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1. Introduction 

In 1744 Euler  [1] published his famous appendix on elastic curves in which he not 

only emphasized his energy method of minimization as.a viable method for solving 

problems in the field of natural science, but in which he also obtained his now 

famous "Euler  formula"  for the least force required to buckle a long thin column. 

The  general energy method has long since become orthodoxy and the specific theory 

of the elastica has been linearized, t reated with imperfections, analyzed f rom the 

point of view of bifurcation theory, and relaxed to include extensibility, but appar-  

ently not studied in its original setting with a stored energy response function more  
general than its original quadratic form W ~ (curvature) a. 

The  present  work is motivated by this latter observation, and, thus, it concerns the 

theory of the inextensible elastica for a general possibly non-convex stored energy 

function. For many of our specific results we concentrate on what is often considered 

to be  the simplest problem on the bending of beams; that associated either with 

prescribed terminal slope angles or with prescribed terminal bending moments .  This 

so-called "pure  bending" problem is contained in almost every elementary text on 
strength of materials or deformable  body mechanics and, in fact, is most  often used 

to introduce the student to the subject of bending. Many books give purely 
geometric  arguments based on symmetry in order  to conclude that  for this problem 
an originally straight isotropic, homogeneous  beam must assume the bent  shape of a 
circular arc.? We  find this conclusion generally to be false. 

~ One popular text that is widely used in the teaching of undergraduate deformable body mechanics is 
that of Crandall, Dahl and Lardner [2]. On p. 418 of this book it is noted that for the problem of pure 
bending the deformation pattern can be fixed by symmetry arguments alone. The specific arguments, and 
the conclusion that originally straight longitudinal lines must become arcs of circles, are contained on pp 
418-420. 
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Figure 1. The  stored energy response function W = ~(X) .  

In Section 4 we completely and explicitly solve the pure bending problem, posed 
as a problem of minimization, for an inextensible, homogeneous,  initially straight 

elastica whose graph of stored energy versus curvature is non-convex and like that 
given in Figure 1. Roughly, we denote by an Eulerian state, (see (4.2-4.4)) any 
configuration which minimizes the total stored energy of the elastica among a certain 
class of functions (including those with discontinuous curvatures) which take on 
prescribed terminal slope angles, and in Theorems 1, 2 and 3 we address the 

questions of existence and uniqueness for such states. 

Theorem 1 is a standard result in the calculus of variations and is central to this 
paper in that it lists two necessary conditions for the existence of Eulerian states; the 
integrated form of the Euler  equation and the Weierstrass condition. In Theorems 2 
and 3 we explicitly determine the Eulerian states and their degree of uniqueness. 
Theorem 3, in particular, contains the novel conclusion that for a certain open set of 

prescribed terminal slope angles an Eulerian state must consist of smoothly con- 
nected circular patches, each patch having one of either two distinct radii. While the 
total length of the patches of each kind is uniquely determined, the particular 

arrangement of the distribution of the patches themselves is not; i.e., we have 
uniqueness up to a rearrangement.  We believe that these kinds of equilibrium 
configurations are related to those that are observed even in a casual experiment on 

the pure bending of a steel pocket measuring tape. 
Eulerian states have a property not shared by weak Eulerian states (cf. (4.6)). A 

weak Eulerian state?, by definition, minimizes the total stored energy relative to 
those functions whose derivatives lie uniformly close to the derivatives of the weak 
Eulerian state, and whose terminal slope angles agree with those of the weak 
Eulerian state. Like the Eulerian states, these weak Eulerian states satisfy a 
restricted form of the Weierstrass condition. 

The distinction between Eulerian and weak Eulerian states is illuminated by the 
first integral, or "energy integral", of the Euler equation. The Euler  equation has an 
energy integral, at least locally, for weak Eulerian states; that is, an integral of the 
Euler  equation is constant on each interval of smoothness of the curvature, but the 

? Weak  Eulerian states are analogous to the 'metastable  configurations'  of Ericksen [3]. 
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constant generally changes from interval to interval. We show that for Eulerian 

states, however, the energy integral is cons tan t -  the same cons tan t -  for every point 

on the elastica. 
Another  distinction, which we discuss in Section 4, concerns the dissipative nature 

of weak Eulerian states and the conservative nature of Eulerian states. For any cycle 
of prescribed terminal slope angles and corresponding sequence of Eulerian states, 
the net work of the loading device must be zero. However,  for some cycles there 

exists corresponding sequences of weak Eulerian states for which the net work of the 

loading device is positive. 
In Theorem 4 we show how to interpret Eulerian states so as to solve the pure 

bending problem when terminal bending moments are prescribed. Here,  we are 
concerned with the minimization of the total potential energy of the elastica. In a 
discussion following Theorem 4 we show, among other things, that for certain 
distinct applied bending moments a configuration of minimum potential energy is 
highly non-unique, not even unique up to a rearrangement.  In fact, any configura- 

tion which consists of combinations of smoothly connected patches of circular arcs 
having two distinct and specific radii will do, possibly all one radius or all the other, 
or any combination of the two. Figure 3 illustrates the configurations of minimum 

total potential energy that are possible in this problem. 
As introductory to the problem just discussed concerning Eulerian states, in 

Sections 2 and 3 we describe the kinematic and constitutive properties of an 
inextensible elastic curve in ~z2. We view the elastica as a one dimensional elastic 
solid of second grade, so that relative to an arbitrary, but fixed, reference configura- 
tion the stored energy response function per unit length is defined on a certain 
domain which consists of pairs of first and second deformation gradients. These 
deformation gradients are shown to have simple representations in terms of the 

reference and present curvatures and the corresponding tangent vectors and, thus, 

our constitutive assumption is equivalent to a certain Cosserat theory of rods. We 
give a complete discussion of the restriction of frame indifference and the notions of 
material symmetry and homogeneity. In this theory the reference configuration of an 
elastica may possess no material symmetry, or it may be either isotropic or 
enantiomorphic; and these properties may be possessed either locally or globally. If 
isotropic, it is necessary that the reference configuration be straight. Moreover,  
regardless of its symmetry, if the reference configuration of an elastica is homogene-  
ous then its reference form must be either circular or straight. The  detailed 
restrictions on the stored energy response function are given in Section 3. For our 
study of Eulerian states in Section 4, we assume that the elastica is homogeneous 
and straight in a natural reference configuration, but it need not be isotropic. 

