, we will write for example 7 (¥(x — -)) for the function T (zy) where 4
is defined above. Using this notation,

(T*)x) =T(Px — ). (2.4)
Another kind of convolution that will appear often is
(Toy)(x) =THE+")). 2.5)

Let T be a distribution. The derivative of T is the distribution DT defined
by

DT () = =T (Vy). (2.6)

Higher derivatives are defined in a similar way. Our distributions will usually be
vector or matrix-valued which just means that each component is a distribution.

Thus, if a, i =1, ..., n is a vector-valued distribution, div a and curl a are the
distributions defined by
(curl a(y)); == —eged (¥,,), div a(y) == —d' (). (2.7)

In (2.7) the summation convention is used and g;;; is the permutation symbol.
Similarly, the divergence of an n x n matrix- valued distribution M is the vector-
valued distribution div M defined by

divM(y) = ~MY(y, ). (2.8)

Note that we adopt the convention that div operates on the first index of a
matrix-valued distribution. For any locally integrable function f: R” — R” we
say that “div £ = 0 in the sense of distributions” if the distribution

F() === [£-Vydx, ¥ e CP(R" (2.9)
Rn

vanishes; this is consistent with (2.7), if we associate a function and its distri-
bution in the usual way.
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Throughout this paper we interpret the field of a dipole as the matrix-valued
distribution

K@) = [u® @ Vy®dx, ¥ e CO®R), (2.10)
R?y
where u(x) = F’IKXF is the monopole field. K is the well-defined because the

monopole field is locally integrable. It will be clear from the context whether K
stands for the distribution (2.10) or the function (2.1).

We shall often have occasion to extend the domain of a convolution 7 * i
from C<° to a larger complete normed linear space X, typically L?. The extension
is immediate if we can first prove the bound

IT %l < cllyll, forall ¥ eCPR™Y. 2.11)
That is, if ¥* € C2°(R") is a Cauchy sequence in X, (2.11) shows that

T %" — T % 9", < clly* — v, (2.12)

so that T  y* is a Cauchy sequence in X. Hence we define for ¥ € X,
T(Y) = lim T(y®) (2.13)
k—o00

where ¥* — ¢ in X and ¥* € C®(R"). By (2.11) it follows that T(y) is
independent of the choice of approximating sequence.

Unless explicity stated, all norms || - || in this paper represent L? norms and
< -, - > denotes the standard inner product on L.

3 Precursor fields for a single dipole

In addition to the basic field K of a single dipole, there are other fields derived
from K that arise in a natural way in lattice calculations. These are the magnetic
induction, the Maxwell self-field and the Lorentz local field. In this section we
define these fields and their associated distributions for a single dipole.

To motivate our expression for the magnetic induction, consider the function

Kx), [x|>r,

B () = { 3.1
° (X) 2711;,3 19 |X| S r. ( )

Since the jump condition

BOXIn=0, n:= - (3.2)

x|’

holds at |x| = r, it follows that B{? is divergence-free in the sense of distribu-
tions. Also, if we write

B (x) = K(x) + M (x), x#0, (3.3)
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it follows that M{? has compact support on the ball of radius r. The formula
(3.3) is the precursor of the decomposition of the magnetic induction into the
sum of the magnetic field and the magnetization.

More generally, it is enough to adopt the scaling represented in (3.1). Let
R C R’ be bounded and open with a smooth boundary and with 0 € R. Let
K, € LY(R, M?>*3) be chosen such that the function

K(x), x € R® —rR,

B (x) :=
Ik, (§> . XxerR

73

(3.4)

satisfies
divBYx) =0 in D', (3.5)
This can always be accomplished by first solving

Ap=0 on R,

(3.6)

3
a‘z —K(y)n for yeaR,

and then by setting
K, = (Vp)'. (3.7

(recall that divergence operates on the first index of a matrix). It is easily checked
that the Neumann problem (3.6) is indeed solvable. Note that div BV (x) = 0
implies that divB" (x) = 0. The definitions (3.4) and (3.5) define the precursor
of the magnetic induction of a dipole.

A different kind of decomposition of K arises naturally in lattice calculations
of energy and corresponds to the principal value decomposition. For this purpose
we define

(r) — K(X)? ]Xl > r,
P = {y =7 38)
The subscript MS here refers to the Maxwell self-field of a dipole and identifies
Pgs) as the precursor of this field. The remaining part of the field,

PO =K —PJ), (3.9)

is the precursor of the Lorentz local field of a dipole. To make the resulting
formulae correspond with Lorentz’s, we have used a spherical cut-out in (3.8)
rather than the more general cut-out as in (3.4).

We first show that the dipole field K is approximated (in the sense of distri-
butions) by either B" or PZS) and certain Dirac masses at the origin.
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Proposition 3.1. Let G, € L'(R, M*>3) and define for r> 0,

K(x), xeR®—rR,
G(x) =1, X (3.10)
—gG* (—) , Xe€rR.
r r
Then,
G"” - K+M$, inD asr— 0, (3.11)
where 8, is a Dirac mass at the origin and
M:= /—‘7®nds+/de (3.12)

Furthermore, if div G = 0 in the sense of distributions, then M = 1 and,
conversely, if M=1 then div G — 0in D'
It follows that the precursors of the magnetic induction and Maxwell self-field

satisfy
B — K+ 15,,
” 1 (3.13)
PMS —> K+ 5150,
inD asr— 0.

Proof. From the definition of G we have for any v € C°(R?),

[GOydx= [ Kydx+ [ %G* () peoax
rR

R3 R3—~rR

= | V|5 vds+ /G*(y)xﬁ(ry)dy
4r|x I
R3—rR

(3.14)

' 1?l’(X)X X n - OX® VT/f .
o) ATIXP +R3!,R dlxp +IZ (y)¥(ry)dy

/W(ry)y®n +/

= [ T d + / G.()¥(ry)dy.
oR

Here, n is the outer normal of »R. Using the facts that ¢ € C3° (R%) and G, €
LY(R, M>*3) and the definition of the distribution K, we take the limit of (3.14)4
as r — 0 and get (3.11) and (3.12).

Now suppose that div GV = 0 so div G2 = 0 in D for all r > 0. Passing
to the limit in (3.11) and recalling the definition (2.8) of the divergence, we get

2
/ (Zﬂ‘il)fdx + M7 Vy(0) = 0. : (3.15)
R3
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Since the monopole field u(x) = 4-”—"‘);‘3 is in L', (3.15) implies that
2 .
v w)f dx -+ M? V(0 = o(1), (3.16)

where B(p) is the ball of radius p and o(1) — 0 as p — 0. Integrating the first
term of (3.16) by parts, we get
VY , _ -
— [ ==x-ndS— [ (diva)Vydx + M V§(0) = o(1). (3.17)
() AP R3-B(p)

Since divu = 0 on R? — B(p) and n = % for x € dB(p) we can take the limit of
(3.17) as p — 0 and get that M = 1. Conversely, if M = 1 then (3.17) holds so
that (3.16) and (3.15) also hold; hence, divG" — 0 in D'. The first of (3.13)
now follows immediately from (3.5), while the second of (3.13) follows from
the identity

1, 1
— [ n®ndS=_1. (3.18)O
4719}3(1) 3

4 Long wavelength oscillations vs. oscillations on the scale of the lattice

We consider an array of dipoles lying on the points of a Bravais lattice. To
each of these lattice points we assign a vector representing the dipole moment.
As we refine the lattice by letting a typical lattice parameter go to zero, we
will have to decrease the strength of this dipole field accordingly, so that the
macroscopic magnetization (the dipole moment per unit volume) is bounded.
The forms of macroscopic fields will be relatively insensitive to the type of
convergence assumed for the dipole field, whereas the form of the energy will
be sensitive to the type of convergence assumed. In this section we define and
compare several types of convergence used later.

A Bravais lattice is the set of points given by

L(e;, e, €3) = {x e R :x= e where v, € Z}‘ (4.1)

Here e1, e;, e3 € R? are linearly independent lattice vectors and Z denotes the
integers. We fix {e;} and write
Lk = L()»el, A€y, )»83), A > 0. (42)

For convenience we assume that the lattice vectors have been chosen such that
the unir cell

U= {X eR¥:x= oziel-,O <oy, 0, Oy < 1} (4.3)

has unit volume. We also use the terminology unit cell for any translate of U
by x € L.
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Consider a discrete dipole field dj, : L, — R? defined for each 1 € (0, 1).
We wish to consider convergence of the dipole field d; as 4 — 0. As the
d, are defined on different lattices for different values of A, it is useful to
consider extensions of d;, to all of R?. Then we can consider the usual kinds of
convergence for the extended fields. The standard extension of d,, is the scaled
piecewise constant extension d,” given by

d (y) = A%y (x) for xel, and yex+ AU 4.4

The field d; : R?® — R3 is constant on each unit cell of Z,. We say that d;
converges strongly as A — 0 to m € L*(R3, R%) if

d7 > m in L*R’ R, (4.5)

Similarly, we say that d, converges weakly to m € L*(R?, R3) if

d ~m in LR} RY. (4.6)
In the latter case we will also assume that
lim sup [/ |dy[Pdx=0, .7

P00 re O, lgs gy
which insures that the dipole moment per unit volume does not “escape to
infinity” as A —> 0. In particular (4.7) holds if all the d, vanish outside a fixed
bounded set. Note that because of the scaling A ~> in (4.4), m represents a dipole
moment per unit volume. In our terminology strong convergence corresponds to
no oscillations. Fine-scale oscillations are modeled by weak convergence of d,.
Later, as part of our calculations of the energy, we are led to further subdivide
the case of weak convergence to “weak-long” and “weak- short” cases. Further
discussion of the physical interpretation of strong and weak convergence is given
in Sections 7-9. Note that our terminology is slightly nonstandard because of
the factor A~ in (4.4).

