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Abstract. We present models of the microstructure of martensite that occurs when twinned layers of martensite meet a pure 
variant. This microstructure often occurs below the A, temperature, with loading that favors the passage from one pure 
variant of martensite to another. This microstructure gives a mechanism for variant rearrangement. In this microstructure, the 
layers are observed to pinch down to sharply pointed needles. If the laminate is sufficiently long, branching of the needles 
is observed. In materials with a reasonably large transformation strain, the needles exhibit a characteristic bent shape; the 
bending is in the opposite sense as might be expected from the overall shear. Our analytical and numerical results imply that 
this microstructure forms as a result of energy minimization in the transition layer between the martensite laminate and the 
pure variant. The bending of the needles plays a key role in lowering the energy of this transition layer. 

1. GEOMETRICALLY LINEAR AND NONLINEAR THEORIES OF MARTENSITE 

A picture of the microstructure of interest here is shown in Figure 1, taken from the biaxial loading experiments 

Figure 1. Branched needle microstructure. 

When a twinned laminate of martensite meets a pure variant as in Figure 1, there are certain matching 
conditions that must hold which are exactly analogous to those of the crystallographic theory of martensite. 
We prefer to think of them as a consequence of energy minimization (see [3], [4] and [5] for the explanation 
of how the crystallographic theory follows from energy minimization). In this viewpoint the bulk free energy 
density of the specimen is a function cp  of the deformation gradient, F = V y ,  (a 3 x 3 matrix) and the 
temperature 8. Throughout this paper we hold 8 fixed below A, and so we omit it from the notation. The 
deformation y ( x )  maps a suitable reference configuration into 3-dimensional space. The total bulk free energy 
is given by the integral 

]P ( V Y ( X ) )  dx . (1) 
R 

A key feature of cp  is that it has energy wells (minima), one at the deformation gradient of each variant. For the 
purposes of this discussion we can focus on just two of those energy wells corresponding to the two variants 
of martensite in question. A second key feature, arising from basic principles, is that cp  is frame-indifferent 
(i.e., unaffected by overall rotations), which means that cp(RF) = cpkF). Here, SO(3) denotes the set of all 
rotation matrices, SO(3) = {R : R is a 3 x 3 matrix satisfying R R = I, det R = +I), a superscript 
T denotes the transpose and I is the identity matrix. Frame-indifference implies that if a 3 x 3 matrix F 
minimizes p, then so does RF where R belongs to SO(3); for simplicity we call this set SO(3)F. In [4] 
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it is shown that any two energy wells (arising from any cubic-to-orthorhombic, tetragonal-to-monoclinic or 
similar transformation) can be put in the canonical form S0(3)A, SO(3)B by a linear change of variables 
x -+ Gx, where A and B are the simple shear matrices 

1 6 0  1 -6 0 
A =  0 1 0  , B =  0 1 0  . (. 0 (o  0 (2) 

We assume cp 2 0 and cp = 0 exactly on the set SO(3)A U SO(3)B with A Md B given by (2). 
In terms of bulk energy minimization, the overall calculation referred to at the beginning of this section 

is 
RB-(XA+(l-X)B)=b@m. (3) 

This is to be solved for the rotation matrix R, and the volume fraction A, and the vectors b and m. Here, 
b @ m is the 3 x 3 matrix with components bimj in a Cartesian coordinate system. The condition (3) is 
sufficient to ensure that the bulk energy in the transition layer between the laminate and the pure variant (see 
Figure 2) can be made arbitrarily small by refining the layers. By scaling, (3) is also necessary and sufficient 
for the deformation defined on the transition layer to be periodic along the layer. It can easily be shown that 

A 

for each X in the interval [0,1] there is a unique solution (R, b @ I%) of (3), which takes the form: 
/ 1 - X2S2 2x6 - \  

Thus, unlike in the crystallographic theory of martensite, the condition (3) does not detennine the volume 
fraction. Thus by changing X from 0 to 1 the microstructure can pass on a low energy path from pure variant 
A to pure variant B. These laminates are typically observed [2] patched together to form more complicated 
energy minimizing microstructures. The normal I% comes out to be nearly, but not precisely, parallel to the 
reciprocal twin boundary normal, as can be seen in Figure 1. We view the equations (3) and (4) as providing 
the boundary conditions for a more refined model of the transition layer. 

