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1. The phenomenon of twinning 

The application of force to solid bodies often gives rise to pairs of  homo- 
geneously deformed regions, each pair separated by a common plane. Some- 
times adjoining homogeneous bands of this kind are called twins, sometimes not. 
As is common in the interpretation of  experiment, the phenomenon observed, 
in this case twinning, does not always lead to an exact, well-defined concept in 
mathematical theory. Quartz, for example, occurs in four kinds of  twinned con- 
figurations [1]; two of these are of  the kind described above and two are inter- 
penetrating twins. The two individuals of an interpenetrating twin are not simply 
separated by a plane, but rather by an irregular surface or a collection of planes 
joined along edges. 

I shall be concerned throughout this paper only with so-called mechanical 
twins - those produced by the application of stress. Annealing or growth twins 
are formed during the growth of  a crystal. The theory of  growth twinning must 
necessarily account for the processes of  nucleation and diffusion, and therefore 
must be rather different from the theory of  mechanical twinning. 

Crystals suffer large deformation by gliding and twinning [2]. During gliding, 
adjacent planes of atoms slide past one another aided by the movement of dis- 
locations. On the contrary, it is generally agreed that mechanical twins are pro- 
duced by continuous deformation. 
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The most elementary view of the twinning operation begins with a simple 
monatomic lattice filling all of space divided by a plane of atoms called the 
plane of composition. The atoms in one half-space remain fixed while those in 
the other half-space undergo a simple shear parallel to the twin plane, the amount 
of shear determined by the condition that the lattice in one half-space be a re- 
flection, or a 180 ~ rotation, of the lattice in the other, but that the two lattices 
not be related by a rigid translation. This elementary concept of a twin has been 
extended to a wide class of crystal lattices by EVANS [3], who has studied the pure 
geometry of twinned crystals. EVANS' definition excludes the curious Dauphin6 
twin of quartz, studied by TnOMAS & WOOSTER [4] and more recently by MC- 
LELLAN [5]. The Dauphin6 twin of quartz is an interpenetrating twin in which 
the two individuals are separated by irregular surfaces. The elementary view of 
twinning fails in another way for the Dauphin6 twin; the two individuals are not 
related by a simple shear. In fact, the overall deformation needed to deform one 
individual into its twin is of the order of molecular distances. On the molecular 
scale the twinning transformation is accomplished by rotation of the tetrahedron 
of oxygen atoms which surrounds each silicon atom through an angle of 38~ 
this amount of rotation of the tetrahedra is just enough to cause one individual 
of the twin to be identical to a 180 ~ rotation of the other individual. From the 
descriptions of BRAGG • CLARINGBULL and of THOMAS & WOOSTER the trans- 
formation can be easily understood. The Dauphin6 twin of quartz illustrates 
the fact that whereas the macroscopic deformation is continuous across the sur- 
face of composition, other fields, in particular those which reflect the internal 
rearrangement of atoms relative to the skeletal lattice, may well be discontinuous. 
It is clear that a constitutive theory for quartz must take account of these addi- 
tional fields in some way. 1 

Material scientists [e.g. 6] call the deformation of the skeletal lattice, or 
'superlattice', a lattice-distortive displacement, and the deformation relative to 
the skeletal lattice a shuffle displacement. PARRY [7] terms these configurational 
transitions and structural transitions, respectively. 

I have mentioned the Dauphin6 twin of quartz simply because it illustrates 
plainly the diversity of the concept of twinning. My interest in the phenomenon 
of twinning arose rather from its importance to the explanation of the shape- 
memory effect. The shape-memory alloys, the most important being the nearly 
equiatomic alloy of nickel and titanium called nitinol, have the curious property 
of returning to their original shape after having been apparently permanently 
deformed at room temperature and then heated. Although the precise mechanism 
for the shape memory effect is still being debated, it is generally agreed [8] that 
twins are present in the subcritical martensitic phase; when the material is de- 
formed, new twins are created and planes of composition of existing twins prop- 
agate normal to themselves so as to be compatible with the gross change of shape. 
Upon heating, the planes of composition move back to their original positions 

I The phenomenon of the co-existence and growth of Dauphin6 twins under 
applied stress is termed piezocrescence by THOMAS & WOOSTER. They advance a linearized 
theory for the phenomenon based upon the energy criterion for stability. The theory is 
apparently due to RPCLIN. 
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causing a return to the original shape. It is appealing to view the phenomenon 
as a problem of the exchange of stability between twinned and untwinned config- 
urations. 

WANG [9] offers a detailed explanation of how the twins may occur in the 
crystal lattice of nitinol. Some twins he shows involve co-operative shear; atoms 
move parallel to the plane of composition, all in the same direction, by an amount 
which increases as their distance from the plane of composition, simple shear 
being a special case. Others, apparently not so important for the shape memory 
effect, involve unto-operative shear reminiscent of the Dauphin6 twinning of 
quartz; adjacent planes of atoms shear parallel to the plane of composition by 
small amounts in opposite directions, so as to cause no overall deformation. 
Still others constitute trilling, the separation of three regions by three half planes 
which share a common edge so that each pair of adjacent regions is a twin. 

Even more complicated arrangements of twins are commonly seen in defor- 
mation-induced martensite 2. 

A theory for the kinematics of martensitic transformations has been proposed 
by BOWLES & MACKENZIE [11]. It is generally agreed a that martensitic trans- 
formations are lattice-distortive, unlike Dauphin6 twinning. 

Aside from the recent work of PARRY [12] and the forthcoming work by 
ERICKSEN [13] and PITTERI [14], I have uncovered only two theories of mechanical 
twinning which treat something more than kinematics. The first is a theory based 
upon linear elasticity given by VLADIMIRSKII [15]. Not surprizingly, the linear 
theory is totally inadequate as shown by HALL [16, p. 109]; according to it the trac- 
tion required to form a twin in cadmium disagrees with the experimental value 
by a factor of about 5000. Nevertheless, some of VLADIMIRSKII'S conclusions 
can be supported by the theory I present. The generalization of VLADIMIRSKII'S 
theory by LIFSHITS [17] partly removes the assumption of a linearly elastic 
constitutive relation. The second is the theory of THOMAS & WOOSTER for Dau- 
phin6 twinning. Their theory turns out to be consistent with my definition of a twin 
in the context of TouPIN'S theory of the elastic dielectric, after the proper 
linearization. 

I propose to study the kinematics, equilibrium and stability of mechanical 
twins, and collections of mechanical twins, in the framework of continuum 
mechanics. A precise definition of a twin is laid down which generalizes, and 
in some cases corrects, the definitions used informally in the literature. I find it 
more efficient to eschew the details of molecular theory, and to frame the defini- 
tion around a constitutive theory general enough to include the successful phe- 
nomenological theories of crystalline materials of which I am aware. To promote 
confidence in the definition, I study its implications for two special theories, finite 
elasticity and the theory of the elastic dielectric. The definition of a twin leads 
directly to the kinematical problem posed in w 2. I find that collections of twins 
cannot be put together in an arbitrary way. It is found by a systematic procedure 
that the simplest arrangement of deformations which is kinematically possible 
has the kinematic properties of a mechanical twin; the next simplest has the 

cf. [6, lO]. 
3 Loc.  cir. 
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kinematic properties of a mechanical trilling. The simplest arrangement which 
does not have an axis we term a tetrad. I study a tetrad in detail because of its 
possible importance to the formation of  martensite. 

For  the remainder of  the paper I specialize the definition of  a twin to piece- 
wise homogeneous deformations in finite elasticity. The equilibrium equations 
in that case reduce to algebraic equations about which much can be said. In 
w 4b, I study the stability of twinned deformations under dead loading, and 
compare and contrast ordinary piecewise homogeneous deformations with those 
piecewise homogeneous deformations which are also twins. The existence and 
qualitative properties of a stable twin depend significantly upon the class of  
competitors allowed in the definition of stability. The status of a theorem of  
PARRY [12], which states that the traction on a twin boundary must vanish, is 
investigated. 

The work clarifies the theories of VLADIMIRSKII and THOMAS • WOOSTER. 

2. The definition of a twin 

To formulate a continuum definition for mechanical twinning, I must adopt 
constitutive relations to describe the material. Let ~ be the reference shape of  
a body ~ .  A deformation of ~ is an invertible function 

Z : ~  ~ Z(~)  (2.1) 

which maps the reference shape ~ onto the present shape X(#r I shall assume 
that the reference shape ~ is fixed throughout this paper. The deformation de- 
scribes the overall distortion of #3, that is, the distortion of the skeletal lattice 
or superlattice which determines the observed change of shape of ~ .  I f  Z is 
differentiable at X E ~ ,  we call 

F ----- Vz(X ) (2.2) 

the deformation gradient at X. I shall assume throughout this work, in addition 
to the invertibility of Z, that det iv > 0 is always met by the deformation gra- 
dient. 

The response of some crystalline bodies is thought to be influenced by more 
than simply the deformation gradient. With the overall deformation fixed, there 
may occur movement of atoms relative to the skeletal lattice which affect the be- 
havior of the material, e.g. the structural transitions or shuffles mentioned in 
w 1. Dauphin4 twinning is one example. To describe the effects of  these shuffles, 
it is traditional to use a set of  polarization vectors, 

Pl . . . . .  P . ,  (2.3) 

each one viewed as a field dependent upon X E ~ .  
I shall assume that the material is governed by a stored energy function of  

the form 

V( F, Pt . . . . .  P,,). (2.4) 
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I assume ~p(.,., . . . .  .) is defined on a domain ~ .  For  the definition of a twin we 
need not lay down any assumptions of smoothness for ~, but for the interpretation 
of  the theory we have in mind that the reference shape is untwinned. 