An alternative way to consider convergence of the d; is to assume the exis-
tence of a background field m;, € L*(R*, R?) and then to define d; by

d.x) = [ my(z)dz (4.8)

x+AU

More generally, we could allow the background field to vary with A. The fol-
lowing shows that the notions of strong and weak convergence defined above
in terms of the standard extension correspond to assuming the existence of
background fields that converge, respectively, strongly and weakly in the con-
ventional sense.

Proposition 4.1. Lez m,, 1 € (0, 1], be a sequence of vector fields in L*(R?, R?)
with

m, >m in L*R> R (4.9)
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(respectively, m; — m in L>(R*, R*)). Let d, : L, — R> be defined by

= [ m@)de. (4.10)
x+AU

Then d, converges strongly (resp. weakly) fo m in the sense of (4.5) (resp.
(4.6)). Moreover, if

lim sup Imy |2 dx = 0 4.11)
o0 Ae(O,l]R3_é(p)

then the standard extension of Q,. satisfies (4.7).

Conversely, if d; : L, — R is a strongly (resp. weakly) convergent sequence
in the sense of (4.5) (resp. (4.6)), then there is a strongly (resp. weakly) con-
vergent background field m; € L*(R3, R%) so that d,, is given by (4.10). If d,
also satisfies (4.7) then the sequence m; can be chosen to satisfy (4.11).

Proof. The converse is obvious as we may choose m; = d; . To prove the first
part, we first note that if g € L? and 1, : L, — R is defined by the formula

= | g@dz, (4.12)

x+AU

then the standard extension of r; belongs to L? and satisfies

e 1) < - (4.13)

The result (4.13) follows from the calculation

I1P=27 Y P Y [ lg@Pdz=|lgl? (4.14)
xel; xely x50

where the inequality follows from Jensen’s inequality. We assume that m, — m
in L? and that d; is defined by (4.10). Let § > 0 be given. By the density of
C in L? there is a i € CP(R?, R?) such that

i —m] < 8. (4.15)
Let d, : L, — R be given by

d,(x) = [ m(y)dy (4.16)
X+AU

with standard extension fl;. We have

ldy —m) < |dy —d, || + |ld, —m} + i —m]. (4.17)

By the linearity of standard extensions and the result (4.12), (4.13), the first
term on the right hand side of (4.17) satisfies

Iy —d; | < m, -1 < [jm, —m| + |jm— . (4.18)
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To estimate the second term on the right hand side of (4.17), we note that for
yex+ AU

4, (v) —m(y)| <27 [ Ih@) —my)ldz < &, (4.19)
x+AU
where &; depends upon the choice of . Therefore, since ﬁ; and h vanish

outside a bounded set, a; — 1 uniformly as A — 0. Combining (4.15), (4.18)
and (4.19) with (4.17) we get

lim sup |}’ —m]| < 25, (4.20)

and so by the arbitrariness of § we get d; — m in L>(R?, R?).

Next we consider the case of weak convergence. By the result just proved,
it is only necessary to consider the case my — 0. Let ¢ € CX(R*, R). We
introduce the corner map, x,(y) == x fory € x+ AU, x € L,, and write

[&@vwdy= [+ [ mu@¥y)dady
R3 R3 X3 (Y)-+AU

=[27 [ m@y@dudy (4.21)
R3 X(y)+AU

+ /27 [ m@ @) - ¥) dady.
R3

(VAU

To estimate the second term in (4.21), we let A be a set containing supp ¥+U,
and we let v; be the number of lattice points of L, in A so that v, < const. A3,
Two applications of Jensen’s inequality gives

2
( [a7 [ m@(y) - v(2)dz dy),
R3

0.5+

(A

2
(R/A—3 [ Imu@)ch dz),

3 %, ()+AU

(4.22)

IA

2
czxzui(lz > |mx(z)|dz),

VX yeLiDA g, (y)+AU

A
o
(33
-
[\
=
Py
g
>
(=)}

2
1 \
(ra / |mx(z)|d2) :

% (9)+AU

1A

2 (A7) lmy |

Also, the first integral on the right hand side of (4.21), is
[, @)y@dz — 0, (4.23)
RS
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by assumption. Hence, d;” — 0. To complete the proof, we note that (4.7)
implies (4.11) because

[ 72 [ m@dldy< [ m@)|d (4.24)
R3—B(p) % (y)+AU R*—B(¢')
where o' = p + ¢ for some ¢; > 0 (recall that meas U = 1). o

The choice of a Bravais lattice as the underlying lattice is not crucial for
our calculations, although the nature of the results would be slightly altered
in several cases. For example, there could be several unit cells corresponding
to different sublattices or the unit cell could be a function of the lattice point.
The important hypothesis for the calculations of the following sections is the
hypothesis of strong (or weak) convergence of the appropriate standard extension

(cf. (4.4)-(4.6)).

5 Field of a fine array of dipoles

In this section we derive formulae for various macroscopic fields under condi-
tions of weak convergence of the dipole field d; as A — 0. The results of this
section are insensitive as to whether weak or strong convergence is assumed.
For applications to micromagnetics and other theories the main case of inter-
est is the case in which the dipole field has compact support. Hence, we assume
the existence of a background field m; — m in L' with supp m, C Q such that

dx) = [ my@dz, x€ L, (5.1
x+AU

If G : R* — M3*3 represents a field quantity associated with a single dipole,
e.g., the field K, magnetic induction B®, the Maxwell self-field P") or the
g Ms
Lorentz local field PE’?, we define the corresponding field quantity for the array
of dipoles by

g.(x) = > G(x—y)dy(y), (5.2)
yeL;

that is, by summing the field quantity at lattice points. Because of the issues

raised in Section 2, we will view the field quantities for the array of dipoles as

distributions. For quantities in L'(R®, M**%) such as G = B or G = P\") we

define distributions in the obvious way,

() = [ g@®yY(x)dx = > [ ¥®G(x — y)d; (y)dx (5.3)
R3 YeLaps

for ¢ € C°(R?, R). For quantities not in L' (R?, M>3) we use special formulae.
In particular, the field b, of an array of dipoles is given by the sum of (2.10)
over lattice points

() = ¥ [@x—y) - dy)VyEds (5.4)

yeLips
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for all € C°(R, R). In (5.4) u(x) = ﬁ is the monopole field.
We are interested in the limits of field quantities for an array of dipoles as
A —> 0. These are obtained by use of the following result.

Proposition 5.1. Let TY) be a one- parameter family of distributions and suppose
that

T®W 7 in D. (5.5)
Suppose m, — m in L' with supp m; C Q and let

) = [ mdy, x € L, (5.6)

x+AU

where L, and U are defined by (4.2) and (4.3). Let k;, — o0 as A — 0. Define
the distribution

T, =% TE (Y(y + ), (y). (5.7)
YEL

Then

T, — TinD as A — 0, (5.8)

where (cf. (2.5))

TW) :==Tmovy), ¥eCPR) (5.9

and

(moy)(x) = [ m(z - x)Y(z)dz. (5.10)
]R3

Proof. Let ¥ € C°(R®) and let 7, be given by (5.8). By linearity we have,

T5.(0) = T™ (), (5.11)

where

H(X) = ZL Y(x + y)di(y). (5.12)
yeis

Note that since d;, has compact support on Q, ¢, € C°(R3, R?) for each A > 0.
Hence, it suffices to show that

¢ —>moy in CPRRY). (5.13)
Furthermore, since

Fe,x) _ > FYx+y)

d.(y), 5.14
5@ Z T e () (5.14)
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it suffices to verify uniform convergence in (5.13). By (5.6) and (5.10) we have,

I

|92 (x) — (m o P)(x)| = 22 Y+ ) — [ Y@meE - x)dz
YELy R3

y+AU y+AaU

= [ (x) + b x)],

where
)= = {yaey) [ - ma)da),

yely y+AU

(5.16)

b(x) =Y [ @WE+y - ¢ E+2)m@dz

¥ela yyau
Clearly
by} < sup sup [¢ (V+w) — ¢ (V)| |Im||p, (5.17)

velR3 weil

80 |by| — Oas A — O uniformly. To analyze a,, we first recall the corner map x;,
introduced just before (4.21). For x, z € R> we define ¢~ (x, z) := Y(x+x,(2)).
Then a, can be written

X =Y [ ¢ (x2m@-m@)dz,

yely y-au

, (5.18)
= [ ¥ * D@ @) ~ m@)dz.
R3
Hence,
0l = [ (7 (%.2) — ¥ (x+2) (s (2) ~m (2)) dz
PR3
+ [ ¥ (x+2) (m (2) — m (2)) 4
K | (5.19)

< [ WD) -y &+2)|m; (2) —m @) dz
R3

+} [ ¥ &+2)(m, (2) ~mz)dz
RB

The first term of (5.19), is bounded by
A{sup Vi)diamU||m; —m||;.. (5.20)
R3
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Since any weakly convergent sequence in L' has the property that its L! norm
is uniformly bounded, the first term in (5.19), tends to zero uniformly as A —
0. The second term in (5.19), tends to zero pointwise by the definition of
weak convergence. Since the gradient of this term (inside the absolute value
signs) is uniformly bounded, the second term in (5.19), tends to zero uniformly.
Combining these results, we conclude that the left hand side of (5.15) tends to
zero upniformly as A — 0, completing the proof. o

Using Propositions 5.1 and 3.1, we can find the limits of field quantities.
This is done below.

