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Abstract. During the past few years, a new theory of martensite has been developed in which microstructure is predicted by 
energy minimization ([I, 21). The theory is based on a crystallographic model, and the continuum theory is obtained from 
this model by using the Cauchy-Born rule to relate atomic to macroscopic deformation. The theory treats the geometry of 
deformation exactly, regardless of the size of the transformation strain. The authors believe that this theory could be widely 
used by experts on martensite to analyze and predict microstructures. To illustrate one way the theory can be used, the authors 
take several of the commonly observed microstructures in CuAlNi and show how each of them can be obtained directly by 
energy minimization of a given energy function. In particular, we consider the austenite-martensite interface (the theory 
subsumes the crystallographic theory of martensite), the divided wedge, laminates of compound twins, layers within layers 
of Type I1 twins, and simple and complex twin crossings. In each of these cases the theory gives precise information on 
deformed geometry, orientation of interfaces, and volume fractions. 

1. THEORY OF MARTENSITE 

In recent years a geometrically nonlinear theory of martensitic transformations has been developed in which 
microstructures are identified with "minimizing sequences." This theory is based on a crystallographic picture, 
and the passage to continuum level is made via the Cauchy-Born rule. A key part of the crystallographic 
derivation is the identification of a region in the space of lattice vectors (the Ericksen- Pitteri neighborhood) on 
which a consistent symmetry group acts. It is not the purpose of this paper to repeat this derivation, which can 
be found in [Z], but rather to show how the results can be used to understand the presence of microstructure. 
To do this economically, we focus on a single material (the well-known Cu-14.O%A1-3.9%Ni), describe its 
free energy function, and analyze its commonly observed microstructures. While we think this gives a good 
sense of what the theory can and cannot do, it does not highlight the the most important uses of the theory: 1) 
to predict new microstructures, 2) to predict behavior. For some aspects of the latter, see [2]. For this short 
paper we are not able to give all the details of the solutions of the equations in each case. Here we give an 
overview and concentrate on the results. 

The basic unknowns of the theory are deformations, represented by functions y (x), x E R. The reference 
configuration R represents undistorted austenite. The total free energy of the material (without loads applied) 
is given by, 

Here, cp is the free energy density as a function of the deformation gradient G (a 3 x 3 matrix) and temperature 
0. From the principle of frame-indifference cp must satisfy p(RG, 0) = p(G, 0) for all rotation matrices R, 
i.e. 3 x 3 matrices in the set SO(3) = {R : R ~ R  = 1, det R = +I), and all temperatures 0. We shall use 
the notation SO(3)A to denote all matrices of the form RA, where R E S0(3), denoted here by a circle 
attached to A: 

SO(3)A = 
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For this paper we will only need to describe the energy wells of cp. We also focus on the PI to y; transfor- 
mation only (The treatment of the to transformation adds additional energy wells at larger strains; see 
Bhattacharya [4], forthcoming). Let 8, denote the transformation temperature of the material, defined as the 
temperature at which the undistorted austenite and martensite phases have equal free energy density. The 
energy wells are defined in terms of the six matrices, 

where a = 1.0619, ,6 = 0.9178 and y = 1.0230 for this alloy. It turns out from the theory that there are 
seven energy wells at 8 = 8,. That is, p(G, 8,) 4 0 and cp(G, 8,) = 0 precisely on the set: 

For 8 > 8,, cp is minimized just at the austenite well S0(3)a(6)1, while for 8 < 8, the martensite wells 
S0(3)U1 U . . . U S0(3)U6 are at lowest energy. Here a(8), a(8,) = 1, describes thermal expansion of the 
austenite. 

2. MINIMIZING SEQUENCES 

To minimize the total free energy appropriate to an unloaded single crystal, we fix 8 and minimize (1) over all 
deformations. We assume such deformations are continuous but that the deformation gradients may have jump 
discontinuities that model for example twin interfaces ("fiducial scratches can bend sharply but never break"). 
The energy (1) has a strange property first noticed by L.C. Young in the 1930's for simple minimization 
problems. That is, for certain boundary value problems (see [2] for examples) the minimum energy in (1) is 
not attained. This means that the total energy is bounded below (as in the case of our cp) but that there is no 
deformation that one can put into the total energy that actually achieves this minimum energy. From the form 
of (1) there are always minimizing sequences, that is, sequences of deformations y(k) (x), k = 1,2,3, . . . that 
make the total energy closer and closer (as k -+ ca) to its minimum value, and one is led in this situation 
to study them. Necessarily they involve finer and finer features as k gets larger and larger, and the idea is 
that these model fine microstructures. Nonattainment is a tip-off to something more basic (the failure of 
"weak lower semicontinuity"), which in turn indicates that even when there is attainment, one should study 
the minimizing sequences. One may get the impression by looking at the arguments below that minimizing 
sequences are rather arbitrary, but, in fact, the condition that they are minimizing places strong restrictions on 
the possible constructions. 

