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Stability of Fiber Networks 
Under Biaxial Stretching 
This paper is concerned with the constitutive behavior of  a particular orthogonal fiber 
network under biaxial dead loading. We also describe a new kind of biaxial, 
dead-loading machine which is applicable to anisotropic materials. The machine does 
not require that the loads are exerted along symmetry axes of the material. A specimen 
of  the cloth was loaded by different loading paths to the same equibiaxial dead-load, 
and two different final deformations were observed. A related observation was reported 
by Treloar for rubber in 1948. In order to understand this instability, we experimentally 
determined the energy function for the cloth. The energy function is then used in a 
variational calculation to explain this instability. 

1 Introduction 
In this paper we introduce a new biaxial testing machine 

that imposes approximately uniform dead-load tractions to 
the edges of a plate, and we study the deformation of cloth. 
The machine is applicable to anisotropic materials, which 
may undergo large deformations, and the tractions need not 
be imposed along symmetry axes of the material. 

To test the ability of the machine to accurately impose 
these tractions, we placed in the machine an extremely 
anisotropic material which also easily undergoes large defor- 
mations, this being a sample of Kevlar ® parachute cloth with 
a relatively open orthogonal weave. Usually we found that an 
assignment of the two resultant forces yielded a unique 
homogeneous deformation, regardless of the loading path. 
The homogeneity of this deformation and the independence 
of the loading path are quantified in Section 4. However, 
when we loaded to an equibiaxial load, we observed that the 
final deformation was not unique. More specially, we found 
that associated to each equibiaxial load there are precisely 
two homogeneous deformations, and the observed deforma- 
tion is always near one of these, although there is some 
scatter (see Section 4). This nonuniqueness admits a simple 
interpretation based on symmetry and nonlinearity (Section 
5). 

To explain these observations, we settled on a simple 
model for the cloth. We noted that, while the cloth behaves 
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in a highly inelastic manner under small forces, it becomes 
highly elastic, except for the aforementioned instability, un- 
der a large range of biaxial tensions of sufficient magnitude. 
It is also approximately inextensible in fiber directions. We 
therefore model the cloth as an inextensible nonlinear elastic 
material, in the spirit of Pipkin and Rivlin (Pipkin, 1974 and 
1987; Pipkin and Rivlin, 1963; Rivlin, 1955) (Section 6). We 
use the experimental measurements of Piola-Kirchhoff stress 
versus deformation gradient to evaluate the energy function 
for the cloth. The resulting energy function exhibits potential 
wells. Because the experimental data leave gaps in the do- 
main of the energy function, due to the equibiaxial instability, 
we are not able to uniquely assign a potential well structure 
to the energy function in all of its domain, but we suggest 
several reasonable alternatives (Section 7). 

A related observation for rubber was reported by Treloar 
(1948). He carried out an experiment in which a rectangular 
sheet of rubber was subjected to equal dead-load tensions at 
its edges. In some cases the resulting deformations were 
asymmetric, with unequal principal stretches even though the 
loading was symmetric. At about the same time, Rivlin (1948) 
studied equilibrium deformations of a cube of neo-Hookean 
material subjected to three pairs of equal and opposite 
dead-load surface tractions. He showed that at least seven 
equilibrium configurations are possible when the tensile 
forces exceed a certain critical value, and of the seven, only 
one has all the symmetries of the given loading. Furthermore, 
he found that the symmetric configuration is unstable for 
large values of the tensile forces (Rivlin, 1974). Ball and 
Schaeffer (1983) considered the same problem for general 
isotropic incompressible materials. Kearsley (1986), Mac- 
Sithigh (1986), and Chen (1987) also studied the similar 
problem for isotropic incompressible elastic materials, and 
some stability approaches have been employed to explain 
Treloar's observations. A difference between the results of 
these analyses and the behavior of the cloth studied in this 
paper is that they predict an infinite number of stable defor- 
mations while in the cloth we observe only two. 
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2 Preliminaries and Notation 
In this section we describe the terminology used for de- 

scribing the deformation and energy function of the cloth. 
We consider a body which can be represented in a fixed 
reference configuration by a bounded regular domain R 
R 2. A particle of the body is represented by x ~ R. To 
formulate constitutive relations for the material, we first 
define the deformation. A deformation y is an invertible 
function 

y:R ~ y (R)  (1) 

which maps the reference shape R onto the present shape 
y(R) ~ R z. We assume y is differentiable at x ~ R, we call 

r = Vy(x),  (2) 

the deformation gradient at x. We shall assume throughout 
this paper, in addition to the invertibility of y, that the 
deformation gradient satisfies 

detF > 0. (3) 

In view of our assumption (3), the tensor F has the unique 
decomposition: 

r = RU (4) 

where U is a positive-definite symmetric tensor called the 
stretch and R is a proper orthogonal tensor called the rota- 
tion. 

