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Micromagnetics of very thin films

B y Gustavo Gioia and Richard D. James
Department of Aerospace Engineering and Mechanics, University of Minnesota,

107 Akerman Hall, Minneapolis, MN 55455, USA

We determine by a scaling calculation the limiting form of the free energy govern-
ing a ferromagnetic film of vanishing thickness. Our theory generalizes Stoner and
Wohlfarth’s results for flat ellipsoids to arbitrary-shaped very thin films.

1. Introduction

In their well-known paper, Stoner & Wohlfarth (1948) made use of the idea that
if a ferromagnetic particle is small, the energy-minimizing magnetization will be
nearly constant. This becomes apparent by writing the micromagnetic energy per
unit volume of a particle Ωδ of typical diameter δ, and uniformly rescaling the energy
onto a domain Ω of typical diameter 1. It is found that in the rescaled energy the
exchange term is ∫

Ω

α

δ2 |∇m|2 dy, (1.1)

where α is the exchange constant. Thus, as δ→0, the exchange term contributes an
unacceptably large energy unless |∇m| ∼ 0.

In recent years an improved understanding of weak convergence methods has made
possible various scaling calculations. The typical format of these calculations for a
theory based on a variational principle is the following. Suppose E(δ)(m) is the total
energy associated with a magnetization function m, and that this energy depends
on a small scaling parameter δ. A minimizer m(δ) of E(δ) will also depend upon δ.
As δ→0, m(δ) may be expected to converge to a function m̃ which minimizes an
energy functional E0(m). Usually this limiting energy functional E0(m) does not
follow simply from setting δ = 0 in E(δ)(m). The goal of the scaling calculation is
then to (i) determine in what sense m(δ) converges to m̃, and (ii) find the expression
for E0(m). The minimizer m̃ of E0 can then be used as an approximation

m̃
.= m(δactual), (1.2)

where δactual � 1 is the ‘measured’ value of δ. It transpires from (1.2) that the type
of convergence is important—the stronger the convergence the more m̃ resembles
m(δ). In some instances (e.g. in the limit δ→∞, which corresponds to phase theory
(see DeSimone 1993)), only certain averages of m(δ) can be compared with those of
m̃.

Sufficient conditions for the convergence of E(δ) to E0 are often stated using an
abstract scheme termed Γ -convergence (De Giorgi 1975). We shall not use this frame-
work, however, because the elementary viewpoint described above seems adequate
for our purposes.
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A rigorous asymptotic analysis based on these ideas was used by DeSimone (1995)
to study the problem of small ferromagnetic particles of arbitrary shape. His results
explain why in such particles the energy is close to that associated with a constant
magnetization, even though complex domain structures are expected near corners.
Thus, the results of Stoner & Wohlfarth, albeit strictly valid for small ellipsoidal
particles only, can be applied to small particles of arbitrary shape.

In this paper we consider a thin film Ωh of thickness h and cross-section S. We
associate Ωh with the standard micromagnetic energy E(h)(m) (Brown 1963). The
relevant scaling parameter for this problem is the thickness h. Proceeding in the
spirit of the scaling calculation sketched above, we find in §4 that a minimizer m(h)

of E(h) converges in some sense to a function m̃ as h→0, where m̃ minimizes a limiting
energy E0(m), for which we obtain an expression (equation (4.17)). Remarkably, the
limiting energy is completely local, that is to say, the magnetostatic equation which
constrains the magnetization m in the original problem disappears from the limiting
one. The minimizer m̃ is shown to be independent of the direction normal to the
thin film; thus, the limiting problem is two dimensional. Furthermore, the form of E0

reveals that the thinness of the film imports an artificial anisotropy which disfavours
out-of-plane magnetization. This feature is well-known in the special case of flat
ellipsoids.

Metastability and hysteresis are important in ferromagnetism. Kohn & Sternberg
(1989) have extended the scaling procedure to relative minimizers of E(δ) which
converge to relative minimizers of E0; their results have in turn been applied to
small ferromagnetic particles by DeSimone (1995). Thus, our theory (extended to
relative minimizers) can be used to predict the square hysteresis loops observed in
very thin films having in-plane easy axes.