The function W will be an invariant function under the groups ~+ and ~ which 
embody the concepts of Galilean invariance and material symmetry. Since the 
action of elements of these groups upon ~p is different for different theories, I shall 
represent them abstractly. Let ~ represent a Galilean transformation 

(i~, if, . . . . .  fin) = ~(F, Pl, .-. ,  Pn), �9 E ~+, (2.5) 

z~+ being the proper orthogonal group. Assume 1 E ~+ is the identity transfor- 
mation. Let ~ denote a transformation belonging to the symmetry group of 
relative to the reference shape ~ :  

(F,/~i ,  . . . ,  bn) = ~(F, pl,...,pn), ~ E e .  (2.6) 

We assume that 4 

�9 ~ = 7~;, v ~  E ~+, V~ E ~. (2.7) 

I f  ~p is independent of the vectors pl  . . . . .  Pn, the material is elastic; if thermo- 
elastic, n i 1, and p is one dimensional and represents the entropy or tempera- 
ture. The description (2.4) covers Tout'Irq's theory of the elastic dielectric [18] 
and ERICKSEWS theory of diatomic crystals [19] with n ---- 1 and p interpreted 
as a polarization vector. 

Since p and ~+ are invariance groups for ~p we have, for each Z E ~+ and each 
~ E p ,  

(F, p~ . . . . .  Pn) E ~ <=:> ~ ( F ,  pl ,  . . . ,  Pn) E ~ ,  (2.8) 

and 
~,(F, Pl,  - . . ,  Pn) = ~0(~(F ,  Pl . . . .  , Pn))- (2.9) 

The elementary view of twinning begins with a lattice filling all of space divided 
by a plane of composition. On one side of this plane the lattice remains fixed, 
while on the other side the lattice undergoes a simple shear parallel to the plane 
of  composition. As I have mentioned in w 1, this view is too simple to serve as the 
basis of  a general definition of mechanical twinning. First, the two individuals need 
not be separated by a plane, but only by a surface of composition. The elementary 
view, however, does suggest that the surface be smooth, at least that the surface 
have a unique tangent plane at each point, s The two individuals need not be 
homogeneously deformed, as demanded by the elementary view. In continuum 
theory we simply focus "upon the limiting values of the important functions ;t 
V)r and p~ as the surface of composition is approached from either side. All ex- 
amples that I have encountered suggest that Z is continuous across the twin 

4 This assumption is consistent with all theories governed by stored energies of the 
form (2.4) of which I am aware. 

5 BASINSICX & C~mISTIAN [20] discuss a model for the tapering of twin boundaries 
in indium-thallium alloys which indicates that the twin boundary, viewed macroscopically, 
may not be smooth, but this example is isolated, and their explanation of the tapering may 
not be the only one possible. In fact, this tapering could be caused by inhomogeneous 
deformation, which seems not to have been considered. 
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boundary while F and Pk may have jump discontinuities. The limiting values 
(F +, p +  . . . . .  p + )  and ( F - ,  Pi- . . . . .  p~-) are not arbitrary. They must be consistent 
with the basic requirement that there is a reflection or a 180 ~ rotation which, 
when applied to a small part  of  the body lying on one side and very near to 
the surface of  composition, yields a par t  which is indistinguishable f rom a part  
of  the body lying just on the other side of  this surface. By 'very near to the surface 
of  composit ion'  we shall mean that the condition applies to the limiting values 
of  F and Pl . . . . .  p~ on each side. The word 'indistinguishable' shall be given its 
conventional meaning in continuum mechanics: the response of each part  to any 
subsequent deformation shall be the same. 

Materials scientists abundantly agree that, unlike a grain boundary, a surface 
of  composition of  a twin contains few, if any, molecules which are severely mis- 
placed relative to the lattice on either side of  the surface. It  is said that a surface 
of composition of a twin is one of low energy. I shall take this to mean that a 
superficial free energy need not be assigned to this surface, that the constitutive 
description (2.4) suffices. 

These remarks, when formalized, lead to the 

Definition (mechanical twin). Let the body t~ have a free energy function 
~v(F, p~ . . . . .  p,) defined relative to a reference shape ~ .  Let a part # ~ ~ undergo 
a deformation z(X), X C ~,  and be subject to afield of polarization p x(X) . . . . .  pn(X), 
X E t~. The part # contains a twin i f  the following are true. 

O) # is diffeomorphic 6 to a sphere bisected by a plane passing through its center. 
Let the image of this plane under the diffeomorphism be the surface 5e ~ t~. 

(ii) Z is continuous on ~.  F = V Z and Pl . . . . .  Pn have limiting values 
(F+, pl + . . . .  , p+) and (F-,  p~, . . . ,  p~) as SP is approached from either side. 

(iii) There is a symmetry transformation ~ E ~ and a Galilean transformation 
E a+7 such that at each point of 5 a, 

(F +, p +  . . . . .  p + )  = ~ ( F - ,  Pi- . . . . .  Pn ) .  

(iv) ~ 2 _  1 but ~:]:1 s. 

(2.10) 

The surface 6e of  this definition is called the surface of composition. 

6 A diffeomorphism is an invertible continuously differentiable map with a con- 
tinuously differentiable inverse. Thus, according to (i) there is a diffeomorphism/~ : S ~ ,  
S being a sphere bisected by a plane ~N passing through its center, such that Se = t t ( ~ ) .  

7 In special cases the free energy may be invariant under the full orthogonal group 
if its domain is properly extended, even though the concept of Galilean invariance applies 
only to proper transformations. Finite elasticity theory is one example. In these special 
cases we may replace ~§ by ~, but not in general. 

s The definition may include certain specious twins like those discussed in Remark 5 
in the special case of finite elasticity. I do not know how to exclude them in the general 
case. Dr. MAgio Prrr~m has informed me that he has solved this problem for a broad 
class of crystal lattices from the point of view of molecular theory. 
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Remarks and Examples. 

1. According to a theorem of MAXWELL, the condition (ii) of the definition 
implies the existence of an amplitude a such that at each point of 6 a, 

F + ---- F -  -~ a | N, (2.11) 

N being the unit normal to ~T. To be definite I shall always assume N points 
into ~+. 

This part of the definition shows plainly that the definition does not apply 
to growth twinning. 

2. Let the connected part ~ = ~ -  L/~§ 6 a ---- ~ -  A ~---+, 60 being a smooth 
surface. Suppose V X ---- F+ is constant on ~§ and V X ----- F -  is constant on 
~ - .  Then the deformation X is pairwise homogeneous. 

A short argument based upon (2.11) shows that i f  X is pairwise homogeneous, 
then 6 a is a plane. Part of the purpose of this work is to distinguish ordinary 
pairwise homogeneous deformations from the special ones which are mechanical 
twins. 

Piecewise homogeneous deformations are defined analogously. 

3. The condition (iv) is abstracted from many different observations of twins 
in nature, and must be included in the definition of a twin. On the other hand, 
many of the conclusions I shall draw would still be true if %2 @ 1 as long as 

E ~+. I have found no examples of this kind in nature although my observa- 
tions have been confined to crystalline minerals and metals. Apparently twins 
are observed in polyethylene, and perhaps it is in polymers that the more general 
possibility is realized. 

4. The definition of a mechanical twin can be extended to the case of mechani- 
cal trilling. A trilling consists of a part ~ ~ ~/ diffeomorphic (see footnote 8) 
to a sphere trisected by three distinct half planes all of whose edges coincide 
with a line containing a diameter of the sphere, and a continuous deformation 
X : ~ --~ X(~) such that each pair of adjoining regions is a twin. Thus for a trilling 

is trisected into three regions ~1, ~2, ~3 by three surfaces Y~, Se2, 6aa which 
meet along a curve. This curve is called the axis of the trilling. 

In w 3 I shall study the next least complex configurations, after twinning and 
trilling, which can arise from a continuous deformation. 

5. (Finite elasticity.) If  the body is elastic and homogeneous, the stored 
energy function is independent of p~ . . . . .  Pn: 

~P(F, Pl, . . . ,  Pn) = W(F), F E ~ .  (2.12) 

The groups ~ and o+ are represented by groups of second order tensors ~ and 
second order proper orthogonal tensors d~ +, respectively, according to the rules 

Z(F) = QF, Q E O +, 
(2.13) 

~(F) = FH, H E  (#; 
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thus the stored energy function and its domain satisfy 

FE~<=:> Q F H E ~ ,  
(2.14) 

W(F) ---- W(QFH) VO E 0% VH E f~, VF E ~ .  

I shall assume that f# is contained in the group of second order unimodular 
tensors: f9 ( OR. If  this assumption is not adopted, one can cause the volume 
of the deformed shape of g~ to become arbitrarily large or arbitrarily small, 
by the use of repeated symmetry transformations, while leaving the total stored 
energy of ~ unchanged. For  crystalline bodies the group f~ generally neither 
contains, nor is contained within, the group r although fr may contain some 
orthogonal tensors. 

If  a twin is contained in the elastic body ~ ,  the limiting values F + and F -  
of the deformation gradient must satisfy 

F + = F-  --}- a | N = QF-H,  
(2.15) 

for some O E d > ,  Q q=l ,  and some H E ~ ,  

according to the definition of a twin. In finite elasticity theory certain specious 
twins may occur. Suppose F+ and F-,  in addition to satisfying (2.15), also fulfill 
the condition F+ = F - M  for some M E fq. Then the response of  one side of 
the surface of composition to any deformation is the same as the response of  
the other side to the same deformation; in this sense no static experiment can 
detect the presence of  the twin boundary. We shall call such twins false twins. 
A true twin in finite elasticity shall satisfy (2.15) as well as the condition 

F+ q= F - M  for any M E ~ .  (2.16) 

If  an elastic body ~ with symmetry group ~ relative to a fixed reference shape 
supports a true twin, the requirement (2.16) shows that it does not generally 

follow that an elastic body ~ '  with symmetry group fg' ( ~ relative to the same 
reference shape supports a true twin. This statement can be easily visualized 
by the use of a molecular model; certain twins produced in a tetragonal lattice 
will disappear if the lattice parameters are changed slightly so as to make the 
lattice cubic. 