1. Magnetic field. Here, we take T® of Proposition 5.1 to have the form T® =
KT (independent of i) and observe that formula (5.7) gives T; = h;, where h;,
is defined by (5.4). Applying Proposition 5.1, we get

hy -h in D (5.21)

where

h= [} [u@z-x)- m(x)dx} Vi (z)dz, (5.22)
R3 \R3

which can be written as —D(u % m).

2. Magnetic induction. The precursor of the magnetic induction B’ defined by
(3.3) involves the additional parameter ». This suggests two ways to define the
macroscopic magnetic induction. We could first fix r, apply Proposition 5.1 to
B, and then take the limit as r — 0. In this case, more and more dipoles would
enter the region rR as A — 0. Alternatively, we could let » depend on A with,
say, r, having a certain decay rate as A — 0; if the decay rate is sufficiently
fast then r; R would only contain one dipole for all L > 0. In fact, the same
macroscopic magnetic induction is obtained in both cases.

To see this, we first apply Proposition (5.1) to 7%® = B (independent of
k) with r fixed. The formula (5.7) for the induction b is then

b (W) = ¥ [BO—yd@yxds, ¥ e CORY). (5.23)

yELARE

Note that by) is divergence-free, because B! is divergence-free. Applying Propo-
sition (5.1) and using the definition (3.3) of B(?, we get that

b’ > b® in D asir— 0, (5.24)

where

b)) = [ ¥(@) [ B @~ x)m(x)dxdz. (5.25)
R? R

By (3.4) b can be written

b () = b () + bY (), (5.26)
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where

b)) = [mx [ K@-—x)y(z)dzds,

R3 x+(R3—rR)

/ %K (=) v@daax. (5.27)

X+rR r

b () = [mx)
. R3

It is easily checked by calculations analogous to those in (3.14) that
b” >h+m in D, (5.28)

where h is defined by (5.22) and m is the magnetization. Thus, if we let b denote
the limit of b") as r — 0, we recover the standard formula of electromagnetism,

b=h+m. (5.29)

The distribution b inherits the property of being divergence-free.

Alternatively, we can begin again and let r depend on A; say r;, — 0 as
A — 0. Then we apply Proposition 5.1 to the distribution T® = B(). Letting
ki = (r,)~" we observe that (5.7) is a formula for b\ (cf. (5.23)). Let b, =
b{*). Proposition 5.1 now allows us to evaluate the limit of b, as A — 0 in I
Applying Proposition 5.1, we get the same result as (5.29), i.e.,

by —>h+m in D. (5.30)

3.Maxwell self-field. Again we have two alternatives for defining the Maxwell
self-field. Here, we shall just treat the case r; — 0 as A — 0, and remark
that the alternative procedure (r = r,, A — 0, then r, — 0) gives the same
result. We take T® of Proposition 5.1 to have the form 7® = P() and let

kj = (r,)~!. The formula (5.7) gives

P (W)= T [P - )d s (5.31)
Yelis

for all ¥ € CP(R®). Applying Proposition 5.1, we get
» L
p,; — h+ gm m D (5.32)

With regard to the description of macroscopic fields, the Maxwell self-field does
not offer any particular advantages. For example, it is not generally divergence-
free. However, it plays a major role in calculations of energy. The main conclu-
sion of this section is that m is interpreted as the magnetization under conditions
of either weak or strong convergence.
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6 Energy of a fine array of dipoles without escillations

In this section we calculate the total energy of a fine array of dipoles in the case
of strong convergence of the background field. This calculation differs from
the previous one in that here we are simply calculating the limit of a sequence
of numbers. We say that the background field is without oscillations under the
conditions of strong convergence. Throughout this section we fix r > 0.

The energy of a lattice of dipoles is calculated in the standard way by sum-
ming the work done in bringing each dipole from oo to a point on the lattice
(see Brown [1962, 1963]). This gives the expression

—1
6@ =5 )ZL 4, (x) - Kx —y)da(y). (6.1
X#Y

We assume the existence of a background field m; with

d.x) = [ m(z)dz, (6.2)

x-+AU

(see Section 4).

For now we assume m; € C(R?, R?) so that the expression for e, is well-
defined. Later (Lemma 6.1) we will show that (6.1) makes sense for m, €
L*(R?, R?). Introducing characteristic functions, we can write (6.1) in the form

S

6= 5 / / m, (x) - K, (x, yym, (y)dxdy, (6.3)
R3 R3

where

Kixy) = X Xvru(OKE — W) xwiav (¥)- (6.4)

v, wely

XFEW

Using the fact that characteristic functions have the scaling property x,,(X) =
X, (3), & > 0, and using the definition (2.1) of K, we get the scaling

1 Xy
Ki(x,y) = FKl(K’ X)' (6.5)
The formula for e; can be written
—1
eA _ '—2— (m)u T}»m)\,>L2 (66)
where
(Tam)(x) == [ K, (x, y)m(y)dy. 6.7)
R3

The map T is a kind of discretized version of the Maxwell self-field, as can be
seen by placing the expression (6.4) into (6.7) and by comparing- with (5.31)
and (3.8). ' '



Fine-scale oscillations in micromagnetics 309

We now show that T, extends in a natural way from a map from C° — 1?2
to a map from L?> — L?. Once this has been shown, it is clear from (6.6) that
e, is well-defined for any m; e L?.

Proposition 6.1. The map T) :m — | K; (-, y)m(y)dy defined on Cg° (R, R%)
R
extends to a bounded linear map from L*(R3, R?) to L*>(R?, R%). Moreover,

I A = T4 Vi > 0. (6.8)

£(12,12) £(L2,12)

Proof. Assuming T is bounded linear map from L2 to L2, (6.8) follows from

the scaling (6.5). That is, if we let (S;,f)(x) := k%f(kx) we note first that S, is
an isometry from L2(R?, R?) to L2(R?, R?). It then follows from (6.5) that

QM®:MF%m®=®W&m®- (6.9)

Hence, it is sufficient to show that Ty extends to a bounded linear map from
L? to L% According to the argument presented at the end of Section 2, it is
sufficient to show that for all m € C(R?, R?)

ITym] < c|jm|| (6.10)

for some constant ¢ > 0. Recalling the definition of the Maxwell self-field,
equation (3.8), we let

LO(x,y) =K (x,y) —PO(x —y). (6.11)
We claim that there is a function g e L'(R?, R) such that
IL?(a,b)| < g (Ja — b)). (6.12)

To prove (6.12), we first observe that both |K,;| and |P)| are bounded for
each r > 0. The latter is obvious from the definition (3.8); the former becomes
obvious when we write K; in terms of the corner map x;(y) introduced just
before (4.21) (specialized to A = 1), viz,,

0, a and b in the same unit cell of L;,
K(x;(a) — x;(b)), otherwise

Hence, |L" (a — b)] is bounded for |a — b| bounded. Therefore, to establish the
estimate (6.12) it is only necessary to consider a and b satisfying |b — a| >
(diamU + r). In this case,

K,(a,b) = { (6.13)

4!

) = — - - AT
LY (a, b)| = [K(x1(a) — x1(b)) — K(a - b)| < o +la— b

(6.14)
where ¢ > 0 and ¢; > 0 depend only on » and diamU. This establishes (6.12).

Now we combine (6.12) with a standard result on convolution (see e.g.,
Brezis [1983, Theorem IV.15, p. 66]) to get that

[ LY, y)m(y)dy

R3
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defines a bounded linear map on C°(R®, R?). The boundedness of the remaining
part of T m,

I [ PO (x — y)m(y)dy] < c|ml, (6.15)
R3

follows by applying a standard result on singular integrals (Stein [1970, Chapt.
II, Section 4]). To apply this result, we only need to observe that for any r > 0

[ PO x)dx =0,
B(r)

which follows from (3.18) and the definition of PL’S)

The proof is completed by using the argument at the end of Section 2, (2.11)-
(2.13)0

Our main result of this section is a precise version of the expression (cf.
Brown [1963]) for the energy of a lattice of dipoles under conditions of strong
convergence. Recall that measU = 1.