The scaling approach described above does not lead to a criterion indicating how
thin is a ‘thin’ film. In other words, the method does not give precise limits of h
for which (1.2) is satisfied within some prescribed tolerance. However, it is easy to
obtain an upper bound hc for the acceptable values of h. Even though this is a
rather imprecise way of assessing the applicability of the theory to any given case,
it is nonetheless sufficient for many practical purposes. In §5 we give estimates of
hc for a few materials of interest, and discuss engineering applications where our
formulation may prove useful.

2. Micromagnetics

Consider a ferromagnetic thin film defined by Ωh ≡ {(x1, x2) ∈ S, 0 < x3 < h},
where h � 1 is a measure of the film thickness, which we assume constant, see
figure 1. Here, S is a suitable domain in R2, with area A, representing the shape
of the film in plan. In the classical theory of micromagnetics, the free energy per
unit volume of such a ferromagnetic film is given by the following expression (Brown
1963),

Ē(h)(m̄) =
1
Ah

∫
Ωh

α|∇m̄|2 + ϕ(m̄) + 1
2∇ζ̄ · m̄ dx, (2.1)

subject to

∇ · (−∇ζ̄ + m̄) = 0 on R3, (2.2)
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Figure 1. Thin film Ωh, reference body Ω , and mapping y(x).

and
|m̄| = ms, (2.3)

where m̄ : Ωh 7→ R3 is the magnetization, and ζ̄ is a scalar potential for the magnetic
field H ≡ −∇ζ̄ (whereby Maxwell’s equation ∇×H = 0 is automatically fulfilled).
The different terms in (2.1) represent, from left to right, the exchange energy (α > 0
is a material constant), the anisotropy energy, and the magnetostatic energy. The
exchange energy penalizes spatial variations of the magnetization, thus embodying
the tendency of the magnetization vectors associated with neighboring atoms of the
underlying atomic structure to remain parallel to one another. The anisotropy energy
models the existence of preferred directions of magnetization (the easy axes); ϕ is
a continuous, non-negative, even function, exhibiting, whenever pertinent, crystallo-
graphic symmetry. Finally, the magnetostatic energy is the energy of the magnetic
field which stems from the magnetization m̄. The constraint (2.2) is simply the mag-
netostatic equation ∇ · B = 0 (with the choice of units adopted here H ≡ B − m̄).
For the purpose of solving the magnetostatic equation (2.2) it is understood that
m̄(x) = 0 for x in R3 − Ωh. Finally, (2.3) embodies a fundamental constraint of
micromagnetics, whereby a ferromagnetic body is always locally magnetized to a
saturation magnetization ms(T ), where T is the local temperature. Denoting the
Curie temperature by TC, ms > 0 unless T > TC; in the latter case ms = 0 and the
material ceases to behave ferromagnetically. As a consequence of (2.3), a specimen
at T < TC can achieve a demagnetized state only in an average sense. Throughout
this work we suppose constant temperature in the ferromagnetic regime.

3. Thin-film scaling

In this section, we endeavour to ascertain how the peculiar geometry of the thin
film Ωh affects the relative importance of the different terms in (2.1). To that end, we
rescale the thin film Ωh into a reference body Ω wherein all characteristic dimensions
are of order 1, see figure 1. Without loss of generality we choose the reference domain
to be a cylinder of unit height and cross-section S of area A = 1, Ω ≡ {(x1, x2) ∈
S, 0 < x3 < 1}. The method consists in expressing the integral in (2.1) on the
reference domain, whereupon the dependence of the different energy terms on the
thickness h becomes explicit, and their relative weight can be assessed in the thin-film
limit of interest, h→ 0.