Later we shall assume that the cloth specimen is a homo- 
geneous elastic material which possesses a strain-energy 
function ~o depending on the local change of shape: 

,p(r). (5) 

The value of the strain-energy function ~0(FF) corresponds 
to the strain energy, per unit area in the reference configura- 
tion, stored in the body when it undergoes a deformation 
with the deformation gradient F. The strain-energy function 
is assumed to satisfy the condition of material frame indiffer- 
ence, 

~o(RF) = ~o(F), (6) 

R being any proper orthogonal tensor in two-dimensional 
space. According to standard continuum mechanics (Chad- 
wick, 1976), if H is a rotation which belongs to the material 
symmetry group, ¢ satisfies 

~p(VH) = ~p(F) (7) 

for all admissible F. We shall use the notation H(0) to 
denote a clockwise rotation through the angle 0. 

The assumption (6) implies that ~p can be expressed as a 
function of FTF only: 

~p(r) = ~(C),  C = FrF.  (8) 

Let t represent the force per unit reference length applied to 
the boundary 0R of the specimen, which we call the traction, 
and s the length measure of the boundary. The physical 
interpretation of a dead-loading device is that the imposed 
force t(x)ds applied at y(x) maintains its magnitude and 
direction regardless of how the body deforms. The design of 
the machine is such as to impose a dead-load traction t(x) of 
the form 

t(x) = Tn(x), 

2 

where n(x) is the unit normal to 0R at x and T = ~ ~ e  i ® 

i = 1  
ei, where T l, T 2 are constants and e 1, e 2 ~ R 2 are orthogo- 
nal. In the equibiaxial case T 1 = T 2. 

The total potential energy E[y] of a dead-loaded body is 
defined by 

E[y] = fR~p(Vy(x))dx - £Rt (X) .  y(x)ds. (9) 

Given a traction field t(x), a deformation y*(x) is stable in a 
dead loading device, if it minimizes the total potential en- 
ergy; the inequality 

E[y*] _< E[y] (10) 

holds for all admissible deformations y. For our purposes, the 
set of admissible deformations will be all smooth deforma- 
tions whose gradient lies in the domain of the function ~,. 

3 The Testing Machine and Specimen 
By looking at the reports available in literature on biaxial 

loading experiments, we found that two test devices were 
reported in early days. Treloar (1949) designed a series of 
experiments using vulcanized natural rubber to test the appli- 
cability of the neo-Hooken form of the strain-energy func- 
tion. Among his experiments, there was a biaxial test ma- 
chine, which stretched a thin square sheet of rubber. In 
Treloar's experiment the square test-piece had five projecting 
lugs on each side as indicated schematically in Fig. 1, and 
strings were tied to these for the application of loads. The 
surface of the sheet was marked out with lines forming a 
square lattice. With the sheet placed horizontally, the three 
middle lugs on a side were loaded by means of three equal 
weights attached to each string, while the strings attached to 
the two outermost lugs were secured to a rectangular frame. 
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Fig.  1 From Treloar, 1 9 5 8  (Wi th  permission from R. J.  A t k l n  a n d  N. Fox ,  An Introduction to the Theory of 
Elasticity, Fig. 3 .6  a n d  3 .7 ,  Longman, London end New York,  1980)  
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Fig. 2 Experimental set-up of Rivlin and Ssunders, 1951 (With 
permission from R. J. Atkln and N. Fox, An Introduction to the 
Theory of Elasticity, Fig. 3.9, Longman, London and New York, 
1980) 

Similar arrangements were used on the other three sides, and 
by applying different weights, different extensions were ob- 
tained. The appearance of the stretched sheet is shown in 
Fig. 1. By measuring the lengths of the sides of rectangles 
drawn on the sheet in their deformed and undeformed states, 
he determined the principal stretches. In the experiment it 
was assumed that the traction operative in producing the 
pure homogeneous deformation of the rectangle ABCD was 
computed from the loads applied to the three central lugs on 
each side of the test piece. 

Rivlin and Saunders (1951) used the arrangement shown 
in Fig. 2. One difference between their arrangement and that 
of Treloar's is that springs were used instead of weights, so 
that rapid, continuous variation of the applied traction was 
possible. Again it was assumed that the traction operative in 
producing the pure homogeneous deformation of the central 
nine squares was computed from the central three strings on 
each side of the test piece. 

