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Internal variables and fine-scale oscillations in 
micromagnetics 

R. D. James  and Stefan Miiller 

We derive the field energy of micromagnetics by computing the limiting 
energy of a lattice of dipoles as a typical lattice parameter goes to zero. 
Different limiting energies are obtained, depending upon whether the dipoles 
do not oscillate (strong convergence), oscillate on a scale much larger than 
the scale of the lattice (weak-long) or oscillate on the scale of the lattice 
(weak-short). The analysis suggests a framework and some methods for the 
direct derivation of continuum theory from molecular theory. 

1 Introduction 

The theory of micromagnetics developed by W. F. Brown [1963] is based on 
the free energy 

1 f Vm.  AVm + 9(m)dx + ~R! IV~bI2dx 
f~ 

(1.1) 

where 7r is determined by m from the equation 

div ( - V ~  + m) = 0 o n  R 3. (1.2) 

Here, m : IR 3 - ~  ]R 3 is the magnetization, (r : R 3 --> R is the magnetostatic 
potential, h = - V O  is the magnetic  field and b = - V ~  + m is the magnetic 
induction. The magnetiztion is assumed to vanish on R 3 \f~ and the expression 
(1.1) is subject to a saturation condition Im(x)[ = f(0), x c f~, where 0 is the 
temperature and f : R ---> I~ vanishes at the Curie temperature, f(0c) = 0. The 
term ~o(m) represents the anisotropy energy density and the term Vm �9 AVm 
represents the exchange energy density. The remaining term 

1•  Ig~t 2dx (1.3) 
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is the field energy. This paper is concerned with the derivation of the field 
energy. 

With improvements in high resolution microscopy, it is becoming evident 
that a variety of materials develop lattice-scale oscillations of field quantities at 
certain temperatures, stresses or fields. Examples of such oscillations are tweed 
structures (Van Tendeloo, Chandrasekaran, Lovey [1986], Tanner, Schryvers and 
Shapiro [1990], Schryvers [1991], Sethna, Kartha, Castfin, Krumhansl [1992]), 
9R/18R structures in CuA1 (Adachi, Perkins, Wayman [1988], Lovey, Van Ten- 
deloo, Van Landuyt, Delaey, Amelinckx [1984]) microtwinning (Schryvers 
[1992]) and various incommensurate phases (Van Landuyt, Van Tendeloo, Ame- 
linckx [1988]) in materials that undergo martensitic or structural transforma- 
tions and antiferromagnetism or ferrimagnetism (and related phases) in mag- 
netic materials. The appearance of such fine scale structures calls into question 
the derivation of the standard continuum theories and, in particular, the theory 
of micromagnetics. In such cases the question arises "Is it a phase or is it a 
microstructure?" That is, the observed structure is evidently a microstructure 
if it is modeled by one of the standard theories but with an extremely small 
surface energy; in the context of micromagnetics this would mean that the con- 
tribution of the exchange energy is small relative to the other energies. In that 
case the appearance of fine-scale oscillations is attributed to the frustration of 
the energy (1.1), when the exchange energy is omitted (see e.g., James and 
Kinderlehrer [1990]). On the other hand, it is a phase if there is in some sense a 
special potential-well of the free energy density assigned to the observed struc- 
ture. Usually, it is only possible to assign such a potential well if new variables 
are introduced into the continuum theory to describe the geometry or nature of 
the observed structure. In nonclassical continuum theories these variables are 
called "internal" or "hidden" variables. 

Our general goal is to revisit the underlying molecular basis for such con- 
tinuum theories. We want to determine whether the standard continuum theory 
persists in the context of lattice-scale oscillations and, if not, to prescribe the 
necessary revision. We are particularly interested in what information from the 
molecular picture survives at continuum level and what information can be safely 
neglected at the continuum level. In this paper, we confine attention to the field 
energy term (1.3) in a classical framework. 

As explained by Brown [1962, 1963, 1966], or in the corresponding dielectric 
context by Toupin [1956], the derivation of (1.3) is related to Lorentz's [1909] 
calculation of the field of a lattice of dipoles. We adopt this framework except 
that we consider a family of Bravais lattices Lz, k c (0, 1], in which 2 is a 
typical lattice parameter, L~ = )~Ll. We place a dipole of moment d~(x)on 
each lattice point x E Lx and we identify continuum quantities as limits of 
corresponding lattice quantities as )~ --+ 0. Two issues arise in the calculation of 
these limits. First, the field of a dipole has non-integrable singularities at each 
lattice point and at cx~. Second, the calculation of the limiting energy involves 
products of oscillating sequences, so weak-convergence techniques are useful, 
with the added feature that weak limits are affected by the relation between the 
wavelength of a typical oscillation and the scale of the lattice. 
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In Section 2 we explain the notation and the method of treating the nonin- 
tegrable dipole field. In Section 3 we compare different methods of imposing 
convergence conditions on the dipole field dz. For the purpose of this introduc- 
tion we m a y  think of extending d;~(x) to all of R 3, using a piecewise constant 
extension (constant on each unit cell), and then multiplying by Z 3 vol. (U) where 
U is a unit cell of the lattice La. Convergence conditions can then be imposed 
on the extended and scaled field, d~ (z) = Z 3 vol. Udz (x), z ~ x + ZU. In our 
terminology strong convergence of d7 in L 2 corresponds to "no oscillations," 
while fine-scale lattice oscillations are modeled by weak convergence d7 -~ m 
in L 2. 

We discuss the limiting fields in Section 5. The limiting magnetic induction 
b arises in our calculation by cutting out a region rR around each dipole and 
by replacing the dipole field by a nonsingular divergence-free field. For the 
calculation of macroscopic fields it turns out not to matter whether r is much 
larger, much smaller, or of the same order as the lattice scale Z. Also, the 
limiting fields b, h, m and the relations b = h + m, divb = 0 are insensitive as 
to whether the dipoles oscillate on the lattice scale or on longer scales. 

The insensitivity of field quantities to the nature of the oscillations is not 
shared by the energy. For the case of strong convergence d7 --+ m in L 2, we 
obtain the classical formula for the field energy (Section 6). The case of weak 
convergence divides naturally into two subcases that we label weak-long and 
weak-short; these terms are defined by looking at correlations of d~(-) with its 
translates d~(. + z) where Izl < Z (Section 7, (7.2)ff). The weak-long case 
corresponds to oscillations with wavelength much larger than the lattice spacing 
but small compared to the macroscopic dimensions. We show that the weak- 
long limiting energy is still given by the standard formula (essentially (1.3) 
with (1.2)), but that this formula is n o t  evaluated at the magnetization but rather 
on the sequence d7 (Proposition 7.1). We give some specific examples of the 
weak-long energy in Examples 7.4, 7.5 and 7.6. 

New expressions for the micromagnetic field energy are found in the weak- 
short case, which models oscillations that are truly on the scale of the lattice 
(Section 8). In the periodic case (Section 9) the excess field energy is found to 
depend on a finite set of vector fields dl . . . .  , an, di : ~ --+ R 3. The dl . . . .  an 
are not the actual lattice-scale dipole moments but are related to them by (9.12)- 
(9.14). The form of the excess field energy in the weak-short case is 

~ j  d (i) (x) - S/Jd q) (x)dx, (1.4) 

where S ij are certain trace-free symmetric matrices given explicitly by certain 
remnant lattice sums (they are independent of the dipole field d~). Further 
discussion is given in Section 9. 

The three cases - strong, weak-long and weak-short - can be summarized 
briefly as follows. In this summary, mx -+ m in the appropriate sense and ez (p) 
denotes the energy on L~ of the dipole field p. 

strong: ex(mD -+ eo(m) as Z -+ O, 
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weak-long: e~.(lnD ---> lira e0(mD r e0(m) 
4 - - 4 0  

weak-short: ex(mx) ---> lira el(mx) / r e0(ml), 
t / �9 

Here, ~ is read "not in general equal to" (see Firoozye [1993] for a more precise 
statement). The operator e0 depends only on the lattice L1, while el depends on 
both the lattice and the sequence m~. 

Our general impression after doing these calculations is that there is a huge 
variety of ways that a material can store energy in weak-long and weak-short 
oscillations, this energy not being reflected by the magnetization of the material. 
Also, it appears to us that the weak-long/weak-short paradigm will emerge in 
the molecular derivation of other continuum theories. In this context the reader 
is referred to recent work of G&ard [1990-91] and Lions and Paul [1992]. 

Dipole calculations of the kind given here also appear in the theory of bubbly 
liquids and in the theory of dielectrics (Rayleigh [1892], Sangani and Acrivos 
[1983], Toupin [1956]). We do not pursue the application to bubbly liquids. 
Throughout the paper, we use the terminology of micromagnetics rather than 
the corresponding electric terminology. Many of the mathematical results we use 
can be gathered from books on singular integrals; for the most part we avoid 
making extensive reference to these books and present complete arguments. 
Several of the arguments given here have been recently generalized by Firoozye 
[1993]. 

2 Preliminaries 

The field of a dipole is 

K ( x )  . -  4 : r lx l  3 1 -  Ixl | , x ~ . 

Except at the origin, K is smooth and satisfies 

K ( x )  = - V  = VX7 . ( 2 . 2 )  

We also use the notation u(x) x to denote the monopole field. - -  4 7 r ~  [ 3 

Because the field of a dipole exhibits a r -3 singularity, it is not a locally 
integrable function. For this reason, straightforward volume averages of arrays 
of dipoles are meaningless. A natural way to interpret both derivatives and 
averages in this context is by using the theory of distributions. In this section 
we collect several results on distributions that we use later. 

The set Co~(1R '~) denotes the set of infinitely differentiable functions with 
compact support on IR ~. A distribution is a continuous linear functional on 
Co ~ (Rn), and the set of distributions is denoted by D~(Nn). Here, the continuity 
of a distribution T refers to the statement T@i) --> T(~) whenever the support 
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of each ~i  is contained in a fixed compact set K and all derivatives of ~i  --  

converge uniformly to zero (see Rudin [1991, Theorem 6.4]). We say that Ti --+ 
T in D' if and only if Ti(fO -~ T(O) for every ~ c Co~(Rn). We use the 
standard notation aa(O) = ~(a)  for the Dirac distribution. 

Our expression for the field of an array of dipoles will have the form of 
a convolution of a distribution with a macroscopic dipole moment per unit 
volume. Generally, the convolution of a distribution will be defined as follows. 
Let ~ c C ~ ( R ' )  and let rx(y) := ~(x  - y), y e I~ ~. The convolution of a 
distribution with ~ 6 Co ~ (R n) is the function (T �9 ~) �9 R ~ ~ R defined by 

(T �9 O)(x) = T(rx). (2.3) 

We shall also need several variants of the convolution. As a general purpose 
notation, we will write for example T ( O ( x -  .)) for the function T(rx) where rx 
is defined above. Using this notation, 

(T �9 ~)(x)  = r ( ~ ( x  - -)). (2.4) 

Another kind of convolution that will appear often is 

(T <> ~)(x)  := T @ ( x  + .)). (2.5) 

Let T be a distribution. The derivative of T is the distribution DT defined 
by 

DT(~) = -T(V~r) .  (2.6) 

Higher derivatives are defined in a similar way. Our distributions will usually be 
vector or matrix-valued which just means that each component is a distribution. 
Thus, if a i, i = 1 . . . . .  n is a vector-valued distribution, div a and curl a are the 
distributions defined by 

(curl a(~)) i  : =  --,f.ijkaJ(~,k ), div a (~)  := -ai(~,i).  (2.7) 

In (2.7) the summation convention is used and eijk is the permutation symbol. 
Similarly, the divergence of an n x n matrix- valued distribution M is the vector- 
valued distribution div M defined by 

d ivM(~)  j := -MiJ(~t,~ ). (2.8) 

Note that we adopt the convention that div operates on the first index of a 
matrix-valued distribution. For any locally integrable function f : R" --> I~ ~ we 
say that "div f = 0 in the sense of distributions" if the distribution 

F($) := - / f .  V~pdx, ~p E Co~(R ") (2.9) 
R,' 

vanishes; this is consistent with (2.7)2 if we associate a function and its distri- 
bution in the usual way. 
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Throughout this paper we interpret the field of a dipole as the matrix-valued 
distribution 

K(~)  :=  f u(x) | V~(x)dx, ~ ~ C~(R3),  (2.10) 
R 3 

x 
where u(x) -- 4~lx? is the monopole field. K is the well-defined because the 
monopole field is locally integrable. It will be clear from the context whether K 
stands for the distribution (2.10) or the function (2.1). 