2. The elastica: kinematic notions 

In the elementary theory of the elastica it is assumed that every conceivable 
configuration of the body must lie in a fixed plane which we shall denote as r~ z, a 
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2-dimensional Euclidean point space. Thus, by a placement of the elastica we shall 
mean a mapping X(r) of a fixed real interval re [0 ,  R] into a curve ~f~ c~ :~. To be 
definite, we shall assume throughout this work that a placement is continuously 
differentiable, twice piecewise differentiable, and non-singular in the sense that 
dx(r ) /dr(  = 0 for all r e [0 ,  R]. If we let K(.):[0, R]--> ~ c~ :2 be a reference place- 

ment, then the deformation of qg~ into ~£× is described by a mapping X~(.):c£~--~ 
g× c ~:2 which satisfies the condition 

x(r) = X~(K(r)), re [0 ,  R]. (2.1) 

For the reference placement ~(.), the arc length in ~ is defined according to 

Io ld ( )l s = s,~(r) =- I - - ~ - I  d~, (2.2) 

where s ~ ( R ) = L  is the total length of ~£~. Since the placement ~(.) is non-singular, 
s~(.) is invertible, and this allows us to parametrize the reference placement in terms 
of arc length: 

~(s~(.))  :[0, L]  --> g~ c ~:2. (2.3) 

Further, it readily follows that 

d , 
a~(s) ~ s s  K(s7 (s)) (2.4) 

represents that unit tangent vector to g~ at K(r) which has the direction of increasing 
arc length. This unit vector forms a basis for the 1-dimensional tangent vector space 
to cg~ at ~(r) which we shall refer to as ~ ( s ) .  Owing to the previously mentioned 
smoothness requirements of any placement, we see that ot~ (.) e C°[0, L]  C~ P*[0, L],? 
and if we let ~x~(s) denote that unit normal vector to cg~ at ~(r) which is generated as 
a counterclockwise 90 ° rotation of o~(s) so that the ordered pair (a~(s), a~(s)) is 
orthonormal and right handed, it also follows that ot~(-) e C°[0, L] C~ P~[0, L]. At  any 
point s e [0, L]  where ate(-) is differentiable we must have 

d__ ~ (s) = ;t~ ( s ) ~ ( s ) ,  (2.5) 
ds 

where the scalar h~(s) is the curvature of c~ at K(r); clearly h~(.) e P°[0, L]. If we let 
(il, i2) denote a fixed right-handed orthonormal basis for the translation space V 
which is associated with g2, and let O~(s) represent the angle between il and ~K(s), 
measured from il, with positive taken as counterclockwise, then it follows that 

az~ (s) = il cos O~(s)+ i2 sin OK(s), (2.6) 

~ ( s )  = - i ~  sin O,¢(s)+ i~ cos O,~(s), 

~" Throughout this work, Pro[0, L] denotes the set of m times piecewise differentiable functions on the 
interval [0, L]. 
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and we have OK(')c C°[0, L]NPI [0 ,  L]. With (2.5) we then see that 

d d (2.7) ~K(s) = ~ ( s ) .  ~ * * ~ ( s ) = ~  OK(s). 

Since the placement ×(.) is differentiable, the gradient of the deformation ×K(') is 
well defined and at K(r)cCG is equal to that unique linear transformation 
IVK (s) :~K(s)  --+ V which satisfies 

d 
d-7 X(sf(s))  = FK (s)otK (s). (2.8) 

It is common practice to write F~ --= VX~. 
As above in (2.2), we may analogously introduce the arc length in cg× through the 

definition 

Io ~ dx(~) [ sx(r) =-- ~ - I  de. (2.9) 

Thus, since the chain rule and (2.2) yields 

d 1 d d 
dss X(s2 (s)) = dr  x(r) dss 821(s) 

d d 

we see by (2.8) that 

s×(r)= irl-~le(~)l ,F~(s~(~)),~(s~(~)), d~. (2.11) 

Hence, with the assumption of inextensibility, i.e., 

s~(r) = s×(r) Vr 6 [0, R], (2.12) 

we see from (2.2) and (2.11) that 

IF~(s)a~(s)[ = 1 Vs c [0, L], (2.13) 

and we may conclude that 

d 
~× (s) =-- dss X(s71(s)) = F~ (s)a~ (s) (2.14) 

is a unit tangent vector to q~ at x(r). Consequently, we see that the range of F~ (s) is 
~×(s), the 1-dimensional tangent vector space to c¢× at x(r), and so we have the 
representation 

F~ (s) = a× (s) ® ~  (s). (2.15) 

Since F~(.)e C°[0, L] (-'IpI[0, L], then whenever it is differentiable we have 

d 
ds FK (S) = A× (S)~(S) ®a,, (S) + AK (S)e*× (S)®e*2(S), (2.16) 
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where we have used (2.5) and its analogue for qf×, i.e., 

d 
~ ate(s) = ~x(s)at~(s). (2.17) 

Here,  hx(s) is the curvature of c¢× at x(r), and, by analogy to (2.7), we have the 
relation 

d 
xx (s) = ~ o~ (s), (2.18) 

where 0×(s) represents the angle between ia and ot×(s), measured from ia, with 
positive taken as counterclockwise. 

If F~(-) is differentiable at s = s~(r), the second gradient of the deformation at 
K(r)6qf~ is defined as that unique linear transformation MK(s):~(s)--~ Lin (V, V) 
which is such that 

d 
d-7 F~ (s) =/I'1~ ( s ) ~  (s). (2.19) 

Here,  Lin (V, V) denotes the set of linear transformations of V into V, and we note 
that it is common practice to write/~/~ =VVXK =VFK. Because of (2.16), it follows 
from this definition of i~/K that we have the representation 

M~ (s) = IX x (s)a~(s) ®at~ (s) + ,~ (s)a× (s) ®o~(s) ]®a~ (s). (2.20) 

Finally, due to the a priori smoothness requirements for any placement we 
observe that %( . )  ~ C°[O, L] ~ P~[O, L], h~(.) ~ P°[O, L], 0×(-) ~ C°[O, L] C) P~[O, L] 
and M~(-) ~ P°[O, L]. 