The condition (2.15) and the assumption fq ( ~ have an elementary conse- 
quence; since HEOR and F+ = QHF-, then de tF+ = d e tF - .  But, also 
from (2.16), we have 

det F+ = det (F-  -~ a @ N) 

= (det F-) (det (1 q- (F-) -1 a @ N)) (2.17) 

= (det F-) (1 q- (F-) -1 a .  N).  

Therefore, since det F -  > 0, we have 

((F-) -1 a ) .  N = 0. (2.18) 

If  the ( - - )  side of the surface of composition of the twin is held fixed, F -  = 1; 
then a �9 N = 0. If, in addition, the surface of composition is a plane and the 
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amplitude is constant, then we recover a result commonly adopted without proof  
in textbooks on crystallography or metallurgy - the deformation on # +  is a simple 
shear (cf. [21]). 

We conclude this subsection with some results we shall need later. The tensor 

T ~ WF (2.19) 

is the Piola stress. If  N is the unit normal of a surface 5: in the reference shape, 
TN is the force per unit area of 5: which acts on the deformed shape of 5:. 

6. (Elastic dielectric.) The definition of a twin is framed within a theory of 
finite deformation and polarization. One of the best known and most successful 
of these theories, and one which involves a nontrivial dependence upon the polar- 
ization, is TouPIN'S theory of the elastic dielectric [11, 14]. I shall not attempt 
to construct a complete theory for twinning in an elastic dielectric, mainly because 
I am not aware of any comprehensive theory for the material symmetry of an 
elastic dielectric. 9 Actually, I think that many dielectric bodies may be described 
well by TOUPIN'S theory, but that the symmetry group will operate upon the local 
deformation and polarization in rather different ways for different classes of 
materials. For  this reason I shall treat a simple example which has clearly defined 
symmetry operations. 

THOMAS t~ WOOSTER [4] describe a phenomenon occurring in quartz crystals. 
Untwinned crystals of quartz are piezoelectric; if equal and opposite forces are 
applied normal to the parallel lateral faces of a quartz crystal, a potential difference 
is created between the faces. If the crystal contains a Dauphin6 twin, the effect 
is eliminated and no such potential difference is found to occur 1~ I seek an ele- 
mentary explanation of the phenomenon, so as to illustrate the definition of a 
twin in a theory where the dependence upon polarization is nontrivial. 

Let us assume that quartz is described by a stored energy function of the 
form 

S(F, :0, (2.20) 

F being the deformation gradient and ~t being the polarization per unit mass. 
Let a slab 

= { X I 0  ~ X .  N ~ A} (2.21) 

of  density ~ be deformed by a homogeneous deformation Z = /~X,  F = con- 
stant, and subject to a homogeneous field of polarization & = constant =~ O. 
Assume the polarization vanishes outside the slab. The deformed shape of the 
slab is 

Z(~)  = { x l 0  ~ x .  r~ ~ a}, (2.22) 

9 TOOPIN discussed the matter in [18, w 13]. 
xo It was this observation that urged THOMAS & WOOSTER to study the untwinning 

of quartz crystals which already contained Dauphin6 twins. In their investigation they 
did not attempt to establish a theory for the piezoelectric effect in quartz, but rather they 
laid down an elementary theory for the untwinning of crystals by deformation. They 
found that inhomogeneous deformation, mainly torsion and flexure, could be applied 
to eliminate the Dauphin6 twins. 
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rl - -  1 ( /~- l)r  N and fi _ A (2.23) 
I(~-1) ~ NI I(~-') ~ NI" 

Suppose the deformed shape o f  the slab is equilibrated by a Cauchy traction 
t = --/~tl applied normal  to the faces x �9 rl = fi and x �9 ri = 0. Assume tha t  
neither bulk charge q n o r  superficial charge w are present on the slab. Let  o be  
the Cauchy stress, E be the electric field, ~b be the electrostatic potential, D be the 
electric displacement, P ~--- r be the polarization per unit volume, ~ = Q~ det F 
be the density, and eo = constant  be the permittivity o f  free space. We have 
assumed that  

o h  = - ~ h ;  

~r = 0 for  x -  h > fi and x .  ri < 0; (2.24) 

q = 0 / 
w = 0 ~  everywhere. 

The polarization ~ = ~ inside the slab and ~r = 0 outside the slab are subject 
to the equations o f  electrostatics: 

E = - -  grad 4~, EE]] = En; 

div D =- q, [~D~] �9 n = w; (2.25) 

D = eo E + P .  

The constants F and ~ must  also fulfill the equations o f  equilibrium for  an 
elastic dielectric: 

~, =&X~F~- -E  |  +~o E |  

div o = 0, (2.26) 

S,~ = E.  

The bracket  symbols [[ ]], as usual, denote the jump  o f  the enclosed quanti ty across 
a singular surface with normal  n.  

Under  the assumptions laid down, 
become 

o ( f  , ~ )  ~ = 

~(/~, ~) = 

Eo - -E=  

div grad ~ = 

g r a d  ~ .  h = 

grad ~ .  tl = 

the field equations and jump  conditions 

--~r~, 

O, x . f i > h ,  

- - E , ~  �9 rl at 

- -Eo �9 rl at 

x . h < 0 ;  

x . f i  = h + 0 ,  

x . h  = 0 - .  

(2.27) 
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Here E 0 and E~, which both must be constant by (2.27)3,4, are the limiting values 
of the electric field at x �9 h --- 0 and x .  rl ---- h as the slab is approached from 
outside. So as to forbid the influence of an applied field, we assume that the 
continuous function $ tends to constants as x �9 h tends to + oo and -- oo. 
Then $ is determined up to a constant by (2.27)5,6,7. 

We seek a solution (ib, h)  of (2.27) corresponding to an electric field E inside 

the slab. I f  ib, ~ and/~ are known, then the electric field outside the slab is deter- 
mined by (2.27)3_7. In fact, q~ is given by 

c = constant 

4' = ~ - / ~ ( x  �9 rl) + c 

[ - ~ , ~  + c 

~. t i<o,  

O < x . f i < f i ,  

x . f i > f i ,  

(2.28) 

which shows that /~ = / ~ n  inside the slab. Therefore, given .b there is a solution 

/~, ~ of (2.27) corresponding to an electrostatic potential 4~ if and only if there is 

a constant 1~ such that 
a(#, ~)  h = -#,~, 

Z'~(/~, &) ----/~h, (2.29) 

+ b__ (,~. a) = 0. 
g0 

We imagine that the slab has the properties of a section cut out of quartz crystal 
normal to the axis of the crystal, with N normal to one of the six lateral faces. 
Let V be a unit vector along the axis of the crystal and let (N, W, V} be a right- 
handed orthonormal basis (see Figure 1). We may contemplate that (2.29) is 

V 
W 

/ i V  I ~ surfoce of composition 

o ~o "~betow 0 �89 pQge 
c poge 

Fig. 1. Dauphin6 twinning. A crystal of quartz with a Dauphin6 twin (left); positions 
of the silicon atoms near a Dauphin6 twin (right). c ---- 5.40/~. 
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solved by a deformation gradient F which yields a pure stretch in the direction 
V and a polarization normal to V: 

FV ---- }tV, ~'rV ---- 2V, h .  V = 0. (2.30) 

Relative to the basis (N, W, V), /~ has the form 

21 F22 �9 (2.31) 

0 

I assume 11 there is at least one solution (i~, ~)  of  (2.29),/~, :~ restricted by (2.30). 

Let E = J~n be the corresponding electric field. 

Since there is a potential difference o f / ~  across the slab, the piezoelectric 
effect is exhibited. 

Now I wish to consider the same kind of problem for a quartz crystal which 
contains a Dauphin6 twin. To do so I must ascertain the symmetry transformation 
which determines the Dauphin6 twin. The task is made easy due to a lucid description 
of  the mechanism for the piezoelectric effect in quartz by VIGOUREUX ~; BOOTH 
[23] based on earlier work by GIBBS and BRAGG. These authors make it clear 
that the symmetry group of quartz includes the transformations 

~(F, ~)  = (FH_~, ~ ) ,  (2.32) 

Y~ 
Hn= being any rotation of n - - ,  n = integer, about the axis V. We have tacitly 

-3 3 
assumed here that Z" is defined relative to the usual undistorted reference shape of  
a quartz crystal. Of course, we have invariance under the Galilean group which 
acts upon (F, :t) according to the rule 

~(F, ~t) = QF, Qar), Q E ~+. (2.33) 

The Dauphin6 twin is a mechanical twin characterized by two properties. 
First, the deformation gradient is continuous across the surface of  composition, 
and second, the two individuals may be brought into coincidence by a rotation 
of ~ about the axis of the crystal, which may itself become distorted by the defor- 
mation. Thus, using the notation for a general mechanical twin, we have the 

Definition (Dauphind twin). Let Z'(F, ~) be the stored energy function for  quartz 
deformed relative to an undistorted reference shape ~ .  Let V be a unit vector along 
the axis o f  the crystal in the reference shape. A part ~ = ~+ LJ ~ -  Q ~ deformed 
by Z, subject to afield of  polarization ~t, contains a Dauphind twin i f  it contains a 

11 The assumption is plausible but would require a deep investigation of symmetry 
and stability to justify. Typically we shall have /~ near 1 and ~ near 0. 
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mechanical twin for which the limiting values (F +, :t ~) satisfy 

F + ----- QF-H~ = F-, ~+ -= Q~t-, (2.34) 
3 

o - nz~ Q being a rotation ofz~ about the axis F+V, andH~ being a rotation ~--~-, n = 
integer, about the axis V. 12 

Having the definition of a Dauphin6 twin, we return to the problem of the piezo- 
electric effect in a twinned slab. We shall suppose that the slab contains no free 
charge and is subject to a hydrostatic pressure ~b, as before (of. (2.24)). However, 
now let the slab g ( ~ )  contain a Dauphin6 twin, with constants (F+, ~t+) on 

l A M 

~ a < x . h < d  and ( F - , n - )  on O < x . f i < � 8 9  
I claim that if we put F+ = F -  ----/~, ~t+ = ~ and : t -  = --:~, then we will 

satisfy not only the conditions for a Dauphin6 twin, but also the equations of  
electromagnetism (2.25) and the equations of  equilibrium for an elastic dielectric 

(2.26). Here (/~, ~)  are the deformation gradient and polarization found for an 
untwinned crystal. 