We shall often have occasion to extend the domain of a convolution T �9 
from C ~  to a larger complete normed linear space X, typically L 2. The extension 
is immediate if we can first prove the bound 

liT * ~P[Ix -< cll~llx for all ~p e C~(IRn). (2.11) 

That is, if f/~ e Co~(IR n) is a Cauchy sequence in X, (2.11) shows that 

lIT* ~ - T *  ~mllx _< cllg2 - ~ l l ~ ,  (2.12) 

so that T �9 ~p~ is a Cauchy sequence in X. Hence we define for ~ E X, 

T(~) := lira T(~  (k)) (2.13) 
k - - + ~  

where ~ --+ ~ in X and ~ c C~(~" ) .  By (2.11) it follows that T(~) is 
independent of the choice of approximating sequence. 

Unless explicity stated, all norms [I �9 [I in this paper represent L 2 norms and 
< . ,  �9 > denotes the standard inner product on L 2. 

3 Precursor fields for a single dipole 

In addition to the basic field K of a single dipole, there are other fields derived 
from K that arise in a natural way in lattice calculations. These are the magnetic 
induction, the Maxwell self-field and the Lorentz local field. In this section we 
define these fields and their associated distributions for a single dipole. 

To motivate our expression for the magnetic induCtion, consider the function 

K(x) ,  Ixl > r, 
B}r) ( x ) : =  1 1 (3 .1 )  

27rr 3 , IXl < r. 

Since the jump condition 

x 
[B~ r) (x)] n = 0, n := ~ ,  (3.2) 

holds at Ix[ = r, it follows that B(o ~) is divergence-free in the sense of distribu- 
tions. Also, if we write 

B~r)(x) = K(x) + M(or)(x), x # 0 , (3.3) 
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it follows that M(o r~ has compact support on the ball of radius r. The formula 
(3.3) is the precursor of the decomposition of the magnetic induction into the 
sum of the magneti~ field and the magnetization. 

More generally, it is enough to adopt the scaling represented in (3.1). Let 
R C R 3 be bounded and open with a smooth boundary and with 0 E R. Let 
K ,  ~ LI(R, M 3• be chosen such that the function 

B (~ (x) := 

K(x), x E • 3  __ rR, 
(3.4) 

satisfies 

div B (1)(x) = 0 in D'. (3.5) 

This can always be accomplished by first solving 

Ap = 0 on R, 

O p = K ( y ) n  for y 6 0 R ,  
On 

(3.6) 

and then by setting 

K. := (Vp) r. (3.7) 

(recall that divergence operates on the first index of a matrix). It is easily checked 
that the Neumann problem (3.6) is indeed solvable. Note that div B (1) (x) = 0 
implies that divB (r) (x) = 0. The definitions (3.4) and (3.5) define the precursor 
of the magnetic induction of a dipole. 

A different kind of decomposition of K arises naturally in lattice calculations 
of energy and corresponds to the principal value decomposition. For this purpose 
we define 

PMs (x) = (3.8) 
L O, Ixl _< r. 

The subscript MS here refers to the Maxwell self-field of a dipole and identifies 
P(r~ as the precursor of this field. The remaining part of the field, 

MS 

per) := K - p ( r )  (3.9) 
LL M S  ' 

is the precursor of the Lorentz local field of a dipole. To make the resulting 
formulae correspond with Lorentz's, we have used a spherical cut-out in (3.8) 
rather than the more general cut-out as in (3.4). 

We first show that the dipole field K is approximated (in the sense of distri- 
butions) by either B (r) or p(r) and certain Dirac masses at the origin. 

MS 
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Proposition 3.1. Let G. E LI(R, M 3x3) 

t K(x), x c IR 3 -  rR, 
G(~? (x) := 

1 
T h e n ,  

G (r) --+ K q- M~o in D' as r -+ 0, 

where 80 is a Dirac mass at the origin and 

1 x f G ,  dx. M : :  f ~ lx13  |  + 
OR R 

and define for r > O, 

(3.10) 

(3.11) 

(3.12) 

Furthermore, if div G (1) = 0 in the sense of  distributions, then M = 1 and, 
conversely, i f  M = I  then div G (r) ~ 0 in D'. 

It follows that the precursors of  the magnetic induction and Maxwell self-field 
satisfy 

B 0") --+ K + 15o, 

--+ K + 115o, p(r) 
MS 3 

in D' as r --+ O. 

(3.13) 

Proof From the definition of G (r) we have for any ~ E Co~(R3), 

f G(r)Odx = f KOdx+  f ~ G ,  (x)O(x)dx 
R3 g{3 - r R  rR 

= ./ V (  -4~@13)~pdx+JG,(y)*(ry)dy 
p,3--rR R 

(3.t4) 
= j. O(x)x | n d S +  j x @ 

0(rR) 4zrlxl 3 ~3_rR 4:rlxl3V*dx+[G*(Y)~(ry)dyR / 

_ j. ~ ( r y ) y ~  n d S +  j. x @ Vgedx + f G , ( y ) ~ ( r y ) d y .  
oR 4rclYl 3 4rrlx[3 R 3"rR R 

Here, n is the outer normal of rR. Using the facts that ~p c Co~(I~ 3) and G. 
L 1 (R, M 3x3) and the definition of the distribution K, we take the limit of (3.14)4 
as r --+ 0 and get (3.11) and (3.12). 

Now suppose that div G (1) = 0 so div G(r) = 0 in D' for all r > 0. Passing 
to the limit in (3.11) and recalling the definition (2.8) of the divergence, we get 

f (V2O)Xdx + MrVO(0) = 0. (3.15) 
R3 4zrlx? 



Fine-scale oscillations in micromagnetics 299 

x Since the monopole field u(x) -- 47rlx[ 3 is in L l, (3.15) implies that 

(V2~)x 
j 4rclxl 3 dx + MrV~(0)  = o(1), (3.16) 

R 3 --B(p) 

where B(p) is the ball of radius p and o(1) -+ 0 as p ---> 0. Integrating the first 
term of (3.16) by parts, we get 

- f V~/Z~x.ndS- f ( d i v u ) V ~ d x + M r V g , ( 0 ) = o ( 1 ) .  (3.17) 
OR(p) 47rp ~ R3-B(p) 

Since divu = 0 on N 3 - B(p) and n = ~ for x E OB(p) we can take the limit of 
(3.17) as p -+ 0 and get that M = 1. Conversely, i f M  = 1 then (3.17) holds so 
that (3.16) and (3.15) also hold; hence, divG (r) -+ 0 in D'. The first of (3.13) 
now follows immediately from (3.5), while the second of (3.13) follows from 
the identity 

1 / ,  11 (3.18)D a--)~l n |  3 " 

4 L o n g  wave length  osci l lat ions vs. osci l lat ions on the scale of  the lattice 

We consider an array of dipoles lying on the points of a Bravais lattice. To 
each of these lattice points we assign a vector representing the dipole moment. 
As we refine the lattice by letting a typical lattice parameter go to zero, we 
will have to decrease the strength of this dipole field accordingly, so that the 
macroscopic magnetization (the dipole moment per unit volume) is bounded. 
The forms of macroscopic fields will be relatively insensitive to the type of 
convergence assumed for the dipole field, whereas the form of the energy will 
be sensitive to the type of convergence assumed. In this section we define and 
compare several types of convergence used later. 

A Bravais lattice is the set of points given by 

L(el, ez, e3) = {x ~ 1R 3 - x = viei where vl,v2,v 3 E Z}.  (4.1) 

Here el, e2, e? 6 N 3 are linearly independent lattice vectors and Z denotes the 
integers. We fix {ei} and write 

Lx := L()~el, ),e2, )~e3), )~ > 0. (4.2) 

For convenience we assume that the lattice vectors have been chosen such that 
the unit cell 

:-~- {X E ] ~ 3 .  3[ = oliei, 0 ~ 0/1,0/2,  O{ 3 < 1} (4.3) U 

has unit volume. We also use the terminology unit cell for any translate of U 
by x ~ L1. 
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Consider a discrete dipole field dz : Lz -+ I~ 3 defined for each k ~ (0, 1). 
We wish to consider convergence of the dipole field dx as k --+ 0. As the 
dz are defined on different lattices for different values of k, it is useful to 
consider extensions of dz to all of R 3. Then we can consider the usual kinds of 
convergence for the extended fields. The standard extension of dz is the scaled 
piecewise constant extension d~ given by 

d~(y) = •-3dk(x) for x c Lz and y 6 x + kU. (4.4) 

The field d~ �9 IR 3 --+ N3 is constant on each unit cell of Lz. We say that dz 
converges strongly as k --+ 0 to m c L2(IR 3, I~ 3) if 

d~ ~ m in L2(R 3, I~3). (4.5) 

Similarly, we say that dz converges weakly to rn 6 L2(R 3, R 3) if 

d ~ m  in L2 (R3, ]I~3). (4.6) 

In the latter case we will also assume that 

lim sup [ Id~12dx=0, (4.7) 
P - - > ~  )~ ' J  c(0,1]R3_B(p) 

which insures that the dipole moment per unit volume does not "escape to 
infinity" as k -+ 0. In particular (4.7) holds if all the dz vanish outside a fixed 
bounded set. Note that because of the scaling k -3 in (4.4), nl represents a dipole 
moment per unit volume. In our terminology strong convergence corresponds to 
no oscillations. Fine-scale oscillations are modeled by weak convergence of dz. 
Later, as part of our calculations of the energy, we are led to further subdivide 
the case of weak convergence to "weak-long" and "weak- short" cases. Further 
discussion of the physical interpretation of strong and weak convergence is given 
in Sections 7-9. Note that our terminology is slightly nonstandard because of 
the factor k -3 in (4.4). 

An alternative way to consider convergence of the dk is to assume the exis- 
tence of a background field mb 6 L2(R 3, IR 3) and then to define dz by 

dk(x) := f mb(z)dz. (4.8) 
x+kU 

More generally, we could allow the background field to vary with k. The fol- 
lowing shows that the notions of strong and weak convergence defined above 
in terms of the standard extension correspond to assuming the existence of 
background fields that converge, respectively, strongly and weakly in the con- 
ventional sense. 

Proposition 4.1. Let mz, k 6 (0, 1], be a sequence of  vector fields in L2(]R 3, I[{ 3) 
with 

mz --+ m in L2(]I{ 3, R 3) (4.9) 
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(respectively, mx --" m in L2(R 3, R3)). Let dx �9 Lz -+ R 3 be defined by 

dx(x) = j mx(z)dz. (4.10) 
x+)~U 

Then d~ converges strongly (resp. weakly) to m in the sense of  (4.5) (resp. 
(4.6)). Moreover, if 

lim sup [ [m~12dx= 0 (4.11) 
p-+cx~ kC(0 1]]R3 fB , _ ( p )  

then the standard extension o f  d~ satisfies (4.7). 
Conversely, if dx �9 L~ -+ R is a strongly (resp. weakly) convergent sequence 

in the sense o f  (4.5) (resp. (4.6)), then there is a strongly (resp. weakly) con- 
vergent background field mx ~ L2(IR 3, R 3) so that d~ is given by (4.10). I f  d~ 
also satisfies (4.7) then the sequence mx can be chosen to satisfy (4.11). 