3. The elastica: constitutive theory 

In this section we shall pursue the notion that for pure mechanics an elastica is 
constitutively characterized by the prescription of a stored energy density response 
function, this function being given per unit length of a reference placement and 
being dependent  upon first and second deformation gradients relative to this 
reference placement. Of course, the form of this constitutive response function will 
itself be dependent upon the particular reference placement, and in general the 
elastica may be inhomogeneous. Thus, relative to the reference placement 
K(-) : [0, R]  -~ ~¢~ we assume that 

w =  WK(F~(S), MK(S); S), (3.1) 

where at each s ~ [0, L] the stored energy response function WK (', "; s) is defined on 
the domain 

~ ( s )  x N~Z(s) ------{(F, M) I F = at®atK(s) and 
/ t4= [had-®t~K(s)+ h~(s)~®at2(s)]®at~(s) for 
all unit vectors at  ~ V and all h ~ ~¢s}- (3.2) 
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Here, ~±~ V is generated as a counterclockwise 90 ° rotation of ~x so that the 
ordered pair (or, o~ ±) is orthonormal and right handed, and N~ ___N denotes an open 
interval dependent on s and typically including zero. Thus, given the reference 
placement ~¢(-), it may happen that the value of the stored energy response function 
is undefined for other placements which require large values of the curvature. 

Evidently, the above constitutive assumption is equivalent to a certain Cosserat 
theory of rods. That is, given a reference placement K(.) we see from (3.2) that 
essentially the domain of WK (', "; s) is determined by the two independent variables 
X and ~x. Thus, using (3.2) we may define 

~v'~(h, a; s) =- WK(F, M; s) (3.3) 

for all (F, M)~lK(s)×~2~(s), and by (3.1) we may write 

W =  V~/~ ( ~  (s), a×(s); s). (3.4) 

The reference placement K(-) is said to be natural if ~K(h~(s), ot~(s); s )=  const.-- < 
rV~(h, ~x; s) for all s ~[0, L], all ;t ~.¢~, and all unit vectors ot~ V. Clearly, by (2.17) it 
is possible to replace the dependence on ;t×(s) and o~×(s) in (3.4) by a dependence on 
the two vectors (d/ds)ax(s) and ~x×(s), and, in so doing, we illustrate the noted 
connection to Cosserat theory. We shall not pursue this connection any further here. 

For the reference placement ~(.), the response function WK is subject to the 
restriction of frame indifference. This requires that the two values of W~, as 
computed at s~[0,  L]  first for any placement X('):[0, R]--->~× such that 
[I~'K (s), MK (S)] ~ 1 X ~ (S )  and ~ ( s )  then for the corresponding placement 
~*(.) : [0, R] --~ ~×. that is induced as an arbitrary proper rigid transformation of c¢ x 
in rY ~, be equal. Since for such a transformation we have 

,x~.(s) = O ~ ( s ) ,  ~ . ( s )  = ~t~(s) (3.5) 

for a l ls  ~ [0, L], where (~ is any assigned proper orthogonal linear transformation of 
V into V, and since for any fixed s the placement X(') can be chosen so that Xx(s) is 
any number in ~ while a×(s) is any unit vector in V, it follows that at each s ~ [0, L] 

~ ( X ,  ~; s) = V7¢~ (2,, O~; s), (3.6) 

for all such proper orthogonal O, all ~ ~,¢~, and all unit vectors ~x ~ V. Thus, in a 
standard way we have, for such ~, or, and s, the necessary and sufficient condition 

"v~¢~ (;t, ~x; s )=  !¢~¢~ (X; s), (3.7) 

where ryes(.; s) is defined on the open interval .¢~. 
Had we applied the condition of frame indifference for arbitrary orthogonal (~ of 

V into V, proper or improper, then of course we still would have had 

a×.(s) = Oot× ( s). (3.8) 

However, since 

~x~(s) = R~x~(s) and ~x~.(s)= R~×.(s), 
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where R is a 90 ° counterclockwise proper rotation of V into V, it follows that 

~ . ( s )  = RO.RT oz~(s). (3.9) 

Moreover, with the identity RO.R T= (det Q) (~ we see that 

o~x~.(s) = (det O)Oa~(s), (3.10) 

so that ± e,x(s) transforms as an axial vector. In addition, since 

d d • 
~s ~x~(s) = ~(s)a~(s) and ~ss ~× (s) = h×.(s)o~.(s), (3.11) 

we see, by applying (3.8) and (3.10), that 

h×.(s)(det Q)Q,x~(s) = h×(s)Qa~(s), (3.12) 

so that 

h×.(s) = (det Q)Ax(s), (3.13) 

which shows that h~(s) transforms as an axial scalar. With this transformation 
established, it is clear that while the condition of frame indifference when app!ied for 
arbitrary orthogonal Q would again yield the result (3.7), it would, in addition, imply 
that the interval N~ be centered at zero and that ~'~(.; s) be an even function on .¢~. 
We disagree with this conclusion. Rather we believe that the evenness of ~VvVK(.; s) 
should be the result of an argument of material symmetry, that ~ ( . ;  s) need not be 
even for certain thin elastic rods and ribbons which ought to be covered by a general 
theory of the elastica, and that the requirement of frame indifference should include 
only proper orthogonal transformations. 

We turn now to the question of material symmetry. Roughly, within the subject of 
pure mechanics, to determine the material symmetries that a body may possess one 
must characterize that set of reference placements of the body relative to which 
"equal  deformation" corresponds to "equal response". While it is usual practice that 
for solid bodies the admissible reference placements are restricted to be certain 
rigidly displaced copies of one another, we shall, at the outset, not make such a 
restriction here since we believe that the idea of material symmetry should contain a 
broader notion. 

