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Abstract-The continuum theory developed by Ball and James has been applied to predict the 
microstructure in LaNbOd, such as morphology of domains, domain boundary, and crystallographic 
relationship between domains. The results from the theory are in good agreement with that from direct 
examination by transmission electron microscopy (TEM) and optical microscopy. 0 1997 Actn 
Metallurgica Inc. 

1. INTRODUCTION 

Based on non-linear thermoelasticity, Ball and 
James [l] have developed a theory of martensite 
microstructures. This theory has been successfully 
applied to several shape memory alloys [2-4], 
predicting the morphology of martensite, orientation 
relationship between austenite and martensite, habit 
planes, as well as twinning relationship between 
martensites. 

The basic assumptions of the theory are as follows: 
(1) the atomic scale free energy per unit volume is 
only a function of lattice vectors and temperature. 
Once the temperature and the atomic position on the 
Bravais lattice are specified, the free energy density is 
known. (2) The free energy is defined for lattice 
vectors belonging to the “Ericksen-Pitteri neighbor- 
hood”. In particular this implies that the point group 
symmetry of the martensitic phase is a subgroup of 
that of the parent phase. (3) The lattice vectors of the 
parent and martensitic phases are assumed to 
minimize the lattice scale free energy. (4) The passage 
from atomic lattice to continuum theory is based on 
the Born rule, which states that deformations 
y:R -+ R3 (a is the reference configuration) of a 
crystal viewed as a continuum are related to atomic 
scale lattice deformations described by a deformation 
of the lattice vectors e, + Fe,, i = 1, 2, 3, according 
to the formula 

Vy(x) = F (1) 

where the deformation gradient Vy(x) and F are 
3 x 3 matrices. The total free energy E of the body 
is assumed to have the form 

E = 
s 

W(Vy(x), T) dx (2) 
n 

where T is the temperature, under the condition that 
no external forces are applied to the body. By 
minimizing the total free energy, 

min W(Vy(x), T) dx (3) 

the microstructure can be predicted. 
LaNb04, a ferroelastic material, has two poly- 

morphs. The low temperature phase, crystallized in 
the monoclinic scheelite structure, has point group 
2/m. The high temperature phase belongs to 
tetragonal scheelite structure with a point group 4/m. 
The phase transformation occurs near 520°C. 
Although the transformation has been identified to be 
a second order transition and therefore not a 
martensitic transformation by the usual convention 
[S, 61, the assumptions on which the theory has been 
developed are still good ones for this type of 
ferroelastic phase transition. 

The purpose of the present paper is to apply the 
Ball-James theory to the ferroelastic transition in 
LaNb04 and to analyze the microstructure in the low 
temperature monoclinic phase, predicting the domain 
structure, such as the location of the domain 
boundary, the crystallographic orientation relation- 
ship between domains and the interface between a 
domain laminate and a single domain. These results 
are compared with the experimental evidence of Li 
and Wayman [5-71. For several of the calculations 
done in Section 2, we are pleased to acknowledge the 
related calculations done by Chu [S]. 

In this paper a~ b denotes the cross product 
between two vectors a and b, a @ b denotes the 
matrix with the property that (a @ b)x = a(b.x) for 
all vectors x and vectors are generally small bold 
Latin letters while matrices are capital bold Latin 
letters. 
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2. THEORETICAL APPROACH 

Since the transformation in LaNbO? is a second Let us consider a deformation y(x) of the form 
order transition, there is no temperature range in Vy(x) = R,U, for x*n < 0 and Vy(x) = RZU2 fb~ 

which the parent tetragonal phase and the product x*n 3 0. When the equation 
monoclinic phase coexist. The reference configur- 
ation is chosen as the tetragonal lattice at the 

RzU2 - R,U, = a’ @ n, (6) 

transition temperature T,. and the deformed where a’ @ n represents the tensor product of vectors 
configuration then is the monoclinic lattice at any a’ and n, is satisfied, the deformation at the domain 
temperature below T,. As mentioned above, the boundary x*n = 0 is continuous. By solving equation 
transition belongs to the type 4/mF2/m, the symbol (6), the crystallographic index of the domain 
representing a transition from the prototype with a boundary can be predicted. 
point group 4/m to the ferroelastic phase with a point Left-multiplying both sides of equation (6) by the 
group 2/m [9], leading to the loss of a four-fold inverse of RI, we get 
rotation symmetry element. According to Ball-James 
theory, two orientation states of domain are 