First we show that the conditions define a Dauphin6 twin. I f  we put Q = H~, 
we see that  that  f rom (2.30) QFH~ = F. Also from (2.30) we have QFV = 
Q2V -- 2H~V ---- 2V = ffV. Thus Q has as axis/~V. Since ~ .  V • 0, we have 

QA --  - - h .  Therefore, the conditions F+ = F -  = / ~ ,  ~t+ = :~, ~t- = - - ~  
define a Dauphin6 twin of  the slab. 

Second we show that  the equations of  electromagnetism and the equilibrium 
equations for an elastic dielectric are fulfilled. Note that now we must also satisfy 

l h <  the jump conditions across the surface of  composition x-  ri = �89 h. For  -2- 

x-  ri < d, F+ = / ~ ,  ~t+ q- ~ so that all of  the equations are satisfied on this region 

with E+ = / ~ n .  By (2.32) and (2.33) we have 

H~S~(F-, ~t-) = S~(F +, :t+), 
(2.35) 

H,,SF(F-, ~t-) F-rH~ = ~F(F +, ~t+) F +r .  

F rom (2.35) it is easy to show that all of  the remaining equations and jump con- 

ditions are satisfied if we put E -  = --/~h. 
But now we see that the piezoeletric effect has been eliminated, for the potential 

for the twinned slab is 

c = constant x �9 h < 0, 

--  E ( x . h ) - ~ c  0 ~ x . f i ( - ~  , (2.36) 

t -E(~" ,i) + ;dr + c �89 ~ < ~.  ,i < ~. 

This completes the example. 

1 2  The theory of RIVLIN for Dauphin6 twinning, presented by THOMAS & WOOSTER, 
can be obtained from the theory presented here bylinearizing 2~ about the values (F-, n-)  
and (F+, n+), and then by using a simple form of the energy criterion for stability. 
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3.  Kinemat ics  o f  twinning,  tri l l ing,  etc .  

A point in a body ~ can belong to the intersection of several surfaces of 
composition. If a small neighborhood of the point is bisected by one such surface, 
the limiting values of the deformation gradient as the surface is approached from 
either side must fulfill the condition (2.11). If a point ~ lies on the axis of a trilling 
(cf. Remark 4 of w 2), the three limiting values of the deformation gradient F1, 
F2, F3 obtained by approaching g from each of the regions of continuity of V Z 
must satisfy 

F2 -- F1 = al ,Q N1, 

F3 - -  F 2 = a 2 Q N 2 ,  (3.1) 

F 1 - -  F 3 = a a | N3; 

det F: > 0, det F 2 ~ 0, det F 3 ~> 0, (3.2) 

for some nonvanishing amplitudes a~, a2, a 3. The unit vectors N1, N 2 and N 3 

are the limiting unit normal vectors to the surfaces 6:1, 6:2 and 6~ at the point 
(cf. 3 of w 2). Note that the normal vectors N1, N2, N3 must be coplanar; since 
S:1, S:2, 6a3 all contain the axis of the trilling, then the normal vectors NI, N2, Na 
must all lie in a plane normal to this axis. 

Conversely, if there are constants FI, F2, F3 and a~, a2, a3 which satisfy 
(3.1) and (3.2) for an assigned set of coplanar, non-collinear normal vectors 
N1, N2, N3, then there is a piecewise homogeneous deformation having the 
deformation gradients F1, F2, F 3. That is, we simply erect three half planes 
having the normal vectors N~, N2, N3 whose edges coincide, and we assign con- 
stant deformation gradients F:, F2, F 3 in the included regions. Of course, we cannot 
say that this deformation is a trilling since we have not assigned a stored energy 
function. 

Collections of neighboring deformations more complicated than those which 
arise from twinning and trilling are commonly observed, especially in deforma- 
tion-induced martensite [15]. Whether or not the adjacent individuals of these 
collections form twins, the limiting values of the deformation gradients must 
satisfy conditions analogous to (3.1), ,if the deformation which creates these 
collections is continuous. 

I propose to study in this section the kinematic restrictions which arise when 
regions with different deformation gradients meet at a point. The analysis will lead 
to the definitions of the next least complicated arrangements, after those which 
arise from twinning and trilling, which are kinematically possible. I shall also give 
an algorithm whereby the kinematic restrictions on any system of adjacent indi- 
viduals can be solved or judged unsolvable. 

The analysis provides necessary conditions on collections of twins. It does 
not guarantee that for any particular material the relations of symmetry for 
twinning (i.e. equation (2.10)) are fulfilled. However, the analysis delivers neces- 
sary  and sufficient conditions that a collection of regions separated by surfaces 
of discontinuity of the deformation gradient be kinematically possible. Of course, 
"the deformation gradient need not suffer a discontinuity across a surface of com, 
position as we have seen in the example of Dauphin6 twinning (Remark 6 of w 2). 
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Surfaces of composition which are surfaces of discontinuity of F are associated 
with lattice-distortive deformations. The kinematics of collections of twins which 
are not lattice distortive, i.e. do not contain surfaces of discontinuity of the defor- 
mation gradient, is trivial. 

The analysis of (3.1) and (3.2) is simple and serves as an example. We assume 
N1, N2, N3 are assigned, coplanar unit vectors. Without loss of generality, let 

N3 = ocNi + fiNE. (3.3) 

If we eliminate F~, F2 and F a from (3.1), we obtain 

ai | N1 + a2 | N2 -}- aa | N3 : 0 ,  (3.4) 

which, after use of (3.3), becomes 

(a 1 + 0r | NI + (a2 -k flas) | Nz ~- O. (3.5) 

If N1 is not parallel to Nz, an elementary theorem of linear algebra implies that 

al -k ~as ---- 0, 
(3.6) 

a 2 -]- fla a = 0; 

(3.6) has non-vanishing solutions (a~, a2, aa) if and only if both or 4= 0 and 
fl 4= 0. Note that if (al, a2, aa) solve (3.6), then so do (2ai, 2a2, 2aa) for any 
2 =t= 0. The deformation gradients F1, F 2 and Fa are determined by (3.1); let 
Fa be assigned such that det F a > 0. Let (2al, 2a2, 2aa) obtained from (3.6) 
be inserted into the right hand sides of (3.1), so that (F1, F2) a re  determined 
by (3.1)2,3. Then (3.5) implies that (3.1) is fulfilled by (F~, F2). If 2 is sufficiently 
small, det F~ > 0 and det F 2 > 0. Therefore, if N~ is not parallel to N2 and 
o~ 4= 0, fl 4= 0, then both (3.1) and (3.2) have a solution. 

Of course, the definition of a trilling does not permit N1, N2 and N a to be all 
parallel, since the part ~ ( ~ which contains the trilling must be diffeomorphic 
to a sphere trisected by three distinct half planes. If we were to relax this require- 
ment, and consider three regions separated by surfaces which meet along a curve, 
we would obtain the possibilities shown in Figure 2c. 

In summary, we have the existence of  solutions al 4 = 0, a2 =~= 0, a 3 =~= 0, 
F1, F2, Fa of (3.1) for N 1 not parallel to N2 i f  and only i f  there are constants or 4= 0 
and f14=O such that 

Na : ~NI + f in  2. (3.7) 

See Figures 2a and 2b. 
Before turning to the general problem, we consider cusps, like the ones shown 

in Figure 2c. My definition of a trilling has excluded them by the condition that 
the reference shape be diffeomorphic to a sphere trisected by three distinct half 
planes (cf. 3 of w 2). Cusps are dificult to analyze from a general standpoint 
so the definition of a partition I shall state presently will exclude them. 

To formulate the general problem, let a finite number of points (vertices) 
be given on the surface of a sphere S. Suppose a connected set of edges, each 
one being an arc of a great circle of 8S, join the points in pairs. That is, the end- 
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points of each edge are distinct vertices and no vertices are contained in the interior 
of  an edge. Assume that at least two edges meet at a vertex. The edges divide OS 
into a finite number of  connected, open, non-empty faces.  Assume that each edge 
separates two distinct faces. A set of  e edges, v vertices a n d f f a c e s  formed by these 
rules 13 is termed a partition of OS. Since the EIJLER characteristic of  OS is two, 
we have for any partition f - -  e -k v = 2. 

1 
b c 

Fig. 2a-c. Kinematics of mechanical trilling, a Kinematically possible; 
b Not kinematically possible; c Kinematically possible configurations 

which are not trillings. 

Let a straight line segment join each vertex of a partition to the center of S. 
Each edge and the two line segments joining its terminal vertices to the center 
determine a plane (since the edges are arcs of  great circles). A total of  e planes 
with unit normals N~ . . . . .  N e are formed in this way. The planes divide up the 
interior of  the sphere i n to  f open, connected, non-empty regions R1 . . . .  , R f.  
The interior of  the intersection of  each region with 8S is a face. Without confu- 
sion 14 I shall also call the collection of regions R~ . . . . .  R f  a partition of S. A 
partition shall be labelled by a hollow letter; e . g . P .  

My basic assumption is that a part  ~ of  the reference shape ~ of the body 
is diffeomorphic to a partitioned sphere S: there is an invertible, continuously 
differentiable map / ~ : S - ~  ~ ,  with a continuously differentiable inverse. The 
images of  ;~1 . . . . .  ~/f under /~ are certain regions rl . . . . .  r s, on each of which 
there is defined a continuous field of deformation gradient. I assume that there 
is a continuous deformation X of ~ whose gradient coincides with each of the 
fields of  deformation gradient on each of the regions r ~ , . . . ,  rf. 