To initiate a more detailed treatment of material symmetry let us first recall that 
our basic constitutive assumptions, (3.1) and (3.2), required the existence of a frame 
indifferent stored energy response function WK(.,-; s) on the domain ~lK(s)x ~ ( s )  
defined for each reference placement K(.). By applying this assumption to the 
reference placement I~('):[0, R]--> c¢,, and by requiring that for any permissible 
placement X('):[0, R]--~ c¢× the values of the stored energy at each s ~ [0, L]  are 
equal when computed relative to either K(.) or It('), we see that 

~K (h ; s) = 1~¢~ (h ; s) (3.14) 

for all )t ~ .¢~, s ~ [0, L], and for all reference placements ~(-) and ~t(.). Thus, ~v~'~ is 
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independent of the reference placement and, henceforth, we may drop this depen- 
dence and write 

~(~; s)-= qzK(~; s). (3.15) 

Now, suppose that the reference placements K(.) and t~(') are such that at 
So ~ [0, L] the domains of the stored energy functions WK (', "; So) and W~ (.,-; so) are 
equal, i.e., 

1 X 2 = ~ ( S 0 )  ' ( 3 . 1 6 )  ~.(~o) ~(So) ~(So) X 

and consider any two placements of the elastica, X(') : [0, R]  --~ c¢~ and ;~(-) : [0, R]  --~ 
c¢~, such that the deformations X~(.):c¢~-~c¢~ and ~(.):c¢~__~c¢i satisfy the 
requirements 

F,~(~o) = ~,~(So), ~,~(So) = ~ (So). (3.17) 

We say that the reference placements K(.) and I~(') are peers at So ~ [0, L] if 

W~(F~(so), MK(s0); So)= W~(~(So ) , /~  (So); So). (3.18) 

Whereas (3.17) defines the notion of "equal deformation" mentioned earlier, (3.18) 
may be interpreted as the meaning of "equal response". 

In order to characterize more specifically the peers at So ~ [0, L] it is first essential 
to determine the equivalence class of reference placements for which (3.16) holds, 
since it is only in this class that peers are possible. Thus, we have the following 

Lemma 1. A necessary and sufficient condition that (3.16) holds at So~[0, L] is 
either 

(i) ~ . (s0)=a~(So)  and X.(so)=X~(So), (3.19)~ 

o r  

(ii) ~ . ( so )= -e~ (So )  and ,~.(So)=-A~(So), (3.19)~ 

where in case (ii) the interval "¢~o in (3.2) must be symmetric about zero. 

Proof. For a given arbitrary reference placement ~(-), suppose that (Iv, M )~  
~(So)  × ~ ( s o ) ,  so that at So~ [0, L] the representation (3.2) holds for some unit 
vector ~ ~ V and some ~ ~ ~¢~0" Then, if (Iv, ~ is also to belong to ~ ( S o )  × ~2~(So) for 
reference placement I~('), it follows that there must exist a unit vector & ~ V and 
'£ ~ ~o  such that 

~ ® ~  (So) = ~ ®**~ (So), 

[X,i ± ®~,~ (So) + ,~,~ (So)a®,~(So)] ®o,,~ (So) (3.20) 

= [;t~± ® ~  (So) + ~-,~ (So)~ ® ~ ( S o ) ] ® ~  (So). 

Thus, from (3.20)~ we not only obtain ~ ( S o ) =  +e*~(so), but also, correspondingly, 
& = +a .  Further, by placing these results into (3.20)~ it readily follows that &~ (so) = 
+~K(so) must hold, and we determine £ = +~. Clearly, in the case of the negative 
sign, ,~ will belong to ~o for all ~ ~ ~¢~o if and only if "¢~o is centered at zero. 
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Conversely, suppose, for the above given K(-) and any (F, M) ~ ~ ~ ~ ( s0 )  x ~(So),  we 
consider a reference placement ~(-) such that (3.19) holds. Then, in either case we 

have 

F = + a ® a . ( S o ) ,  (3.21) 

/~  = [ x ~ ' ® ~ ( S o )  ± ;~ ( s0 )~®~(So) ]~ (So) ,  

and we see that (F, M) ~ ~(So)  x ~ ( so ) ,  provided, of course, when the negative sign 
holds the interval N~o is centered at zero. 

Because of this lemma, an elastica can have peers at So which fall into at most two 

possible categories; we refer to these categories as the peer groups (under the 
operation of multiplication) {1} and {1,-1}.  

The group {1} is trivial in that it indicates that for any given ~(.), all other 
corresponding peers at So must satisfy (3.19)~. ~ a t  is, the set of all peers associated 

with this group consists of those reference placements that have the same unit 
tangent-normal pairs and the same cu~a tures  as so. A n  elastica which possesses {1} 
as its sole peer group at So is said m possess no material symmet~  at So. 

The group {1 , -1}  is non-trivial and is associated with reference placements ~(.) 
and ~(.) which satisfy (3.19)~. In addition, the interval ~ must be centered at zero. 

Thus, with the aid of (3.18), (3.17), (3.15), (3.7) and (3.3) it readily follows that the 
stored energy [unction for an elastica which possesses {1 , -1}  as its peer group at So 

must satis[y 

~(X;  So) = ~ ( - X ;  So) (3.22) 

[or all ~ ~ ~o, where ~o is centered at zero. 

We shall now show that the peers at So which are associated with the non-trivial 
peer group {1 , -1}  fall naturally into one of two possible classes. To this end, 
suppose that the reference placements ~(.) : [0, R]  ~ ~ and ~(.) : [0, R]  ~ ~ ,  are 
two such peers at So. If these reference placements may be related by a transforma- 
tion of the form 

~ (s) = 0 ( s ) a .  (s) (3.23)1 

for all s e [0, L], where Q(s) is an orthogonal linear transformation of V into V with 

~sQ(s)l  . . . .  = 0, (3.23)2 

then we say that the trans[ormation is rigid at So, a rotation if det O(So)= +1, and a 
reflection if det O ( s o ) = - 1 .  The motivation for this nomenclature lies in the fact that 
under such a transformation we have, similar to (3.8)-(3.13), 

)tK (So) = ~ (So) det O(So), (3.23)3 

so that the curvatures ~.K(So) and X.(So) are equal in magnitude. 
Now, since (3.19)2 must hold for the peers K(.) and I~(') at 'so, we have that 

ot~(So) = -a~(So) and either (i) ~K(So) = ~.(so) = 0, or (ii) ~K(So) = -X.(So) ~ 0. In the 
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former case it is straightforward to show that the orthogonal transformation 

(~(s) --= ~ (s) ® ~  (s) + ~ ( s )  ®~L(s) (3.24) 

is compatible with (3.23) and corresponds to a rigid rotation of 180 ° at So in ~:2. 
Therefore,  in case (i) we say that the elastica is isotropic at so and that K(-) and ~(-) 
are undistorted placements at So. In this case the peers at So may be transformed into 

one another by a rigid rotation at So which is a main ingredient in the classical notion 
of material symmetry. If K(.) and I*(') are peers associated with {1 , -1}  at all 
s ~ [0, L]  with XK (s) = ~ (s) = 0, then the elastica is said to be simply isotropic and the 
reference configurations c8 K and ~¢~ are straight. 