When the material shears, the line connecting the loading 
points rotates relative to the direction of the applied force. In 
this case Treloar and Rivlin and Saunders' machines will give 
a nonuniform load distribution. This fact makes their ma- 
chines inapplicable to the testing of anisotropic materials. 
Secondly, the five loading points on each side of the speci- 
men seem insufficient to approximate a uniform load distri- 
bution. Additionally, with modern instrumentation and a 
high precision X-Y table it is possible to get more accurate 
measurements. 

Our biaxial dead loading machine is pictured in Figs. 3 
and 4 and is described in detail as follows. The standard 
specimens are thin square sheets of approximate dimensions 
3.175 cm with eight epoxy dots on each edge. Eight C-clamps 
or grips are fastened to each edge. Each grip is fastened to 
the specimen by two #0  - 80 screws, one from above and 
one from below. This construction allows each grip to pivot 
on the epoxy dot. Each of the 32 grips is in turn attached via 
Kevlar ® fibers to a soft spring. The function of the spring is 
to keep the force in Kevlar ® fibers relatively uniform. Hence, 
there are four sets of eight fibers attached to the edges of the 
specimen, one set or "group" per side. The ends of each 
group of fibers are linearly fastened to a steel arm which is 
encased in a housing which allows the entire set of fibers to 
pivot. This arrangement has the property that the steel arm 
will turn so as to equalize, on average, the forces in the 
fibers. 

Fig. 3 A view of the loading arrangement of the blaxlal machine 

Fig. 4 A view of the environment chamber and specimen 

The arm is attached to a steel tensioning cable. After a 180 
deg change of direction through the utilization of a compan- 
ion pair of pulleys, the cable is attached to a 60:1 worm 
reducer. There is one worm reducer for each axis of the 
specimen. This arrangement forms a closed loop (i.e., speci- 
men-fiber-reducer-fiber-specimen) so that the force pro- 
duced along each edge is equal to the force produced on its 
opposing edge. This also allows the resultant force on each 
axis to be measured by a load cell which is attached to one of 
the cables for each axis. To change the force along either 
axis, one must only adjust the knob on the appropriate 
reducer, which in turn drives a disk around which the cable is 
wound. This process lengthens or shortens the springs at- 
tached to the fibers, thus increasing or decreasing the ap- 
plied force. 

This construction of fibers, springs, arms, cables, pulleys, 
load cells, and reducers constitutes our biaxial dead loading 
testing machine. Its components are mounted on a precisely 
machined, high-strength aluminum plate ensuring that accu- 
rate and appropriate geometrical positioning of these parts is 
achieved. The plate is in turn mounted on the X-Y table of 
an optical microscope. The microscope is equipped with a 
movable stage which can be positioned through the use of 
two independent controls: one for the X-axis and one for the 
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Y-axis. These axial controls are wired to a Metronics 
Quadra-Chek II which allows the operator to monitor the 
stage's X and Y coordinates ( ±  0.00013 cm resolution, 0.0005 
cm accuracy) relative to an arbitrarily set origin. We obtained 
the deformation gradient by measuring the coordinates of 
three noncollinear markers on the specimen both before and 
after deformation. 

In addition, the load cells are wired to two independent 
Sensotec load monitors ( ±  0.0445 N resolution), one for each 
of the specimen's axes. The arrangement allows the operator 
of the microscope access to his position of observation and 
the loads applied to the specimen. 

The material studied was supplied by the Fibers Develop- 
ment Center, DuPont Company, Wilmington, DE. The fabric 
was woven from 55 denier Kevlar ® and is 3.3 mils thick. The 
fabric is formed by two perpendicular families of filaments. 
Thus, we are led to assume that H(mr/2)  where n is the 
integer belongs to the material symmetry group of undis- 
torted cloth. 

To make the specimens, we cut the material at an angle 0 
to the fibers (see Fig. 5). After cutting square specimens, we 
glued eight dots of epoxy per edge on both the top and 
bottom of the specimen for a total 32 equidistant points of 
contact per side. These epoxy dots did not touch each other. 
Next, a grip was fastened to each pair of epoxy contact points 
by two tiny screws, as described above. This allowed the force 
applied to the edge to be approximately uniform without 
damaging the specimen. The square defined by the center 
lines of the screws had dimensions 2.54 cm x 2.54 cm in all 
cases. 

After some preliminary experiments, it was found that 
another apparatus was needed to aid in attaching the grips 
with proper alignment. For this purpose we built a device to 
successively hold the eight grips in their precise location 
while we systematically attached each side of the cloth to 

T t /0 

Fig. 5 Notation 

them. This device helped to ensure that the traction force 
applied to each edge would be uniform. 