Proof. The converse is obvious as we may choose m x =  d~. To prove the first 
part, we first note that if g ~ L 2 and r~ �9 Lx -+ R 3 is defined by the formula 

r~(x) := j g(z)dz, (4.12) 
x+LU 

then the standard extension of rx belongs to L 2 and satisfies 

Ilr~ll < Ilgll. (4.13) 

The result (4.13) follows from the calculation 

[]r~]12 = )-3 Z Irx(x)l 2 < ~ f Jg(z)12dz = ]]g]l 2, (4.14) 
xEL). x~Lx x+)~U 

where the inequality follows from Jensen's inequality. We assume that mx ~ m 
in L2 and that dz is defined by (4.10). Let 8 > 0 be given. By the density of 
Co ~ in L 2 there is a rh ~ Co~(l~ 3, R 3) such that 

[l~h - mll < 6. (4.15) 

Let c]z " Lz --+ R 3 be given by 

ax(x) := j l~(y)dy (4.16) 
x+)~U 

^ ~  

with standard extension d~. We have 

I Id~-ml l  _< I Id~-d~l l  + Ild)~-rhtt + I l rh-mlt .  (4.17) 

By the linearity of standard extensions and the result (4.12), (4.13), the first 
term on the right hand side of (4.17) satisfies 

[Id~ " - d z l l  _< Jlmz-rill[ _< I tmz-ml t  + I lm-rhl l .  (4.18) 
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To estimate the second term on the right hand side of (4.17), we note that for 
y E x + ) v U  

^ ~  

Idz (Y) - rh(y)l _< ~-3 f lib(z) -- rh(y)ldz _< e~., (4.19) 
x+),U 

where ~ depends upon the choice of 61. Therefore, since d~ and m vanish 
outside a bounded set, d z -+ rh uniformly as X -+ 0. Combining (4.15), (4.18) 
and (4.19) with (4.17) we get 

lira sup IId~ - mll < 26, (4.20) 
),--+0 

and so by the arbitrariness of ~ we get d~ --+ m in L2(R 3, IR3). 
Next we consider the case of weak convergence. By the result just proved, 

it is only necessary to consider the case mx ~ 0. Let !P c C~(IR 3, R). We 
introduce the corner  map,  xz (y) := x for y E x + )~U, x 6 Lx, and write 

f d~ (y )~ (y )dy  = j ) -3  j m~(z)~(y)dzdy 
R 3 R 3 xx(y)+2.U 

= f )v -3 j" m ~ ( z ) ~ ( z ) d z d y  (4.21)  
R 3 x~ (y) +)~U 

+ j j m~(z) (~(y) - ~(z))  dzdy. 
R 3 xz(y)+)~U 

To estimate the second term in (4.21), we let A be a set containing supp ~ + U ,  
and we let vz be the number of lattice points of Lz in A so that vz _< const. ; -3 .  
Two applications of Jensen's inequality gives 

xx (y) § ~.U 

lJ  / 
xx(y)+~.U 

C2)V21) 2 

2 

mx(z)(~(y)  - ~(z))dz  dy , 

Imz(z) l c,~ dz , 

12 1 
U2 ycL~fqA f Imz(z)ldz , 

xx(y)+XU 

2 

~ c2)v2p)v ~ ) v 6 ( ~  j Imz(z)]dz , 
ycLffqA \ xx(y)+)~U 

5 c29~2 (vzP~3) Ilmz ]l 2- 

Also, the first integral on the right hand side of (4.21)2 is 

j m,~(z)~(z)dz --> 0, 
R 3 

(4.22) 

(4.23) 
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by assumption. Hence, d~" --+ 0. To complete the proof, we note that (4.7) 
implies (4.11) because 

f I)~ -3 f mx (z)dz[2dy < f Imx(z)12dz. (4.24) 
IR 3-B(p) xx(y)+~,U R 3-B(p') 

where p' = p + clX for some cl > 0 (recall that meas U = 1). [] 
The choice of a Bravais lattice as the underlying lattice is not crucial for 

our calculations, although the nature of  the results would be slightly altered 
in several cases. For example, there could be several unit cells corresponding 
to different sublattices or the unit cell could be a function of the lattice point. 
The important hypothesis for the calculations of the following sections is the 
hypothesis of strong (or weak) convergence of the appropriate standard extension 
(cf (4.4)-(4.6)). 

5 Field of a fine array of dipoles 

In this section we derive formulae for various macroscopic fields under condi- 
tions of weak convergence of the dipole field dx as )~ --+ 0. The results of this 
section are insensitive as to whether weak or strong convergence is assumed. 

For applications to micromagnetics and other theories the main case of inter- 
est is the case in which the dipole field has compact support. Hence, we assume 
the existence of a background field m~ --+ m in L 1 with supp m~ C f2 such that 

d),(x)= f m~(z) dz, xeL)~. (5.1) 
x+LU 

If G " IR 3 --+ M 3• represents a field quantity associated with a single dipole, 
e.g., the field K, magnetic induction B (r), the Maxwell self-field p(O or the 

MS 

Lorentz local field P ~ ,  we define the corresponding field quantity for the array 
of dipoles by 

g~(x) := ~ G(x - y)d),(y), (5.2) 
y~Lx 

that is, by summing the field quantity at lattice points. Because of the issues 
raised in Section 2, we will view the field quantities for the array of dipoles as 
distributions. For quantities in L 1 (R 3, M 3x3) such  as G = B (r) or  G : p(r) w e  

MS 
define distributions in the obvious way, 

gx ( T r ) : :  R 3f g(x) ~r(x)dx : Y~ f gr(x) G(x - 3  y)dx (y) dx (5.3) 

for • c Co ~ (R 3, N). For quantities not in L t (R 3, M 3x3) we use special formulae. 
In particular, the field h)~ of an array of dipoles is given by the sum of (2.10) 
over lattice points 

hx(~P) := Z . / (u(x - y ) .  dx(y))Vgt(x)dx (5.4) 
YELxR3 
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for all ~ c Co~(1R 3, R). In (5.4) u(x) = 4~@xl3 is the monopole field. 
We are interested in the limits of field quantities for an array of dipoles as 

)~ --+ 0. These are obtained by use of the following result. 

Proposition 5.1. Let T (k) be a one- parameter family o f  distributions and suppose 
that 

T(k)---~ T in D'. (5.5) 

Suppose mz  --~ m in L 1 with supp mz C f2 and let 

d~ (x) := f mz (y) dy, x ~ Lz, (5.6) 
x+)~U 

where L~ and U are defined by (4.2) and (4.3). Let kx -+ oo as L -+ O. Define 
the distribution 

T~(~) := ~ T(~)(O(y + -))dz(y). (5.7) 
yeL~ 

Then 

T~ --+ T in D' as )~ --+ 0, (5.8) 

where (c f  (2.5)) 

T(1/') := T ( m o  ~), ~ ~ Co~(N 3) (5.9) 

and 

(m o O)(x) ---- . / m ( z  - x)!/r(z)dz. (5.10) 
R 3 

Proof  Let ~ E Co~(R 3) and let T)~ be given by (5.8). By linearity we have, 

Tz (0) = T(k~) (qSz), (5.11) 

where 

~b),(x) = ~ ~(x + y)d),(y). (5.12) 
y~L)~ 

Note that since dz has compact support on fL ~b~ 6 C ~ ( R  3, R 3) for each )~ > 0. 
Hence, it suffices to show that 

qS~ -+ m o @  in Co~(R3, R3). 

Furthermore, since 

0~q~(x) -- Z 0 ~ ( x  + Y)dz(y), 
0X~ y~Lz 0xCe 

(5.13) 

(5.14) 
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it suffices to verify uniform convergence in (5.13). By (5.6) and (5.10) we have, 

[ ,$x(x) - (m <> ~)(x)[ = Z tb(x + y)dz(y) - , /~ (z )m(z  - x)dz 
y eLx R3 

} =[y~Lx O ( x + y )  f m x ( z ) d z -  / ~ ( x + w ) m ( w ) d w  (5.15) 
y+XU y+~.U 

= lax(x) + b~(x)[, 

where 

ax(x) := ~ { t # ( x + y )  ] ( m x ( z ) - m ( z ) ) d z } ,  
Y x y+XU 

b ~ ( x ) : =  ~ f ( ~ ( x + y ) - ~ ( x + z ) ) m ( z ) d z .  
y~L~ y+XU 

Clearly 

Ib~.t 5 sup sup I ~ ( v + w ) -  ~ ( v )  l IlmllL~, 
yEN) w6XU 

(5.16) 

(5.17) 

= j ~ - ( x ,  z)(mx(z) - m(z))dz.  
R3 

Hence, 

la~(x)l = / (7* ~ (x, z) - ~ ( x  + z)) (ma (z) - m (z)) dz 
R3 

+ ./ ~ (x + z) (m~ (z) - m (z)) dz 
R 3 I 

5 /IV~-(x,  z) - ~P(x+z)l  Ima (z) - m ( z ) l d z  
R3 

+ f ~p(x+z)  (mx (z) - m ( z ) ) d z  q 

The first term of (5.19)2 is bounded by 

)v(sup VO)diamU[ lm~ - m[ Jc~. (5.20) 
R 3 

(5.18) 

(5.19) 

az(x) = ~ / ~ - ( x ,  z)(mx(z) - m(z))dz,  
yEL~ y+),U 

so lbx[ --~ 0 as )~ --> 0 uniformly. To analyze ax, we first recall the corner map xx 
introduced just before (4.21). For x, z c It{ 3 we define ~-(x ,  z) := ~(x+xx(z)).  
Then ax can be written 



306 R.D. James, Stefan Miiller 

Since any weakly convergent sequence in L 1 has the property that its L 1 norm 
is uniformly bounded, the first term in (5.19)2 tends to zero uniformly as )v --+ 
0. The second term in (5.19)2 tends to zero pointwise by the definition of 
weak convergence. Since the gradient of this term (inside the absolute value 
signs) is uniformly bounded, the second term in (5.19)2 tends to zero uniformly. 
Combining these results, we conclude that the left hand side of (5.15) tends to 
zero uniformly as L ---> 0, completing the proof. [] 

Using Propositions 5.1 and 3.1, we can find the limits of field quantities. 
This is done below. 

1. Magnetic field. Here, we take T (k) of Proposition 5.1 to have the form T (i) = 

K r (independent of i) and observe that formula (5.7) gives Ta = ha, where ha 
is defined by (5.4). Applying Proposition 5.1, we get 

ha --+ h in D' (5.21) 

where 

h = j ~ u(z - x) .  m(x)dx} g~(z)dz ,  ~3 (5.22) 

which can be written as - D ( u  �9 m). 

2. Magnetic induction. The precursor of the magnetic induction B (~) defined by 
(3.3) involves the additional parameter r. This suggests two ways to define the 
macroscopic magnetic induction. We could first fix r, apply Proposition 5.1 to 
B (r), and then take the limit as r --+ 0. In this case, more and more dipoles would 
enter the region rR as )~ -+ 0. Alternatively, we could let r depend on )~ with, 
say, ra having a certain decay rate as )~ --> 0; if the decay rate is sufficiently 
fast then raR would only contain one dipole for all )~ > 0. In fact, the same 
macroscopic magnetic induction is obtained in both cases. 