In geometrically linear theory (see [6], [9], [lo] and [12]) the condition of frame-indifference is replaced 
by its linearized counterpart, which means that the corresponding geometrically linear energy cpli,(H) as 
a function of the displacement gradien5 H = V(y(x) - x) satisfies cpa,(H + W) = cpli,(H) for all 
skew matrices W = -WT. The wells in geometrically linear theory become (+(A + AT) - I) f W, 
(i (B + BT) -I) + W, where W is any skew matrix. Letting EA = $(A +AT) - I, EB = (B + BT) - I, 
the analog of (2) in geometrically linear theory is 

Equation (5) has the solution (which should be viewed as an approximation to the true solution (4) in the limit 
of small strains and rotations): 

2. MODEL OF THE TRANSITION LAYER - GEOMETRICALLY NONLINEAR THEORY 

To explain in simple terms the origins of our models and the reasons for needle bending, consider the boundary 
value problem associated with Figure 2. Here we seek an energy minimizing deformation defined on the gray 
region consistent with the boundary conditions shown there, which are obtained from the overall solution (4). 



Figure 2. Boundary value problem for the transition layer (shaded region). 

The deformation gradient at point a is not expected to be precisely &B, because of relaxation near the 
interface (see Section 4), but let US neglect this momentarily. To begin the solution in the gray region, we seek 
a defamation gradient matrix x defined at point b in Figure 2 which differs from 6~ by a rank-l matrix 
of the form c €3 hi (so the resulting deformation is compatible). To have low energy, we would hope to find 

such a matrix A near the energy well SO(3)A. This suggests that we study the problem A - RB = €3 hi, 
A sz RA, R E SO(3). Indeed, because iii = (100) (cf. (4)), there is such a matrix A, which turns out to be 
a distance of order d2 from SO(3)A. However, it also turns out from this calculation that # I. 

Now consider the dotted line in Figure 2 passing from point b to point c. To have a low energy transition 
layer along this line, we would like to have a deformation gradient that passes from A sz f i ~  to A, and stays 
near the well S 0 ( 3 ) ~ ,  i.e. a deformation gradient approximately of the form R(x)A. By general continuum 
mechanics, there is no deformation precisely of this form, but a bending deformation has such a form on a 
plane (the neutral surface of the "beam") and slightly differs from this form at points near the plane. This is 
the proposed deformation in the larger region outside the needles. It turns out by good fortune that the needes 
themselves also have approximately a bending deformation with gradient near SO(3)B. We believe this is 
the basic reason for the observed microstructure. 

It is not difficult to formalize the description above, that is, to write down a particular deformation that 
conforms to this description. An example is pictured in Figure 3. To plot this, we have chosen a symmetric 
shape of the needles in the reference configuration, and we have chosen 6 relatively large (6 = 0.2) so the 
deformation can be easily seen. The deformed grid is shown in Figure 3. The details of this construction will 
appear in a forthcoming publication [8]. The fact that the energy is low can be seen qualitatively by following 
the deformation of the squares of dots. Note that the shear is down, but the bending is up. 

Figure 3. Deformation of the transition layer according to geometrically nonlinear theory. 

3. MODEL OF THE TRANSITION LAYER - GEOMETRICALLY LINEAR THEORY 

For geometrically linear theory, one can make deformations analogous to the one shown in Figure 3, and 
it is also easier to assess the effects of branching and tip splitting in geometrically linear theory. In fact, 
the constructions are easier to do, because the analog of described above lies precisely on the well 
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(i ( A  + AT) - I) + W, W = -WT, rather than merely near it. Because of this, one can find a deformation 
in geometrically linear theory that is exactly pure bending (according to linear elasticity) outside the needles. 
Furthermore, if one chooses the shape of the needles appropriately, it is possible to have pure bending 
also within each needle. If we let (u(x l ,  x2, x3), V ( X I , X ~ ,  x3), w ( X I ,  2 2 ,  x3))  be the components of the 
displacement, then a suitable class of deformations have w = 0, u(x1, x2 + h) = u(x l ,  2 2 )  + 6(2X - 1) h, 
and are otherwise given by: 

X 2  4 
C 

/X2=  h(f-(xl) + 1) 
U =  F(hh - x,) 