In the case (ii) above it is clear from (3.23)3 that there can be no relation of the 
form (3.23) where the orthogonal transformation is a rigid rotation at So. However,  
in this case we may take 

Q(s) =- ~ (s) ®t~, (s) - t~(s) ®t~(s), (3.25) 

which is, in fact, compatible with (3.23) and represents a rigid reflection at So. 
Therefore,  in case (ii) we call the peers at So enantiomorphs and refer to the elastica 
as being enantiomorphic at So. Thus, while the peers at So cannot be transformed into 

one another by a rigid rotation at so, they can by the application of an appropriate 
rigid reflection and so in a sense they may be considered to be local mirror images of 

one another in [g2. Of course, they also may be considered to be relatively deformed 
placements of one another where the deformation (¢K <-+ c¢. is non-rigid. If the peers 
are enantiomorphs at all s ~ [0, L]  then the elastica is said to be simply enantiomor- 
phic. Clearly, then, the reference configurations cgK and (¢~ are not straight. 

Finally, to conclude this section, we consider the notion of homogeneity. Let 
~(-):[0, R]--~ c8 K be a fixed reference placement. Corresponding to any choice of 
points sl and s2 in [0, L], let p.(.) : [0, R]  --> c¢, be another reference placement such 
that c8. is a rigidly displaced copy of (g~ in rg a and such that 

ot~ (s~) = ot~ ( s l ) .  ( 3 . 2 6 )  

We shall say that ~(.) is homogeneous if 

1 2 _ _  1 2 ~ ( s l )  x ~ ( s , )  - (3.27) ~(s~) × ~(s~),  

and if for any choice of (1~,/1,1) in this coincident domain, 

w~ (~', ~ ;  s0 = w~(F, ~ ;  s~). (3.28) 

Although the restriction (3.27) at first appears severe, it is not really so. Equation 
(3.26) combined with the argument which leads to (3.14) shows that (3.27) is 
equivalent to the condition N~, = N~. To a large extent this formal definition of 
homogeneity is motivated by the following two working assumptions: (i) if a 
reference placement is homogeneous then all other rigidly displaced copies of that 
placement also are homogeneous. (ii) If any two of these reference placements are 
arranged so that the tangent-normal pair at an arbitrary but given point of one is the 
same as the tangent-normal pair at an arbitrary but given point of the other, then the 
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prescription of equal first and second deformation gradients at these points will yield 
equal values for the corresponding strain energy densities. 

Now, in a manner completely analogous to our earlier analysis of (3.16), or more 
specifically (3.20), we find from (3.26) and (3.27) that 

A~(s2) = AK(Sl). (3.29) 

Moreover, since c¢ K and ~¢~ are (proper) rigid copies of one another, so that 
A~(s)=AK(s) for all s~[0,  L], we see that 

AK (Sl) = A K (s2). (3.30) 

Finally, because of (3.3), (3,7) and (3.15), we see that (3.28) is equivalent to the 
condition 

i f(A; s~) = rV~/(A ; s2) (3.31) 

for all A ~ ~¢~¢~ = N~. Therefore, if ~¢(.) is a homogeneous reyerence placement, then 
(i) A~(s)=constant for all S ~[0, L], i.e., ~ is either circular or straight, and (ii) 
~ (A ; s~) = V~(A ; s2) for all s~, s~ ~ [0, L] and all A ~ ~¢, i.e., ~ does not depend 
explicitly on s. Whence, for any placement X(') : [0, R] --~ ~¢x we may write 

w = ,&(x~ (s)). (3.32) 

If in addition to the reference placement ~(-)being homogeneous, the elastica is 
isotropic (enantiomorphic) at only one point s ~[0, L], then it must be isotropic 
(enantiomorphic) at all points, c¢K must be straight (circular), "v~'(.):~---> N must be 
an even function, and the interval ..~ must be centered at zero. 

4. The problem statement, structure and solution 

There are two fundamental and intimately related problems in the theory of the 
inextensible homogeneous elastica which we shall be concerned with here. Both deal 
with the phenomenon of bending from an originally straight and natural reference 
placement. In the primary problem we wish to characterize, by means of a minimiza- 
tion procedure and up to a rigid transformation in ~:2, those placements of the 
elastica that result by bending each of its ends solely with a bending moment through 
angles whose difference is prescribed, while in the secondary problem we wish to 
establish the same characterization in the case where the equilibrated bending 
moments on the ends are prescribed. 

We shall assume that the elastica has no particular material symmetry, that the 
reference placement K(.):[0, R]--~cCK is natural and homogeneous, that ~¢, is 
straight, and that the stored energy response function ~ ( . ) : ~ - - > N  is non-convex 
and like the graph pictured in Figure 1. The assumption of non-convexity not only 
makes the subject problems non-trivial, but it also leads to the description of certain 
interesting phenomena which are observed in practice. Specifically, for .¢ we shall 
take the open interval N--- (a, b), where a < 0 < b, assume ~(-)  to be twice continu- 
ously differentiable on ~¢, take r~(A) to be non-negative and to vanish only at A = 0, 
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and require ~v~'(.) to be super-convex? everywhere on its domain ~¢ except in the 
closed intervals [; t l , ; t~] and [A1, X2], where a < A T < A ~ < 0 < ; t l < A 2 < b .  At the 
points AT__, A~, ~t~ and )t a, ~¢(.) is convex, and in the open intervals (XT, ;t~) and 
(),~, A2~ W(') is non-convex. 

Since a deformation ×K('):gK--->Cg× in E 2 is determined up to an arbitrary 
translation once a fixed unit vector i l e  V has been chosen and the angle Ox(S) 
between il and the unit tangent vector % ( s ) ~ x ( S  ) has been specified for all 
s e [0, L], the primary Eulerian problem for the elastica may be expressed in its most 
elementary form as follows: Determine, within a specified class of functions C, those 
functions 0(.):[0, L ] - - ~  which minimize the total stored energy. 