To see this, we first apply Proposition (5.1) to T (k) : B (r) (independent of 
k) with r fixed. The formula (5.7) for the induction b(z r) is then 

blr)(~f) :=  y~L~ f B ( r ) ( x  - -  y)da(y)~/(x)dx,  ~ E C~(]R3). (5.23) 

Note that b(f ) is divergence-free, because B 1 is divergence-free. Applying Propo- 
sition (5. l) and using the definition (3.3) of B (r), we get that 

b}~ ) --+ b (r) in D' as )v -+ 0, (5.24) 

where 

b (~)(!#) := ./O(z) j B(r)(z - x)m(x)dxdz. (5.25) 
R3 R3 

By (3.4) b (r) can be written 

__ b (r) , b(r)(~) b~r)(~) @ 2 (l/f) (5.26) 
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where 

b~)(gt) := J m(x) f K(z-  x)~(z)dzdx, 
i 3 xq-  (~7~ 3 - - r R )  
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b(2r)0p) := f re(x) f K .  ( ~ - ) g t ( z ) d z d x .  (5.27) 
IR 3 x+rR  

It is easily checked by calculations analogous to those in (3.14) that 

b (') --+ h + m  in D', (5.28) 

where h is defined by (5.22) and m is the magnetization. Thus, if we let b denote 
the limit of b (r) as r --+ 0, we recover the standard formula of electromagnetism, 

b = h + m. (5.29) 

The distribution b inherits the property of being divergence-free. 
Alternatively, we can begin again and let r depend on )~; say rx --+ 0 as 

)~ --+ 0. Then we apply Proposition 5.1 to the distribution T (~) = B(~). Letting 
kx = (rz) -1 we observe that (5.7) is a formula for b(x r~) (cf. (5.23)). Let bz = 
b(f '). Proposition 5.1 now allows us to evaluate the limit of b~ as L --+ 0 in D'. 
Applying Proposition 5.1, we get the same result as (5.29), i.e., 

b ~ - + h + m  in D'. (5.30) 

3.Maxwell  self-field. Again we have two alternatives for defining the Maxwell 
self-field. Here, we shall just treat the case rz -+ 0 as 3. --+ 0, and remark 
that the alternative procedure (r = ro, ~. --> 0, then ro ---> 0) gives the same 
result. We take T (k) of Proposition 5.1 to have the form T (k) = P(�88 and let 

MS 

kz = (rz) -~. The formula (5.7) gives 

p(~)(~) ::  ~ ~! P(r~)(x - y)d~(y)~(x)dx 
MS MS 

Y 
(5.31) 

for all ~ ~ Co~(R3). Applying Proposition 5.1, we get 

1 

p(Z) ~-m in D'. Ms --+ h § (5.32) 
J 

With regard to the description of macroscopic fields, the Maxwell self-field does 
not offer any particular advantages. For example, it is not generally divergence- 
free. However, it plays a major role in calculations of energy. The main conclu- 
sion of this section is that m is interpreted as the magnetization under conditions 
of either weak or strong convergence. 
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6 Energy of  a fine array of dipoles without oscillations 

In this section we calculate the total energy of a fine array of dipoles in the case 
of strong convergence of the background field. This calculation differs from 
the previous one in that here we are simply calculating the limit of a sequence 
of numbers. We say that the background field is without oscillations under the 
conditions of strong convergence. Throughout this section we fix r > 0. 

The energy of a lattice of dipoles is calculated in the standard way by sum- 
ming the work done in bringing each dipole from ~ to a point on the lattice 
(see Brown [1962, 1963]). This gives the expression 

- 1  
dx(x) �9 K(x - y)dx(y). (6.1) 

ez - -  2 x.y~L x 
x#y 

We assume the existence of a background field mx with 

dz(x) = f mx(z)dz, (6.2) 
x+XU 

(see Section 4). 
For now we assume m~ ~ Co~(R 3, R 3) SO that the expression for e~ is well- 

defined. Later (Lemma 6.1) we will show that (6.1) makes sense for mx c 
L 2 (R 3, R3). Introducing characteristic functions, we can write (6.1) in the form 

- 1  
e~ - 2 f j mx(x)- Kx(x, y)m~(y)dxdy, 

R3 R3 

(6.3) 

where 

Kz(x, y) := Z Xv+xv(x)K(v - W)Xw+xv(Y)- (6.4) 
v,wEL X 

X#w 

Using the fact that characteristic functions have the scaling property X~D (x) = 
Xo(~), X > 0, and using the definition (2.1) of K, we get the scaling 

l x y (6.5) Kx(x, y) = v K I ( ~ ,  ~). 

The formula for e~ can be written 

- 1  
e~ = ~ -  (m~, Txmz)L2 (6.6) 

where 

(Txm)(x) := f K~(x, y)m(y)dy. (6.7) 
IR3 

The map Tx is a kind of discretized version of the Maxwell self-field, as can be 
seen by placing the expression (6.4) into (6.7) and by comparing with (5.31) 
and (3.8). 
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We now show that Tx extends in a natural way from a map from C ~  -+ L 2 
to a map from L 2 -+ L 2. Once this has been shown, it is clear from (6.6) that 
ex is well-defined for any mz ~ L 2. 

P r o p o s i t i o n  6 .1 .  The map T~ �9 m --+ f K ~ ( . ,  y)m(y)dy defined on Co~(R 3, R 3) 
R3 

extends to a bounded linear map from L2(~  3, ]R 3) to L2(]~ 3, ~3).  Moreover, 

ItTzll~r = 1tTl11~r VX > 0. (6.8) 

Proof. Assuming T1 is bounded linear map from L 2 to L 2, (6.8) follows from 

the scaling (6.5). That is, if we let (S~f)(x) := )~f()~x) we note first that S~ is 
an isometry from L2(R 3, R 3) to L2(R 3, JR3). It then follows from (6.5) that 

3 X 
(T~m) (x) = T1 ()~- ~ S~m) (~) = (SLIT1S~m) (x). (6.9) 

Hence, it is sufficient to show that T~ extends to a bounded linear map from 
L 2 to L 2. According to the argument presented at the end of Section 2, it is 
sufficient to show that for all m c Co~(R 3, R 3) 

HT1mll ~ cllm[I (6.10) 

for some constant c > 0. Recalling the definition of the Maxwell self-field, 
equation (3.8), we let 

L(r)(x, y) :---- Kl(X, y) - P(f] (x - y). (6.11) 

We claim that there is a function g(') 6 L 1 (E3, R) such that 

IL(r)(a, b)l _< g(r~(la - bl). (6.12) 

To prove (6.12), we first observe that both [KI[ and P(r~l are bounded for 
MS 

each r > 0. The latter is obvious from the definition (3.8); the former becomes 
obvious when we write K1 in terms of the corner map x~(y) introduced just 
before (4.21) (specialized to X = 1), viz., 

f 0, a and b in the same unit cell of L~, 
K1 (a, b) (6. 13) 

K(Xl (a) - Xl (b)), otherwise 

Hence, ]L (r) ( a -  b)] is bounded for l a -  b[ bounded. Therefore, to establish the 
estimate (6.12) it is only necessary to consider a and b satisfying Ib - a[ > 
(diamU + r). In this case, 

C1 
[Le)(a, b)l = IK(xl(a) - xl(b)) - K(a  - b)l _< (6.14) 

c2 + la - b[ 4'  

where cl > 0 and C2 > 0 depend only on r and diamU. This establishes (6.12). 
Now we combine (6.12) with a standard result on convolution (see e.g., 

Brezis [1983, Theorem IV.15, p. 66]) to get that 

f L (~) (x, y)m(y)dy 
R3 
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defines a bounded linear map on Co~(1R 3, R3). The boundedness of the remaining 
part of Tim, 

[I / P}f~(x - y)m(y)dy[I _< cllm[I, (6.15) 
R3 

follows by applying a standard result on singular integrals (Stein [1970, Chapt. 
II, Section 4]). To apply this result, we only need to observe that for any r > 0 

f P}~ (x)dx = 0, 
aB(r) 

which follows from (3.18) and the definition of p(r)M,. 
The proof is completed by using the argument at the end of Section 2, (2.11)- 

(2.13).[] 
Our main result of this section is a precise version of the expression (cf 

Brown [1963]) for the energy of a lattice of dipoles under conditions of strong 
convergence. Recall that measU = 1. 

Theorem 6.2. Let 

d~(x) = f mz(z)dz (6.16) 
x+)~U 

and suppose mz --~ m in L2(~ 3, R3). Let Tz be given by (6.7) and let e~ be 
given by (6.1). Then 

K , m + ( l l + S )  m in L2(R3, R3), (6.17) Tzmz --~ 

and 

e ~  ~ -  ( m , K , m ) +  IlmllZ+(m, Sm) , (6.18) 

where 

S := lim ~ K(y). (6.19) 
p-+ c~ y~( L1AB(p) ) \ {o} 

Remark 6.3. The term K .  m in (6.17) is well-defined for m c L2(l~ 3, ]R 3) 
by the argument given at the end of Section 2, equations (2.11) - (2.13) with 
X = L2(R 3, tR3). To use this argument we must show that (cf (2.11)) 

IlK * fl[ < cllfll for all f E Co~(]~ 3, •3). (6.20) 

The bound (6.20) follows immediately by taking the limit of (6.15) as r --+ 0, 
noting that by Stein [1970, loc. cit.] c in (6.20) is independent of r, and then by 
using (3.13)2. Alternatively, the property (6.20) follows from properties of the 
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Newtonian potential and Poisson's equation. For f ~ Co~(IR 3, IR 3) we can write 
(in components) 

_32 
Kij * f j -- O~iOxj j - 1  4 : r~  2_ yl f j ( y )d y  (6.21) 

(cf Rudin [1991], Theorem 6.30). Let gj be the integral on the right hand side of 
(6.21). Then (cf Gilbarg and Trudinger [1977], Chapter 4) gj is the Newtonian 
potential of fj  SO, with f ~ Co ~ ,  

zXgj=fj on IR 3, 

Kij * f j = - gJ, u" (6.22) 

By the theory of elliptic equations (e.g., Gilbarg and Trudinger [1977], Chapter 
8.3), g satisfies 

llgrad divgtl _< c11r (6.23) 

which establishes (6.20). Alternatively, the inequality (6.23) follows by the use 
of Fourier transforms, as below in Example 7.5. 

Proof of Theorem 6.2 According to Lemma 6.1, it suffices to consider m x =  m 
(independent of )v) with in ~ Co~(I~ 3, R3). That is, 

Txm)~ = T~m + T;~(m - rex) (6.24) 

and second term on the right goes to zero by Lemma 6.1 while the first term on 
the right equals l i m k ~  Txm k for m k -+ m in L 2, In ~ c Co ~.  As in the proof 
of Lemma 6.1, we define L (r) by (6.11) and write 

= PO~) (x -  y ) +  L-3L {r) (~, Y ) .  (6.25) 

The limiting behavior of p(rZ) as )v ---> 0 is known from (3.13)2, so it remains 
MS 

to study L (r). 

We first note that by the argument between (6.12) and (6.14) we have for any 
R > 0  

x f )V-3 IL(r) ( ~ ,  ~ )  [ dY, 
Ix-yl>_R~. 

< C f )v 4 yl4dY < c min  1 . 
Ix-y/~R3v ~ - I x -  -- ' 

(6.26) 
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We then write 

R3 2 ' 2  re(y) dy 

= f ) v - 3 L ( r ) ( ~ , Y ) d y m ( x )  
N3 

X 
-- f )v-3L (r) (~,  Y) dy m(x) (6.27) 

Ix-y[>RX 

+ f ),.-3L(")(~, Y) (m(y)-m(x)) dy 
Ix-yl_<R)~ 

)v : ) ) r e ( y ) d y .  
Lx yl~_Rx 

Consider the limit )v ---> 0 with R fixed. In view of (6.26) the third term on the 
right hand side of (6.27) goes to zero while the second and fourth are bounded 1 by ~ as R --+ oo. Note that 

X 
f )v -3L (r) (~,  Y ) d y  = J' L (r) ( 2 ' Y ) d y .  

R3 R~ 

We will see momentarily that the term on the right is independent of x. Thus 
taking the limit )~ -+ 0 and the R --> oc in (6.27), we obtain 

lim)v_ 3 f L ( r  ) (x y) ~-+0 ~3 ~'  2 m(y) dy = m(x)R3 j L(r)(0' y)dy m(x) (6.28) 

We have used 

Lemma 6.4. Let L (r) be defined by (6.11). For all x E ~3, 

j L(~)(x, y)dy = J L (~)(0, y)dy. (6.29) 
R3 R3 

Proof. First note that by the argument between (6.12) and (6.14) the separate 
integrals in (6.29) exist. Letting B(p) be the ball of radius p and recalling the 
corner map x:(x) for the lattice L1 (see (6.13)), we write 

/' L(r)(x, y)dy = j K1 (x, y)dy + j P(f~ (x - y)dy, 
Xl (x)+B(,o) x: (x) +B(,o) xl (x)+B(p) 

f Kl(x, x t ( x ) + z ) d z +  f (r) = PMs (x -- xl (x) -- z)dz. (6.30) 
B(p) B(p) 
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By (6.13) Kl(X -}- z, y + z) = Kl(x,  y) for any z ~ L1. Hence the integrand of 
the first integral on the right hand side of (6.30) is 

K l ( x ,  Xl(X) + z )  = K I ( X - X I ( X ) ,  z) 

(6.31) 
= ~ K(-w)x~+~(z)  = Kl(0,  z). 

w~Ll\{o} 

Turning attention to the second integral in (6.30), we put y = x - x~ (x) and 
note that by spherical symmetry (cf. (6.15)ff) 

j (r) . p(r) P M s ( S - z )  dz f (r) , = PMs (Z -- z) -- ~ ( - z )dz .  (6.32) 
B(p) B(p) 

The integrand on the right hand side of (6.32) is in L 1, so we can pass to the 
limit p -+ oo in (6.32) and (6.30). To complete the proof of  Lemma 6.4, we 
observe that 

T �9 = j P(~) ('~s -.Y - z) - P~ 
R 3 

(6.33) 
�9 Ms y §  - us - ~ y + w  dw 

R3 

= fP ( r )  - ~ y - w  - ~3 Ms M~ ~Y w dw 

~-- - - T .  