We adopt the following one-to-one mapping y : Ωh 7→ Ω of the thin-film domain
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onto the reference domain:

y1 = x1, y2 = x2, y3 =
1
h
x3. (3.1)

Furthermore, to any magnetization m̄ : Ωh 7→ R3 we associate a magnetization
m : Ω 7→ R3 via

m(y(x)) = m̄(x), x ∈ Ωh. (3.2)
Equivalently,

m(y) = m̄(x(y)), y ∈ Ω . (3.3)
This is a convenient scaling hypothesis because, along with the constraint (2.3), it
automatically leads to |m| = ms. It follows from (3.2) that

∇m̄(x) = m,α(y(x))⊗ eα +
1
h
m,3(y(x))⊗ e3, (3.4)

where α = 1, 2, and e1, e2, and e3 are unit vectors in the directions of the correspond-
ing coordinates. Finally, corresponding to the magnetostatic potential ζ̄ we associate
a potential ζ given by

ζ(y(x)) = ζ̄(x), x ∈ R3. (3.5)
It bears emphasis that even though in principle we could have adopted other one-

to-one scalings in lieu of (3.3) and (3.5), our choices allow for a straightforward
analysis.

We now express the free energy per unit volume of thin film associated with a
magnetization m̄ (with m̄ defined on Ωh), as a free energy per unit volume of thin
film associated with a magnetization m (with m defined on Ω), with the following
result,

Ē(h)(m̄) = E(h)(m)

=
∫

Ω
α

(
|∇pm|2 +

1
h2 |m,3|2

)
+ ϕ(m) +

1
2

(
∇pζ ·mp +

1
h
ζ,3m3

)
dy, (3.6)

subjected to the constraints

∇p · (−∇pζ +mp) +
1
h

(
− 1
h
ζ,3 +m3

)
,3

= 0 on R3 (3.7)

(the magnetostatic equation), and

|m| = ms, (3.8)

where we have used the notation

mp ≡ mαe
α, ∇pζ ≡ ζ,αeα, ∇pm ≡ m,α ⊗ eα, α = 1, 2. (3.9)

Because the mapping y 7→ x is one to one, and Ē(h)(m̄) = E(h)(m), it follows that
minimizing Ē(h)(m̄) over magnetizations m̄ : Ωh 7→ R3 is equivalent to minimizing
E(h)(m) over magnetizations m : Ω 7→ R3.

We now proceed to conveniently rephrase the magnetostatic equation (3.7). To
that end, let m|Ω ∈ L2(Ω), and consider the following variational principle,

min
ζ∈V

1
2

∫
R3
|∇pζ −mp|2 +

∣∣∣∣ 1hζ,3 −m3

∣∣∣∣2 dy, (3.10)
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where

V =
{
v : R3 7→ R, ∇v ∈ L2(R3),

∫
B

v dy = 0
}
, (3.11)

and B is a ball containing Ω . The condition
∫
B
v dy = 0 prevents trivial translations

v → v + c. V can be turned into a Hilbert space by introducing the natural inner
product,

(v, w)V ≡
∫
R3
∇pv · ∇pw +

1
h2 v,3w,3 dy, (3.12)

which readily leads to the definition of the norm

‖v‖V ≡ (v, v)1/2. (3.13)

The direct method of the calculus of variations yields a unique minimizer of (3.10)
in V (James & Kinderlehrer 1990), and this minimizer satisfies the Euler–Lagrange
equations,∫

R3
(∇pζ −mp) · ∇pξ +

1
h

(
1
h
ζ,3 −m3

)
ξ,3 dy = 0 ∀ξ ∈ V, (3.14)

i.e. the weak form of (3.7). Setting ξ = ζ in (3.14), and taking into account that m
vanishes outside Ω , we obtain∫

Ω
∇pζ ·mp +

1
h
ζ,3m3 dy =

∫
R3
|∇pζ|2 +

1
h2 |ζ,3|2 dy. (3.15)

The left-hand side of this expression is twice the magnetostatic energy E(h)
mag (i.e. the

last two terms of (3.6)), whereas the right-hand side is, by definition, the second
power of the norm of the potential ζ in V . We can therefore rewrite (3.15) in the
form E(h)

mag = 1
2 ‖ζ‖2V .