Io E[O]==- W(O'(s)) ds, (4.1) 

at fixed total angle change O(L)-0(0)=--A. Here, 0' denotes the first derivative of 0 
which, by (2.18), represents the curvature, and due to our considerations in Section 
2 the natural class of functions is 

C -={0(.): [0, L]  --~ ~ l 0(') ~ C°[0, L]  fq P*[0, L], 0'(-) ~ ~¢ a.e.}. (4.2) 

It is convenient to have available the following 

DEFINITION. Let A c E  be given and let C(A)c C denote that subset of C for 
which 

Io r~O'(s) = (4.3) ds A. 

Then, 0(.) ~ C(A) is said to be an Eulerian state if 

E[O]<-E[O] (4.4) 

for all 0(.) ~ C(A). 

From (4.3) it is clear that O'(s) cannot belong to ~¢ for almost all s ~ [0, L]  unless A 
is such that (ALL)~.¢. Since no Eulerian state can exist if zX/L is otherwise, we see, 
from this definition, that solving the primary Eulerian problem for the elastica is 
tantamount to determining the possible Eulerian states when (ALL) ~ ~. Toward this 
end, we record the following well known theorem from the calculus of variations 
concerning necessary conditions for the existence of an Eulerian state. 

THEOREM 1. Let 0(') 6 C(A) be an Eulerian state. Then, 
(i) there exists a constant 1( / I~  such that 

r~'(0'(s)) = 2Q, (4.5)1 

~" A point X c N is a point  of super-convexity for @(.) if the tangent line to ~ ( ' )  at ~ ( h )  lies everywhere 
else below the graph of @(.). 
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and 

(ii) ~(~ '(s))  + [3. - O'(s)]~/'(0'(s)) _< I¢~(3.), (4.5)2 

both holding for all points s ~ [0, L] of smoothness of 0(.) and the latter holding for all 
~ , ¢ .  

The number /9 / in  Theorem 1 is commonly called the static bending moment which 
is associated with the curvature O'(s). In words, the second part of this theorem 
shows that the curvature of any Eulerian state can only assume values which 
correspond to points of convexity for %~'. Thus, as is readily seen from Figure 1, 
these values must lie in the domain (a, M-] U [3`~, 3`1] U [3.2, b). The first part of this 
theorem shows that the curvature of any one Eulerian state must, throughout the 
deformed elastica, assume values which correspond to points of common slope for 
~ - t h e  common slope being the static bending moment. The equation (4.5)1 is an 
integrated form of the Euler equation associated with the functional E[.], and (4.5)2 
is the Weierstrass condition. We note that the integrated Euler equation is satisfied 
by functions other than the Eulerian states. For example, if E[-] is minimized at 
~(.) ~ C(A) relative to those functions 0(')~ C(A) which satisfy, for some e >0 ,  

10'(s) - ~}'(s)l < e (4.6) 

almost everywhere, then ~(.) also satisfies (4.5)1. We shall refer to these functions 
~(-) as weak Eulerian states. A weak Eulerian state also satisfies a restricted form of 
the condition of convexity (4.5)2; that is, if s is a point of smoothness of the weak 
Eulerian state ~(-), then (4.5)2 holds at s for all 3  ̀such that 13̀  " - 0 (s)[ < e, e being the 
same constant as in (4.6). 

The next two theorems answer completely the existence and uniqueness questions 
for the Eulerian states. The proofs of these theorems (see, e.g., [4] or [5]) make 
essential use of the conditions (4.5) and, in fact, show that these conditions are 
sufficient for the existence of Eulerian states. 

THEOREM 2. Suppose 

A 
--~(a ,  M-] ©[3`#, 3.~] U[3`2, b). (4.7) 
L 

Then, an Eulerian state ~(.) ~ C(zX) exists, and its curvature ~'(')is unique and is given 
by 

A 
~ _  6'(s) L (4.8) 

for all s ~ [0, L]. 

For such values of the prescribed nominal curvature A/L as given by (4.7), this 
theorem shows that any placement which corresponds to an Eulerian state must have 
the form of a circular arc with radius equal to L/A. The associated bending moment 
is given by /~/= ~V~/'(A/L). 

For values of A/L that are complementary to (4.7) in 5~ we have 
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THEOREM 3. Suppose 

ZX 
- -  ~ (;t~, A~) U ()t 1, '~2)- (4 .9 )  
L 

Then, an F.ulerian state 0(.)~ C(A) exists, and its curvature 0'(.) is characterized as 
follows: 
(i) If  A/L ~ ( ~ ,  ,~) then 

(~'(s) = {'~/- for s e ~, 
AK for se[0,  L ] - ~ ,  (4.10) 

where ~ c [0, L] is the union of any finiw number of open inwrvals whose total length 
l(~) is given by 

( ~ - ( ~ / ~ > ~  
t ( e )  = 

(ii) g &/L ~ (ha, h:) then 

O'(s)={X~ for s e ~ ,  
ha for s~[0, L ] - ~ ,  (4.12) 

where ~ c [0, L] is similar ~o that noted above, bu~ has total lenglh 

/ (~)=X ~ i t .  (4.13) 

This theorem shows that for values of the prescribed nominal curvature &/L that 
correspond to the non-convex portion of the stored energy graph in Figure 1, any 
placement of an Eulerian state must be composed of circular patches. Each patch 
must have one of two distinct radii and be connected to adjacent patches with a 
continuously turning tangent vector. While the mml length of that portion ~ of the 
placement which corresponds to the circular patches having curvature h~ in case (i) 
and X 1 in case (ii) is uniquely determined, the particular distribution of these patches 
in the respective placements is not. This means that for such values of &/L, the 
curvature of any Eulerian state is unique up to a rearrangement (cf., Dunn and 
Fosdick [6]). The associated bending moment is unique, however, and is gNen by 

~ ' ( h i )  = ~ ' ( I~)  for the case (i), 
~ =  (W'(X~)= ~'(h2) for the case (ii). (4.14) 

Our characterization of all possible Eulerian states is now complete, and in Figure 
2b we summarize our results for applied bending moment ~ versus assigned 
nominN curvature &/L. In order to aid the interpretation, we have drawn in Figure 
2a the first derivatNe of the stored energy, taken from Figure 1, as a function of 
curvature. It should be noted that Figure 2b is a copy of Figure 2a except for the 
intervals (h~, X~) and (h~, h:) wherein according to (4.14) the respective dotted lines 
are traced. Borrowing nomenclature from the subject of thermostatics, we may call 
these dotted lines Maxwell lines since they satisfy Maxwell's Area Rule. To be more 
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Figure 2a. The  first derivative of the stored energy response function. 