RIJ-U,=a@n (7) 

expected. Let U, and Ur represent the lattice where R = R;‘R,, a = R;‘a’. Right-multiplied by 
deformations which map the tetragonal lattice U;’ and rearranged, equation (7) becomes 
vectors {el, eb, e:) to two sets of particular monoclinic 
lattice vectors (e$l, em’, eyl) and je;“, em2, e;l!), re- 

R&U,’ = I + a @ n’ 

spectively, i.e. where n’ = U;‘n. 
Let A = RU2U;‘, C = ATA, then 

ef’ = U,ej (44 
C = (RU2U;‘)‘(RU2U;‘)=(I + a 0 n’)T(I + a 0 n’) 

ey=U2e: i= 1,2,3 (4b) i.e. 
U,, U2 are related by the lost 90” rotation R, about 
the ei axis, i.e. 

C = U;‘U:U;’ = (I + n’ 0 a)(1 + a @ n’). (8) 

U2 = R,U,R; 
Given U,, UZ, there are solutions of (a, n’) of equation 

(5) (8) if and only if the middle eigenvalue of C is 1 (see 

where the superscript T denotes the transpose of the 
Ref. [I]). Generally, there are two sets of solutions 

matrix, and 
(corresponding to Ic= _tl below) satisfying 
det(1 + a @ n’) > 0 and these are given by 0 0 1 

R, = 

( 1 0 1 0 
-1 0 0 

in the tetragonal basis. According to the polar 
decomposition, it is always possible to assume that U, 
and U2 are symmetric matrices with all their 

a = p-‘(E)(-,i,i + KJTle,) 

eigenvalues larger than zero. (10) 
Based on assumption (4), if we take the 

deformation gradients as U, and UZ, the energy where p( # 0) is a constant, and ei, e3 are normalized 

density W reaches the minimum. It is also understood eigenvectors of C corresponding to eigenvalues A,, Ai, 

that any rigid rotation of the deformed lattice does respectively (0 < 1, < 3.> = 1 < ii). R can be obtained 

not change the free energy of the lattice. This means from 

that for any rotation matrices RI and R?, RiU, and R = (U, + a @ n)U;‘. (11) 
R2Uz have the same value of W as UI and UZ. 
Adopting the circle-dot notation of energy wells [2], For convenience, we choose the origin x = 0 on the 

the energy wells represented by RiU, and RzU2 are boundary between two domains. Applying equation 

shown in Fig. 1. The basic assumption of the (7) to any vector x on the boundary, we have 

Ball-James theory is that W(F, 0) is minimized as RUzx - U,x = (a 0 n)x = a(n*x). (12) 
long as F belongs to the two circles. 

As required by the continuity of the deformation at 
the boundary. 

R&x = U,x 

so that from equation (12), 

a(nx) = 0. (13) 
Fig. 1. Schematic diagram showing the energy wells. Each 
circle represents the set of matrices of the form RA, where Equation (13) indicates that vector n is perpendicular 

R is a rotation matrix and A = LJ or U2. to any vectors lying on the boundary, so that n is the 
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(4 (b) 

Fig. 2. Predicted domain laminate structure (a) and the 
corresponding energy well notation (b). In (b) a straight line 
connecting two matrices means that they differ by a matrix 

of rank one. 

normal vector to the boundary plane in the reference 
configuration; n’ (= U;‘n) is then the normal to the 
deformed boundary plane. Thus the boundary plane 
is determined, as well as the deformations on each 
side of the boundary. Figure 2(a) is a schematic 
picture of the predicted domain laminate structure of 
domains, and the energy well notation for two 
compatible solutions is shown in Fig. 2(b). 

2.2. Prediction of the orientation relationship between 
domains 

Equation (4) describes the lattice transformation 
between the parent lattice and the product lattice, 
respectively, without considering the compatibility of 
the two deformations in the product phase. For 
the particular deformation analyzed in Section 2.1, 
equation (4) should be expressed as 

e:l = U,e: (l‘td) 

e:1? = R&e:. (14b) 

Substituting equation (5) into (14b) 

e’: = RR,U,R:e:, i = 1, 2, 3. (15) 

As mentioned earlier, R, is a symmetry operation of 
the parent lattice, and so is RT. Hence, by definition 
of the point group of a lattice, RTe: can be expressed 
as linear combinations of e:, i.e. 