4. Derivation of the limiting variational principle

Proposition 4.1. Suppose m(h)→m̃ in L2(R3), m(h) = 0 on R3 −Ω , and let ζ(h)

be the magnetostatic potential corresponding to m(h) (i.e. the minimizer of (3.10)
with m = m(h)). Then,

∇ζ(h)→0,
1
h
ζ

(h)
,3 →m̃3 in L2(R3) (4.1)

and

E(h)
mag(m(h))→E0

mag(m̃) ≡ 1
2

∫
Ω
m̃2

3 dy. (4.2)

Proof. For a given m(h), ζ(h) minimizes the potential (3.10) among all possible
competitors in V ; in particular, that potential takes a larger value for ζ = 0 than for
ζ(h), that is to say,∫

R3
|∇pζ(h) −m(h)

p |2 +
∣∣∣∣ 1hζ(h)

,3 −m(h)
3

∣∣∣∣2 dy 6 m2
sΩ . (4.3)

By applying the triangle inequality and recalling that |m(h)| = ms, it follows that

‖∇pζ(h)‖L2(R3) 6 C1 (4.4)
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and ∥∥∥∥ 1
h
ζ

(h)
,3

∥∥∥∥
L2(R3)

6 C2, (4.5)

C1 and C2 being two positive constants. Finally, from (4.4) and (4.5) we conclude
that

‖∇ζ(h)‖L2(R3) 6 C3, (4.6)

where ∇ζ(h) = ∇pζ(h) + ζ
(h)
,3 e3, and C3 is a positive constant.

The satisfaction of (4.6) and of the condition
∫
B
ζ(h) dy = 0 guarantees the exis-

tence of a function ζ ∈W 1,2(R3) such that on extraction of a suitable subsequence
(not relabelled)

∇ζ(h)⇀∇ζ in L2(R3). (4.7)
Similarly, (4.5) implies the existence of a function g such that for a suitable subse-
quence (not relabelled)

1
h
ζ

(h)
,3 ⇀g in L2(R3). (4.8)

From (4.8), ζ,3 = 0 a.e. in R3, and it is possible to write ζ(y) = ζ̃(y1, y2) for y ∈ R3.
In view of this latter conclusion and Fubini’s theorem, (4.6) implies that

C3 >
∫
R3
|∇ζ|2 dy >

∫ b

a

(∫
R2
|∇pζ̃|2 dy1dy2

)
dy3 = ‖∇pζ̃‖2L2(R2) (b− a) (4.9)

for all real numbers a and b such that a < b. Since (b − a) can be any arbitrarily
large positive number, it follows from (4.9) that ‖∇pζ̃‖2L2(R2) = 0, or, equivalently,
that ∇pζ̃ = 0 a.e. in R2. Hence ∇ζ = 0 a.e. in R3.

From (4.7) and (4.8) we can write

∇pζ(h) = ∇pζ + a(h)
p ,

1
h
ζ

(h)
,3 = g + a

(h)
3 , (4.10)

where a(h)
p ⇀0 and a

(h)
3 ⇀0 in L2(R3). To prove that a(h)

p and a
(h)
3 converge strongly

to zero, we would like to construct a test function based on m̃3; however, m̃3 is not
sufficiently smooth for differentiation. To bypass this problem, we let m̃ε ∈ C∞0 (R3)
be a family of smooth functions supported on Ω and converging strongly to m̃ in
L2(R3). We now compare the value of the potential in (3.10) computed for ζ(h) (the
minimizer) with that computed for the test function

ζε,λ = h

∫ y3

0
m̃ε

3(y1, y2, s) ds− h

λ

∫ y3

1
χ[1,1+λ](r) dr

∫ 1

0
m̃ε

3(y1, y2, s) ds+ cε, (4.11)

where χ[1,1+λ] is the characteristic function of [1, 1 + λ]. The second term in (4.11)
guarantees that ∇ζε,λ ∈ L2(R3), and the constant cε is chosen in such a way as to
have ζε,λ ∈ V . Upon expanding the square on the left-hand side of the inequality we
get∫