Our minimizing sequences will be based on three such constructions. The first will be twin interfaces 
in which v ~ ( ~ )  (x) alternates between two matrices A and B, on bands of width l /k  separated by interfaces 
with normal n, and the volume fraction of the region where vy("(x) = A being A. Such a deformation is 
continuous if A - B is a rank-one matrix: A - B = a 8 n (Here a 8 n is a matrix with components ainj).  



Augmenting our notation, a straight line drawn between two matrices will always mean that they differ by a 
matrix of rank 1 (below, right): 

3 x 3 matrix space 

Vy= A / B  

Figure 1. A simple laminate with alternating deformation gradients A and B (left) and the associated rank-1 connection. 

For this sequence to be minimizing, A and B must lie on the energy wells at the appropriate temperature (In 
fact, each member of this sequence has minimum energy in this case). Another construction (closely related 
to the crystallographic theory of martensite) is alternating bands with gradients A and B and the volume 
fraction A, meeting a homogeneous deformation with gradient C at a transition layer (shaded), of width I l k ,  
viz. 

v p ,  

C 

Figure 2. A laminate meeting a homogeneous deformation (left) and the associated rank-1 connections (right). 

For this sequence of deformations, it is necessary to construct a deformation defined on the transition layer, in 
the spirit of the WLR theory [8], and this is easily done (Note, however, that in the WLR theory, free energy 
changes are not considered). The gradient in this transition layer can be made bounded (independent of k) 
if and only if certain compatibility conditions are satisfied by the three matrices A, B, and C ,  and these are 
given by Figure 2 (right). We have extended the notation further: a line meeting another as shown above 
means that (XA + (1 - X)B) - C = b 8 m, for some vectors b and m, i.e. that C is rank-1 connected 
to a matrix on the line between A and B. Implicit in this notation is that the fractional distance along this 
line is the volume fraction X that is used in the construction. Since the deformation gradient in the transition 
layer is bounded, and the layer volume goes to 0 as k + oo then, by the form of (I), this is a minimizing 
sequence, as long as A ,  B, and C lie on the energy wells (There are various ways to do this, giving rise to 
various microstructures). 

Finally, there are sequences that model laminates meeting laminates. Again there is a transition layer 
between the laminates whose energy must go to zero, and this gives rise to compatibility conditions between 
the deformation gradients. The result is: 

Figure 3. Compatibility conditions for laminates meeting laminates. 
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3. GEOMETRY OF DEFORMATIONS 

The geometry of microstructure is represented by the deformation y(k) (x) with k large. A picture like the 
simple laminate shown above with gradients A and B is a picture in the reference configuration a, showing 
the x values where (x) takes on various matrices. However, when we view the microstructure, we see 
interfaces and volume fractions in the deformed configuration. That is, for this simple laminate, the observed 
interfaces will not have normal n but instead will have whatever normal is obtained by plotting the image of 
the interfaces under y(k) (x). There are standard formulas of "continuum mechanics" that relate reference 
and deformed quantities like normals to interfaces and transition layers, and volume fractions. For example, 
the deformed normal corresponding to the simple laminate is proportional to ~ - ~ n  (which, by the condition 
A - B = a @ n is also proportional to B-Tn). When we say below that a microstructure agrees well with 
the pictured one, we mean that when we calculate the deformed normals to interfaces and transition layers, 
these agree within f 2" (our typical error of orientation) and volume fractions (away from transition layers) 
within f 5% with the experimental pictures. See [3] for more details. 