Without loss of  generality, we may assume that the reference shape ~ is S, 
i.e. that p is the identity. We simply recognize that the assumption that ~ is 
deformed continuously by X with continuous fields of  deformation gradient in 
rl . . . . .  r f  is equivalent to the assumption that S is deformed continuously by 
X o p with continuous fields o f  deformation gradient in ~1 . . . .  , ~ f .  

Thus assume that ~ = S, that Fa . . . . .  F I are fields of  deformation gradient 
defined on ~1 . . . . .  ~ f ,  respectively, that Fi = 7 X, i ---- 1 . . . . .  f ,  for a continuous 

deformation X of S, and that if Fi and/~j, i =~ j, are the limiting values of  the 

13 It is easy to show that these rules are self-consistent. 
14 There is no possibility of confusion since a partition of ~S uniquely determines 

R~ . . . . .  Rf. 



Finite Deformation by Mechanical Twinning 159 

deformation gradient as the center of S is approached from adjacent regions 

~i, ~j, then /~ -- k;j =~ 0. Here, the word 'adjacent' means that the faces F/, F 
associated with the regions ~i, ~ j  share a common edge: 8F/A 8F~ ( Ek, for 
some edge Eg. According to MAXWELL'S Theorem, there is an amplitude a k such 
that 

/~ --/~j : ak | Nk, Ink[ =]= 0, (3.8) 

Ng being the normal vector of the plane through the edge Eg. There are e systems 
of equations like (3.8) that must be satisfied, one system for each edge. 

One way to organize and study these equations is to define incidence matrices 
like those used in algebraic topology [24]. Let faces F~ . . . . .  F iand  edges E~ . . . . .  Ee 

belong to a partition P of the surface of a sphere S. The incidence matrix ~7~y 
of P is defined by 

{ ;  if E , ~ F j ,  

n,j = if E~ C eFj. (3.9) 

The incidence matrix has e rows andfcolumns,  as well as the properties summarized 
in 

Lemma 1. F o r  the  inc idence  m a t r i x  o f  a n y  par t i t ion ,  

(I) each ro w  con ta ins  e x a c t l y  two  ones;  

(II) each co lumn  con ta ins  a t  l eas t  two  ones.  

The proof of Lemma I follows easily from the definition of a partition and I 
shall omit it. Lemma 1 states that each edge separates exactly two faces, and the 
boundary of each face consists of at least two edges. Since at least two vertices 
must belong to a partition, we have, by EULER'S relation, e ----f-k v -- 2 ~ f .  

Let the signed incidence matrix ~iy be obtained from To by changing the 1 

which appears s e c o n d  in each row to -- 1. Let/~1 . . . . .  fff be the limiting values of 
the deformation gradient as the center of S is approached from each of the 
regions ~1 . . . . .  ~ / .  Then the equations (3.8) can be written 

s 
7?ijFj = ai | Ni, i = 1 . . . . .  e (no sum over i). (3.10) 

j = l  

We must also assure that 

d e t / ~ j > 0 ,  j =  1 . . . .  , f .  (3.11) 

As before, we view the partition of ~S as given. Therefore, in (3.10) Ns . . . . .  Ne 

and ~ij are given; we seek a solution as ~ 0 . . . . .  ae ~ 0; F1 . . . . .  F f of (3.10) 
and (3.11). 

Conversely, if there is a solution, a s . . . .  , ae; F 1 . . . . .  F f  of (3.10) and (3.11), 
then there is a continuous deformation of S with cons tan t  deformation gradients 
Fs . . . . .  Fy defined on the regions As . . . . .  ~y. 

According to the Fredholm alternative, the system (3.10) has a solution 
as ~= 0 . . . . .  a e =~ 0; F1 . . . . .  F i if and only if a certain homogeneous system of 
linear equations involving only a I . . . . .  a e is satisfied. Let the rank of ~ij be r. 
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The signed incidence matrix ~ij can be put in upper triangular form by elementary 
row operations; in fact because of the special form of r/ij one need only use three 
elementary transformations, namely, exchange of rows, multiplication of a row 
by --1, and addition of rows, to triangularize ~ij. Let 7" be upper triangular 
form of~u. The last (e -- r) rows ofT* will be composed of zeros. If  now the same 
operations which were used to transform ~j to 7"  are applied to the right hand 
side of (3.10), we see that the last (e -- r) rows of the transformed system (3.10) 
become 

-4-am(rq.1 ) Q Nm(r+l) -~- . . .  -~-~ap(r+l) ~ Np(r_l_l) = 0 

-~-ame @ Nme -~'- . . .  "__~ ape @ Npe = O. 

(3.12) 

The indices m~r+l) ... Pe are determined by the signed incidence matrix. Equation 
(3.10) has a solution a 1 # 0 . . . . .  a e # O, F1,  . . . ,  F f  if and only if (3.12) has a 
solution a 1 ~= 0 . . . . .  a e # O. The first r rows of the transformed system deter- 
mine FI . . . . .  F s, some of which can be chosen arbitrarily. The system (3.12) is 
homogeneous; therefore if a~ . . . . .  a e is a solution, then so is any constant multiple 
of a~ . . . .  , a e. By making this constant multiple sufficiently small, and choosing 
all of the free values of the deformation gradient to have a positive determinant, 
we can also satisfy (3.11). 

The algorithm is easy to carry out by hand, even for complicated partitions, 
since the rows of ~ij continue to have one 1 and one --1 and ( f - -  2) zeros, or 
else all zeros, after each row operation. 

Given a certain number of edges, faces and vertices consistent with EULER'S 
relation, there are an infinite number of possible partitions. If  (3.12) is not too 
complicated, all of these can be analyzed without great difficulty because only 
the unit normal vectors enter (3.12). I have carried this out in the following way; 
I fix the number e of edges and consider f =  2 . . . . .  e. For each e and f,  I calculate 
the number v of vertices and consider all possible partitions of ~S having e edge, 
f faces and v vertices. I analyze the equations (3.12) to see if any of those partitions 
are kinematically possible. The results of this calculation are summarized in 
Table 1. ~- 

In the column labeled m o r p h o l o g y  I have given names to the simplest partitions 
which are kinematically possible. The phrase 'same as' means that the only kine- 
matically possible partition is governed by the same equations as the earlier parti- 
tion indicated. Note that the simplest partitions belong to a twin and a trilling, 
which suggests, perhaps, that we are on the right track. As I have emphasized 
earlier in this section, the words 'twin' and 'trilling' only indicate that the kine- 
matic conditions for twinning or trilling have been met. 

It must not be thought that greater complexity of the partition implies greater 
likelihood of being able to solve (3.12). Given an arbitrary partition, however 
complicated, it is always possible to add two more edges and one more face such 
that the equations (3.12) have no non-trivial solutions. 

Motivated by these results we shall define a fourling, fiveling and, in general- 
an n-ling in the following way. 
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Table 1. Kinematics of  the partitions with a small number of  edges. 
See text for details. 
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e f v morphology 

2 2 2 
3 2 3 
3 3 2 
4 2 4 
4 3 3 
4 4 2 
5 2 5 
5 3 4 
5 4 3 
5 5 2 
6 2 6 
6 3 5 
6 4 4 

twin 
same as (2, 2, 2) 
trilling 
same as (2, 2, 2) 
same as (3, 3, 2) 
fourting 
same as (2, 2, 2) 
same as (3, 3, 2) 
same as (4, 4, 2) 
riveting 
same as (2, 2, 2) 
same as (3, 3, 2) 
tetrad, or same as (4, 4, 2) 

e=4 
f = 4  

a V=Z 

t 
e=5  e=5 
f =5 f =4 

b v =2 e v =4 

Fig. 3 a-c. Kinematically possible partitions. See Table 1 and text. 

Definition. A mechanical n-ling (n = integer >: 4) is a part ~ ~ ~ deformed 
by a continuous map Z, subject to a field o f  polarization Pl . . . . .  p , ,  such that 
(I) ~ is diffeomorphic to a partitioned sphere with e : n, f = n, v : 2. Let 

~1 . . . . .  ~ ,  be the regions of  the partition. 
(II) Each pair o f  adjoining regions ~ i  and ~j  forms a mechanical twin. 

The terms fourling, fiveling, etc. are used in crystal lography to denote collections 
o f  twins [26]. Mos t  examples o f  multiple twinning occur as growth twins, a l though 
a mechanical  fourling is found  at the intersection o f  two twin bands [26, p. 65; 
see also 10, p. 360]. 

The first kinematically possible part i t ion to appear  in Table 1 which has more  
than two vertices corresponds to e = 6, f = 4, v = 4. I have called it a tetrad; 
it is pictured in Figure 2c. Because o f  its possible importance to the martensitic 
t ransformations,  I shall analyze it explicitly. 
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By a process of exhaustion, one can show that if a partition with e ---- 6, 
f = 4, v = 4 is kinematically possible, it must be true that either 

~. two, and only two, vertices are not connected by an edge, or 
ft. every vertex is connected to every other vertex by exactly one edge. 

The former satisfies the same kinematic equations (i.e. (3.12)) as a partition 
with e = 4, f = 4, v = 2; an example is pictured in Figure 2a. Any kinematically 
possible partition with e = 6, f = 4, v = 4 satisfying fl is, by definition, a tetrad. 
Based on the numbering of vertices, edges and faces shown in Figure 2 c, the signed 
incidence matrix for a tetrad is 

1 

1 
ll ,/I = 

0 

0 

0 

which has rank 3. The triangulation of 

0 0 - - 1  

1 0 - - 1  

0 1 --1 

0 0 0 

0 0 0 

0 0 0 

IF1 
! 
i 
i 

I F2 
= 

F3 

t F, I 

a3 | 

a3 | 

aa @ 

a4 | 

aa | 

--a6 | 

1 --1 0 0 

0 - - 1  0 

0 0 - - 1  

1 --1 0 

0 1 --1 

1 0 - - 1  

(3.10) is 

Na 

N3 - -  al  | N1 

N 3 - - a  2 |  2 

N4 + al | Nl  -- a2 | N2 

N3 - -a2  @ N2 - -a 5  @ N5 

N6 - - a l  |  + a s  |  

Thus the equations analogous to (3.12) 

a 4 |  | NI 

a3 @ N3 - -a2  @ 

--a6 @ N6 -- a~ @ 

are 

- - a 2  |  = 0 ,  

N 2 - -  a s | N s = O, 

Nl  + a3 | Na = O. 