4 Experimental Observations 
We first conducted a series of experiments to check the 

homogeneity of the deformations. We randomly chose six 
points on the specimen, and grouped them in threes. We 
applied a suitable force in each direction, and measured the 
coordinates of those six points on the specimen before and 
after the loading process. According to dy = Fdx, for each 
three-point group we can determine a deformation gradient 
F. In order to quantify the difference between these two 
deformation gradients, we define E = IfF(2)- F(1)II/IIF(2)II, 
where 1 and 2 represent the group 1 and the group 2 and 
IIFII = ~/g" F .  Because of the limited accuracy of the x-y 
table, we kept only the third decimal place in our results. 
Typically in our tests E < 0.004, so the deformations can be 
considered nearly homogeneous. 

Now we report the observations of instability under equibi- 
axial tension. First we tested the piece which was cut at 
0 = 22.5 deg. After we affixed this specimen to the machine, 
several equibiaxial dead loads were applied, in this case 22.25 
N, 26.7 N, 31.5 N, and 35.6 N consecutively. We loaded the 
force in the e~ direction first, then loaded to the same force 
in the e 2 direction. We got a deformation gradient F~. Next 
we loaded the force in the e 2 direction first, then loaded the 
same force in the e~ direction. We got another deformation 
gradient F 2. These deformation gradients and correspond- 
ing stretch tensors U and rotation tensors R, are listed in 
Table 1. 

We next tested the fabric by cutting it at an angle 0 = 35 
deg to the fibers. In exactly the same way, we loaded the 
forces to 26.7 N and 35.6 N, respectively. We got two sets of 
F, U and R. They are listed in Table 2. 

When we loaded the specimen, always trying as closely as 
possible to keep the loads equal during loading, we found 
that the deformation gradient always adopted a value near 
those in Table 1 and Table 2 at the corresponding load. 

5 Analysis of the Nonuniqueness 
The nonuniqueness that is evident from the observation in 

the equibiaxial case admits the following simple interpreta- 
tion. 

Suppose the observed deformations of the cloth are stable 

Table 1 

Force 
F U 

T=22.5 N F i = (  1,0116 . 0 0 6 8 )  (1 .0116  .0050 
,0032 .9935 U t= ,0050 .9935 

• 9958 -.0066 
F2= (-.0031 1.0065 ) 

.9958 -.0049 
U 2=(__.0049 1.0065 

R 1.0000 i=(__.0018 .0018 1.0000 ) 

R2=( 1.0000 -.0017 ) 
.0017 1.0000 

T--2 .TN: 0102'°162 979,°1"1 u : /  '°'6'0,,0 9794°"6 '°°°°.00,, 00,,1.00001 
:99,5 .00,2 / :99,5 -00,0 :,0000 00,8 / 

F2 = ~-.0068 1.0114 U 2=~-.0050 1.0114 R2=~-.0018 I, 0000 

r=31   . : (  00, '°°62 99,,°'°°) 0 :("°°620066 99.°°6°  :(l,000000. 003,1,0000 ) 
.9916 -.01,08 

.99,7 -.0133 U 2=(_.0|08 R2=( 1. 0000 -.0015 ) 
F2 =(-.0085 1.0098 1 1.0098 .0015 L0000 

• 010,'°°97000 99. / 1009 0085 99.°°85 .=(1.00000019 1.0000-°°19 / 

-01 1 I :9860 -010  (1.0000 _0015 / 
-.0092 ,.0130 U 2 = ~.-.0106 1.0130 R2= .0015 1.0000 

Journal of Applied Mechanics JUNE 1995, Vol. 62 / 401 

Downloaded From: http://appliedmechanics.asmedigitalcollection.asme.org/ on 09/04/2013 Terms of Use: http://asme.org/terms



Table 2 

Force 

T=26.7 N: 

T=35.6 N: 

Fi=(  1.0252 .0108 
.0076 9768 

.9704 -.0085 
F2=(-.0092 1.0320 

1.0216 .0099 
Ft= .0070 .9811 

{ .9906 -.0009 
F2=~-.0026 1.0106 

U R 
U i=( |.0252 .0092 R i=( 1.0000 .0016 

.0092 .9768 -.0016 1.0000 

-.0089 R2=( ~ I0000 ,0003 
1.0320 -0003 1.0000 

.9704 
U 2 =(-.0089 

Ui=(  1.0215 .0085 ) 
.0085 .9812 

.9906 -.0018 ) 
U 2 = (-0018 1.0106 

I= ( ~ 1,0000 0014 R -0014 1.0000 

i,0000 .0009 
R2=(-.0009 1.0000 

deformations in the appropriate dead-loading device. Sup- 
pose also that these deformations are each homogeneous, as 
indicated in the experiments, although this is not really 
essential to the argument. If y* = F*x is one of these defor- 
mations corresponding to the applied tractions Te 1 and Te 2, 
then y* satisfies 

E[y*] _< Ely] (11) 

where Ely] is defined in (9). 
Using the divergence theorem on the second term in (9) 

we get 

E[y] = f R ( ~ ( V y ( x ) ) d x  - T"  V(x))dx. 