4. SPECIAL MICROSTRUCTURES 

4.1 Austenitelmartensite interface 

This microstructure, pictured in Figure 4 (left), is well understood and we add little to what is known. The 
associated sequence and the conditions for this sequence to be minimizing are given in Figure 2 specialized 
to A and B on the martensite wells and C = 1. Solving the system of equations represented by these rank-1 
connections, one gets the possible volume fractions and normals exactly as given by the crystallographic 
theory of martensite. There are three minor advantages of the present approach: 1) the twinning system does 
not have to be assumed, as it comes out automatically by solving for the rank-1 connection between A and 
B, 2) there is a conceptual advantage of separating the compatibility calculation (represented by the "T" in 
Figure 2 (right)) from the part of the calculation that places A and B and C on the wells, and 3) it can be 
proved in the present context that any minimizing sequence that essentially uses three matrices, with one 
matrix not rank-1 connected to the other two, must look essentially like Figure 4 (left) and in particular must 
exhibit fine, macroscopically periodic twins meeting a plane transition layer [7]. 

Figure 4. Austenitelmartensite interface (left) and wedge (right). 

4.2 Divided wedge 

This microstructure has been analyzed by Bhattacharya [3] so we just summarize briefly. The structure of the 
minimizing sequence and the rank- 1 connections are shown below. 



C D C D  

o u 4  
Figure 5. Minimizing sequence for the divided wedge and associated rank-1 connections. 

The symmetric shape of the wedge, the equality of volume fractions in either half and its value, the fact that 
Type I twins in wedges point forward and Type 11 backward, and the impossibility of wedges formed from 
compound twins are predicted by solving the rank-1 connections listed above. The theory does not explain 
why Type I1 wedges are more common than Type I wedges. Conceptually, this microstructure is extremely 
important for the following reason: the rank-1 connections shown in Figure 5 can only be satisfied if there is 
a special relation among lattice parameters, f (a, 0, y) = 0 [3]. This relation, which is satisfied very closely 
by the Cu-14.O%Al-3.9%Ni alloy under study, does not follow from symmetry. This establishes a direct link 
between special microstructures and special lattice parameters. 

4.3 Laminates of compound twins 

Compound twins form patches as shown below (left) especially during variant rearrangement. 

Figure 6. Laminates of compound twins (left) and layers within layers of Type I1 twins (right). 

This is just like two austenitelmartensite interfaces, except the deformation gradients B and D lie on one of 
the two compound twinned martensite wells: 

(Zx3 
"0 0, 

I ou5 o u 4  

t--c" 
Figure 7. Minimizing sequence and rank-1 connections for compound twinned laminates. 
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It follows necessarily from this calculation that normals m and n to the transition layers are very close to the 
twin normals ml and nl, in agreement with Figure 8. However, unlike the austenite- martensite interface, 
the above is a minimizing sequence for any volume fraction X between 0 and 1, as is observed, suggesting 
why this microstructure is seen during variant rearrangement. 

4.4 Layers within layers of Type I1 twins 
This microstructure, shown in Figure 6 (right), is commonly produced in the wake of a set of parallel, 
propagating wedges. The associated rank-1 connections are really a special case of those for the divided 
wedge. 

ARAR 0 
u6 & "3 

o u 5  0. 
Figure 8. Minimizing sequence and rank-1 connections for the layers within layers. 

4.5 Simple and complex twin crossings 
A simple microstructure seen in Cu-Al-Ni is the twin crossing (Figure 9, left). It appears as shown with one 
twin passing straight through, and often forms more complicated checkerboard patterns. More complex twin 
crossings are shown in Figure 9, right. 

Figure 9. Simple and complex twin crossings. 

The set of rank-1 connections that allow these microstructures to be energy minimizing are shown below. 

&\ /volume fraction 6 

, A volume frac 

F i r e  10. Minimizing sequences and rank-1 connections for simple and complex twin crossings. 



The geometry that follows by solving for these rank-1 connections comes out as shown in Figure 9. In 
particular, for the complex twin crossing, the volume fractions necessarily satisfy the conditions 6 = 1 - X 
but X can have any value between 0 and 1. This is roughly seen in Figure 9 (right), though one also sees the 
limitations of the theory. It should be emphasized that the rank-1 connections of Figure 10 are more restrictive 
than geometry: it is possible to draw several hypothetical twin crossings that use.the natural twin normals 
between variants, but only a few of these are actually compatible (see [5, eqn (160)l for sufficient conditions 
for a twin crossing). 
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