Hence, T = 0. [] 

Continuation of the proof of Theorem 6.2. 
With m ~ Co~(R 3, IR 3) we have by (3.12)2 

1 
,.(P(r~),us * m) (x) --+ (K �9 m)(x) + ~m(x)  as )~ --+ 0 pointwise. (6.34) 

Collecting the results (6.28) and (6.34) and keeping in mind Proposition 6.1, 
we get (6.17) and (6.18) with (see below for further explanation) 

S = f L (r)(0, y)dy 
R3 

= lim~_,~ f L(r)(0, y)dy 
B(p) 

p(~) 
= lira f KI(0, y ) -  Ms(-Y)  dy p ~  (6.35) B(p) 

= lira / Kl(0,  y)dy p--+~ 
B(p) 

: lira ~ K ( y ) .  
p-->c~ YELl \{0 } 

7]B(p) 
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Here the term involving P(f] ( - y )  drops out of (6.35)3 by spherical symmetry. 
The passage from (6.35)4 to (6.35)5 follows by noting that the measure of the 
spherical annulus of width 2(diamU) and radius p is proportional to p2 plus 
lower order terms in p; since K decays as p-3, the difference between the sums 
(6.35)4 and (6.35)5 tends to zero as p--+ ec. [] 

Remark  6.4. The lattice sum S vanishes when the lattice has cubic symmetry 
(e.g., BCC, FCC, simple cubic). To see this we first recall that the point  group 

of Lt is the set 

P1 = {Q E 0(3)  : QL1 = L1}. 

By (6.19), if Q c P1, 

S =  lira ~ K ( Q y ) = Q S Q  r. (6.36) 
D ---> OO YELl\{0 } 

riB(p) 

Hence, QSQ r = S for all Q c P1- If PI is a cubic point group, then the only 
S satisfying this identity is S = o~1, o~ 6 R. By taking the trace of (6.36) and 
noting that t r K  = 0, we find that in the cubic case S = 0. 

7 Energy of a fine array of dipoles with long wave oscillations (weak-long) 

As discussed above in Section 4, oscillations of the background field m~ on the 
scale of the lattice are modeled by weak convergence mx ~ m (in L2). It is 
expected, however, that the notion of "oscillations on the scale of the lattice" 
and the notion of weak convergence do not precisely coincide. For example, a 
background field of the form 

mx (x) = O(x)m#(x/k ~) (7.1) 

with 0 < o~ < l, ~ having compact support, and m# periodic on 1R 3 has the 
property that it converges weakly in L 2 (but not strongly). However, a typical 
wavelength of the oscillations of (7.1) is const.)~ ~ which for 0 < ol < 1 is 
much larger than the lattice spacing ;~ in the sense that const.)~/)~ ~ ec as 
)~ ---> 0. For this example it might be expected that the macroscopic operator 
w -+ (w, K , w )  + ~llwl]2 @ (w, Sw) plays some role, and this in fact turns out 
to be true (we calculate the energy of the sequence li% given by (7.1) at the 
end of this section). 

To quantify this idea, we introduce the quantity Rp(w) defined by 

Rp(w) := sup IIw(" +z) - w ( . ) l l ,  w E L 2. (7.2) 
Izl_<p 

Rp(w) measures the correlation between w(.) and it translates w(. + z), Iz[ < 
p; the connection with correlations is seen from the alternative form of (7.2) 
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obtained by expanding the square, 

~Rp(w) 2 = - -  W(X + Z)" w(x)dx. IIw[I 2 inf / 
Izl-<p~3 (7.3) 

It is easy to verify that the sequence mx given by (7.1) is well correlated 
with itself on a scale of length )~ in the sense that R~(ri%~) --7 0 as )v --> 0. It 
follows from the definition that for w c L 2, R~(w) has the properties 

1. Ro(W) --+ 0 as ~ - - ~  0, 
2. Rk~(w) < kRo(w), k = 1, 2, 3 . . . ,  (7.4) 
3. Ro(w) < 211wll, 
4. ]Ip~ * w - w l l  < R~(w), where p~(x) = ~p(~)  is the standard mollifier. 
If ~ = 1 in (7.1), then Rz(mz) stays bounded away from zero as k -+ 

0, except in trivial cases. Such a sequence models oscillations that are truly 
on the scale of the lattice. To reflect this distinction, we use the terminology 
weak - long to describe background fields mx ~ m in L 2 such that R~ (rex) -+ 0 
as L --+ 0 and weak - short to describe the case inf R~ (m~) > 0. 

)~>0 
We now show that in the weak-long case the limiting energy is obtained by 

evaluating the macroscopic operator on the sequence. 

Proposit ion 7.1. Let m)~ ~ m 

d~(x) = j/ m~(z)dz, 
x+)~U 

and suppose 

in L2(R 3, ]~3), define 

(7.5) 

Rx (mx) ---> 0 as )v --> 0. 

Let the energy e~ be given by (6.1) and let To be defined by 

Tow := K , w +  (~1 + S )  w, w e L2(R3, R3). 

(cf (6.17)). Then, 

- 1  
lim e~ = lim (m~, Tom~). 
, k - ~ O  )v-~0 2 -  

(7,6) 

(7.7) 

(7.8) 

Rem a r k  7.2. Proposition (7.1) shows that in the weakqong case the energy is 
only influenced by the configuration of the lattice through the lattice sum S (cf 
(6.19)), like the case of strong convergence. However, in contrast to the case 
of strong convergence, it is necessary to know more about the dipoles than the 
macroscopic magnetization in order to calculate the weak-long energy, i.e., it is 
not generally possible to pass to the limit in (7.8). 

Proof of  Proposition 7.1 The quantity to be calculated is 

- 1  
e~ = ~ -  (mx, T~m)~) (7.9) 
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and the goal o f  the p roof  is to show that for  )~ small  we can essential ly replace 
T~ by  To in (7.9). As before,  we write T~ in the fo rm (6.7) and split K~ into 
the Maxwel l  self-kernel  and the remaining  local part  (c f (6 .25)) :  

Kz(x ,  y) = P(M)s)(X -- y) + )~-3L , ~ . (7.10) 

Here  we  have  put r = 1 and defined L :=  L 0). The  two terms in (7.10) are 
treated by  different methods.  

1. Maxwell  self-energy. We write 

= pOO .. (P(~) * m D ( x )  �9 f ,~s ("  - y ) m ~ ( y ) d y ,  
R3 

(7.11) 
1 

( p o  , m D ( x )  " = ( K ,  mz) (x )  + ~ m ( x ) ,  x c 1I{ 3. 

Since 

p ( Z ) ,  mz  - p o ,  mx I[ < p ( Z ) ,  mz  - P (~ ) ,  mx II 
MS - -  MS MS 

(7.12) 
+ P(~) �9 mz - p o ,  mz  H, 

MS 

the first part  o f  the p roof  will be comple te  if  we  can show that for  0 < e < )~, 

P(Z) * mx - P(*) * mxll < cRz(mz)  (7.13) 
MS MS - -  

with c independent  o f  )~ and e. That  is, once (7.13) has been established, we fix 
)~ and let e -+  0 in (7.12), using (6.34)ff ;  this yields 

p(~) po 
us , m z -  *mz l l  < c R z ( m D  (7.14) 

which in turn yields 

I(m)~, P(Z)mus ~/\ - (mz, P~ ~ 0 as )~ ~ O. (7.15) 

To establish (7.12), we let 0 < e < )~ and write 

P~"~ (x) Pgs - = P M S  (X) (7.16) 

and observe  that the left hand side of  (7.13) satisfies 

liP z'~ *mxll  < ]lPZ'~ * (p~ * mx)lr + I[PX'~ �9 (m,. - p ~  * raDII. (7.17) 

By (6.15) and (7.4)4 we have  for the second te rm on the right hand side of  
(7.17), 

lIP x'~ * (m~ - p~ �9 mx)fl < cllmx - px * mxl[ _< c R x ( m D .  (7.18) 

It remains  to examine  the first te rm on the right hand side of  (7.17). Not ing that 

f P~'e(z)dz = 0 (7.19) 
B(p) 
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for every p > 0 and that Px'~ has bounded support, we write 

P;~'~ * (p~ * m;,)(x) : /PZ '~(x  - y)(p)~ �9 mD(y)dy ,  
R3 

= f PX'~(x - y) [(px * mx)(y) - ( p x ,  mx)(x)] dy, (7.20) 
R3 

= f f'x'~ (x - y) (mx (y) - mx (x)) dy, 
R3 

where 

f'x'~(x) := f Pa'~(x - z)(px(z) - px(x))dz (7.21) 
:R 3 

and we have made use of Fubini' s Theorem. A straightforward calculation shows 
that PX'e has a uniformly bounded L 1 norm 

IIf'~'~IIL, < c, (7.22) 

and is supported on a ball of radius 2)~. (The mollifier was introduced to make 
the new kernel have these properties.) Hence, we can change variables in (7.20)3 
and write 

lip x'~ * (px *mD[I 5 ] t  / I m z ( x  § z) - m)~(x)lf'~'~(-z)ldzlZdx. (7.23) 
R3 R3 

Applying Jensen's inequality with probability measure d #  : [Pz,~(-z)Idz/lt['~,~llzj 
to (7.23) we get 

lip ~'~ * (fiz * m~)II -< [l['Z'~ll~lR2x(mz) _< 2c2Rz(mz), (7.24) 

with establishes (7.13). 

2. Lorentz local energy. We now estimate the term )~-3L(x/)~, y/)Q of (7.10). 
We write 

)~ -3L ;  L (~ ,  Y)mx(y)dy 

(7.25) 
= ~  L ( ~ ,  z)dz m ~ ( x ) +  )~-3~ L(~ ,  Y ) ( m x ( y ) -  mz(x))dy.  

By (6.35) and Lemma 6.4 the first term on the right hand side of (7.25) is 

Sm~ (x), (7.26) 

where S is the lattice sum (6.19). Thus, to complete the proof of Proposition 
7.1, it is sufficient to show that the second term on the right hand side of (7.25) 
tends to zero as )~ --> 0. Recalling from (6.12) that 

IL(a, b)l _< g ( l a -  bl), g E L 1, (7.27) 
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the L 2 norm of the second term on the right hand side of (7.25) satisfies 

I[)~ -3 .~' L(~,  Y)m~.(y)- nlx(.))dyl] 

< I[ f g(lzl)(m~(. + )vz) - mz(-))dzll (7.28) 
R3 

5 IlgllL, jr g(Izl) / [ m ~ ( x  + ;~z) - mx(x)[ 2 dxdz. 
R3 ~3 

Here, the last step follows by Jensen's inequality applied using the probability 
measure d#  = g/llgJlcl dz. The right hand side of (7.28) is in turn bounded by 

IlgllL~p f g(Izl)dzR~,(mD + 4  f g([zl)dzllmzl[, (7.29) 
B(k) R 3-B(k) 

where k > 1 is an integer and we have used the property (7.4)2. In (7.29) we 
fix k and let )~ ---> 0; then we let k --+ oc. This completes the proof. 

Remark 7.3. A simple but less general hypothesis on the background field mx 
than the condition R~(m~) --+ 0 is the condition 

mz(x) - mz(y) < c~lx - Y], x, y E E3, (7.30) 

where )vc~ --+ 0 as )~ --> 0. This alternative hypothesis is sufficient to treat the 
case (7.1) and substantially simplifies the preceding proof but does not apply to 
background fields that have concentrations (see below). 