Theorem 6.2. Let
d.® = [ m(2dz (6.16)

x+iU

and suppose m;, — m in L>(R?, R3). Let T, be given by (6.7) and let e, be
given by (6.1). Then

T,m; — K«m + (%1 + s) m in LXR}RY, (6.17)
and

~1 1,
e, — 5 ((m, Kxm) + gllmll -+ {(m, Sm) | , (6.18)
where
S:i=lim T K. (6.19)

ye(LiNB(eH\lo}

Remark 6.3. The term K x m in (6.17) is well-defined for m e L*(R3 R®)
by the argument given at the end of Section 2, equations (2.11) - (2.13) with
X = L*(R3, R?). To use this argument we must show that (cf. (2.11))

IK+f]| <c|f] forall feCPR>R?. (6.20)
The bound (6.20) follows immediately by taking the limit of (6.15) as » — 0,

noting that by Stein [1970, loc. cit.] ¢ in (6.20) is independent of r, and then by
using (3.13),. Alternatively, the property (6.20) follows from properties of the
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Newtonian potential and Poisson’s equation. For f € C2(R?, R¥) we can write
(in components)

—9

: -1
Bx,-aij/3 47X — y|

Kijxfj= fi(y)dy (6.21)

(¢f. Rudin [1991], Theorem 6.30). Let g; be the integral on the right hand side of
(6.21). Then (c¢f. Gilbarg and Trudinger [1977], Chapter 4) g; is the Newtonian
potential of f; so, with f € C7°,

Agj :f] on RS,
Kij=xfj=—gj, (6.22)

By the theory of elliptic equations (e.g., Gilbarg and Trudinger [1977], Chapter
8.3), g satisfies

llgrad divg|l < c|f], (6.23)

which establishes (6.20). Alternatively, the inequality (6.23) follows by the use
of Fourier transforms, as below in Example 7.5.

Proof of Theorem 6.2 According to Lemma 6.1, it suffices to consider m; = m
(independent of A) withm e C° (R?, R?). That is,

T)\ll’l)L =S T,\m + T;L (m — III)L) (624)

and second term on the right goes to zero by Lemma 6.1 while the first term on
the right equals limy o T,m* for m* — m in L2, m* € €. As in the proof
of Lemma 6.1, we define L by (6.11) and write

K — 3pw (X*Y) 530 (f Z)
)»(Xv y) M A + }\,’ X s

. I 3y (XY
= PPx—y)+2 L()(—X, X)‘ (6.25)

The limiting behavior of PU» as 1 — 0 is known from (3.13),, so it remains
to study L,

We first note that by the argument between (6.12) and (6.14) we have for any
R>0

3 i (X
AL (52 ay,

[x—y|=Rx AA

6.26
<c / —L—dy<cmin<l 1) ( :
= |2 )\‘4 + |X—y‘4 — R, .
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We then write
33 [ LO (f,X) d
R/3 =) my) dy

:R/S‘ 2730 <; %) dy m(x)

7 3y (X X)

+ Lo (XY ) —m(x)) d
L (53] ey —me) dy

RS

[x—y|=RA

Consider the limit A — 0 with R fixed. In view of (6.26) the third term on the
right hand side of (6.27) goes to zero while the second and fourth are bounded
by }? as R — oo. Note that

L0 (5, X)d _ [L® <§,y>d.
Ré VA R/3 PR

We will see momentarily that the term on the right is independent of x. Thus
taking the limit . — 0 and the R — oo in (6.27), we obtain

ﬁ%rﬁL“G%%MWWmegLWQWWmm (6.28)

We have used
Lemma 6.4. Let L be defined by (6.11). For all x € R,

JLOG, ydy = [ LY, y)dy. (6.29)
R? R3

Proof.  First note that by the argument between (6.12) and (6.14) the separate
integrals in (6.29) exist. Letting B(p) be the ball of radius p and recalling the
corner map X; (x) for the lattice L; (see (6.13)), we write

[ LW&ydy= [ K&ydy+ [ POx-ydy,
x1(X)+B(p) X1 (X)+B(p) X1 (x)+B(p)

= [ Kixx(x) +2)dz+ [ PU(x —x1(x) — 2)dz. (6.30)
Blp) B{p)
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By (6.13) Ki(x +z,y +z) = Ki(x,y) for any z € L,. Hence the integrand of
the first integral on the right hand side of (6.30) is

Kix x(x) +2) = Kij(x — x1(x), 7)

= > KwWx,., @ =K(0,2).
weli\{o}

(6.31)

Turning attention to the second integral in (6.30), we put y = x — x;(x) and
note that by spherical symmetry (cf. (6.15)¢r)

| POy —zmdz= [ PU(y—z) — P (~z)dz. (6.32)
B(p) B(p)

The integrand on the right hand side of (6.32) is in L!, so we can pass to the
limit p — oo in (6.32) and (6.30). To complete the proof of Lemma 6.4, we
observe that

T:= [PO(y—2)~ P (~z)dz
R3

1
= /P(’)< y+w) P <—§y+w> aw

(6.33)
1
(r) 7
_/P ( — w)—PLﬁ(Ey—W>dW
=-T.
Hence, T = 0. i
Continuation of the proof of Theorem 6.2.
With m € C(R?, R®) we have by (3.12),
1
(PU% xm) (x) — (K +m)(x) + FM® as A0 pointwise. (6.34)

Collecting the results (6.28) and (6.34) and keeping in mind Proposition 6.1,
we get (6.17) and (6.18) with (see below for further explanation)

S = [ LY, y)dy
R3

=1lim, .o [ L0, y)dy
B(o)

= lim, /KI(O Y —PO(—y) dy
% i s (6.35)

= lim [ K0, y)dy
B(p)

Il

lim K(y).
% y%go, ®)
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Here the term involving P”)(—y) drops out of (6.35)3 by spherical symmetry.
The passage from (6.35)4 to (6.35)s follows by noting that the measure of the
spherical annulus of width 2(diaml/) and radius p is proportional to p® plus
lower order terms in p; since K decays as p~?, the difference between the sums
(6.35)4 and (6.35)s tends to zero as p — C0. (]

Remark 6.4. The lattice sum S vanishes when the lattice has cubic symmetry
(e.g., BCC, FCC, simple cubic). To see this we first recall that the point group
of L is the set

P, ={Qc0(3):QL = L}.

By (6.19), if Q € Py,

— 1 = S T.
$ = lim yeg\w) K(Qy) = QSQ (6.36)
NB(p)

Hence, QSQ” = S for all Q € P;. If P; is a cubic point group, then the only
S satisfying this identity is S = od, «¢ € R. By taking the trace of (6.36) and
noting that 7K = 0, we find that in the cubic case S = 0.

7 Energy of a fine array of dipoles with long wave oscillations (weak-long)

As discussed above in Section 4, oscillations of the background field m, on the
scale of the lattice are modeled by weak convergence m;, — m (in L2). It is
expected, however, that the notion of “oscillations on the scale of the lattice”
and the notion of weak convergence do not precisely coincide. For example, a
background field of the form

m; (x) = Y(X)my(x/1%) (7.1)

with 0 < o < 1, ¥ having compact support, and my periodic on R® has the
property that it converges weakly in L? (but not strongly). However, a typical
wavelength of the oscillations of (7.1) is const.A* which for 0 < a < 1 is
much larger than the lattice spacing A in the sense that const.A*/A — o0 as
x — 0. For this example it might be expected that the macroscopic operator
w— (W, Kxw)+ %HWHZ -+ {w, Sw) plays some role, and this in fact turns out
to be true (we calculate the energy of the sequence m, given by (7.1) at the
end of this section).
To quantify this idea, we introduce the quantity R,(w) defined by

R, (W) := sup |w(- +2) —w()|, we L (1.2)

izj<p

R,(w) measures the correlation between w(-) and it translates w(-+12),|z] <
p; the connection with correlations is seen from the alternative form of (7.2)
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obtained by expanding the square,

1 2 _ 2 '

SR, = Wl — inf [ wix+2) - w(x)dx. (7.3)
=0p;

It is easy to verify that the sequence m, given by (7.1) is well correlated
with itself on a scale of length A in the sense that Ry(m,) — 0 as A — 0. It
follows from the definition that for w € L2, R,(w) has the properties

1. R,w)—0aso— 0,

2. Ris(w) <kR,(W), k=1,2,3..., (7.4)
3. Rs(w) < 2w, _
4. lip, *w—w| < Rs(w), where p,(x) = 6%,o(’g‘) is the standard mollifier.

If « = 1 in (7.1), then R;(m,) stays bounded away from zero as 1 —
0, except in trivial cases. Such a sequence models oscillations that are truly
on the scale of the lattice. To reflect this distinction, we use the terminology
weak — long to describe background fields m; — m in L? such that R, (m,) — 0
as A — 0 and weak — short to describe the case ifi% R, (m,) > 0.

We now show that in the weak-long case the limiting energy is obtained by
evaluating the macroscopic operator on the sequence.