In particular, 

(12) 

E[y*] = fn (q~(r*) - T .  r*)dx .  (13) 

As mentioned above, the symmetry group of the cloth used 
in the experiments contains the group ~1 = {It(7r/2), H(Tr), 
H(3~-/2), 1}. Hence, combining this symmetry with the condi- 
tion of frame indifference, we have 

¢(HFH r )  = ~o(F) for all H ~ 5 (14) 

and for all admissible F. Generally, the term - T  • F has no 
particular symmetry under F ~ HFH r, except in the special 
case T 1 = T 2, in which case 

T.HFH T=TII.HFH r = T . F .  (15) 

Hence, in the equibiaxial case, 

E[y*] = E[~,], ~(x) = HV*nrx. (16) 

Now the deformation ~ may or may not coincide with y*. Of 
course, H(~r)FHQr? r = F for all 2 × 2 tensors F. Generally, 
H(Tr/2)F*H(Tr/2) -~ F* and we certainly expect these to be 
different in a highly nonlinear material like cloth. The other 
symmetries give nothing new, and a deeper analysis shows 
that the symmetry-induced instability just analyzed is the only 
one expected. 

If F* has the form 

Fll F12 (17) 
F21 F22 

in an orthonormal basis, then H(qr/2)FF*H(qr/2) r has the 
form 

( F22 -F21 ) (18) 
-F12 Fu 

in the same basis. Referring to the results in Section 4, we 
can see that the pairs of deformation gradients in the equibi- 
axial case are related approximately by (17) and (18). 

V fiber basis 

for¢obasis 

Fig. 6 Definitions of the force and fiber bases 

It is often expected that a symmetry-induced nonunique- 
ness, such as the one analyzed here, has as its origins a 
bifurcation from a more symmetric deformation, which might 
occur at some different equibiaxial stress. No such bifurca- 
tion was detected in any of the tests in the range of loading 
suitable for the machine. 

6 Strain-Energy Function in Inextensible Fiber Case 
We have assumed that the strain energy of the cloth is a 

function of deformation gradient F. In the general or- 
thotropic ease, this function depends on several invariants. 
We want to simplify this strain-energy function by using some 
available information. In previous work on similar materials 
by Pipkin and Rivlin (Pipkin, 1974 and 1987; Pipkin and 
Rivlin, 1963; Rivlin, 1955), the fibers have been treated as 
inextensible. In order to check this assumption in our mate- 
rial, let e' 1, e'2 be an orthonormal basis along the fibers of the 
cloth in the undistorted configuration R (see Fig. 6). We 
assume that the tensor C has the following form: 

C = F r F =  ( CI'C12 C12tC2 2 ] (19) 

in the e~, if2 basis. It is convenient to use the basis e' 1, if2 for 
the derivation of the strain energy, since the argument of this 
function assumes a simple form in this basis. 

We measured C n and Cz2 when different biaxial loads 
were applied. The results indicate that the assumption of 
inextensibility is fairly reasonable (see the data in the last two 
columns of Tables 3 and 4), although the extension in the 
fiber directions was larger than the typical scatter ofllEII. Our 
observations suggested that the origin of this slight extensibil- 
ity was due mainly to the bending of the fibers of the cloth. 
Since these fibers were forced to pass over and under each 
other due to the weave of the cloth, there was noticeable 
bending of the fibers when the tension was applied. 

Under the inextensible assumption for the fibers, we have 

C u = F•i + F21 = 1, (20) 

and 

Cz2 = F122 + V~2 = 1. (21) 
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Thus the strain-energy function depends only upon C12, 
According to (20) and (21) we have, in the basis (e' I, e'2), 

( c o s a  s i n ~ )  (22) 
F =  ~ s i n a  cos ' 

Then 

(1 s i n ( a + / 3 ) )  (23) 
C = F T F =  s i n ( a + / 3 )  1 

Note that a +/3  is the angle change experienced by the 
originally orthogonal fibers during deformation. Let us as- 
sume that the strain-energy function has the following form: 

q~= ~(C12), - 1  <C12 < 1. (24) 

We define the total potential energy as in (9), which has 
the alternative form (12). Using (24) 2 we assume l a +/31 < 90 
deg, which has the geometric interpretation of forbidding the 
fibers to become parallel. 