While Proposition 7.1 simplifies the calculation of the energy in the weak- 
long case, it is still necessary to calculate the limit 

- 1  
lira ~ -  (rex, Tomz), 
)~--+0 2 

(7.31) 

where the macroscopic operator To is given by (7.7). Some examples are given 
below. 

Example 7.4. To appreciate the distinction between (7.31) and the case of strong 
convergence, in which the limiting energy depends only on the magnetization 
(i.e., the strong limit m), consider the two sequences illustrated in Figure 1. 
These could be obtained by slicing a uniformly magnetized, hard magnetic ma- 
terial into equal slices with normals e and f, respectively, and then rotating every 
other slice by 180 ~ about e. 

Both sequences m~ k~ and m~ k~ obtained in this way converge weakly to zero 
in L2(fL IR3), and therefore have the same magnetization. Furthermore, both 
sequences have the same Young measure (see Ball [1989] or Evans [1990] for 
a definition of the Young measure and a summary of its properties) given by 

1 
1) = ~ (~m~ -~- ~-m~),  (7 .32)  



Fine-scale oscillations in micromagnetics 319 

where 3ira1 is a Dirac mass at +m~. However, the two sequences have very dif- 
ferent limiting energies. This can be appreciated in physical terms by observing 
that the slices in case 2 will tend to fly apart since the "north poles" are forced 
to be near each other, while the slices in case 1 will stay nicely stuck together. 
The limiting energy in case 1 is (James and Kinderlehrer [1990]) 

elx -+ el := ~ -  ]ml I 2 -~- l n l  - S m l  (meas ~)  as ,~ -+ O, (7.33) 

while the limiting energy in case 2 is given below. 

1i 

Fig. 1. Two sequences with the same megnetization and Young measure but different 
limiting energies. The energies are given, respectively, by (7.33) and (7.52). 

The sequence illustrated in Figure 1 is in fact a minimizing sequence for the 
total energy of micromagnetics for a material that has easy axes -t-m, (ibid.). 

This example serves to illustrate limitations of the Young measure. (These 
limitations were also noticed by Rogers [1991]). The central question here is, 
"what information on a sequence of magnetizations is needed to calculate the 
limiting energy?" An answer in the weak-long case is given by the H-measure 
of L. Tartar [1990, 1992] (this has been developed simultaneously by P. G6rard 
[1990-91] under the name of microlocal defect measures); the H-measure of 
{m (~} determines the limiting energy (two sequences with the same H-measure 
have the same limiting energy). 

There are alternative view points. That is, the limiting energy is in fact de- 
termined by the Young measure of the sequence of fields {h (k~} corresponding 
to {m (k~ }. With the latter point of view, the question is rephrased, "what Young 
measures arise from sequences of fields h (k) = -Vu  (~ which solve the dif- 
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ferential equation div(h k + In k} = 0?" This viewpoint is adopted by Pedregal 
[1992]. 

Example 7.5. (Oscillation of magnetization.) We now calculate the limiting 
energy for the sequence given in (7.1): 

lfiz(x) = O(x)nl#(x/)~), 0 < ol < 1. (7.34) 

We assume first that ~ 6 Co~(]R 3, l~) and that nl# ~ C ~ ( R  3, R3), the set of 
smooth periodic functions with period cell P = [0, I] 3, and that nl# has mean 
zero 

j m # ( x ) d x  = 0. (7.35) 
P 

Here, ~ denotes the Fourier transform of ~. If nl# does not have mean zero, we 
can write 

nix(x) = O(x)[nl#(x/)~ ~) -ffa#] + ~(X)l~,  (7.36) 

where ill# is the left hand side of (7.35) and use the identity 

(nil + m e ,  K , ( m l  +nl2)) = (nil, K , n i l )  + 2 ( m l ,  K , n l z )  + (nl2, K,n12)(7.37) 

to reduce this case to the case (7.35). Notice that in this case the cross term 
vanishes in the limit )~ -+ 0 and we simply add to the zero-mean result a classical 
term involving the magnetization O(X)l~#. Further remarks in this direction are 
given in Section 9. The reasons for assuming that ~ (the Fourier transform of 
~) has compact support will be evident below. 

We recall that for the sequence nix of (7.34) with 0 < c~ < 1, we have 
R~(nlx) --+ 0. After applying Proposition 7.1, the presence of ~ in (7.34) is 
unnecessary and we can put 3 ---- )~ and write m~(x) := ~p(x)nl#(x/3). Omitting 
the local contributions to the energy, we wish to calculate 

- 1  
e~ :=  ~ -  (nl~, K * nl~). (7.38) 

Following Tartar [1990; Section 2] and referring to Remark 6.3, we take the 
Fourier transform of (6.22)1,2 and observe that for any f 6 Co~(lt{ 3, R 3) we have 

K ~  f(~) = - ~  | ~t(~) -- ~, (7.39) 
t 12 

where the hat denotes the Fourier transform, i.e., 

~'(~) :=  f e-ani~Xf(x)ax. (7.40) 
R3 

We expand In# in a Fourier series, 

m#(x) = ~ ffL#(k)e 2~i~x, (7.41) 
k6Z 3 
k~O 



Fine-scale oscillations in micromagnetics 321 

and note that 

ms(~) = (~( ' )m#( ' /~))  A (~) = E m # ( k ) ~ ( ~ -  U l k ) .  (7.42) 
k~Z 3 
k,='0 

In (7.41) ~a#(k), k ~ Z 3, denotes the Fourier transform on C ~  of rh#, i.e., 
the Fourier transform on periodic functions. 

Now we use Parseval's Theorem to calculate the energy ea, viz., 

es = @ ./ ma.  K �9 madx, 
R3 

_ - c  j. rha(~) �9 K *ma(~)d~, (7.43) 
2 R3 

where the overbar here denotes complex conjugate and c is the appropriate 
constant for Parseval's Theorem. We introduce (7.42) into (7.43)3 and note that 
for a sufficiently small the supports of ~(- - a-lk) are disjoint because ~ has 
compact support by assumption. Therefore, we get 

= c X (rh#(k) | r~#(k)).  / ~(~ - 3 - 1 k ) ~ ( ~ -  a-1 ~ | 
2kr RB k) I~1~ d ~ '  (7.44) 

c E( rh#(k )@ff l# (k ) ) "  j ' ~  (S) 'A (S ~ ( s  + ~ - l k )  @ ( s + ~ - l k )  
= 2 kr R3 I S -}- a_lkl2 ds . 

In the limit a --> 0, (7.44) becomes, 

1 ( ~  ~ k |  
e~ ~ rh#(k),  i k ~ m # ( k )  II~ll 2, (7.45) 

which is one form of the result. A more convenient form follows by putting 
f = m# in (6.22)1,2 and expanding g in a Fourier series, We then see that a 
natural definition of K * m# (for the periodic function rn~) is 

k | k ^ 2 ~ - i k . x  ( K *  m#)(x) := - ~ ,,.~-~ m#(k)e . (7.46) 
k~Z 3 
k~0 

Now by direct calculation we have 

k Q k  ^ 
f m#.  (K �9 m#)dx = - E rh#(k) �9 i ~ T - m # ( k ) ,  (7.47) 
p kr 
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where we have used that the volume of P is 1. Hence, we can write (7.45) in 
the alternative form 

- 1  
e~ -+ ~-II~Pl[2/m# . _  (K * m#)dx. (7.48) 

P 

Further comments on the interpretation of this limiting energy are given in 
Section 9. 

The formula (7.48) for the limiting energy is easily generalized to the case 
of an arbitrary period cell by changing variables. Suppose that 

m#(x + I)iei) = m#(x ) ,  V{l) i} 6 (Z3) 3, X E IR 3, (7.49) 

where {~i} are linearly independent but not necessarily orthonormal vectors, and 
the unit cell for m# is now/5 := {x ~ II{ 3 : x = %i~i, %i c [0, 1)}. We assume m# 
has zero mean on/5. The same argument given just above works in this case, 
with m# having the Fourier series representation 

1 rh# (k) e2rcik.x. 
m#(x) -- I detLI k6L-TZ3~ (7.50) 

k@0 

where L([0, 1] 3) =/5 .  In the case of a general period, 

- 1  
ee -+ [l~#]12 f m# - (K * m#)dx. (7.51) 

21 detLI p 

These results* enable us to calculate the energies el and e2, respectively, of 
the two sequences pictured in Figure 1, or what is more interesting, the limiting 
energy difference e2 - el. From (7.46)-(7.48), 

e2 - e~ = (vol.f2)(ml �9 f ) 2 ,  (7.52) 

where f is a unit vector pictured in Figure 1, while as mentioned earlier, the 
nonlocal energy corresponding to the sequence m~ k) is zero. The expression 
(7.52) remains valid for any laminated domain structure, where f is normal to 
the layers, the magnetization is -t-m1 on alternate layers and the volume fraction 

i is ~. 

Example 7.6. (Concentration of dipoles with no magnetization.) We can have a 
situation in which the dipoles accumulate at a point and create a concentration 
of energy but with no magnetization. For example, consider the sequence 

m~(x) = ;.-~mo(X/,~"), 0 < o~ < 1, (7.53) 

*It is necessary to slightly generalize the above calculation to allow ~ having the 
form of a characteristic function. 
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with m o � 9  L2(R 3, R3). The scaling has been chosen so that 

Ilm~[I = IlmolI, (7.54) 

but at the same time mx -~ 0 in L 2. According to our results of Section 5, 
we should regard the weak limit of mx as the magnetization and therefore this 
sequence has no magnetization, it is easily verified that for this sequence 

R~(m~) = R~l-~(mo) --~ 0 as )~ --+ 0, (7.55) 

so by Proposition 7.1 the limiting energy is given by 

- t  
lira (rex, Tom~}, 

2 4-,0 
(7.56) 

} -- _lim(m~, K .  m~) + ~llmollL2 + (mo, Smo) , 
2 l~,~ 

where S is the lattice sum given by (6.19). The first term in (7.48) is easily 
calculated by using Remark 6.3 and the definition of K, leading to 

(m~, K �9 m~} = (too, K �9 mo). (7.57) 

We conclude that the limiting energy of the sequence (7.45) is the same as the 
energy of the magnetization re(x) = too. However, the sequence itself has zero 
magnetization in the limit )~ -0 0. 