Proposition 7.1. Ler my — m in L*>(R3, R?), define

d(x) = [ m(z)dz, (7.5)

X+1U
and suppose

R;(m;) — 0 as A — 0. (7.6)
Let the energy e, be given by (6.1) and let T, be defined by

1
Tow := Ksxw+ (§1+S> w, we LXRRY. (7.7)
(¢f. (6.17)). Then,

. -1

}1_{% €, = }lj)% T(mx, T,m,). (7.8)

Remark 7.2. Proposition (7.1) shows that in the weak-long case the energy is
only influenced by the configuration of the lattice through the lattice sum S (cf.
(6.19)), like the case of strong convergence, However, in contrast to the case
of strong convergence, it is necessary to know more about the dipoles than the
macroscopic magnetization in order to calculate the weak-long energy, i.e., it is
not generally possible to pass to the limit in (7.8).

Proof of Proposition 7.1 The quantity to be calculated is

-1
e, = T(mxs T,m; ) (7.9

A
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and the goal of the proof is to show that for A small we can essentially replace
T, by T, in (7.9). As before, we write T, in the form (6.7) and split K, into
the Maxwell self-kernel and the remaining local part (cf.(6.25)):

X
Kixy) = P& -y +27L (3,1, (7.10)

Here we have put = 1 and defined L := L. The two terms in (7.10) are
treated by different methods.

1. Maxwell self-energy. We write

@D xmy)(x) 1 = [ PP (x — y)m, (y)dy,
R3

: (7.11)
(P, my)(x) - = (Kxmy)(®) + om(x), xeR.
Since
IP® 5 my, — P sy || < PP 5 m, — PO s my, |
(7.12)

+ [P 5 my — P somy |,
the first part of the proof will be complete if we can show that for 0 < ¢ < 2,
PG +my — PE) semy || < cR, (my) (7.13)

with ¢ independent of A and &. That is, once (7.13) has been established, we fix
A and let & — 0 in (7.12), using (6.34)sy; this yields

[P sxm; — P° s« my, | < cR; (my) (7.14)
which in turn yields

[(m;., P%m;) — (my, P° m, )| — 0 as A — 0. (7.15)
To establish (7.12), we let 0 < & < A and write

P (x) = PY(x) — P¥)(x) (7.16)
and observe that the left hand side of (7.13) satisfies

[PH% s my || < IPYF (o, xmy) || + [[PY % (m, — oy »my,)|. (7.17)

By (6.15) and (7.4)4 we have for the second term on the right hand side of
(7.17),

P4 % (my, — pp xmy)|| < cllmy — pp x| < cRy(my). (7.18)

It remains to examine the first term on the right hand side of (7.17). Noting that

/‘) P*%(z)dz = 0 (7.19)

B(p
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for every p > 0 and that P** has bounded support, we write

PH2 s (o, xmy) (X) = [ PRP(x — y) (o5 % m;) (y)dy,
R3
- 1R/ PHE(x = y) [(on + m) () — (02 ¥ m)®1dy,  (720)

= / IA’A’S(X —y)(m; (y) — my (x))dy,
R3

where

P4 (x) ;:R/3 P4 (x — 2)(pr(z) — pr(X))dz (7.21)

and we have made use of Fubini’s Theorem. A straightforward calculation shows
that P*¢ has a uniformly bounded L' norm

P4, <, (7.22)

3l

and is supported on a ball of radius 2A. (The mollifier was introduced to make
the new kernel have these properties.) Hence, we can change variables in (7.20)5
and write

1P (o xm)ll < [ ] [ Imu(x+2) —m@IP (-nldzfdx. (7.3
R? R3

Applying Jensen’s inequality with probability measure dp = [P™¢(—z)|dz/|P* l,
to (7.23) we get
P25 (on 5 m) || < [[P2)12 Rys (my) < 26R; (my), (7.24)

with establishes (7.13).

2. Lorentz local energy. We now estimate the term A >L(x/4, y/A) of (7.10).
We write
X
7L L, Yymy nydy
g A A

(7.25)

= [LG.Ddzm (0 +37 [ L, D)muw) —my()ay.
R3 R3

By (6.35) and Lemma 6.4 the first term on the right hand side of (7.25) is
Sm;, (x), (7.26)

where S is the lattice sum (6.19). Thus, to complete the proof of Proposition
7.1, it is sufficient to show that the second term on the right hand side of (7.25)
tends to zero as A — 0. Recalling from (6.12) that

IL(a,b)| <gla—b)), gell (7.27)
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the L? norm of the second term on the right hand side of (7.25) satisfies

127 [ Lz, Dm) — my(0)dy]
R3

< [ g(zhy(my(- + 2z) ~ my (-))dzl| (7.28)
R3

< llgll, [ gQzl) [ Im(x+ 2z) — mu(x)* dxdz.
R3 R?

Here, the last step follows by Jensen’s inequality applied using the probability
measure dy = g/||gll1dz. The right hand side of (7.28) is in turn bounded by

gl p [ glzhdzRi(m;) +4 [ g(lz)dz|m]], (7.29)
B(k) R3—B(k)

where £ > 1 is an integer and we have used the property (7.4);. In (7.29) we
fix k and let A — 0; then we let kK — oo. This completes the proof.

Remark 7.3. A simple but less general hypothesis on the background field m,
than the condition R, (m;) — 0 is the condition

m,(x) —m,(y) <c|x—yl, xyelR, (7.30)

where Ac, — 0 as A — 0. This alternative hypothesis is sufficient to treat the
case (7.1) and substantially simplifies the preceding proof but does not apply to
background fields that have concentrations (see below).

While Proposition 7.1 simplifies the calculation of the energy in the weak-
long case, it is still necessary to calculate the limit

-1
im —— 7.31

}l_l;r(l) 2 (m)u TOm)»>e ( )
where the macroscopic operator T, is given by (7.7). Some examples are given
below.

Example 7.4. To appreciate the distinction between (7.31) and the case of strong
convergence, in which the limiting energy depends only on the magnetization
(i.e., the strong limit m), consider the two sequences illustrated in Figure 1.
These could be obtained by slicing a uniformly magnetized, hard magnetic ma-
terial into equal slices with normals e and f, respectively, and then rotating every
other slice by 180° about e.

Both sequences mﬁk) and mék) obtained in this way converge weakly to zero
in L2(Q, R?), and therefore have the same magnetization. Furthermore, both
sequences have the same Young measure (see Ball [1989] or Evans [1990] for
a definition of the Young measure and a summary of its properties) given by

1
b= 2 Gy +5om,). (7.32)
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where é.p, is a Dirac mass at £m,;. However, the two sequences have very dif-
ferent limiting energies. This can be appreciated in physical terms by observing
that the slices in case 2 will tend to fly apart since the “north poles” are forced
to be near each other, while the slices in case 1 will stay nicely stuck together.
The limiting energy in case 1 is (James and Kinderlehrer [1990])

1
ey — €1 = B3 (§|m1|2 +my -Sm1> (meas Q) as A — O, (7.33)

while the limiting energy in case 2 is given below.

AR li
S

Fig. 1. Two sequences with the same megnetization and Young measure but different
limiting energies. The energies are given, respectively, by (7.33) and (7.52).

The sequence illustrated in Figure 1 is in fact a minimizing sequence for the
total energy of micromagnetics for a material that has easy axes ®m, (ibid.).

This example serves to illustrate limitations of the Young measure. (These
limitations were also noticed by Rogers [1991]). The central question here is,
“what information on a sequence of magnetizations is needed to calculate the
limiting energy?” An answer in the weak-long case is given by the H-measure
of L. Tartar [1990, 1992] (this has been developed simultaneously by P. Gérard
[1990-91] under the name of microlocal defect measures); the H-measure of
{m®} determines the limiting energy (two sequences with the same H-measure
have the same limiting energy).

There are alternative view points. That is, the limiting energy is in fact de-
termined by the Young measure of the sequence of fields {h®} corresponding
to {m®}. With the latter point of view, the question is rephrased, “what Young
measures arise from sequences of fields h® = —Vu™® which solve the dif-
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ferential equation div(h* + m*} = 07" This viewpoint is adopted by Pedregal
[1992].

Example 7.5. (Osciliation of magnetization.) We now calculate the limiting
energy for the sequence given in (7.1):

1, (x) = YOmae(s/A%), 0 <a <l (7.34)

We assume first that /7 € C2°(R?, R) and that my € C°(R?, R?), the set of
smooth periodic functions with period cell P = [0, 1]%, and that my has mean
zero

/‘ ms(x)dx = 0. (7.35)
»

Here, yr denotes the Fourier transform of . If mg does not have mean zero, we
can write

m; (X) = Y(x) [mg(x/A%) — my] + Y(x)my, (7.36)
where my is the left hand side of (7.35) and use the identity
(m; +my, K (m; +my)) = (m;, Kxmy) +2(m;, Kxmy) + (my, K*my)(7.37)

to reduce this case to the case (7.35). Notice that in this case the cross term
vanishes in the limit A — 0 and we simply add to the zero-mean result a classical
term 1nv01v1ng the magnetization ¥ (x)my. Further remarks in this direction are
given in Section 9. The reasons for assuming that v (the Fourier transform of
Yr) has compact support will be evident below.