RTe: = &:e: (16) 

where all k are integers, and det(k) = f 1. 
Combining equations (15) and (16) we get 

e:“’ = RR,IJ,pie: = RR,p{U,e: = RR&ee,“l 

or 

#ey: = RR,e,“l (17) 

With the choice of R, given in equation (5) we find 
from equation (16) that 

I 0 0 -1 

p;= 01 10 0. 1 0 

It is known that if {e,} denotes lattice vectors for a 
certain Bravais lattice, then so do {he,} for any & 
with properties given above. Hence, &ey* can also be 
recognized as another set of the monoclinic lattice 
vectors e:’ representing the same monoclinic lattice as 

given by e?. Redesignating e;“’ as e:, from equation 
(17) we obtain the crystallographic relationship 
between the two compatible monoclinic lattices I and 
II as b 

e” = i RR e’ 7 I (18) 

2.3. Prediction qf laminate/domain inter$zce 

When two domain laminates meet each other, the 
simplest situation is that one laminate meets one of 
the domains in the other laminate, forming a 
laminate/domain interface such as shown schemati- 
cally in Fig. 3(a). As proved by Ball and James, this 
interface is not exactly compatible, and an intermedi- 
ate layer with a thickness of l/k must be introduced, 
where k is an integer. Assuming that the deformation 
gradients in the laminate are Vy = U1/RU,/UI/RUz/ 

, then the average deformation gradient C; in the 
region of laminate is a linear combination of U, and 
RUZ: 

C, = lRUz + (I - i.)U, (19) 

with 0 < 1 < I, the volume fraction of domain 2 in 
the laminate. The deformation in the intermediate 
layer is compatible with both sides of the region. 
Even though the deformation gradients in the layer 
are away from the energy wells, the energy in the 
layer tends to zero as k approaches infinity, and the 
energy of the deformed body is minimized on the 
energy wells, if the following overall compatibility 
equation holds: 

Q,C,-U,=b,@m,, i= 1.2 (20) 

corresponding to two domain orientations, respect- 
ively, where Q, is a rotation matrix. It is easily verified 
that for each i E (0, I), the middle eigenvalue of 
U,- ’ CTC, U,-’ is 1. As above [cf. equations (9) and 
(lo)] we expect two solutions for each value of 
i E (0, 1). One of the two solutions is trivial for the 
laminate/single domain situation [8], and the other 
can be solved as follows. 

(b) 

Fig. 3. Predicted laminate/domain structure (a) and its 
energy well notation (b). 
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For the case of Q,C, - U, = b, @ m,, substituting 
equation (19), we have 

Q,(ARU, + (I ~ i.)U,) - U, = b, 0 ml. (31) 

Substituting equation (7) into (21). we have 

Q,(U, + ia @ n) - U, = bi 0 m,. (22) 

Right-multiplying both sides of equation (22) by U, ’ 
and rearranging, equation (22) becomes 

Q,(I + ia @ U,‘n) = I + b, 0 U;‘m, (23) 

which can be solved analytically as [8]: 

In the basis 

_ ’ 4 ,z;z 0 4/!; 

Q,= m 0 4 + ,2;z 0 1 (26) 
-4/l{ 0 4 _ ;.,;z 

em 
3 

et 
em 
1 

Fig. 4. Initial arrangement of the tetragonal and monoclinic 
bases. 

Fig. 5. Calculated domain structure in the monoclinic 
LaNbOa at room temperature: (a) solution I, (b) solution 2. 

where < = laJ(U;‘nl. For the case of 

QzC, - Uz = bz 0 m?, i.e. 

Q2(i.RU2 + (I - l)U,) - Uz = bZ 0 rn2 (27) 

we have 

Q~R(XI~ + (1 - i)RTJ,) - Uz = bZ 0 mz 

Let 6 = I - 2, then 

QzR(( 1 - B)U? + SRW,) - Uz = b2 0 ml. (28) 

From equation (7) we get 

RTJ, - Uz = -RTa 0 n. (29) 

Substituting equation (29) into (28) 

Q2R(U2 + 6( - RTa 0 n)) - U2 = b2 0 m2. (30) 



Right-multiplying both sides of equation (30) by UC’ 

Q?R(I$6(-RTa~U~‘n))=I+b?~U?‘ml (31) 

which is in the same form as equation (23). and can 
be solved by 

In the basis 

where 17 = 1 - R’alJUi ‘nJ, and ci = I --- i has been 
applied. Thus the average laminate/domain interface 
for both cases, ml and ml, is obtained. The angle 
between the domain boundary and the laminate, 
domain interface in the deformed configuration. 4. 
can be calculated by 

“I = ‘OS ’ (35) 


$f;fff:f;;f 
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Fig. 6(a)-(d) Caption orerleuf. 
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Fig. 6. Evolution of domain structure with temperature: (a) 52O’C (undeformed), (b) 5OO’C, (c) 480 C. 
(d) 4OO”C, (e) 3Oo’C, and (f) room temperature. 