8 Energy of a fine array of dipoles with short wave oscillations (weak- 
short) 

We now calculate the limiting energy of an array of dipoles with oscillations 
that are truly on the scale of the lattice. We consider a modulated periodic field 
of dipoles for simplicity. Let L)~ = L(,kei), )~ > 0, be a given family of Bravais 
lattices as above, and consider a family of sublattices defined by 

L~ :=  L()~i), )~ > 0. (8.1) 

where 

e i  = ~/ej, ~ �9 Z, det v % 0, 

the interesting case being the case det v r • 1 so that L)~ is a proper sublattice 
of Lx. We consider the dipole field dz : Lx ---> R 3 given by 

x 
dz(x) : :  )~3d(x, ~) (8.2) 

where d(., y) is smooth for each y �9 L1, d(x, .) is periodic on L1, viz., 

d ( x , y + z ) = d ( x , y )  V x � 9  3, y � 9  z � 9  (8.3) 



324 R.D. James, Stefan Maller 

and supp d(., y) C f~ for each y E ~3. A prototype is the choice 

d(x, y) = ~p(x)d(y), gr E Co ~ ,  (8.4) 

with d(-) periodic on L1. Generally, we have weak convergence of )~-3dx (x) 
and the correlation Rx(dx) is bounded away from zero, so we are in the weak- 
short case. The period ceil and symmetric period celt for the function d(x, -) are 
defined, respectively, by 

P := {x E IR 3 �9 x = )~iei, 

/5 := (x E •3 . x = )~i~i, 

0 < ) ] <  1}, 

- 1  < ~i  <~ 1}, 
(8.5) 

while k/5, k = 1, 2, 3 . . . . .  is defined by 

k/5 : : { k x  " x ~ P } .  (8.6) 

These definitions are framed with the corresponding half-open intervals so that 
for any function f : IR 3 -+ R n with say, compact support, 

E f ( z ) =  Z E f ( x + y ) ,  (8.7) 
zcL1 71k/5 xELt •kP y6L1MP 

and corresponding for sums over L1 \k/5. We assume that 

d ( x , y ) = 0  V x E R  3, (8.8) 
yEL1MP 

without loss of generality. If (8.8) fails we can add and subtract a suitable 
smooth function of x to d(x, y) and then use the method given in (7.37). Note 
that any set of the form P' = y + P, y 6 L1, also serves as a period cell for 
d(x, .) and (8.8) remains satisfied with P replaced by U.  Our goal is to calculate 
the limit as )~ --+ 0 of the energy 

- 1  
ex = - - 2  xeL~ ~ hz(x)-  dz(x), (8.9) 

where 

h;~(x) := Z K ( x -  y)dz(y). (8.10) 
yELzk{x} 

Formally, we let 

f i ( x , y ) : =  lira Z K ( - z ) d ( x , y + z ) .  (8.11) 
k---> ~ zELI \{o } 

zak/~ 

L e m m a  8.1. The sequence on the right hand side of  (8.11) converges uniformly 
to a function h : R 3 x L1 --+ R 3. The function h(., y) is smooth for  each y ~ Ll, 
while the function h(x, -) is periodic on L1 : 

h ( x , y + z ) = h ( x , y )  u  3, y ~ L 1 ,  z ~ / ~ l .  (8.12) 
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Proof. If the sum converges for each (x, y) ~ R 3 • Lb the function h(x, -) is 
LI- periodic by (8.3). Using (8.7) and (8.8) we have for integers k >_ j > 1, 

I ~ K ( - z ) d ( x , y + z ) -  ~ K ( - z ) d ( x , y + z ) l ,  
zELI\{O} zELI\{O} 

z~kP z~j~ 

v~Ll \lo} w~LlfqP 
vekP~/t ~ 

K ( - ( v  + w))d(x, y + w)l, 

_<c ~ sup IK(-(v  + a)) - K ( - ( v  + b))l sup Idl, 
v~L~ \(o/ a,bELlnP 
v~kPkiP 

(8.13) 

~c' Z Iv1-4, 
YELl _ 

"*'EkP~jP 

Hence the sequence on the right hand side of (8.11) is uniformly convergent. 
By the same argument, this sequence is also uniformly convergent when d(x, y) 
is replaced by any of its x-derivatives, so h(., y) is smooth. 

We now consider (8.10) and write h~ in the form 

x + z  
h~(x) = ]~ Z 3 K ( - z ) d ( x + z ,  ~ ) ,  

zEL)~\(O} 

(8.14) 
X 

= ~ K( -w)d (x+)~w,  ~ + w ) ,  
w~L~ \{o) 

which can be decomposed into the two sums 

= az,k(x) + b~,~(x), k = 1, 2 . . . . .  (8.15) 

where 
X 

ax,~(x) := ~ K( -w)d (x+)~w,  f + w ) ,  
w~L I \{o} 

X 
b~,k(x) := ~ K ( - w ) d ( x + L w ,  ~ + w ) .  (8.16) 

wELl \kP 

Proposition 8.2. 
such that for  k >_ 1 and L <_ 1, 

{b)~,k(X)] _< C)~(1 -- log)0 + o(1), X C I~ 3 (8.17) 

while there is a g " Z -+ R (generally unbounded) such that 

I a~,k(x) h(x, ~)t <_ )~g(k) + o(1), x c L1. (8.18) I 

Here, o(1) -+ 0 uniformly as k -+ ~ .  Hence, there is a k()O ~ cx~ as )~ -+ 
0 such that 

--+ fi(x, x), b~,k(~)(x) --+ O, az,k(z)(x) (8.19) 
A 

Let a~,k and b~,k be given by (8.16). There exists c > 0 
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uniformly in x as X --+ O. 

Proof. The condition (8.18) follows immediately from the observation 

X X 
laz,~(x) - h(x, ~)1 ~ Z IK(-z)l Id(x + )~z, ~ + z) - d(x, f + z)[ + o(1), 

Z6Ll\{O} 
z~k~ 

_< L Z IK(-z)l supldxllZl + o(1). (8.20) 
z6L I \{o} 

z~kP 

Turning attention to bz,k(x), we use (8.7)yf to write 

X 
[bz,k(x)l=l E E K ( - ( z + v ) ) d ( x + ) ~ ( z + v ) , f + z + v ) l ,  

z6L1 \kP yELl ~ P  

{ I =1 ~ S K ( - ( z + v ) )  d ( x + ) f f z + v ) , v + z + v  ) 
zcLl\kP v~Lf~P 

(8.21) 

x j x } 
- d ( x + X z , ~ + z + v )  + K ( - ( z + v ) )  d ( x + X z , ~ + z + v )  . 

Recalling that d(-, y) is supported on f), we choose a sufficiently large ball B 
such that U~ C B and - ; @  + f2 C B, 0 < )~ _< 1. We estimate the term in square 
brackets in (8.21)2 terms of supdx, whereas we use the method embodied in 
(8.13) to handle the remaining term. With k _> 1 we get 

f )~C1X((--x @ B)/~)(Z) C2 ] 
_ 2~ - 7 ~  Ib~,k(x)l < ZCLl\k/3 / Izl + " 

(8.22) 

Here, c~ depends only on sup dx while c2 depends only on P and sup d. Hence, 
if the radius of B is rl and ro > 0 is chosen so that kB(o, ro) C kP, we have 

f(Ixl+rD/)~ 
]bz,k(x)l < )~c'1 Jmax(kro,(Ixr-~l)/Z) P-ldP + o(1), (8.23) 

(I~J+,', _ c ' lL log\z~o ; +~  Ix[ < r l + ) & r o ,  
- c'l)~log flxl+rl~ ~lxl-~; + o(1), Ixl > rl +)~kro, 

_< c;~(1 - log;~) + o(1). [] (8.24) 

Now we calculate the limiting energy. We decompose hz as in (8.14), (8.15) 
and evaluate k at kG) given by Proposition 8.2. Using the fact that d(-, y) is 
uniformly bounded and has fixed compact support, we get 

- 1  x ( x )  
ex = ~ -  Z X31]( x , ~ ) ' d  x , ~  +0(L).  (8.25) 

xEL;~ 
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Let 

w(x, y) := -[t(x,  y) �9 d(x, y), x, y c Ll, (8.26) 

and note that w is smooth, periodic in y on L1, and compactly support in x with 
fixed support ~ .  Using again (8.7) (omitting NkP) and these properties of to, 
we have 

1 )3 W0~(Z + V), Z + V) + 00~), 
z~Lt v~L1NP 

1 
= -  Z Z ) 3 w 0 ~ ( z + v ) , v ) + 0 ( ; . ) ,  

2 zEL1 vELINP 

_ _ !  E )2 E w(~.z, v) + o(;.), 
2 Z~Ll vcL1NP 

(8.27) 

_ _ !  Z ,~3 E w(x, v) + o0~). 
2 x~Lj vEL 1NP 

Hence, we conclude that 

l j (  1 E w ( x , y ) ) d x  as)~--->0, (8.28) 
e~. --+ ~ measP y~LINP 

where w is given by (8.26) and h is given by (8.11). 

Remark 8.3. In the weak-short case we typically will have a remnant lattice 
sum in the expression for the limiting energy. This sum will depend on both the 
lattice and the configuration of dipoles on the lattice. As in the weak-long case, 
measurements of magnetization give no information about the weak-short contri- 
bution to the energy. Note that, because of the condition (8.8), the magnetization 
of the dipole field (8.2) vanishes (cf. Section 5). 

The various parts of the calculation admit the following physical interpre- 
tation. Fixing x, the vector h(x, y) is calculated by assuming that an exactly 
periodic dipole field d(x, y + .) is defined on a l-lattice but with the dipole at 
y removed, fi(x, y) represents the field at y due to this periodic distribution of 
dipoles. See Section 9 for further remarks on the significance of the l-lattice 
(i .e. ,  why "1"?). Hence, the integrand 

-1  
l](x, y) .  d(x, y) (8.29) 

2meflsP y6L1NP 

represents the energy per unit volume on the I-lattice. In effect, the assumptions 
on d permit a separation of the short-wave calculation, done with exactly periodic 
fields, and the long-wave calculation, which in the end is just an integration of 
the short-wave energy density. The most striking result is that the limiting energy 
is essentially local. That is, the expression on the right hand side of (8.28) is 
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additive over disjoint subsets off2, in contrast to the usual expression for the field 
energy of micromagnetics (cf. the first term on the right hand side of (6.18)). 
The locality arose partly from (8.8) and also from the separation of scales given 
in (8.2) (see the forthcoming paper of Firoozye [1993] for further analysis of 
the question of whether (6.18) is the only nonlocal term that is possible). 

Example 8.4. An interesting special case of the preceeding calculation is given 
by equation (8.4), 

^ X 
dx(x) = )@(x)d(~), (8.30) 

where ~ ~ Co~(R 3) and ~] is periodic on L1 with zero average. By specialization 
of the formulae to this case, we get 

- 1  
-+ T ] [ ~ l ]  2 Z l](x) -d(x)/measP as )~ -+ O, (8.31) e x 

x c L j  NP 

where 

l](x) := lim Z K ( - y ) d ( x + y ) .  
k--,'-oo yEL l -{0} 

y~kfi 

Example 8.5. (Concentration.) In the analysis in this section we have so far 
neglected concentrations. A typical example involving concentrations is 

dz(x) = ~,3/2d(~), (8.32) 

where, for example, d has compact support. With this assumption the corre- 
sponding magnetization vanishes, while the limiting energy is given by 

- 1  
- -  ~ d ( x ) . K ( x - y ) d ( y )  a s )~ -+0 .  (8.33) 

e~ --+ 2 x,yeL I 
x#y 

9 Discussion and application to continuum theory 

In applying the foregoing results to a material with a given lattice spacing, it 
is necessary to adapt results for an infinitesimal lattice parameter to a finite 
lattice parameter. We would do this in the following way. Suppose the real 
lattice is represented by a Bravais lattice La = L(Laei) where ei are fixed lattice 
vectors and )~a is the actual lattice parameter. On this lattice is a certain dipole 
distribution da(x), x E La. It is necessary to embed this given dipole field 
da(x) in a one-parameter family of dipole fields d~(x) in a reasonable way. 
The criterion for "reasonable" is that the quantities of interest like the fields 
hx, b),, m), or the energy e)~ do not change much in the interval )~ r (0,)~a]. 
For example, it would be disasterous to have d)~ apparently converging strongly 
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(cf. Section 4) for ~ ~ Xa but then in fact develop lattice-scale oscillations for 
)v << ~.~. It is difficult to give clear-cut rules for this embedding; it may at first 
seem sensible to put 

d),(x) = da(~-x) ,  (9.1) 
A 

but this would imply that we are in the weak-short case, except for very spe- 
cial fields d~(x). Also d~(x) would have to be defined for large values of x, 
which is problematic in the case that the actual crystal is finite. It is clearly 
undesirable to go to the extreme represented by (9.1) for many materials, and 
the successful theory of micromagnetics is really based on the assumption of 
strong convergence. 

This issue could be clarified by looking at rates of convergence of the quan- 
tities hx, bx, d), and e~, and some of these rates of convergence are inherent in 
our calculations of Sections 5-8. In any case, whatever embedding is chosen, it 
must have the property 

d~.~(x) = d a ( x ) ,  x E L)~o. (9.2) 

As an intuitive guideline, we would expect that the weak-short results would 
be necessary for materials that exhibit large oscillations on the order of a few 
lattice spacings, as in antiferromagnetism or ferrimagnetism. For ordinary fer- 
romagnetic materials with micron-sized domains we would think that the strong 
convergence results would be adequate, based on the success of micromagnetics. 
The weak-long results would seem to apply to intermediate scales. Our results 
(Proposition 7.1) show that the weakqong and strong cases are governed by the 
same continuum theory. 