We recall that for the sequence m, of (7.34) with 0 < o < 1, we have
R;(my) — 0. After applying Proposition 7.1, the presence of « in (7.34) is
unnecessary and we can put § = A% and write ms(X) 1= ¥ (X)my(x/5). Omitting
the local contributions to the energy, we wish to calculate
es 1= %(ma, K myg}. (7.38)
Following Tartar [1990; Section 2] and referring to Remark 6.3, we take the
Fourier transform of (6.22); , and observe that for any fe C®(R3, R?) we have

Kit) = 2280 = =10, (7.39)
it &l
where the hat denotes the Fourier transform, i.e.,
@) = [ e 7 (x)ax. (7.40)
R3

We expand my in a Fourier series,

my(x) = ¥ iy (K)e?™ %, (7.41)
keZ:
k£0
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and note that

m;(8) = (YOm(-/8)) € = X i@ PE— 5 'k). (7.42)

keZ3
k#£0

In (7.41) ty(k), k € Z3, denotes the Fourier transform on Cy of iy, ie.,
the Fourier transform on periodic functions.
Now we use Parseval’s Theorem to calculate the energy es, viz.,

—1 .,
86:7 /ma-K*m,;dX,
R3

= - [ ms®) - Kxmy(@)dt, (7.43)
R3

ERE_
e

where the overbar here denotes complex conjugate and c¢ is the appropriate
constant for Parseval’s Theorem. We introduce (7 42) into (7.43)3 and note that
for & sufficiently small the supports of ¥(- — §~'k) are disjoint because i has
compact support by assumption. Therefore, we get

¢
1§17

= /m(s@)

115 (§)d€,

=5 | (z ﬁl#(k)x@(‘g”—cSlk))- (Zm#(S)w(S—S Is) |dt .
245 \k0

§®§
1§1?

———(s+6'k)® (s +57'k)
|s + 6 1Kk|?

=5 T (0 @ B(K) - [ FE -5 0PE -5 W7 TdE, (744
k#0 R3

=3 Z (g (k) ® (k) - / U(s)Ur(s) ds .

In the limit § — 0, (7.44) becomes,

1 k
A ORI (7.45)

K0 k|
which is one form of the result. A more convenient form follows by putting

f = my in (6.22);, and expanding g in a Fourier series. We then see that a
natural definition of K % my (for the periodic function my) is

(K * my) () 1= — k};} lk|2 i (k) 275X, (7.46)

k40

Now by direct calculation we have

k@K
/m# (K % my)dx = — z ting () - i, (), (7.47)
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where we have used that the volume of P is 1. Hence, we can write (7.45) in
the alternative form

-1 .
es — annz [my - (K my)dx. (7.48)
P

Further comments on the interpretation of this limiting energy are given in
Section 9.

The formula (7.48) for the limiting energy is easily generalized to the case
of an arbitrary period cell by changing variables. Suppose that

my(x + V') = mu(x), V(') e (Z°)°, xeR® (7.49)

where {&;} are hnearly independent but not necessarily orthonormal vectors, and
the unit cell for my is now P := {x € R*: x = 1'§;, A’ € [0, 1)}. We assume my
has zero mean on P. The same argument given just above works in this case,
with my having the Fourier series representation

1 2rik- X
detL kELZTZS mx(k)e (7.50)

k£0

my(X) =

where L([O, 11>) = P. In the case of a general period,

e; —>

2 de tL|W“ /m# (K my)dx. (7.51)

These results™ enable us to calculate the energies e; and e;, respectively, of
the two sequences pictured in Figure 1, or what is more interesting, the limiting
energy difference e» — e;. From (7.46)-(7.48),

ey —e; = %(VOI.Q)(ml )2, (7.52)

where f is a unit vector pictured in Figure 1, while as mentioned earlier, the
nonlocal energy corresponding to the sequence m(k) is zero. The expression
(7.52) remains valid for any laminated domain structure, where f is normal to
the layers, the magnetization is ==m; on alternate layers and the volume fraction
o 1

18 5.

Example 7.6. (Concentration of dipoles with no magnetization.) We can have a
situation in which the dipoles accumulate at a point and create a concentration
of energy but with no magnetization. For example, consider the sequence

m, (X) = A me(x/A%), 0 <a <1, (7.53)

*It is necessary to slightly generalize the above calculation to allow v having the
form of a characteristic function.
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with m, € L>(R? R?). The scaling has been chosen so that
[m; || = [fmg], (7.54)

but at the same time m, — 0 in L2 According to our results of Section 3,
we should regard the weak limit of m, as the magnetization and therefore this
sequence has no magnetization. it is easily verified that for this sequence

R, (M) = Ryi-e(my) — 0 as A — 0, (7.55)

so by Proposition 7.1 the limiting energy is given by

5 }l_f}})(mx, Tom,),
1 1 (7.56)
= 5 { Ko )+ S+ (e, Sma)

A—

where S is the lattice sum given by (6.19). The first term in (7.48) is easily
calculated by using Remark 6.3 and the definition of K, leading to

(my, K*xm,;) = (m,, K*xm,). (7.57)

We conclude that the limiting energy of the sequence (7.45) is the same as the
energy of the magnetization m(x) = m,. However, the sequence itself has zero
magnetization in the limit A — 0.

8 Energy of a fine array of dipoles with short wave oscillations (weak-
short)

We now calculate the limiting energy of an array of dipoles with oscillations
that are truly on the scale of the lattice. We consider a modulated periodic field
of dipoles for simplicity. Let L, = L(xe;), . > 0, be a given family of Bravais
lattices as above, and consider a family of sublattices defined by

Ly:=Le), r>0. (8.1)
where
& =vle, vl eZ, detv#£0,

the interesting case being the case detv # +1 so that [, is a proper sublattice
of L,. We consider the dipole field d;, : L, — R> given by

X
d, (x) ;= A7d(x, X) (8.2)
where d(-, y) is smooth for each y € L;, d(x, -) is periodic on L, viz.,

A

dx,y+2z)=d(x,y) VxeR>, yel,, zel,, (8.3)
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and supp d(-,y) C Q for eéch y € R*. A prototype is the choice
dx,y) = y(®d(y), ¢ eC’, ' (8.4)

with d(-) periodic on L. Generally, we have weak convergence of 1 ~>d; (x)
and the correlation R, (d,) is bounded away from zero, so we are in the weak-
short case. The period cell and symmetric period cell for the function d(x, -) are
defined, respectively, by

P::{XER3:x:Aié,~, OSM'<1},

3 ' ' (8.5)
P::{XER3:X:)J6,-, —1§)J<1},

while kP, k =1, 2,3, ..., is defined by

kP = {kx I XE€E P}. (8.6)

These definitions are framed with the corresponding half-open intervals so that
for any function f : R* — R” with say, compact support,

Y fm= Y Y f&x+y, 8.7

zeL NkP xel, kP YELINP
and corresponding for. sums over L;\kP. We assume that

Y dx,y)=0 VxeR? (8.8)
yeL,NP
without loss of generality. If (8.8) fails we can add and subtract a suitable
smooth function of x to d(x,y) and then use the method given in (7.37). Note
that any set of the form P" =y + P, y € L;, also serves as a period cell for
d(x, -) and (8.8) remains satisfied with P replaced by P’. Our goal is to calculate
the limit as A — O of the energy

-1
&= Y h(x) - di(x), (8.9)
xelL;
where
hx:= > Kx-yd.y). (3.10)
yelp\{x}

Formally, we let

hx,y) := lim ¥ K(-z)d(x,y+2). (8.11)
k—00 zeLi\o}
2€kP

Lemma 8.1. The sequence on the right hand side of (8.11) converges uniformly
to a function h : R{X L — R3. The Junction h(-,y) is smooth for each 'y € Ly,
while the function h(x, -) is periodic on L :

hx,y+2z)=h(x,y) VxeR’ yely, zecl;. (8.12)
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Proof. If the sum converges for each (x,y) € R x L;, the function h(x, -) is
L,- periodic by (8.3). Using (8.7) and (8.8) we have for integers & > j > 1,

| Y K(=dx,y+2)— 3} K(-z)dxy+12),

zeLly\{o} zeLl\‘(o)

zekP zejP

= X ¥ KE+whdx,y+w),
vailn\{o_) wel, NP
vekP\jP
(8.13)
<c¢ . sup |K(=(v+a))—K(=(v+b))lsup|d|
veli\o} a,belinpP
vekP\jP

< > v

VEL[

vekP\jP
Hence the sequence on the right hand side of (8.11) is uniformly convergent.
By the same argument, this sequence is also uniformly convergent when d(x, y)

is replaced by any of its x-derivatives, so h(-, y) is smooth. 0
We now consider (8.10) and write hy, in the form
hE= ¥ PKCEndx+z 5,
zely\[o}
(8.14)
= Y K(wdE 4+ Aw, S 4w,
wel;\fo) %
which can be decomposed into the two sums
=a,,,X)+b(x), k=12,..., (8.15)
where
X
X i= > K(Ewid(x + 2w, LT,
"
X
bie(x) = X K(EwdE+Aw, - +w). (8.16)
weL\kP A

Proposition 8.2. Lef a,;, and b, ;. be given by (8.16). There exists ¢ > 0
such that for k > 1 and » < 1,

b 2 (X)) < cA(l —logh) +o(l), xeR? (8.17)
while there is a g : Z — R (generally unbounded) such that
|ayx(x) — h(x, ;)l <glk) +o(l), x¢€l;. (8.18)

Here, o(1) — O uniformly as k — oo. Hence, there is a k(L) — oo as A —
0 such that

N
a; o) (x) — h(x, X)’ b.koy(X) — 0, (8.19)
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uniformly in x as » — 0.