(3.13) 

(3.14) 

(3.15) 

The normal vectors N1 . . . . .  N6 here are not arbitrary since they must belong to 
a tetrad. From the definition of a tetrad three edges must meet at each vertex, 
so the normals corresponding to those edges must lie in one plane. If  we number 
the normals as in Figure 2c, we must have scalars ~1, ~2, f12, f13, 7~, Ya, 04, 05 
such that 

N 4 :-- ~xlN 1 + o(2N2, 

Ns = flzN2 "~- f13N3, 
(3.16) 

N 6 = ylN1 + 7aN3, 

N 6 = ~4N4 -[- r 
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Also, we must have that N1, N2, N3 are linearly independent. If  we eliminate 
N6 between the third and fourth of (3.16), and then eliminate N4 and Ns using 
the first two of (3.16), we obtain 

N6 = 71N1 + ~'3N3 = ~i4N4 -~ ~sNs 

: 0~ t ~4N1 -~- (0~ 2 t~,~ -~ f12 ~5) N2 -}- f13 t~sN3, (3.17) 

whence 

71 : ~1 ~4., 73 : f13 (~5, 0~2 t~4 ---- --f12 ~5. (3.18) 

The equations (3.18) imply that 

0r 3 -]- ]~2730r : 0 .  (3.19) 

We return now to (3.15). As always, we view the normals as assigned, consistent 
with (3.16). After substitution of (3.16), (3.15) becomes 

(a  1 -~- 0r (~) N 1 -~ ( - - a  2 -~- 0~2a4) ~) N 2 : 0 ,  

(--a2 --  f1205) | N2 q- (a3 --  fl3as) | N3 = 0, (3.20) 

( - - a  I - -  ~,1a6) Q N 1 q- (a a - -  73a6)  ~) N a = 0. 

Since N1, N2, and N3 are linearly 

a l - T t - ~ l a 4  = 

- - a 2 - - f 1 2 a 5 =  

- - a l - ] - 7 1 a 6 =  

A necessary condition that (3.21) 
a l = ~ 0  . . . . .  7 3 ~ 0 .  Suppose ~1 

as II a2 

For some fixed a, l a I---- l, let 

independent, we must have 

0, - - a  2 -]- 0r 4 = 0 ,  

O, a s - -  flaa5 : 0 ,  (3.21) 

O, a 3 - -  ~'3a6 ~ O. 

have a solution a 1 =]= 0 . . . . .  a6 =[: 0 is that 
4= 0 . . . . .  73 �9 0. Then (3.21) implies that 

II aa [I a ,  [I as I[ a6" (3.22) 

a~=~ta, ~ t @ 0 ,  i =  1 , . . . , 6 .  (3.23) 

Then (3.20) is equivalent to the system 

- - ~ 2 - - f l 2 ~ 5 = 0 ,  ~ 3 - - ~ 3 ~ 5 = 0 ,  (3.24) 

- -~1  - - 7 1 ~ 6  = 0, ~3 - -  73~6 = 0, 

which is to be solved for non-vanishing~/1 . . . .  , r/6, the other parameters ~1 . . . . .  73 
being assigned non-zero constants which fulfill (3.18). The determinant of the 
system (3.24) is ~27~fl3 q-f1273oq, which vanishes by (3.19). Thus there is a 
solution (r h . . . . .  7/6) of (3.24), not all of  ~ . . . . .  r/6 being zero. However, it must 
follow from (3.24) that there is a solution with none of the r/1 . . . . .  ~76 equal to 
zero, for if one of ~71 . . . . .  r]6 vanishes, then by (3.24) all of ~h . . . . .  ~/6 must vanish. 
Hence by reversing the argument we deduce that for a normalized amplitude 
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a, ]a[ = 1, (3.15) has a solution, 

a t = ~ha, i = 1 . . . .  , 6 .  (3.25) 

We have found the perhaps unexpected result that the amplitudes of  all edges 
of  a tetrad are parallel. 

in summary we have found 

Properties of a tetrad: 

1. e = 6 ,  f = 4 ,  v = 4 .  
2. Each vertex is connected to every other vertex by an edge. 
3. Each pair of edges meeting at a vertex have non-parallel normal vectors. 
4. The amplitudes of all edges are parallel a i = ~ia, [a I ---- 1, the non-zero ~i, 

i = 1 . . . . .  6 being determined up to a constant multiple by (3.24). 

According to our argument the first three of these properties can serve to define 
a tetrad. The fourth follows from (3.23), (3.24) and the accompanying argument. 
The 7/i, i = 1 . . . . .  6, are determined up to a constant multiple because the coeffi- 
cient matrix of (3.24) has rank 5. 

Before closing this section, I wish to draw attention to a special tetrad. It 
has been said [6] that martensitic transformations are always accompanied by "a 
structural change having a dominant deviatoric component." In the context of the 
present discussion, the phrase quoted may be interpreted as saying that the equa- 
tions a �9 Ni=0, i = 1, . . . ,  e, are approximately satisfied. In fact, a special tetrad 
has this property. If we take the vertices in the foreground of Figure 3 c and move 
them around to the far side of the sphere, we get the structure shown in Figure 4. 
If we choose the normalized amplitude a of this tetrad to be parallel to a line 
segment which joins the central vertex to the center of S the equations a �9 N~ ---- 0, 
i = 1 . . . . .  6, are approximately satisfied, the approximation getting closer as 
the three outer vertices approach the central one. 

Several plane slices through this tetrad are also shown in Figure 4. They 
look remarkably similar to the 'needles' commonly seen in deformation-induced 
martensite. The book by HALL [26, Fig. 85] shows a particularly nice specimen, 
but  they are common to many kinds of martensite [6, p. 164; 10, p. 348, 354; 
26; p. 110]. One also commonly sees plates and 'butterflies' [6, p. 53] in martensite 
and these are all consistent with the results presented here. 

A 

Fig. 4. A special tetrad, with plane slices. 
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4. Static theory of piecewise homogeneous deformations 
in finite elasticity 

From now on I shall confine attention to the special case of finite elasticity. 
The definition of a twin, specialized to finite elasticity, and of  a piecewise homo- 
geneous deformation were given in Remarks 2 and 4 of  w 2. 

a. Equilibria 

Let an elastic body ~ have a stored energy function W(F) defined on a do- 
main ~ relative to a reference shape ~ .  Suppose ~ is a sphere S 15 partitioned 
into regions ~1 . . . . .  A s. Let ~u, i : 1 . . . . .  e,j = 1 . . . . .  f ,  be the incidence matrix 
for the partition. On each of the regions ~i,  i : 1 . . . . .  f ,  let a constant deformation 
gradient F~ be assigned, consistent with the kinematic restrictions (3.10) and (3.11). 
The equilibrium equations for an elastic body free of body forces are 

f T(F) NdA = 0, u  ~ ~ with sufficiently regular boundaries. (4.1) 

Here T is the Piola stress defined by (2.19). Under the conditions we have laid 
down on the deformation, the equilibrium equations (4.1) are equivalent to the 
conditions 

Div T(F) ---- 0 on ~1 . . . . .  ~ f ,  (4.2) 
and 

(T(Fi) -- T(Fj)) N k = 0 whenever ~Tkt = 1 and ~Tt~ = 1, k = 1 . . . .  , e. (4.3) 

Of course, the equations (4.2) are already satisfied since F has been assumed con- 
stant on each of the regions ~1 . . . . .  ~s.  Thus, the study of equilibria of piecewise 
homogeneous deformations in finite elasticity is reduced to a study of  the jump 
conditions (4.3) 16 . 

In this subsection I propose to study in general the equilibrium equations 
(4.3) for piecewise homogeneous deformations. I shall not impose particular 
boundary conditions, although I will give a characterization of equilibria which 
should help if one should wish to solve a particular boundary value problem. 
As mentioned in w 1, I shall illuminate the difference between ordinary piecewise 
homogeneous deformations and those special piecewise homogeneous deforma- 
tions which are also twins. 

By their silence on the matter, books (e.g. [2]) that discuss twinning suggest 
that a twin is, by definition, equilibrated. This is not true according to the defini- 
tion I have given, even if the deformation is pairwise homogeneous. A non-trivial 
problem, which I shall discuss later in this Section, must be solved to assure the 
equilibrium of  a twin. 

25 More generally, we could assume that & be diffeomorphic to S. See w 3 for the 
definition of a partition and the incidence matrix. 

26 PARRY [9, (4.1) bis] takes the equilibrium equations to be [[T]] ---- 0. His conditions 
are therefore sufficient but not necessary for equilibrium. These jump conditions have 
also been given by VLADIMIRSKU [15]. 
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I shall begin with a pairwise homogeneous deformation; two regions R+ 
and ~ -  are separated by a plane PN with normal N. I seek constant deformation 
gradients F - = F  o n ~ -  and F + = F + a |  on ~+ such that 

t(a, N, F) = (T(F + a | N) --  T(F)) N = 0. (4.4) 

KNOWLES & STERNBER6 [27] have shown that (4.4) can be recast in the form 

1 

t(a, N, F) = f [W F(F + 2a | N) .  (a | N)] Nd2 .  (4.5) 
0 

They note that the necessary conditions a .  t(a, N, F) = 0, which follows im- 
mediately from (4.5), implies that there is a value 0 < 2* < 1 such that 

[Wrr(F + 2*a | N) .  (a | N)].  (a | N) ~ 0. (4.6) 

In rectangular Cartesian components, (4.6) is 

02W(F + 2*a | 3I) 
OFi~ OFf aiajN~Na <: O. (4.7) 

That is tT, a necessary condition that the deformation 

FX, X ~ ~ -  
(4.8) 

X =  F X  + a(N.  X), X E ~ + 

be equilibrated is that the condition of  strong elliptic#y, i.e. 