On the actual lattice La the dipoles have a positive separation distance. For 
this reason it is unimportant whether or not the actual local fields are singular 
at the lattice points of La. Our results are still valid as long as the actual local 
fields are represented well by the field K(x - y)d(y) at distances Ix - Yl >- )~a, 
and (9.3) below is satisfied. 

Continuing our interpretation of the results, we focus on the energy ez. With 
a well-chosen embedding we will have that 

ez - -  lim ez. " x-+o (9.3) 

At several places in our calculations, we were left with certain sums over the 
lqattice, notably in (6.19) (reappearing in (7.7)) and in (8.28). These remnant 
sums are repeated here: 

S = l i m  ~ K ( y )  (6 .19)r;  
P ~ - ~  ye(Ll \{O})NB(p) 

1 
fi(x,y).d(• (8.28)r, 

measP y~LlfflP 

(9.4) 
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where 

1]= lim ~ K ( - z ) d ( x , y + z ) .  
k - ~  ~Z,\/ol (9.5) 

zakP 

In fact, these sums are really just sums on La based on the actual dipole distri- 
bution da (x). This is clear in (9.4) 1 by just changing variables y = X/)~a, viz. 

S = lim ~ K(x)measUa, 
p-. c~ xc (Lo \ {0})c~B(;) (9.6) 

where Ua is the unit cell of La, Ua := ~3U. For the weak-short sums (9.4)2, 
(9.5), we recall from (8.2) that 

x 
d)~ a (x) -~- ~3ad(x, ~-a). (9.7) 

Hence, changing variables z = w/)~o in (9.5) and v = x/)~a in (9.4)2 we get 

1 v 
h~(x, v)-,k~d(x, ~ ) ,  (9.8) 

m e a s P a  vELaNPa ~o 

where 

ha(x,v)  :=  lira Z K(__w))3d(x, v + z  
k--~ oo ,,'~Lo \101 ~ a - a  ) '  

w~, (9.9) 

Pa 3 :=)~a P. 

Hence, these weak-short sums represent stuns over the actual lattice of an ex- 
actly periodic dipole field )~]d(x, "/)~a) that agrees with the actual field at x. In 
conclusion, the remnant sums really represent lattice sums over the actual dipole 
field (or its weak-short periodic extension) and there is no physical significance 
to the "1" in l-lattice. 

The interpretations given above should be tempered with the caution that our 
calculations do not include fluctuations of the dipoles that normally occur at finite 
temperature, nor do they account for the detailed distributions of atomic spins. 
Despite these limitations, it can be stated that the successfnl continuum theories 
of elastic dielectrics (Toupin [1956]) and magnetic/magnetostrictive materials 
(Brown [1966]) are founded on lattice dipole calculations (under assumptions 
corresponding to our strong convergence). The way these calculations are used is 
to give definite forms to the field energy terms in the continuum theory, without 
trying to relate them quantitatively to the numerical values of atomic moments. 

We now examine the weak-short results, which in principal suggest new 
continuum theories. It is clear from our results that there is a huge variety of 
ways that energy can be stored in weak-short oscillations or concentrations, 
without being reflected in the magnetization of the material. What we hope 
to get out of our calculations is a set of continuum variables (the "internal" 
or "hidden" variables of continuum theory) that parameterize the energy not 
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calculable from magnetization. In applications to specific materials, we expect 
that it will be sufficient to consider rather few dipole fields. Hence, we confine 
attention to some general remarks about (8.28) and then specialize. 

The first point to notice about (8.28) is that it is entirely local, i .e. ,  repre- 
sentable as an integral over f2. Thus, under our hypothesis (8.2) the total weak- 
short energy of two disjoint pieces of material is independent of the distance 
between them, unlike the classical expression ~1 (K �9 m, m) for the magneto- 
static energy. It would therefore be natural to combine the weak-short energy 
together with the anisotropy energy of micromagnetics, as is commonly done 
with the terms 

2 ( {Im][2 + (m, Sm)) (9.10) 

of (6.18). The danger in doing this is that the integrand of (8.28) does not depend 
on the dipoles through the magnetization alone. More than that, the effect of the 
dipoles and the lattice are intertwined in (8.28), so that the implications of the 
symmetry of the lattice and frame-indifference are not as in the usual expression 
for the anisotropy energy (see below). 

To get a better understanding of the weak-short energy, we consider special 
cases. Many situations in ferrimagnetism or in antiferromagnetism can be de- 
scribed by having sublattices of the given lattice, each with a constant dipole 
field. For this purpose we consider a Bravais lattice LI and we assume it is 
written as the union of a finite number of disjoint Bravais sublattices: 

Ll = L  0) U L  (2) U . . . U L  ('). (9.11) 

L e t  X (i) �9 •3 __> ]}~ be the characteristic function of the i th sublattice L (i). On the 
i th sublattice we place a uniform dipole d (i) so that the dipole field d(x) is 

d(x) = Z X ( i ) (x )d  (0, x 6 L1. (9.12) 
i 

Such a dipole field is periodic and a suitable lattice LI and period cell P of the 
form (8.5) can always be chosen. In typical cases, such as in ferrimagnetism 
with or without an applied field or in antiferromagnetism with an applied field, 
we will not have (8.8) satisfied by d(x, y) = d(y). Hence, we define 

a(i) : =  d(O _ c], i = 1 , . . . ,  n; d ( x )  : =  ~X(i)(x)el (i), ( 9 . 1 3 )  
i 

where 

1 
~] := Z d(x) (9.14) 

O- Li AP 

is the average dipole moment over the period cell and cr is the total number of 
lattice points in L1 (3 P. Then we have that 

Z d(x) = 0. (9.15) 
xEL1 •P 
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h(y) := lira E 
k--+ oo zeL1 \{0} 

z~kP 

Let 0 -(i) be the number of lattice points of the i th sublattice in L~ N P, 

a (i) = Z X (i), i =  1 . . . . .  n, (9.16) 
xELl (~P 

and let #(i) := a(i)/a be the corresponding number fractions. With this notation 
2/z  (i) = 1, and (9.15) can be expressed 

]J~(i)d(i) = O. (9.17) 
i 

In order to calculate the limiting energy (8.28), we first need to evaluate the 
expression (8.11). To this end, let 

K(-z)d(y + z), 

= lim Z 
k--+eo zeLi \{01 

zekP 

{ K ( - z )  ~ix(i)(y + z)d(i)}. 
(9.18) 

Then (9.22) assumes the compact form 

e)~ --+12 J ~ d(~ ' sijaCi~ dx" (9.24) 

We now introduce (9.17) into (9.18) to get 

h ( y ) : = l i m  ~ { K ( - z )  ~i (x(i)(y + z) - #(i))d(i) } 
k--*oo z~Li \{o/ 

z~k~ (9.19) 

~-  ~ S (i) (y)l](i) 
i 

where 

S(~ = lira ~ {K(-z) (x(0(y  + z) - /z( i ) )} .  (9.20) 
k--,'- oo zeL1 \{0} 

zr 

The passage from (9.18) to (9.20) follows because each individual sum of (9.20) 
converges, which follows from Lemma 8.1 and the observation 

( x ( i ) ( y + z ) - # ( i ) ) = 0 ,  i =  1 ..... n, y e L l  (9.21) 
zeLINP 

Putting this expression for 1] in (8.28) we get 

-+ z i ~  P ~x(i)(y)a(i)i,j "S~)(Y)a~/)dx as )~-+ 0. (9.22) 

To simplify this expression, let 

S ~/= - Z X (i)(y)S ~)(y) = - ~ S (j~ (y), i, j, e {1 ..... n}. (9.23) 
yeL lAP yE-L(1)NP 
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The expression (9.24) does not represent the total limiting energy because 
the constant dipole field d has been subtracted from the given dipole field 
d(x), i .e. ,  d(x) = d(x) + d. To treat this constant part, we note that if mx = 
m~ ~ + m~i with m~ ~ --" 0 in L2(R 3, R 3) and m ~ ~ lil in Lz(R 3, IR3), then 

lim e, = l im ( m ) ,  T~m),) ,  
k-->O " A-+O 

~s 5' ws T m W S \ I  = tim[(m~, T~m~) + 2(mz , T~m~) + (m~ , ~,,,~ /1, 
Z-->0 

(9.25) 

= lim[(m~ Txm~) + ~' ~ (m~ , T>m;o )]. 
A--+tJ 

Here, we have used Proposition 6.1. Informally, we can say that there is no 
"interaction" between weak-short and strong convergence. (It can also be shown 
that there is no interaction between weak-short and weak-long convergence.) 
This shows that the constant part ~] is expressed by the classical term (6.17) 
involving the magnetization. Allowing a general form for the magnetization as 
well as an amplitude O(x) as in (8.4) we get as the final expression for the 
limiting energy 

- re(x) .  (K * m)(x)}dx 

(9.26) 

The key features of this energy are: 
I. S depends only on the configuration of the lattice L1 and, in particular, not 

on the dipoles. S ij, i , j  ~ { 1 , . . . ,  n} are n 2 trace-free 3 • 3 matrices that 
depend only on geometric relations among the n sublattices L i . . . . .  L n C L1.  

In particular, S ij is a lattice sum depending on the geometric relation between 
sublattices L i and U .  See (6.19), (9.20) and (9.23). 

2. @ is an amplitude function giving the absolute magnitude of the normalized 
sublattice dipole moments. ~ could be absorbed in a i, i = 1 . . . . .  n, resulting 
in position-dependent normalized dipole moments. 

3. The a (i), i = 1 . . . . .  n, which enter quadratically, are the normalized dipole 
moments. It is important to keep in mind that they are not the actual sublattice 
dipole moments; they have been normalized, 

i / ~(i)a(i) = O, (9.27) 
i = I  

by subtracting a suitable constant vector. Here the #(i) is the number fraction 
of sublattice L (i), see (9.16)ff. The a (i) have the interpretation as internal 
variables. 
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4. The vector field re(x) is the magnetization, which represents the weak limit 
in L 2 of the dipole field, in the sense given in Section 4. We assume that m 
has compact support on f~(D suppg,) for obvious reasons. The field re(x) is 
interpreted as the magnetization even under the conditions of weak conver- 
gence by reasons given in Section 5. 

5. The only nonlocal term is the last term of (9.26), (m, K .  m), the nonlocality 
arising from K �9 m. From Section 5 and Remark 6.3, the term h = K �9 m 
can be viewed as the weak solution of the equations 

div(-Vg* + m) = 0 / IR 3 
h = - V g *  J o n  . 

(9.28) 

This is the usual viewpoint in micromagnetics. 
6. If the dipoles oscillate in a weak-long fashion (Section 7) the function m 

in (9.26) should be replaced by a sequence of magnetizations m (k), k -- 
1, 2, 3 . . . . .  and the limiting energy should then be calculated by taking the 
limit of (9.26) as k --+ ec. 

7. Fixing the lattice L1 and the sublattices L 1 . . . . .  L n, all the 
functions q), m, d 1 . . . . .  d n in (9.26) are independent, except for the restric- 
tion (9.27). That is, there are dipole fields d)~ (x), x ~ L,~, that give arbitrary 
functions q) r Co ~ ,  m c L 2 and arbitrary vectors a (1) . . . . .  a (n) subject only 
to (9.27). Therefore, it is sensible to regard these variables as independent 
variables in the continuum theory. The smoothness restriction on q) can surely 
be relaxed, but we do not pursue these refinements here. 

8. The usual practice of micromagnetics, even in the magnetostrictive case, is to 
introduce a saturation hypothesis. This hypothesis is often motivated (Brown 
[1966]) by the assumption that the magnetic moment of each atom has a fixed 
magnitude, dependent only on temperature, regardless of the deformation. 
The usual micromagnetic form of this hypothesis can be derived from our 
formula (4.10), under the conditions of strong convergence, and is given by 

I(detF)m(x)l = g(O), x c f2 

where F is the deformation gradient (F = 1 in the rigid case), and g(O) is 
a function of temperature (see James and Kinderlehrer [1992]). In either the 
weak-long or weak-short cases, the assumption that the magnetic moment of 
each atom has a fixed magnitude no longer leads to (9.29), as can be seen 
easily f iom the formulae above. 
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