Proof. The condition (8.18) follows immediately from the observation

a5, (%) — Rx, §>| < Y K2 [dx+ 2z, > +2) — dx = +2)[ +o(D),
zeL1\~(o} )\. )\,

<2 LZ\“ [K(=2)| sup [dy][z] + o(]).
zekf

(8.20)

Turning attention to b;, (x), we use (8.7)77 to write

b =1 X > K@+ v)dxE+Arz+v), +Z+V)|
zel\kP  VELNP

= X { > K(—(z+v))[ X+ Az+V), - —|—z+v) (8.21)
zel \kP (veLNP

—d(x+xz,;+z+v)}+K(—(Z+V)) d(x—i—kz,;—l—z—i—v)}.

Recalling that d(-,y) is supported on Q, we choose a sufficiently large ball B
such that Q ¢ Band —AP+Q C B, 0 < A < 1. We estimate the term in square
brackets in (8.21), terms of supdy, whereas we use the method embodied in
(8.13) to handle the remaining term. With £ > 1 we get

brx)| = X

zel\kP |z[3

A - B) /A
c1x((=x+ B)/A)(z) L el (8.22)
|z]*
Here, c; depends only on sup dy while ¢, depends only on P and supd. Hence,
if the radius of B is r; and r, > 0 is chosen so that kB(o, ro) C kP, we have

(Ixl+r1)/A

—1
max(kro, (x|—r)/2) © dp+o(l), (8.23)

[bk(X)| < Acy

0 o), Ix] < i dkro,
—r1> +o(l), |x| > 7y + Akro,

{cﬂ»log(

c12log (IXI

< ch(l —logh) + o(1). 0 (8.24)

Now we calculate the limiting energy. We decompose h; as in (8.14), (8.15)
and evaluate k at k()) given by Proposition 8.2. Using the fact that d(-, y) is
uniformly bounded and has fixed compact support, we get

e = 1 v PR, -) d( )+0(x). (8.25)

A
2 XGLA
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Let
w(x,y) = —hx,y) -dx,y), xye L, (8.26)

and note that w is smooth, periodic in y on L, and compactly support in X with
fixed support Q. Using again (8.7) (omitting Nk#P) and these properties of w,
we have

1
=, % % 2wz +v), 24+ v) + 00,
Z€Z1VEL10P

1
== ¥ A whz+v),v)+00),
2 yel, veL,nP

(8.27)

== T ¥ wizv)+00),
2 4ei,  veLinp

_! A Y wx, v) 4+ 0.

2 yei, veLinp

Hence, we conclude that

1,/( 1
e — = | Y wx,y)|dx as A — 0, (8.28)
2O measP yer,np

where w is given by (8.26) and h is given by (8.11).

Remark 8.3. In the weak-short case we typically will have a remnant lattice
sum in the expression for the limiting energy. This sum will depend on both the
lattice and the configuration of dipoles on the lattice. As in the weak-long case,
measurements of magnetization give no information about the weak-short contri-
bution to the energy. Note that, because of the condition (8.8), the magnetization
of the dipole field (8.2) vanishes (¢f. Section 5).

The various parts of the calculation admit the following physical interpre-
tation. Fixing x, the vector h(x,y) is calculated by assuming that an exactly
periodic dipole field d(x, y 4 -) is defined on a 1-lattice but with the dipole at
y removed. h(x, y) represents the field at y due to this periodic distribution of
dipoles. See Section 9 for further remarks on the significance of the 1-lattice
(f.e., why “177). Hence, the integrand

h(x,y) - d(x,y) (8.29)

2measP yernpe

represents the energy per unit volume on the 1-lattice. In effect, the assumptions
on d permit a separation of the short-wave calculation, done with exactly periodic
fields, and the long-wave calculation, which in the end is just an integration of
the short-wave energy density. The most striking result is that the limiting energy
is essentially local. That is, the expression on the right hand side of (8.28) is
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additive over disjoint subsets of 2, in contrast to the usual expression for the field
energy of micromagnetics (¢f. the first term on the right hand side of (6.18)).
The locality arose partly from (8.8) and also from the separation of scales given
in (8.2) (see the forthcoming paper of Firoozye [1993] for further analysis of
the question of whether (6.18) is the only nonlocal term that is possible).

Example 8.4. An interesting special case of the preceeding calculation is given
by equation (8.4),

d; (%) = w<x)€l<§>, (8.30)

where ¥ € C2(R?) and d is periodic on L, with zero average. By specialization
of the formulae to this case, we get

e — ;Hw“z > h(x)-d(x)/measP as A — 0, (8.31)
P

xeliN
where

hx):=lim Y K(—ydx+y).
k—o0 )'eth(O}
yekP

Example 8.5. (Concentration.) In the analysis in this section we have so far
neglected concentrations. A typical example involving concentrations is

d; (x) = Wzd(;), (8.32)

where, for example, d has compact support. With this assumption the corre-
sponding magnetization vanishes, while the limiting energy is given by

—1
e — EN ZL dx) -Kx—yd{y) asi-> 0. (8.33)
x,y€Ly
X7y

9 Discussion and application to continuum theory

In applying the foregoing results to a material with a given lattice spacing, it
is necessary to adapt results for an infinitesimal lattice parameter to a finite
lattice parameter. We would do this in the following way. Suppose the real
lattice is represented by a Bravais lattice L, = L(A,¢;) where ¢; are fixed lattice
vectors and %, is the acrual lattice parameter. On this lattice is a certain dipole
distribution d,(x), x € L,. It is necessary to embed this given dipole field
d,(x) in a one-parameter family of dipole fields d, (x) in a reasonable way.
The criterion for “reasonable” is that the quantities of interest like the fields
h;, b;, my or the energy e, do not change much in the interval A € (0, A,).
For example, it would be disasterous to have d, apparently converging strongly
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(¢f. Section 4) for A ~ X, but then in fact develop lattice-scale oscillations for
A < Ay Tt is difficult to give clear-cut rules for this embedding; it may at first
seem sensible to put

a9 = do(52), ©.1)

but this would imply that we are in the weak-short case, except for very spe-
cial fields d,(x). Also d,(x) would have to be defined for large values of x,
which is problematic in the case that the actual crystal is finite. It is clearly
undesirable to go to the extreme represented by (9.1) for many materials, and
the successtul theory of micromagnetics is really based on the assumption of
strong convergence.

This issue could be clarified by looking at rates of convergence of the quan-
dties h,, b;, d, and e;, and some of these rates of convergence are inherent in
our calculations of Sections 5-8. In any case, whatever embedding is chosen, it
must have the property

d,,(x) =d,(x), xel,,. (9.2)

As an intuitive guideline, we would expect that the weak-short results would
be necessary for materials that exhibit large oscillations on the order of a few
lattice spacings, as in antiferromagnetism or ferrimagnetism. For ordinary fer-
romagnetic materials with micron-sized domains we would think that the strong
convergence results would be adequate, based on the success of micromagnetics.
The weak-long results would seem to apply to intermediate scales. Our results
(Proposition 7.1) show that the weak-long and strong cases are governed by the
same continuum theory.

On the actual lattice L, the dipoles have a positive separation distance. For
this reason it is unimportant whether or not the actual local fields are singular
at the lattice points of L,. Our results are still valid as long as the actual local
fields are represented well by the field K(x — y)d(y) at distances |Xx — y| > A,
and (9.3) below is satisfied.

Continuing our interpretation of the results, we focus on the energy e,. With
a well-chosen embedding we will have that

e,\”i%i_r)%ex. (93)

At several places in our calculations, we were left with certain sums over the
I-lattice, notably in (6.19) (reappearing in (7.7)) and in (8.28). These remnant
sums are repeated here:

S = lim > K() (6.19),;
PR ye(@\0hNB(o)

(9.4)

h(x,y) - d(x, 8.28),,
—" yegﬂp( y)-d(x,y) (8.28)
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where
h = lim K(—-2)d(x,y + z).

2ekP

In fact, these sums are really just sums on L, based on the actual dipole distri-
bution d,(x). This is clear in (9.4); by just changing variables y = x/A,, viz.

S= lim > K(x)measU,,
P20 xe(La\[0hNB(p) ( 9.6)

where U, is the unit cell of L,, U, = )%U . For the weak-short sums (9.4),,
(9.5), we recall from (8.2) that

d;, (x) + 23d(x, A—Xa). ©9.7)

Hence, changing variables z = w/A, in (9.5) and v = x/A, in (9.4), we get

1 r v
ha X’ ) )\’3d s . I .
measP, vel,np, (5 7) - Aod(x )»a) 9-8)
where
lNla(X, V)= lim Y K(’“W)kzd(x, ‘iﬂ),
£=00 wel o\ Ag
wekPg (9.9)
Py :=A)P.