A necessary and sufficient condition that a homogeneous 
deformation y(x) = Fx minimize the total potential energy is 
that it minimizes the integrand 

- F . T .  (25) 

Under the test machine (force) basis e I and e 2 (see Fig. 6), 
the expression for T in (25) is 

T cos 2 0 + T 2 sin 2 0 (T 2 - T1)sin 0 cos 0 

T =  (T 2 - T 1 ) s i n 0 c o s 0  T 2cos 2 0 + T  1sin 20 
(27) 

Then we have 

E:  = ~b - F '  T = ~(s in (a  + / 3 ) )  

- ( T  1 cos 2 0 + T 2 sin 2 0)cos a 

- ( T  1 sin 2 0 + T 2 cos 2 0)cos/3 

- ( T  2 - T1)sin 0cos 0(sin a + sin/3). (28) 

In order to discuss the stability of the deformation, we 
study the formula (28). If (a*,/3*) is a local minimizer, then 

dE ,~*, ~* dE 
- -  = = 0. ( 2 9 )  
0ol  7 a * , ~ *  

These give two equations for the determination of a* and 
/3" which can be put in the forms 

(T 1 cos 2 0 + T 2 sin 2 0)sin a* 

+(T1 - T2)sin 0cos 0cos a* 

= (T 2 cos 2 0 + T 1 sin 2 0)sin/3* 

+ ( T  1 - T2)sin 0cos 0cos/3* (30) 

~b'(sin(a* + /3*) )  = 
- ( Z  1 c o s  2 0 -I- Z 2 sin 2 0)sin a* + (T2 - T1)sin 0cos 0cos a* 

cos(a* + /3*) 
(31) 

2 

T =  ~]T/e i ® e  i, (26) 
i = 1  

where T i > 0. Let 0 represent the angle between the fiber 
direction and the force direction (as shown in Fig. 6). In 
order to bring out the dependence on 0 we write the 
expression (26) in the e' 1 and e'a basis, which gives 

Table3 0 = 2 2 . S d o g  

Force (N) C,i C~2 
T I I T~ 

26.7 17.8 0.9999 0.9955 
26.7 26.7 0.9984 1.0009 
35.6 26,7 1.0017 1.0003 
35.6 35.6 0.9991 1.0048 
26.7 35.6 0.9996 1.0088 
26.7 26.7 0.9998 1.0040 
17.8 26.7 L0004 1.0086 
17.8 26.7 1.0006 1.0089 
26.7 26.7 0.9994 1.0040 
26.7 35.6 1.0012 1.0087 
35.6 35.6 1.0003 1.0060 
35.6 26.7 0.9997 1.0011 
26.7 26.7 1.0009 1.0027 
26.7 17.8 1.0005 , 0.9984 

Table4 0 = 3 5 d o g  

Force (N) C,1 ! C22 
T 1 T2 

17.8 26.7 0,9960 0.9997 
26.7 26.7 0.9988 1,0022 
26.7 35.6 0.9944 1.0018 
35.6 35.6 0.9977 1,0048 
35.6 26.7 1.0040 1.0027 
26.7 26.7 1 .(71019 1.0034 
26.7 17.8 1.0060 1.0016 
26.7 17.8 1.0049 0.9992 
26.7 26,7 1.0041 1.0026 
35.6 26.7 1.0042 1.0031 
35.6 35.6 1.0010 1.0053 
26.7 35.6 0.9964 1.1132 
26.7 26.7 0.9983 1.0047 
17.8 26.7 0.9926 1.0027 

The first of these conditions is a universal relation, express- 
ing the fact that TF *T is symmetric. This condition effectively 
determines the rigid rotation of the specimen. 

If  we let 

d2E O2E d2E 
A =  B =  C = 

Oa 2,  0a,9/3' a13 2 , 

sufficient conditions for the potential energy E to have a 
local minimum at (a*,/3*) are (29) and 

B 2 - -  ACI ~,, ~, < 0, (32) 

AI , ,  ~, > 0. (33) 

Substituting A,  B, and C into (32) we get the following 
condition for local stability: 

J 1 J 2  - -  '[3 - J4  

~ " J 2  > c o s 2 ( a ,  + / 3 , )  (34) 

where 

Ja = ~b'sin(a* + / 3 ' )  

= tan(a* + / 3 " ) ( -  (T 1 COS 2 O -I- Z 2 sin 2 0)sin c~* 

+ ( T  2 - T1)sin 0 cos 0 cos a*) ,  

J2 = (T1 sin2 0 + T 2 cos 2 0)cos/3* 

+(T2 - T1)sin 0cos 0 s in /3 '  

+ (T 1 cos 2 0 + T 2 sin 2 0)cos a* 

+ (T 2 - T1)sin 0 cos 0 sin a*, 

J3  = ( T 2  - Tl)sin 0cos 0 

× [ ( r  1 cos 2 0 + T 2 sin 2 0)cos a* sin/3" 
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+ ( T  1 sin 2 0 + T 2 cos 2 0)sin a ' c o s / 3 *  

+ ( T  2 -- T1) sin 0cos 0sin a ' s i n / 3 ' ] ,  

J4 = (T1 c°s2 0 + T 2 sin 2 0)  

X ( r  1 sin 2 0 + T 2 cos 2 0)cos a ' c o s / 3 * .  