[WFr(G) �9 (b | M)] .  (b | M) > 0 u M,  

fails for some G E {,4, [ a = F + 2a | N for  some 2 E (0, 1)}. 
Thus ellipticity fails somewhere in the domain of the stored energy function. 

To be definite I shall assume that the stored energy function has the qualitative 
features shown in Figure 5: There is an open set 5 a Q ~ such that the condition 

of ellipticity fails in 6 e, and the condition of strong ellipticity holds in ~ -- ~ .  
For the rest of this paper all stored energy functions shall have this property. 

In w 5 I shall study the stability of piecewise homogeneous deformations. 
The least restrictive kind of stability I shall consider, the kind which most clearly 
embodies the concept of 'infinitesmal stability', is that of a weak relative mini- 
mizer. A necessary condition that a point X E ~ of differentiability of Z is a weak 
relative minimizer of the total energy (cf. w 4 for details) is that V•(X) be a point 
of ellipticity of the function W. For the stored energy functions considered here, 
every piecewise homogeneous weak relative minimum of the total energy must 
satisfy 

Fi E ~ -- S~, i = 1 . . . . .  f .  (4.9) 

In my search for piecewise homogeneous equilibria, I will allow only deforma- 
tion gradients which meet (4.9). 

17 KNOWLES • STERNBERG [27, w 3]. 
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F 2 a ~  

Fig. 5. The domain of the stored energy function. The condition of strong ellipticity (5.8) 
is met outside, and the condition of ellipticity fails inside the hatched region. 

To study piecewise homogeneous equilibria I find it convenient to define the 
fol lowing excess function: 

e(b, M, G) ---- W(G -1- b | M) -- W(G) -- b . WF(G) M. (4.10) 

8 is defined on the set 

{ (b ,M,G)  I G E ~  and G + b Q M E ~ ) .  (4.11) 

If we take the gradient of 8 with respect to b we get 

whence 
eb -~ (T(G q- b | M) -- T(G)) M ,  

Lemma 2. 
if 

8b(a, N, F) ---- 0. 

If we take the second gradient of 8 with respect to b, we get 

I . ~ l  = [WFr(G -~ b | M) . (l | M)]. (l | M), 
so we have 

(4.12) 

The pairwise homogeneous deformation (4.8) is equilibrated i f  and only 

(4.13) 

(4.14) 

Lemma 3. 8~b is positive-definite i f  and only i f  

G q- b |  - - f t .  (4.15) 

Of special interest, especially for mechanical twinning, is the effect of the in- 
variance groups (cf. (2.14)-(2.16)) upon the function 8 and the domain S~. 

Lemma 4. Let the stored energy W(G) have a symmetry group C9 and let (~+ denote 
the group of  proper orthogonal tensors. Then, for each Q E 0 + and H E C#, 

G E 6ar QGH E Sr (4.16) 
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The function 8(b, M, G) meets the restrictions 

8(Qb, HTM, QGH) ~- 8(b, M, G) (4.17) 

for all Q E (~+, all H Efr and all (b, M, G) in the domain of  8. 

The proof of (4.16) follows easily by differentiating' twice the relation 
W(QGH) = W(G) with respect to G, and then by contracting with the tensor 
(b | M) twice. Equation (4.17) follows directly from the definition (4.10) of 8 
and the invariance of W. 

Lemma 4 implies t h a t / f  the limiting value of the deformation gradient on one 
side of a twin boundary lies in the domain of  strong ellipticity of  W, then so does 
the limiting value of  the deformation gradient on the other side. 

If  we take the gradient of (4.17) with respect to b, and then use Lemma 2 
we see that if F o and F o q- a o | N O are the deformation gradients of an equili- 
brated pairwise homogeneous deformation, then so are 

[QFoH and QFoH q- Qa o | HrN (4.18) 

for each Q E d ~+ and each H E ~. But more than that, if Fo and F o -}- ao | No 
are the deformation gradients of an equilibrated homogeneous twin, then the pair 
of deformation gradients (4.18) also determine an equilibrated homogeneous 
twin. This is proved in 

Lemma 5. Let the homogeneous twin 

= li x, XE -, 
[/'x + X), XE +, 

eb(~,  ~, ~) = 0 .  

Then, for any Q E ~+ and any H E f#, the deformation, 

{ O~t-lX, XE ~-, 
Z : Q F H X + Q ~ ( H r N  . x ) ,  X E ~ + ,  

is an equilibrated homogeneous twin. 

be equilibrated: 

(4.19) 

(4.20) 

(4.21) 

The statement made just before (4.18) shows that g is equilibrated. To prove 
that Z is a twin, we must show that the conditions of invariance (2.16)2 are ful- 
filled. But by (4.19) 

QFH -Jr Qh | HrlV = Q(F q- g~ | IV)H = QQFdH. (4.22) 

Let R = Q~Qr, and P = H-1IYIH. Since r and ff are groups RE d~+ and 
P E ~r With these definitions (4.22) becomes 

QffH + Qh | HT1V = R(QI~H) P, (4.23) 

which shows that Z is a twin. This completes the proof of Lemma 5. 
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The most interesting choices of Q and H in (4.21) are ~) and H, respectively. 

Then if we put ~+ = ~ - ,  we can combine the deformations ~ and Z to produce 

a collection of homogeneous equilibrated twins. That is, if/~ and /~ + fi | N = 
Q/~H form an equilibrated homogeneous twin having a twin plane with normal 

N, then 0/~/1 can form an equilibrated homogeneous twin with ~)/~/t q- ~)~ | 
~ r ~  across a twin plane with normal ~r/~. Complicated collections of equili- 
brated twins can be built up in this way, based upon the partitions analyzed 
in w 3. It is not my purpose to elaborate on this observation but only to provide 
some of the groundwork for the solution of such problems. 

To form these collections of twins, one starts with a single pairwise homoge- 
neous equilibrated twin. The existence of a single pairwise homogeneous equi- 
librated deformation actually implies the existence of many more than are in- 
dicated by (4.18). These are summarized in 

Theorem 1. Suppose the pairwise homogeneous deformation 

I FOX, X E ~ -  

Zo = [ FoX Jr ao(No �9 X), X E ~+ 
is equilibrated, 

and satisfies 

(4.24) 

gb(ao, No, Fo) = 0 (4.25) 

Fo E ~ -- $7, Fo q- ao | No E ~ -- 67. (4.26) 

Then there is a unique, continuously differentiable function 

a = a(N, F), a(N0, Fo) = ao, (4.27) 

defined on a neighborhood r of (No, Fo) such that ~(N, F) is the amplitude of 
an equilibrated pairwise homogeneous deformation: 

8b(~(N, F), N, F) = 0 V(N, F) E..C o . (4.28) 

The domain of definition of ~(N, F) may be extended to the set 

~" ~ {(N, F) l ( HrN, QFH) E N o  for some Q E d~+ and some H E if}. (4.29) 

The function o~(N, F) enjoys the invariance 

Q~(N, F) = o~(HrN, QFH), 

VO E (~+ 
(4.30) 

u  

V(N, ~ E..4/'. 

Proof. The existence of ~(N, F) follows from the implicit function theorem. Since 

r N, F) = 0 (4,31) 



170 R.D.  JAMES 

is satisfied at (ao, No, Fo) and 

~ b b ( a o ,  N 0, F o )  (4.32) 

is positive definite (Lemma 3 and (4.26)), there is a unique continuously differen- 
tiable function a = a(N, F) defined on a neighborhood ~Co of  (No, Fo) which 
satisfies (4.28). The extension of~Y'o to,/ff is accomplished by the use of  (4.17). 
Let (N, F) E Jffo and define 

o~(HTN, QFH) = Q~(N, F), 

to obtain the extension of ~ to ,8". It can easily be shown that the extended 
function ~(., .) is uniquely defined, single valued, and continuously differentiable 
on ,h/'. The invariance (4.30) then follows by (4.33). This completes the proof  of  
Theorem 1. 

b. Stability 

We shall suppose an elastic body ~ deformed relative to a fixed reference 
shape ~ is governed by a stored energy function W(F). This energy function shall 
have the properties summarized in Figure 5 and described in w 4a. 

Let us be given the pairwise homogeneous deformation 

F-X, X E  ~ - ,  

~ ( X ) =  F + X =  F - X  + a(N. X), X E ~+; 
(4.33) 

F + E ~ ,  F - E ~ .  

On a ~  there will occur Piola tractions t + : T+M and t -  : T - M  produced 
by the Piola stress T + :~- T(F +) in ~+ and T- :~ T(F-) in ~ - .  

To be definite I shall assume that the body ~ is loaded by dead loads corres- 
sponding to the surface tractions t+ on ~ +  - -  ~N and t -  on 0 ~ -  -- ~N- The 
reader is probably aware of  the degeneracy, with respect to rigid rotations, im- 
plied by the dead load stability criterion; for compressive loads one might also 
wish to impose a zero-moment condition [28], or possibly additional kinematic 
boundary conditions, in order to obtain useful solutions. Here I shall avoid such 
additional restrictions and concentrate on the simplest kinds of problems. 

I shall only treat pairwise homogeneous deformations and homogeneous twins 
although it is easy to see how the results can be generalized to include piecewise 
homogeneous deformations and homogeneous trillings, etc. 

The total energy of 8 ,  dead loaded by Piola surface tractions t + on ~ +  -- ~N 
and t -  on ~ -  - - ~ N ,  is defined by 

E[Z ] ~_ f W(Vz) dV -- f t+" Z dA -- f t - .  Z dA. (4.34) 
0"~'+ - -  "~ N & ~ -  - -  "~ N 

The domain of E[.] consists of all deformations X such that 7 Z is well defined is 

is .E.g. % is continuous and weakly differentiable [29, p. 142]. Note that the defini- 
tion (4.34) includes loading by a hydrostatic pressure if t+ = t-  = 0 and if W is inter- 
preted as the enthalpy. 
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almost everywhere and V x E ~ almost everywhere. I seek necessary and sufficient 
conditions that ~ given by (4.33) is a minimizer of E[.] in a sense I shall presently 
make definite. 