Hence, these weak-short sums represent sums over the actual lattice of an ex-
actly periodic dipole field A3d(x, -/A,) that agrees with the actual field at x. In
conclusion, the remnant sums really represent lattice sums over the actual dipole
field (or its weak-short periodic extension) and there is no physical significance
to the “1” in 1-lattice.

The interpretations given above should be tempered with the caution that our
calculations do not include fluctuations of the dipoles that normally occur at finite
temperature, nor do they account for the detailed distributions of atomic spins.
Despite these limitations, it can be stated that the successful continuum theories
of elastic dielectrics (Toupin [1956]) and magnetic/magnetostrictive materials
(Brown [1966]) are founded on lattice dipole calculations (under assumptions
corresponding to our strong convergence). The way these calculations are used is
to give definite forms to the field energy terms in the continuum theory, without
trying to relate them quantitatively to the numerical values of atomic moments.

We now examine the weak-short results, which in principal suggest new
continuum theories. It is clear from our results that there is a huge variety of
ways that energy can be stored in weak-short oscillations or concentrations,
without being reflected in the magnetization of the material. What we hope
to get out of our calculations is a set of continuum variables (the “internal”
or “hidden” variables of continuum theory) that parameterize the energy not



Fine-scale oscillations in micromagnetics 331

calculable from magnetization. In applications to specific materials, we expect
that it will be sufficient to consider rather few dipole fields. Hence, we confine
attention to some general remarks about (8.28) and then specialize.

The first point to notice about (8.28) is that it is entirely local, i.e., repre-
sentable as an integral over Q. Thus, under our hypothesis (8.2) the total weak-
short energy of two disjoint pieces of material is independent of the distance
between them, unlike the classical expression %I(K xm, m) for the magneto-
static energy. It would therefore be natural to combine the weak-short energy
together with the anisotropy energy of micromagnetics, as is commonly done
with the terms

SHGImi? + m, Sm)) (9.10)

of (6.18). The danger in doing this is that the integrand of (8.28) does not depend
on the dipoles through the magnetization alone. More than that, the effect of the
dipoles and the lattice are intertwined in (8.28), so that the implications of the
symmetry of the lattice and frame-indifference are not as in the usual expression
for the anisotropy energy (see below).

To get a better understanding of the weak-short energy, we consider special
cases. Many situations in ferrimagnetism or in antiferromagnetism can be de-
scribed by having sublattices of the given lattice, each with a constant dipole
field. For this purpose we consider a Bravais lattice L; and we assume it is
written as the union of a finite number of disjoint Bravais sublattices:

Li=LYuL®Puyu.. uL™, 9.11)

Let x : R? — R be the characteristic function of the i’ sublattice L?. On the
i'" sublattice we place a uniform dipole d so that the dipole field d(x) is

dx) =Y x?d?, xeL;. (9.12)

Such a dipole field is periodic and a suitable lattice £,; and period cell P of the
form (8.5) can always be chosen. In typical cases, such as in ferrimagnetism
with or without an applied field or in antiferromagnetism with an applied field,
we will not have (8.8) satisfied by d(x, y) = d(y). Hence, we define

d9:=d% —d, i=1,....,n; d(x):= ZX@(X)&@, (9.13)

where

- 1

di=— > d(x) (9.14)
O LinP

is the average dipole moment over the period cell and o is the total number of
lattice points in L; N P. Then we have that

S d(x) =0. (9.15)

xel NP
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Let o? be the number of lattice points of the i"* sublattice in L, N P,

o= ¥ ¥ i=1,....n, (9.16)

xeLNP

and let 1 := 0! /o be the corresponding number fractions. With this notation
2 u® =1, and (9.15) can be expressed

; wPd? = 0. (9.17)

In order to calculate the limiting energy (8.28), we first need to evaluate the
expression (8.11). To this end, let

h(y) :=lim Y K(—2z)d{y +2),
k— 00 2eLy\(0)
z6kP

(9.18)
=jim  {KE) T +2d0).
k=00 2eLj\(0) i
We now introduce (9.17) into (9.18) to get
=i, S {KED SO +2) - a0,
00 seL\o) i
zekP (919)
— Z S® (y)a(i)
where
SOy = lim T (K@ +2 —pnD)}. (9.20)

k—>00 zeLy\(0)
zekP

The passage from (9.18) to (9.20) follows because each individual sum of (9.20)
converges, which follows from Lemma 8.1 and the observation

Y Oy +z)—pu® =0, i=1,..n yel 9.21)

zel NP

Putting this expression for h in (8.28) we get

-1, ) s . ~

.= — [ X YxPyd?-sV(ydVdx as 1 — 0. 9.22)
2 &4 yeLinPij

To simplify this expression, let

Si=— ¥ Xwsm=- ¥ SYW, ije{l,..n}. (923

yeL—1NP ye_L(i)mP

Then (9.22) assumes the compact form

1, R s
e — < [£d?-8YdVax. (9.24)
ZQ ij
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The expression (9.24) does not represent the total limiting energy because
the constant dipole field d has been subtracted from the given dipole field
d(x), ie., dx) = &(x) +d. To treat this constant part, we note that if m; =
m¥ +m} with m — 0 in L2(R, R%) and m* — m in L*(R*, R?), then

lime. = lim{m;, T,m,),
i > )w—>0< 23] A )n)

= }i_gr(l)[(mi, T,m;) + 2(my”°, T,m}) + (m;”, T,m}")], (9.25)

= lim(m}, T,m}) + (my*, Tym}") ]

Here, we have used Proposition 6.1. Informally, we can say that there is no
“Interaction” between weak-short and strong convergence. (It can also be shown
that there is no interaction between weak-short and weak-long convergence.)
This shows that the constant part d is expressed by the classical term (6.17)
involving the magnetization. Allowing a general form for the magnetization as
well as an amplitude ¥(x) as in (8.4) we get as the final expression for the
limiting energy

o[ S0 = Jmof -~ meo -Smw
0 1,j=

(9.26)
—m(x) - (K m)(x)}dx

The key features of this energy are:

1. S depends only on the configuration of the lattice L; and, in particular, not
on the dipoles. 87,i,j e {I,...,n} are n® trace-free 3 x 3 matrices that
depend only on geometric relations among the n sublattices L', ..., L" C L;.
In particular, ¥ is a lattice sum depending on the geometric relation between
sublattices L/ and /. See (6.19), (9.20) and (9.23).

2. i is an amplitude function giving the absolute magnitude of the normalized

sublattice dipole moments. vr could be absorbed in d,i=1,...,n resulting
in position-dependent normalized dipole moments.
3. The d?,i = 1, ..., n, which enter quadratically, are the normalized dipole

moments. It is important to keep in mind that they are not the actual sublattice
dipole moments; they have been normalized,

; pd® =0, (9.27)

n
i—=
by subtracting a suitable constant vector. Here the 1? is the number fraction

of sublattice L™, see (9.16)s7. The d® have the interpretation as internal
variables.
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4. The vector field m(x) is the magnetization, which represents the weak limit
in L? of the dipole field, in the sense given in Section 4. We assume that m
has compact support on Q(D suppy) for obvious reasons. The field m(x) is
interpreted as the magnetization even under the conditions of weak conver-
gence by reasons given in Section 5.

5. The only nonlocal term is the last term of (9.26), (m, K+ mj}, the nonlocality
arising from K * m. From Section 5 and Remark 6.3, the term h = K+ m
can be viewed as the weak solution of the equations

div(—Vy +m) =0

h— vy } on RY, (9.28)

This is the usual viewpoint in micromagnetics.

6. If the dipoles oscillate in a weak-long fashion (Section 7) the function m
in (9.26) should be replaced by a sequence of magnetizations m®, k =
1,2,3, ..., and the limiting energy should then be calculated by taking the
limit of (9.26) as k — oc.

7. Fixing the lattice L; and the sublattices LY, ..., L, all the
functions ¢, m, d!, ..., d" in (9.26) are independent, except for the restric-
tion (9.27). That is, there are dipole fields d, (x), x € L,, that give arbitrary
functions ¢ € C°,m € L* and arbitrary vectors d, ..., d® subject only
to (9.27). Therefore, it is sensible to regard these variables as independent
variables in the continuum theory. The smoothness restriction on ¢ can surely
be relaxed, but we do not pursue these refinements here.

8. The usual practice of micromagnetics, even in the magnetostrictive case, is to
introduce a saturation hypothesis. This hypothesis is often motivated (Brown
[1966]) by the assumption that the magnetic moment of each atom has a fixed
magnitude, dependent only on temperature, regardless of the deformation.
The usual micromagnetic form of this hypothesis can be derived from our
formula (4.10), under the conditions of strong convergence, and is given by

I(detF)m(x)| = g(6), x€Q

where F is the deformation gradient (F = 1 in the rigid case), and g(0) is
a function of temperature (see James and Kinderlehrer [1992]). In either the
weak-long or weak-short cases, the assumption that the magnetic moment of
each atom has a fixed magnitude no longer leads to (9.29), as can be seen
easily from the formulae above.
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