Similarly, substituting A into (33) and using (31), we have 

If we compare (43) and (44) with Table 1 and Table 2, we 
find that the deformation gradients in these tables have the 
forms of (43) and (44). 

Further, using the assumption of inextensible cords and 
the stability conditions given above, in Section 7 we can 
restrict the possible forms of the energy function by measur- 
ing the angles a and /3 of the deformed fibers. 

- ( T  a cos 2 0 + T 2 sin 2 0 ) ( t a n ( a *  +/3*)s in  a* + cos a*)  
Oh" > cos2(  * +/3*) 

(T 2 - T1)sin 0 cos 0 ( t an (a*  + fl*)cos a* - sin a*)  

+ cos2( , +/3*) 
(35) 

Hence, in the case J2 > 0 (which is the case in all of our 
experiments) sufficient conditions for stability represent a 
simple lower bound on 4", either (34) or (35), which depends 
only on the load and the deformation. These conditions are 
necessary if equality is allowed. 

Now let us specialize to the situation of T 1 = T 2 = :T > 0. 
In this case (30) becomes 

sin a* = sin/3*. (36) 

Using [a + 131 < 90 deg we get from (36) 

a* = /3* = :y. (37) 

The conditions (34) and (35) in the equibiaxial case reduce 
to the following forms: 

T(2 tan  2y sin 3' + c o s y )  
~b" > - 2c°s 2 27 , (38) 

and 

T(cos 3' + tan 277 sin y )  
,b" > - cos 2 2y (39) 

According to (22) and (37), the locally stable deformation 
gradient has the following form: 

( c o s y  s i n ; )  (40) 
F =  sin 3' cos " 

At the same time, the total potential energy function be- 
comes 

E = ~b - F .  T = ~,b(sin2y) - 2Tcos  y. (41) 

If we change 3' to - 3', the total potential energy will stay 
the same. This change in the sign of 3' is equivalent to the 
symmetry transformation H(n~r/2), where n is odd integer. 
The resulting deformation gradient (40) will change to the 
form 

cosy  - s i n y ]  (42) 
F =  - s i n 3 ,  cosy  ] '  

Now let us transform (40) and (42) into the force basis. We 
get in the basis (el, %) 

cos y - 2 siny sin0 cos 0 

F = - sin 2 0 sin 7 

and 

F = ( cos 3' + 2 sin y sin 0 cos 0 
sin 2 0 sin y 

- cos 2 0 sin 3' 1 
cos y + 2 sin 3' sin 0 cos 0 J 

(43) 

cos 2 0 sin 3' 1 
cos 3' - 2 sin y sin 0 cos 0 ]" 

(44) 

7 Evaluation of the Strain-Energy Function 
In order to find the strain-energy function, several experi- 

ments were carried out in our biaxial machine. In these 
experiments, pieces of cloth which were cut at 0 = 22.5 deg 
and 0 = 35 deg were tested under different loads and the 
deformations were recorded, respectively. To reveal the na- 
ture of dqb/dC12 versus C12 we decided to take the average 
values of data, bearing in mind the scatter discussed at the 
beginning of Section 4. Besides C12 and dqb/dC12, the right- 
hand sides of inequalities (34) and (35) were also calculated 
for the purpose of checking the stability. From the direct 
measurements of the deformation gradient F, we can com- 
pute C12 and, from Eq. (31), ~b' (see Table 5 for these 
measured data). 

dcb/dC12 versus C12 was plotted as shown in Fig. 5, and it 
was found that all the points in the central part belonged to 
the equibiaxial load, i.e., T 1 = T 2. Among those points, the 
positive dqb/dC12 points correspond to the negative C12 and 
the negative dq~/dC12 points corresponds to the positive C12. 

According to the experimental results, there are several 
possible strain-energy functions which are consistent with the 
experimental data. Since the strain-energy function is an 
even function of C12 by (7), we only need to discuss it for 
C12 ~ 0. 

Hypothesis 1 is shown in Fig. 8. From this assumption, the 
strain-energy function 45 has the shape as shown in Fig. 9. 