The study of problems of change of phase in elastic bar theory [30, 31 ] indicates 
that solid bars are likely to occur in 'metastable' as well as 'stable 'configurations. 
The terms stable and metastable refer to the size of the class of functions which 
compete for the minimum of E[-]. These studies suggest that one should use 
caution when comparing the results of experiment with deformations which 
minimize E[.] with respect to all possible deformations. On the other hand, nec- 
essary conditions satisfied by weak relative minima of E[.] (defined below) seem 
to be consistent with all kinds of static experiments. This is not to say that absolute 
minimizers of El.] are unimportant, just that caution should be used in their 
interpretation. 

We shall say that ~ is a weak relative minimizer of E[-] if there is a ~ > 0 
such that each Z in the domain of E[.] which meets the condition 19 

[lVz - V~ll < ~ a.e., (4.35) 
also satisfies 

E[~] ~ E[X]. (4.36) 

will be termed a strong relative minimizer of E[.] if for some e > 0 and every 
;t in the domain of E[.] which satisfies 

I z  - e ,  (4.37) 
we have 

E[~] =< E[Z]. (4.38) 

Finally, ;~ is a minimizer of E[.] if for every Z in the domain of E[.], 

E[~] ~ E[Z]. (4.39) 

We begin with a study of pairwise homogeneous weak relative minima. If  
given by (4.33) is a weak relative minimizer of E['], then 

(I) ~ is equilibrated (cf. 4.3), 

(T(F+) --  T(F-)) N : 0, and (4.40) 

(II) F + and F -  are points of ellipticity of the function W. 2~ (4.41) 

Both of these conditions have been used in the study of equilibria w 3 a. They are 
both true for a broad class of loading devices. By the use of (4.40) and the diver- 
gence theorem, we can write the total energy in the form 

E[Z] : f (w(vz) - T +. VZ) dV q- f (W(Vz) - -  T- VZ) dV. (4.42) 

19 By definition, IIFII = (F.  F) 1 = tr F F  T. 
20 See e.g. CORAL [32]. CORAL'S proof is adapted to finite elasticity in the forth- 

coming book by TRtmSDELL [33]. 
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Let the competitor X be given by 

GX, 

z(X) = [ G X +  b ( n -  X), 

XE ;8-,  
(4.43) 

XE ;8+; 

G, b, M constant, 
in which 

II c - F - I [  < (4.44) 
and 

[[G + b | M -- F+l] .< 8. (4.45) 

Then, if 6 is sufficiently small, Z is a competitor for the weak relative minimum. 
If  we substitute g into (4.42) and use (4.36), we find that for all constant G, b, M 
consistent with (4.44) and (4.45), 

{ W ( G  -+- b Q M )  - -  W(F +) - (G + b Q M - F+) . T +) V + 

+ (W(GO -- W(F-)  -- (G -- F - ) .  T-} V-  > O. 
(4.46) 

Here V + and V- are the volumes of the reference shapes ;8+ and ;8-, respectively. 
So far, ! have been unable to show, and perhaps it is not true, that each bracketed 
term in (4.46) must necessarily be non-negative. 

Suppose for a moment that each bracketed term of (4.46) by itself is non- 
negative for the specified set of G, b, M. Then, in particular, 

W(G) --  W(F-)  --  (G --  F-) . T -  >= 0 u  such that I[ G -- F-II < 8. (4.47) 

By putting K = G + b |  we also have 

W(K) --  W(F +) - ( K -  F+). T+ >= O u  such that [ [ K - - F + [ [ < 6 .  (4.48) 

Let X be any deformation in the domain of  EF] whichmeets the condition (4.35). 
Put K = K ( X ) ~ V x ( X ) ,  X E ; 8  +, and G = G ( X ) = _ V z ( X ) ,  X E ; 8 - .  Then 
(4.47) and (4.48) hold at each X. If  we then integrate (4.47) over ;8- and (4.48) 
over ;8+ and add the two expressions, we recover (4.42). Summarizing these argu- 
ments, we have 

Theorem 2. Necessary conditions that the pairwise homogeneous deformation 
be a weak relative minimizer o f  E[.] are (4.40) and (4.41), as well as the inequality 
(4.46). 

Sufficient conditions that the pairwise homogeneous deformation ~ be a weak 
relative minimizer o f  El.] are that ~ be equilibrated (cf. (4.40)) and that the local 
inequalities (4.47) and (4.48) be satisfied. 

We now turn to a study of the strong relative minima of E[.]. Already one 
theorem is known. 2~ If ;~ is a strong relative minimum of E[-], then the condition 

2t Loe. cir. CORAL and TRUESDELL. 
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of  rank-one convexi ty  holds at ~, viz, 

W ( F  • + b | M )  - -  W(F •  
(4.49) 

Vb, M, such that F • + b |  

If  in (4.49) we choose b : a ,  M = N  and (--),  we get 

W ( F  +) - -  W ( F - )  - -  a . T - N  : 0; (4.50) 

if we choose b = - - a ,  M : N  and (+) ,  we get 

W ( F - )  - -  W ( F  +) q- a . T+N ~: O. (4.51) 

Assuming the necessary condition T+N : T - N  to hold, (4.50) and (4.51) imply 
that 

W(F +) -- W ( F - )  - -  a . TJ:N : O. (4.52) 

I f  ~ is also a mechanical twin, then F+ = Q F - H  so W(F+) -= W(F-); therefore 
(4.52) implies that a �9 T~:N : O. 

Theorem 3. I f  ~ given by (4.33) is a strong relative minimum o f  E[.], then 

W ( F  +)  - -  W ( F - )  - -  a .  T •  : 0 .  (4.53) 

I f ,  in addition, fC is a mechanical twin, then the traction on the twin plane is per- 
pendicular to the amplitude o f  the twin: 

a .  T~:N : 0. 22 (4.54) 

We now assume ~ is a minimizer of E[.]. The necessary condition (4.46) 
still holds for minima, but for the large class of (G, b, M) given by 

G E g ,  G q- b | M C g .  (4.55) 

Also, (4.53) is satisfied since every minimizer is a strong relative minimizer. 
Therefore, if in (4.46) we eliminate W ( F  +) by use of (4.53), if we replace F + by 
F - + a |  and we put b = 0 ,  we obtain 

( w ( c )  - w ( F - )  - ( c  - r - ) .  r+)  V+ 
(4.56) 

+ ( w ( ~ )  - W(F- )  - -  ( ~  - -  F - ) .  T - )  V -  => 0 V G ~  9 .  

Equivalently, we have 

V+T + q- V - T -  
W(G)  - -  W ( F - )  - -  (G - -  F - )  ~: 0 VG E 9 .  (4.57) 

V + + V  - 

22 Several of the results deduced in this section are true for a wide variety of defor- 
mations and loading devices. In particular, (4.54), (4.53) and (4.41) are true for a broad 
class of loading devices, and without the restriction to pairwise homogeneous deforma- 
tions, as long as F +, F-, T+ and T-  are assumed to be limiting values as the surface 
of discontinuity is approached from either side. 
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Put G = F-  q- I~K, t z being a sufficiently small scalar and K being a momentarily 
fixed second order tensor. Then the left hand side of (4.57) becomes a non- 
negative function of # which vanishes at # = 0. Thus the derivative of the left 
hand side of (4.57) must vanish at # = 0: 

Therefore 

that is, 

WF(F-) . K -- \ V~ q- K = O .  (4.58) 

V+T + -}- V - T -  
T-  : V + q- V- ' (4.59) 

T -  = T + ~ T; (4.60) 

for pairwise homogeneous minima ~ of  E[.], the Piola stresses in ~+ and ~l- are 
the same. 

Now (4.57) becomes 

W(G) -- W(F-)  -- (G -- F - ) .  T >= 0 VG E 9 .  (4.61) 

Since we may simply interchange the roles of  (-f-) and (--)  the inequality (4.61) 
also holds with F -  replaced by F+. But (4.60), (4.61), and its counterpart for (q-), 
are sufficient for ~ to be a minimizer of  El.]. To see this we simply repeat the argu- 
ment given just before Theorem 2 with G and K only restricted by the conditions 
G C 9  and K E ~ .  

Still letting the minimizer ~ be equilibrated by a constant Piola stress T, 
we note that the Cauchy stress o defined by o ~ (det F ) - I T F  r, is symmetric: 

TF ~" is symmetric for F = F + or F - .  

T(F-)  r is symmetric 

T(F-  -k a | N) r is symmetric. 

Therefore 

and 

If  we eliminate T(F-)  r from (4.63)2 by the use of (4.63)~, we get 

(4.62) 

(4.63) 

(4.64) T N  | a = a | TN; 

that is, T N  is parallel to a;  i f  ~ is a pairwise homogeneous minimum o f  E[.], then 
the traction on ~N is parallel to the amplitude a. 

According to (4.54) the statement just made cannot be true for a twin unless 
the traction on ~N vanishes, a result obtained in a special case by PARRY [9]. 
I summarize these properties of pairwise homogeneous minima in 

Theorem 4. The pairwise homogeneous deformation ~ of  (4.33) is a minimizer o f  
El-] i f  and only i f  

T + = T- ,  

W(G) -- W(F-)  -- (G -- F-) T-  >= 0 VG ~ ~ ,  
(4.65) 

W ( K )  - -  W ( F + )  - -  ( K  - -  r + )  T+ > 0 V K  ~ 9 .  
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I f  ~ is also a twin, the traction on ~N vanishes: 

T+N : 0. (4.66) 

These strong conditions suggest that it is unlikely that many of  the deforma- 
tions observed in experiment correspond to minimizers of  E[.] under dead load- 
ing. The condition (4.54), however, is true for a large class of  loading devices, 
and deserves further study. 
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