(1-h)h u = linear interpolation 
v = o  

t v = Fa(x 

\x2= hf+(x I) 
u =  6x, 

h h  0-- 
u = 6(-a'(x ,)x + x 2) 

v = O  u = F(2h - l)x2 

1 
v = Fa(x ,) v = Fa(1) (7) 

J~2=hf-(x1)  

u = 6(-hh - x,) u = linear interpolation 
v=O v = Fa(x ,) 

y x 2 =  h(f+(x ,) - 1) 
+ 

1 1 

Here, a(0) = a'(0) = 0, a l ( l )  = 2(1 - A) ,  and "linear interpolation" refers to the unique function that is 
linear in x2 inside the needles and agrees with the specified displacement at their boundaries. Note that there 
is no singularity at the tips of the needles. A plot of this displacement (with a suitable choice of the constants 
and the needle shape: f- and f+) is similar to that shown in Figure 3. 

As is well-known, interfacial energy is expected to play an important role in branching of the microstruc- 
ture under study (see [l l]) .  In analyzing this microstructure we have operated under the principle that the 
main role of interfacial energy is to set the scale of the microstructure, as found in [ l  11 in a simpler case. A 
preliminary idea of the role of interfacial energy can be obtained by altering the deformation (7) by locally 
splitting the tips of the martensite needles (This is easily accomplished because, in all of our deformations, 
the strain tends to a finite limiting matrix at the needle tip, so locally the deformation of the needle tip looks 
like a deformation with constant strain sectors). We shall only present the results of this calculation. It is 
found, as expected based on the fact that it is a "small-scale" calculation, that interfacial energy always favors 
the absence of splitting, but the energy barrier for splitting decreases as the width/length ratio of the needles 
increases, i.e., short, fat needles want to split. A quantitative analysis is found in [8]. This agrees at least 
qualitatively with the observations of [7], where tip-splitting was often observed as the volume fraction X was 
being changed. 

4. NUMERICAL CALCULATION OF A RELAXED TRANSITION LAYER 

In this section we present a preliminary numerical relaxation of the transition layer, using a bulk energy 
appropriate to the two compound twinned variants of the y; phase of the Cu-14.0wt%A1-3.9wt%Ni alloy 
pictured in Figure 1. Because this was taken from a thin plate with normal (loo), we have first derived a 
geometrically nonlinear, plane-stress energy function appropriate to this plate, using the measured moduli of 
Yasunaga et al. (see [13]) to get the shape of the energy near each well and the measured transformation strain 
to get the wells themselves. The resulting nonlinear energy for variant one (Cll  > Cz2)  is 

c p l ( ~ )  = 7 .85~2 ,  - 11.8CllC22 - 5.4Cll - 13.3CZ2 - 8 . 4 ~ : ~  GPa , ( 8 )  

where the components of C = F ~ F  are given in the orthorhombic basis. This energy has wells at S0(2)U1 
and SO(2)Uz where U 1  and U 2  are the matrices, 



By geometrical linearization (i.e, replace C = UTUl + 2UTeU1 + ..., cf.[lOl) we get the linear energy for 
variant one 

cpkn = 40 .0~ :~  - 55.7e11~22 + 5 5 . 6 ~ ; ~  + 39 .4~ :~  GPa , (lo) 

where eij is the elastic strains invariant one. The total strain in this variant relative to the reference austenitic 
state is 

where €1 = U1 - I is the transformation strain of variant one. From (10) we can determine the plane-stress 
moduli for the variant with transformation strains U1. The Young's modulus for tension in the $1-direction 
is El = 52.1 GPa, in the x2-direction it is E2 = 72.5 GPa and the XI-x2 plane shear modulus and Poisson's 
ratio are G12 = 19.7 GPa and 1112 = -0.50, respectively. 

Equation (1 1) has the same form as the equations for linear thermo-elasticity with the transformation 
strain €1 playing the role of the thermal strains. Thus we can solve the linear transition layer problem using any 
finite element method (FEM) that supports orthotropic materials and thermo-elasticity. I-DEAS by Structural 
Dynamics Research Corporation (Milford, Ohio) is one such FEM package that solves these types of problems. 
Using the orthotropic elastic constants identified above and setting in-plane thermal expansion coefficients in 
the x l  and 2 2  directions to be a1 = 0.0619 and a 2  = 0.0230 correctly models the linearized problem. The 
temperature difference for the problem was set to 1 .O. 