specific, consider, for example, the interval ()tl, ;t2), and note-that 

) t  2 _ _  

~/'(;t) d,k = r~V'()ta)- I,~/(Xl) (4.15) 
" ~ ; k  1 

represents the area under the graph of l~/'(.) between X 1 and Aa. Note, also that the 
area under the dotted line in Figure 2a (or, equivalently the graph o f / Q  in Figure 
2b) between A1 and ,k2 is given by (A2- Xl) V~,"(X~). The fact that these two areas must 
be equal is a direct consequence of the observation that Xl and X2 are two points of 
convexity for ~ ( . )  which share a common tangent line, so that 

T~(/~2) = T~(~'I) q- ('~'2 -- Xl)  ItXT"('~'1)" (4.16) 
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Figure 2b. Applied bending m o m e n t / ~ / v r s ,  nominal  curvature A/L for Eulerian states. 
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This equality of areas constitutes what is commonly called the Maxwell Area Rule. 
However,  it is often equivalently stated in terms which equate to zero the signed 
area between the graph of ~ ' ( - )  and t h e / ~ / =  constant line over the interval ()tl,)t2). 

Of course, analogous remarks apply to the interval (A~,)t~). 
Equation (4.16) has an interesting consequence with regard to the analysis of the 

Euler  equation for non-smooth Eulerian states via the "energy integral". For the 

present problem the energy integral is easily constructed and has the form 

~ ( ~ ' ( s ) ) -  (~'(s)~'(O'(s)) = const., (4.17) 

where s ~[0, L ]  is any point of smoothness of ~'(-). If (~'(.) is smooth only on 
disconnected patches in [0, L]  the constant on the right hand side in (4.17) may 

differ from patch to patch. Clearly, when AlL  is restricted according to Theorem 2 
the same constant in (4.17) is valid throughout the interval [0, L]  since in this case 
~'(s) = A lL  for all s ~ [0, L]. What  is not quite so obvious is that for any Eulerian 

state, even for those non-smooth ones which are characterized in Theorem 3, the 

constant in (4.17) is the same for all s ~ [0, L]. To see this, it suffices to consider the 
situation when ( /~/L)~ ()t 1, h2) in Theorem 3 and to note that in this case (4.12), 
(4.14) and (4.16) yield 

- - { - 

~--- ~/ ' ( '~2)-  ~ ( ~ 1 ) -  (~2--~1~ l~'(~tl) = 0. (4.18) 

When (&/L) ~ (X 1, X;), a similar argument holds. 

One must be cautious, however, when considering weak Eulerian states in that 
there exists a large class of such states, none of which satisfy the energy integral 
(4.17) with the same constant for all s ~[0, L]. 

While not so easily categorized as are the Eulerian states, the weak Eulerian states 
can dissipate energy in a sense we shall describe. Suppose the increment zX is made 
to follow a cycle; & is given by an assigned continuously differentiable function of a 

parameter,  A=~( t ) ,  t~[0 ,  T], °with 3(0)= 3(T) .  Assume that for each t~[0 ,  T], 
3 0 ) / L  belongs to (a, b). According to Theorems 2 and 3, to each value of 3(.) we 
can find a corresponding Euler ian  s ta te . /~ /=  N (t) also b e c ~ e s  a continuous, single ~ ., 
valued function of t, when evaluated for the chosen Euleflan states. Without 
providing details of the analysis, we assert that to each ~, there corresponds also a 
weak Eulerian state, and if ~( t ) /L  belongs to the set ()q-, X~)U(Xl, dr2), this weak 
Eulerian state can be chosen to be different from any Eulerian state possible at that 
value of ~. To each member  of this one parameter  family of weak Eulerian states, 
there will correspond a bending moment  ~ / =  r~(t). No matter  how we choose the 
one parameter  family of Eulerian s(ates, it must be true that 

Jo Tr~ ( t ) ~3 ' ( t ) = O, dt 

that is, the loading device can perform no net work on the elastica. However,  there 
is a one parameter  family of weak Eulerian states for certain functions ~(t), with the 



182 R. L. Fosdick and R. D. James 

same initial and final states, such that 

Io Tff~( t)~'( t) d t >  O, 

so that, in this sense, the elastica can dissipate the work done by the loading device. 
A detailed argument which we shall not pursue would also show that the analogue of 

Knowles' condition of dissipation [7] is satisfied in its strict sense across discon- 
tinuities of the curvature which occur in some of the weak Eulerian states, although 
it would be satisfied with equality across any discontinuity which appears in an 
Eulerian state. 

We turn now to the secondary Eulerian problem for the elastica which is to 

determine, within the class C, those functions 0(.):[0, L]--~N which minimize the 
total potential energy 

Er~[O] ~ Ior~V~/(O'(s)) ds - M[O(L) - 0(0)], (4.19) 

where M e  N is the assigned applied bending moment.  Given M e N, we shall call 

~(.) e C a minimizer of EM if 

EM[6]----- EM[0] (4.20) 

for all 0(.) e C. 
While the primary and secondary Eulerian problems are distinct, they do have a 

common physical root and their solutions are intimately related as we see in the 

following 

THEOREM 4. Let ~(') e C(A) be an Eulerian state [or some A e ~, and let z~l denote 
the associated bending moment. Then ~(.)e C is a minimizer of E~t. Conversely, 
suppose ~(.) e C is a minimizer of EM for some M e ~ and define 

Io iX ~ O'(s) ds. (4.21) 

Then, ~( .)e  C([X) is an Eulerian state whose bending moment is M. 

Pro@ If ~(-) e C(A) is an Eulerian state for some A e N and i f /~ / i s  the associated 
bending moment,  then Theorem 1 shows that almost everywhere 

I~'(~'(s)) - gT/O'(s) _< ~ ( h )  - ~/h (4.22) 

for all ~ eo¢. Then, if 0(-)e C is arbitrary it follows, by replacing ~ in (4.16) with 
O'(s) and by integrating, that E~[~]_<E~[0]  for all 0( . )e  C, so that ~}(-)e C is a 
minimizer of E~. 