R3
|a(h)
p |2 − 2 a(h)

p ·m(h)
p + |m(h)

p |2 + |g −m(h)
3 |2 + 2 a(h)

3 · (g −m(h)
3 ) + |a(h)

3 |2 dy

6
∫
R3

∣∣∣∣h∇p ∫ y3

0
m̃ε

3 ds− h

λ

∫ y3

1
χ[1,1+λ](r) dr∇p

∫ 1

0
m̃ε

3(y1, y2, s) ds−m(h)
p

∣∣∣∣2
+
∣∣∣∣m̃ε

3 −
1
λ
χ[1,1+λ](y3)

∫ 1

0
m̃ε

3(y1, y2, s) ds−m(h)
3

∣∣∣∣2 dy. (4.12)

Proc. R. Soc. Lond. A (1997)

 on September 4, 2013rspa.royalsocietypublishing.orgDownloaded from 

http://rspa.royalsocietypublishing.org/


Micromagnetics of very thin films 219

Fixing ε and λ in (4.12) and passing to the limit h→0, we note that the second and
fifth terms in the left-hand side vanish (weak×strong), whereas the third term in the
left-hand side and the first term in the right-hand side cancel each other. Thus,

lim sup
h→0

∫
R3
|a(h)
p |2 + |g −m(h)

3 |2 + |a(h)
3 |2 dy

6
∫
R3

∣∣∣∣m̃ε
3 −

1
λ
χ[1,1+λ](y3)

∫ 1

0
m̃ε

3(y1, y2, s) ds− m̃3

∣∣∣∣2 dy. (4.13)

By applying the triangle inequality to the right-hand side of (4.13), and taking into
account that ∫ ∞

−∞
χ2

[1,1+λ](y3) dy3 = λ,

we get

lim sup
h→0

∫
R3
|a(h)
p |2 + |g −m(h)

3 |2 + |a(h)
3 |2 dy

6
∫
R3
|mε

3 − m̃3|2 dy +
1
λ

∫
R2

[∫ 1

0
m̃ε

3(y1, y2, s) ds
]2

dy1dy2. (4.14)

Finally, we pass to the limit ε→0 and λ→∞ in (4.14); it follows that a(h)
p →0 and

a
(h)
3 →0 in L2(R3), and g = m̃3. Therefore, we have proved the convergence in (4.7)

and (4.8) to be strong, implying (4.1) and (4.2). Even though in the treatment of
both terms of the magnetostatic energy we have worked with subsequences, it is
seen that in each case any convergent subsequence would have given the same limit.
Therefore, proposition 4.1 holds for the whole sequence.

We now turn to the micromagnetic energy,

E(h)(m) =
∫

Ω
α

(
|∇pm|2 +

1
h2 |m,3|2

)
+ ϕ(m) dy + E(h)

mag(m). (4.15)

It is well known that a minimizer of E(h)(m) exists in H1(Ω) ∩ {|m| = ms} for each
h > 0.

Theorem 4.1. Let m(h) be the minimizer of E(h)(m) on H1(Ω) ∩ {|m| = ms}.
Then, for a suitable subsequence (not relabelled) m(h)→ m̃ in H1(Ω),

m̃,3 = 0 on Ω , (4.16)

and m̃ is a minimizer of the limiting micromagnetic energy

E0(m) =
∫
S

α|∇pm|2 + ϕ(m) +
1
2
m2

3 dy1dy2 (4.17)

on H1(S) ∩ {|m| = ms}.
Proof. Since m(h) is the energy minimizer, we have that E(h)(m(h)) 6 E(h)(msbbe1)

for a suitable constant e1 ∈ R3, whereupon

α‖∇pm(h)‖2L2(R3) 6 D1,
α

h2 ‖m
(h)
,3 ‖2L2(R3) 6 D2, (4.18)

where D1 and D2 are two fixed constants. It follows from (4.18) that for a suitable
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subsequence m(h),