It is noted that there are two solutions for equation 
(7), therefore m, and mz have two crystallographically 
equivalent solutions, respectively. All these solutions 
are functions of the volume fraction i. 

3. APPLICATION TO LaNbOl 

Table 1 shows the lattice parameters at various 
temperatures for both the tetragonal phase and the 
monoclinic phase in LaNb04 [S]. The transformation 

temperature is near 52O’C. Initially setting the 
tetragonal and monoclinic lattice vectors as shown in 
Fig. 4, we have 

e:’ = Ue:, 

where 

a 0 sin j3 
u= 06 0 

i I 0 0 cos /-r 

Table 2. m, and ~$4, as a function of i 

i. 0.25 0.50 0.75 

ml” (-0.9541, 0, -0.2995) (-0.9464, 0, -0.3230) (-0.9381, 0, 0.3464) 

mF’ (- 0.4376, 0, 0.8992) (-0.4152, 0,0.9097) (-0.3295, 0,0.9198) 

my’ (0.9198,0, 0.3295) (0.9097,0,0.4152) (0.8992,0, 0.4376) 

m\” (0.3464, 0, -0.9381) (0.3230, Q -0.9464) (0.2995.0, -0.9541) 
41, degree 91.43 92.86 94.28 
qh. degree 94.28 92.86 91.43 
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Fig. 7. Calculated laminate/domain structure in the monoclinic LaNb04 (from the solution of 
QW + ial 0 n,) - UI = bl 0 ml): (a) k = IO, I = 0.25, (b) k = IO. i = 0.5, (c) k = IO. i. = 0.75. 

(d) k = 20. i, = 0.5. 

and 

e;’ 5.633 
a=p:=m= 1.03358, &+!z$!! 

e: 

=0.98864, e,m 5’261 0.96532 y =; = 5.450 = 

x(s) 

and jr, the monoclinic angle, is 94.15 at room 
temperature. Symmetrizing U by using the polar 
decomposition, we get, at room temperature, 

I,03295 0 
u, = 0 0,98864 

-0.03615 0 

and following equation (5) 

u2= 0 

! 

0,96464 0 0,03615 
0,98864 0 

0.03615 0 1.03295 

NOW, all the calculations of Section 2 can be carried 

-3 -2 -1 0 11 2 
out for LaNbO,. The eigenvalues of U;‘U:U;’ are 

Fig. 8. Definition of ,Y(s) function. 
i, = 0.81929, i-2 = I, and 1, = 1.22056, satisfying the 
condition of 2.: = 1. The corresponding eigenvectors 



are eI = (-0.91836, 0, 0.39575) e: = (0. 1. 0). and 
ei = (-0.39575, 0, -0.91836). Substituting il. i,. e,. 
and ei into equations (9) and (IO), two solutions arc 
obtained: 

n, = [0.07341, 0, -0.184601 

and 
a, = [ -0.94644, 0, 0.322881 

nz = [0.18460, 0, 0.07341] 

a> = [-0.41529, 0, -0.90968]. 

The corresponding deformed normals are 

n; = [0.06446,0, -0.188951 

ni = [0.18161, 0,0.08291]. 

Consequently, two rotation matrices R”) and R”’ are 
obtained according to equation (I I): 

a,99506 0 0,09933 
R”’ = 0 1 

-0.09933 0 0.99506 

0.99506 0 -0.09933 
R”’ = 0 I 0 

0.09933 0 0.99506 

as illustrated in Fig. 2(b). They are 5.7 and -5.7 
rotations, respectively. about the e’,l’ axis. The 
orientation relationship is predicted to be, 

- 0.09933 0 0,99506 
R”‘R ’ = i 0 I 0 

-0.99506 0 -0.09933 

or 

R@‘R, z 
0.09933 0 0.99506 

0 1 0 
-0.99506 0 -0.09933 

corresponding to a 95.7 or a 84.3’ rotation about the 
e;’ axis. Figure 5 graphically shows the calculated 
results of the two solutions at room temperature. To 
obtam Fig. 5, a grid of dots was plotted, representing 
the reference configuration viewed along the ei axis. 
The deformed position of each dot was calculated by 
applying the deformation y(x) = RWzx for x*nk > 0 