On the other hand, suppose ~(.)e C is a minimizer of EM for some M e N  and 
define z~eN as in (4.21). Then, (4.19) and (4.20) yield 

'(s)) ds-MTX<_ O'(s)) d s - M [ O ( L ) - 0 ( 0 ) ]  



The elastica and the problem o[ pure bending 183 

for all 0(.) ~ C. A [ortiori, for all 0(.) ~ C(~) we have 

IoL!~(6'(s)) dS ~ IoLV~t/(O'(s)) ds, 

so that 6(.)~ C(Z~) is an Eulerian state. To see that the bending moment of this 
Eulerian state is M, we need only recall our definition following Theorem 1 and note 
that since 6(-) is a minimizer of E:a, the integrated form of the Euler equation, 

~ ~ 

W'(O'(s)) = M, must hold almost everywhere. 
This theorem, together with our results concerning Eulerian states, shows that if 

M is in the open set, 

M e  (~ ' ( a ) ,  ~'(,k~)) tO (~"(A~), @'(At)) tO (~/'()~2), ~v"(b)), (4.23) 

where 

~V~"(a) -~ lim ~" (a  + e), ~"(b) ~ lim ~"(b - e), (4.24) 
~ - - - ~ 0  ~ 0  

then a minimizer of E~t, 6(.) ~ C, exists, and its curvature 6'(.) is unique and is given 
by 

6'(s) = A/L (4.25) 

for all s e l0,  L], where the constant k is such that A/L is the unique inverse of 
~'(a/L) = M  in the domain (a, aT)tO(aK, M)tO (a.=, b). Note from (4.25) that k = 
6(L) - 6(0). 

It can also be argued, using Theorem 4, that if either 

(i) M = 'v~'()~7)= ~v~"()~), (4.26)a 

o r  

(ii) M = ~ ' ( ,~ )  = "v~'(,k2), : (4.26)2 

then while a minimizer 6(.) e C of E ~  exists, its curvature 6'(.) is neither unique nor 
even unique up to a rearrangement. In each of these cases, however, the correspond- 
ing curvature must be of the respective form 

(i) 6'(s) = {M for s ~ ~', 
~ for s ~ [0, L ] -  ~, (4.27h 

o r  

(ii) 6'(s)= {A~ for s ~ ,  (4.27)2 
"~2 for s~[0,  L ] - ~ ,  

where in either case 3 ~ _~ [0, L] is the union of any finite number of intervals whose 
total length may be arbitrarily specified so that O<--I(O)<--L. For each specified 
length l(~) it follows that the respective curvatures are unique up to a rearrange- 
ment and that, correspondingly, by integration of (4.27) we have 

(i) A = )~ l(~) + A~(L - 1(~)), (4.28)~ 
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o r  

(ii) A =/~1 l (~)  -F ~t2(Z - l(~)) ,  (4.28)2 

where A~_ ~ ( L ) - ~ ( 0 )  represents the unique total angle change that is common to 

the complete  class of minimizers of EM. 
Finally, our earlier work together with Theorem 4 shows that if M is prescribed to 

be  any other number  besides those covered in (4.23) and (4.26) then EM does not 

possess a minimizer. Thus, f rom Figure 2a if M satisfies either M<_'~V'(a) or 

M - -  > ~v~'(b), a minimizer of E M does not exist. 

Imagine,  now, that an increasing sequence of equilibrated bending moments ,  

starting at zero, are applied to the ends of a slender and initially straight homogene-  

ous rod. For M = 0, (4.25) applies with A = 0 so that we must have O'(s)= 0 for all 

s ~ [0, L]  and the rod is straight as pictured in Figure 3a. As M is increased the 

solution (4.25) continues to apply and the rod must take on a circular form with a 

(Cl) ' * Ma=O 

(b) Mb~ -~)M b 

(c) Mc (~'~--  ~ Mc 

(d )  

~Md 

~ Md 

M d 

(e) 

(f) 

Figu re  3. Min imiz ing  p l a c e m e n t s  which  co r r e spond  to an inc reas ing  s e q u e n c e  of b e n d i n g  m o m e n t s :  

0 = M s < M b  < M  c < M  a = l ~ ' ( h  1) = vvT/'(h 2) < M  e < M  r 
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unique but diminishing radius, as pictured in Figures 3b and 3c, until M reaches the 
value of I¢~'(2tl)= ~¢'(2t2). At this value the curvature of the rod is governed by 
(4.27)2 and we may only conclude that the rod is either of a circular form with radius 
1/2tl, or of a smooth form which combines radii 1/;t 1 and 1/;t2 in patches whose 
individual lengths are indeterminate and restricted only to the extent that they sum 
to the total length L of the given inextensible elastica. Some of the possible shapes 
are pictured in Figure 3d. Finally, as M is further increased the solution (4.25) again 

applies and the rod will take on circular forms of smaller radii as pictured in Figures 
3e and 3f. 

The behavior displayed by this sequence of solutions is reminiscent of certain 

phenomena commonly observed in practice. The shapes in Figure 3 look remarkably 
like configurations that are obtained from a casual experiment on the bending of a 

steel pocket measuring tape. In fact, at a certain applied bending moment  it is easy 
to produce a large class of configurations which contain one, two, or more severely 
bent patches surrounded by patches that are not so severely bent. It is possible that 
this bending moment  corresponds to the value ~'(~1) = ~"(X2) in Figure 2b. 

In general, the connection between Eulerian states and the observed behavior of 

thin metal or polymer rods may be less obvious. When certain metal or polymer rods 

are loaded by sufficiently large terminal bending moments, they show patches of 
severe "yield" which are separated from the rest o f  the rod by fairly sharp 
boundaries. In some cases, when the end moments  are relaxed the "yielded" patches 

remain curved and the remaining sections return to their straight form. Such a final 
configuration could not correspond to an Eulerian state within the present work 
since we have shown that the straight configuration is the only moment  free 
Eulerian state. However,  if the constitutive relation pictured in Figure 2a was 
allowed to dip below the abscissa for ~t > 0, or above the abscissa for ;t < 0, then it 

would be possible to produce a weak Eulerian state, corresponding to zero terminal 
bending moments,  which has this partially bent  and partially straight form. The bent 
patches for this weak Eulerian state would all be circular and of the same radius. 
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