The constants identified above are for the variant with transformation strain el. The second variant (with 
transformation strain €2 = U2 - I) is symmetry related to the first variant by a rotation of 90 degrees about 
the $3 axis. Thus a single material is used in the FEM model and the two variants have material orientations 
that differ by 90 degrees. In Figure 2 the twin planes are horizontal and vertical. To match this orientation 
the material axes in the FEM model will be taken to be f 45 degrees from the horizontal direction for the 
two variants. One final adjustment was made in order to make application of periodic boundary conditions 
in the (010) direction of Figure 2 simple. The dilatational component of the transformation strain is same in 
both variants, thus this component results in a uniform in-plane expansion of the entire microstructure and no 
stresses being developed. Removing the dilatational component from the transformation strains results in a 
pure shear deformation. This procedure gives a1 = 0.01945 and a 2  = -0.01945 as the thermal expansion 
coefficients in the FEM model. 

In order to obtain a suitable starting geometry, experimental data similar to that shown in Figure 1 was 
used to obtain the shape of the deformed needles. Using the theory presented above which assumes that 
the bent shape is due to elastic deformations, the bending of the needle was removed by subtracting a pure 
bending deformation. This resulted in an almost perfectly symmetrical reference shape for the needle. This 
shape can be approximated very well by the following function 

where w is the far field width of the needle and P is the decay rate. The fit of the observed needle gave 
w = 1.57 and ,B = 0.172, these values are used in all the calculations below, where the length of the needles 
is 20 in the arbitrary units of the FEM model. 

The vertical interface in Figure 1 (xl = 1 in equation 7) is noticeably wavy with the same period as the 
needles. The shape of this interface is primarily due to its shape in the reference configuration. To determine if 
a given shape for an interface is the equilibrium shape, we must determine not only a solution to the equations 
of linear thermo-elasticity (equilibrium and compatibility) but we must also allow the shape of the interface 
in the reference configuration to vary and pick the interface shape that results in the lowest free energy in 
the solution. By considering the motion of an interface in the reference configuration (note that interfaces 
between variants are not material) we can find the driving traction Fd on an interface [I], 

where [[ f JJ = f (x+) - f (x-) is the jump in a quantity across an interface and t r  is the trace of a 3 x 3 
matrix. A positive value of the driving traction means that more strain energy would be released than the 
work needed to transform the material as the interface moves toward the positive side of the interface. Thus 
it is energetically favorable for the interface to move in this direction. We will assume that the velocity of 
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the interface is proportional to the driving traction. The proportionality constant will be chosen to give a 
reasonable amount of change in the interface shape. 

Figure 4 shows the shear strain €12 in variant A as gray scales on the deformed geometry. This plane- 
stress calculation was performed using the material constants given above and for the needle shape given in 
(12). The boundary conditions are symmetric on the top and bottom edges and free on the sides. The needles 
shown have a volume fraction of 112. The bending in the needles, which are symmetric in the reference 
configuration, is clearly visible because the deformations have been multiplied by a factor of 2 for this figure. 
Without magnification the amount of bending is very similar to the amount of bending observed in needles 
with a volume fraction of 112 in Cu-Al-Ni. This solution is the second iteration of changing the shape of 
the vertical interface. Figure 5 shows the driving traction along the vertical interface. The solid lines are the 
values of the driving traction when the interface is straight in the reference configuration. By changing the 
shape of the interface in proportion to the the driving traction, the driving traction was reduced to the amount 
shown by the dashed curve in Figure 5. 

Figure 4. The shear strain €12. black = -.02, white = -.0185, on the deformed gwmetty. 
The overall elastic energy in the solution dropped by 4.3 percent due to this small change in the shape of the 
vertical interface. Calculations of the driving traction on the needle interfaces show that they are not exactly 
in equilibrium but are reasonably close. This calculation also shows that the needle will remain symmetric in 
the reference configuration because the driving traction is symmetric. This suggests that the bending of the 
needles is due to elastic deformations, whereas the waviness of the vertical interface is due to its shape in the 
reference state. For more details on the methods used to calculate the updated interface shapes and the results 
of a detailed study of these types of equilibrium microstructures see [8]. 
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Figure 5. The driving traction on the vertical interface in Figure 4. Each peak is at the tip of a needle. 
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