∇m(h)⇀∇m̃, m
(h)
,3 →0 (4.19)

in L2(Ω). Consequently, m̃,3 = 0, m(h)→ m̃ in L2(Ω), and |m̃| = ms. To show that
∇pm(h) converges strongly to ∇pm̃ in L2(Ω), we now compare E(h)(m(h)) to E(h)(m̃):∫

Ω
α

(
|∇pm(h)|2 +

1
h2 |m

(h)
,3 |2

)
+ ϕ(m(h)) dy + E(h)

mag(m(h))

6
∫

Ω
α|∇pm̃|2 + ϕ(m̃) dy + E(h)

mag(m̃). (4.20)

By proposition 4.1 and the strong convergence of m(h), both the anisotropy and
magnetostatic energy converge, and (4.20) simplifies to∫

Ω
|∇pm(h)|2 +

1
h2 |m

(h)
,3 |2 dy 6

∫
Ω
|∇pm̃|2 dy +O(h). (4.21)

From (4.19a), we can write ∇pm(h) = ∇pm̃+b(h) with b(h)⇀0 in L2(Ω). Substituting
this expression into the left-hand side of (4.21), it follows that∫

Ω
|∇pm̃|2 + 2∇pm̃ · b(h) + |b(h)|2 +

1
h2 |m

(h)
,3 |2 dy 6

∫
Ω
|∇pm̃|2 dy +O(h). (4.22)

Since b(h)⇀0, the second term in (4.22) tends to zero and, therefore,∫
Ω
|b(h)|2 dy→0,

1
h2

∫
Ω
|m(h)

,3 |2 dy→0, (4.23)

whereupon
∇pm(h)→∇pm̃ in L2(Ω). (4.24)

Hence, the limiting energy associated with m(h) is

lim
h→0

E(h)(m(h)) = E0(m̃) =
∫
S

α|∇pm̃|2 + ϕ(m̃) + 1
2m̃

2
3 dy1dy2, (4.25)

where the domain of integration reduces to S because the integrand is independent
of y3. By comparing E(h)(m(h)) with E(h)(m) for any arbitrary m ∈ H1(Ω) with
m,3 = 0, we can easily verify that indeed m̃ renders E0 minimum in H1(S)∩ {|m| =
ms}.

5. Discussion

We have shown that the magnetization m̃ associated with a film of vanishing
thickness can be derived from the minimization of the limiting free energy (4.17).
This functional is substantially simpler than the original expression (4.15). Thus,
theorem 4.1 proves m̃ to be independent of the space coordinate normal to the film:
if magnetic domains are present, the attendant walls are necessarily perpendicular to
the film. Furthermore, by proposition 4.1 the magnetostatic potential converges to a
constant at precisely the right rate so as to make the limiting magnetostatic energy
entirely local. There is no remnant magnetostatic equation for the limiting problem.

Inspection of (4.17) readily reveals that the limiting energy may be thought of as
corresponding to an effective anisotropy function ϕ(m) + 1

2m
2
3, where the artificial
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anisotropy 1
2m

2
3 is actually the vestigial magnetostatic energy. As a result, out-of-

plane magnetizations are disfavoured. It is also apparent from (4.17) that the reason
for the presence of magnetic domains—the competition between the anisotropy and
magnetostatic energies—is no longer present in the limiting problem: unless oriented
in so special a way that the effective anisotropy function has multiple minima, the
film is uniformly magnetized, just as in the classical solutions of Stoner & Wohlfarth.
Indeed, the term 1

2m
2
3 in the limiting energy (4.17) may be recognized from tables

(Osborn 1945) as the demagnetization energy density for a uniformly magnetized
flat ellipsoid. We conclude that our calculation extends the applicability of Stoner &
Wohlfarth’s results for flat ellipsoids to thin films of arbitrary shape in plan.