Let us discuss the stability for an equibiaxial load case. 
Equation (29) is satisfied at a = /3 = 0. The second deriva- 
tive tests (conditions (38) and (39)) have the forms 

T 
~" > - - -  (45) 

2 

and 

T a b l e  5 

Force (N) C n d ,  
dC L2 

T 1 T~ 
24.5 15.5 0.1204 1.9656 
24.5 24.5 0.0219 -0.1731 
33.4 24.5 0.0881 1.8623 
33.4 33.4 0.0247 -0.2700 
24.5 33.4 -0.0734 -1.8548 
24.5 24.5 -0.0227 0.3560 
15.5 24.5 -0.1231 -1.8783 
33.4 33.4 -0.0156 0.3653 
15.5 28.9 -0.1888 -2.6175 
28.9 15.5 0.1851 2.6896 
33.4 20.0 0.1808 2.3652 
20.0 33.4 -0.1435 -2.7514 
26.7 31.2 -0.0436 -0.7779 
15.5 20.0 -0.0503 -1.0756 
24.5 20.0 0.0530 0.9990 
28.9 24.5 0.0456 1.0075 
20.0 15.5 0.0553 1.0920 
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Fig. 9 Strain-energy function corresponding to Hypothesis 1 

4.," > - T  

These conditions are inconclusive because the precise value 
of ~b"(0) is not known. However, Hypothesis 1 with ~b" 
sufficiently negative near C12 = 0 would rule out a locally 
stable equilibrium near Ca2 = 0, consistent with experiments. 
Of course, it must be appreciated that this hypothesis cannot 
be applied to the situation of zero load, because the natural 
state a = /3  = 0 appears to be stable under zero load. 

In order to discuss the possible global minima, let us 
rewrite (41) in the following form: 

E = q b ( C 1 2  ) - 2T cos(~-sin-1C12). 

Subtracting 2T cos(1/2 s in-  1 C12) from Fig. 9 yields Fig. 10. 

-2 TCOS ( ~ sin-~C~a} 

Fig. 10 The function 4 ) (C12 ) -2Tcos (1 /2s l n - lC12 )  under Hy- 
pothesis 1 
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Fig. 12 Strain-energy function 
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corresponding to Hypothesls 2 

Since 2Tcos(1/2sin-lC12 ) is concave and almost flat be- 
tween C12 = 0 and C12 = a, a global minimum is expected 
just to the left of C12 = a, as shown in Fig. 10. Therefore, 
Hypothesis 1 is at least consistent with all the measured data. 

Hypothesis 2 is based upon the curve of dqb/dC12 versus  
C12 as shown in the Fig. 11. The strain energy function has 
some wells as shown in Fig. 12. In this case we assume that 
the well a t  C 1 2  = 0 has the lowest value. Checking the 
function (41) at C12 = 0 gives (46) 

E = 6 (0 )  - 2 T  = - 2 T .  (48) 

This is the global minimum. Hence, if Hypothesis 2 was the 
case, we expect to have observed deformation a = /3  = 0, 
particularly during loading with T t = T 2 beginning at the 
natural state. Since we did not observe c~ = /3  = 0 in any 
experiment, we conclude that Hypothesis 2 is not the case. 

Hypothesis 3 is also based upon a similar curve of dd~/dC12 
versus C12 as that shown in the Fig. 11 for Hypothesis 2, but 
the shape of the strain energy function is as shown in Fig. 13. 
The difference from Hypothesis 2 is that the two outside 
wells have lower values than those inside. 

(47) Similarly, subtracting 2Tcos(1/2sin  -1C12) from Fig. 13 
yields Fig. 14. Depending on the relative heights of the inside 
wells relative to the two outside wells, we can retain the 
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Fig. 13 Strain-energy function corresponding to Hypothesis 3 
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Fig. 14 The function ~ ( C 1 2 ) - 2 T c o s ( 1 / 2 s l n - l C 1 2 )  under Hy- 
pothesis 3 

feature that there are global minima near _+a. In addition, 
there remain several local minimizers in the  interval (-a,  a). 

From the above discussion, we see that Hypothesis 1 and 
Hypothesis 3 are consistent with our experiments and obvi- 
ously there are many other possibilities. 

Since it may not be possible to observe any local minimiz- 
ers, it is not known how many potential wells lie between 
C12 = - a  and C12 = a. From experience with cloth-type 
materials under no loads, we know that cloth has many stable 
(or metastable) deformed configurations. In fact, when the 
cloth was unloaded along an equibiaxial loading path from an 
unsymmetrical state, it remained unsymmetrical even under 
zero load. It is thus conceivable that the cloth is modeled by 
a 4' with many potential wells between - a  and +a .  It is 
interesting to note that the point C12 = 0 would become 
stable for sufficiently large loads under any of the hypotheses 
1-3. This was not observed in our limited loading range. 
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