and y(x) = U,x for xmk < 0 to each dot, k = I, 2, 
corresponding to solutions 1 and 2. Since the 
monoclinic lattice possesses a two-fold rotation 
symmetry about ey, the two solutions show the same 
lattice orientation relationship between the two 
domains. The index of the domain boundary with 
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respect to the monoclinic bases e,m’ and e,ml’, contieked subscripts I and II in solution 2, the index of the 
from the index of the normal to the boundaryith boundary is then consistent with that in solution 1. 
respect to the reference basis, is (2,0,4.38),,, Notice that the orientation relationship shown in 
(4.38,&&,, for solution 1 and (4.38,0,2) ,“,, Fig. 5 represents neither a Type I nor a Type 11 twin 
(2.0,4.38),,, for solution 2. If we exchange the [lo, 1 I]. 

(b) 
?? . ?? . 
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. . * 
. . . .* 
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?? .* , 

. . .* 

. . . 

. . . 

Fig. 10. (a) TEM selected area diffraction pattern corresponding to Fig. 9. (b) Index of the pattern. 
showing two sets of diffraction spots from two orientations with the same zone axis [OlO]. 
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Fig. Il. Optical microstructure of the monoclinic LaNbO.,, showing the laminate!domain structure. 

In a similar way, the domain structure at 
temperatures above room temperature can be 
predicted by using the lattice parameter data listed in 
Table 1. Some of them are illustrated in Fig. 6. 
demonstrating the evolution of the monoclinic 
structure with temperature. 

By equations (25) and (33), the index of the average 
laminate/domain interface can be calculated numeri- 
cally as a function of i_, and following equation (35), 
the angle between the domain boundary and the 
laminate/domain interface can be evaluated. These 
results are listed in Table 2. Note that the normal to 
the laminate/single domain interface changes only a 
little with volume fraction. Figure 7 shows the 
calculated laminate/domain structures, including the 
change in the interface orientation with 1.. and the 
change in the width of the intermediate layer with k. 
To obtain these graphs, the deformation 

y:(x) = Q,(ARUl + (1 - A)U,)x + ; x(kx*n)Q,a (36) 

is applied to the grid of dots on x*m, < 0, where x is 
a function defined by Fig. 8. For x*m, > l/k, the 
deformation is 

l(x) = u,x (37) 

and in the intermediate region, 0 < x-m, < l/k, the 
deformation is chosen as 

d(x) = t’“)(x*m)t(x) + (1 - c”‘(x-m))yf(x) (38) 

where 5’“) can be any function with the property that 
5’“’ = 0 for x-m = 0, and [tk) = 1 for x*m = I/k, so 

that g:(x) is compatible with both sides of the 
intermediate region [l]. In the current calculation, 

<‘“‘(x*m) = f(sin(kx*m - 0.5)x + I) (39) 

is selected for convenience. Note that equation (36) 
simply alternates the solution found earlier for the 
simple domains on layers with volume fraction A. 

4. EXPERIMENTAL EVIDENCE 15-71 

Figure 9 is a typical TEM room temperature 
micrograph of the monoclinic LaNbO, crystals, 
showing the domains. Figure 10(a) is the TEM 
selected area diffraction pattern corresponding to 
Fig. 9. In this diffraction pattern, there are two sets 
of diffraction spots, each of them originating from 
one of the two orientations of domain. The zone axis 
for both sets of spot is the [OlO] direction of the 
monoclinic lattice which is parallel to the four-fold 
axis of the parent tetragonal lattice. The index of the 
pattern is shown in Fig. 10(b), which indicates that 
the orientation relationship between these two 
adjacent monoclinic lattices is a rotation of near 95.6 
about the [010] axis. This result matches that 
predicted by the Ball-James theory (Section 3). 
Examining the diffraction pattern carefully, we can 
find that almost every diffraction spot from one 
orientation is separated from that of another 
orientation except the spots (206),/(602)s and 
(204),/(402),,. This implies that (208),/(602),, or 
(203),/(402),, are almost parallel to each other with 
near interplanar spacing, and the domain boundary 
must lie in between (206),/(602),, and (20ii)1/(402)11 
planes with a irrational Miller index. The predicted 
domain boundary lies in (2, 0,4.38),/(4.38, 0, 2)1,. 

Figure 11 is an optical microscope picture of the 
monoclinic LaNb04 with the specimen surface 
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normal parallel to the e?, showing an example of the 
laminate/domain structure. The volume fraction 1 
in the laminate region is estimated near 0.5. The 
angle between the interface and the domain 
boundary is measured as 92 degrees, which is in 
very good agreement with the calculated value for 
i = 0.5. 
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