Our calculation can be easily extended to the case of an applied field h by substi-
tuting ϕ− h ·m for ϕ in the equations (with h ∈ L2(Ω), for example). If the applied
field is constant, then the energy minimizer is a single domain. If the material is also
isotropic, the magnetization m is contained in both (i) the plane of the film and (ii)
the plane defined by the applied field h and the normal to the film; furthermore, m
is such that h · m > 0. Whenever h = 0, m is contained in the plane of the film,
but its orientation is undetermined. Therefore, an alternating h perpendicular to the
film does not lead to magnetic hysteresis, whereas an alternating h in the plane of
the film causes rectangular hysteresis loops. These predictions coincide with those
of Stoner & Wohlfarth for flat ellipsoids, and are supported by many experimental
studies, including some of the earliest published work on magnetic thin films (see, for
example, Blois (1955), where the hysteresis loops obtained for different orientations
are illustrated, and Conger (1955), where the absence of domain walls is compellingly
demonstrated).

Stable multi-domain patterns are possible when h is non-constant and ϕ+ 1
2m

2
3−

h · m has multiple minima. Our theory can serve as a starting point towards the
prediction of these patterns. The metastability of domain patterns and the resulting
hysteresis can be studied by analysing the relative minimizers of our limiting energy.
This leads to a simple problem which is analogous to elastic buckling.

The bounding argument upon which the derivation of the limiting energy is pred-
icated in theorem 4.1 hinges on the assumption that α in (4.15) be a material pa-
rameter unrelated to the thickness h. Although a fundamental explanation of the
exchange energy must rely on a quantum mechanical approach, sensible classical
analogies have been proposed which suggest that, for crystalline solids, the only
length scale involved in α is the lattice parameter (see Carey & Isaac 1966). In the
case of amorphous materials, it also appears reasonable to assume that α involves a
length scale strictly associated with the nanostructure of the material. It follows that
α is independent of the film thickness, and the assumption introduced in theorem 4.1
is compatible with the underlying physics.

Theorem 4.1 acquires practical value from its application to thin films of finite
thicknesses, where the limit h→0 is not completely effected. This practical use of
theorem 4.1 necessitates a more detailed consideration of the step going from (4.18b)
to (4.19b). It is apparent that m(h)

,3 can be regarded close to zero (in other words,
the partial fulfillment of the limit (4.19b) can be judged sufficient for m̃ to stand
as a good practical approximation to m(h)) if and only if h is small enough for the
following inequality to hold,

h� hc ≡ √α. (5.1)

By normalizing the energy (4.15) so that the anisotropy function ϕ is nondimensional,
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Table 1. Theoretical and experimental estimates of critical thicknesses (Bloch wall width)
(Theoretical, after Lilley (1950); experimental, after Wade (1962).)

material theor. hc (Å) exper. hc (Å)

Fe 730–1410 1000±400
Ni 1160–2060 550±150
Co 160 —

50–50 Permalloy — 1800±500

α is seen to be the ratio of an exchange-related numerator to an anisotropy-related
denominator (which are customarily denoted A and K, respectively). Thus, hc is
relatively small for a material exhibiting strong anisotropy and weak or moderate
exchange effects. Interestingly, such a trade off between anisotropy and exchange
energy takes place within domain walls in classical domain theory, and the width
wc of Bloch walls scales with the square root of α, just as hc does. Values of wc are
readily available both in the form of theoretical and experimental estimates. To get
an impression of the order of magnitude of hc (which we take to equal wc), we have
compiled table 1.

Continuous thin films with thicknesses of about 250 Å are customarily being used
in a series of applications, and the current trend is towards ever thinner films which,
for all practical purposes, fulfil condition (5.1). In the area of storage devices in-
creasing recording densities demand the reduction of all the key size parameters—
including not only film thickness, but film roughness and trackwidth as well (Yeak-
Scranton 1993). For instance, magnetic tapes with continuous thin film media (as
opposed to the traditional particulate media) and thicknesses of less than 100 Å have
been intensively studied in recent years for very high density audio and video record-
ing (Hirota 1991). Thin film discs in the same thickness range have been considered
for computer data storage. Our results could prove useful in the development of these
new technologies.

The authors thank AFOSR (AF/49620-96-1-0057), ONR (N/N00014-91-J-4034) and NSF (NSF/
DMS-9505077) for supporting this research.
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