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Abstract-A variety of relaxation phenomena such as stabilization of martensite, rubber-like behavior, 
evolving hysteresis loops and stabilization of interfaces have been observed in various shape-memory 
alloys. These effects adversely impact technological applications. In Part I of this paper we proposed a 
phenomenological, but predictive, model of the mechanical behavior of these materials. We showed that 
this model reproduces the experimental observations. In this part, we extend this model to include the 
effects of temperature and the austenite-martensite transformation. Once again, the predictions from this 
extended model agree with experimental observations. We can therefore conclude that the basic 
phenomenological ideas combined with a few easily measured material parameters is sufficient to predict 
the behavior of these materials. Finally, we propose new experiments in order to probe longstanding issues 
concerning the mechanism responsible for the relaxation. c 1997 Acta Metallurgica Inc. 

1. INTRODUCTION 2. STABILIZATION OF MARTENSITE 

A variety of relaxation phenomena such as stabiliz- 
ation of martensite, rubber-like behavior, evolving 
hysteresis loops and stabilization of interfaces have 
been observed in various shape-memory alloys. These 
effects adversely impact technological applications. 
In Part I [1] of this paper (henceforth referred to as 
Part I) we proposed a phenomenological, but 
predictive, model of the mechanical behavior of these 
materials. The model and the important material 
parameters are summarized at the end of Section 4 in 
that paper. In Section 2 below, we extend the model 
to include temperature changes and the austenitee 
martensite transformation. In particular, we examine 
the effect of various thermomechanical histories on 
the migration of the austenite-martensite transform- 
ation temperature. We show that the predictions 
agree with experimental observations. Finally, we use 
the model in Section 3 to design new experiments in 

In this section we extend the energy introduced in 
Section 3 of Part I to temperatures above the 
martensitic transformation temperature. We write 
down an energy suitable for a material undergoing 
transformation from a high temperature “austenite” 
phase to a low temperature “martensite” phase with 
two variants, “ + ” and “ - “. The austenite has 
preferred strain and shift (0, 0} while the martensite 
variants have preferred strain and shift {t+, I} and 
{EC, - l}, with C+ > 0 > CC. We assume the existence 
of a temperature O0 such that the free energy per unit 
reference volume cp(t, p, 0) satisfies 

cp(O,O, 0) < (P(GP, 0) if 0 > 00, 

(P(t+, l, 0) = cp(c-, - l, Q) < (P(GP, 0) 

if 19<&. (2.1) 

We do all our calculations with the energy 

order to further understand longstanding issues which is the minimum of three quadratic wells 
concerning the mechanism responsible for the whose depths depend linearly on temperature. We 
relaxation. define 

tTo whom all correspondence should be addressed. i” = i, - 1,; (2.3) 

4561 



4562 BHATTACHARYA ef al.: SHAPE-MEMORY ALLOYS-II 

L is the latent heat of transformation and we assume 
that it is positive. Notice that we have assumed for 
simplicity that the moduli are the same for the 
austenite as well as for both the variants of martensite. 

As in Part I, we shall use a, B = ,t? - d2[a and 
D = 6/a (respectively, the elastic modulus, the 
normalized shift modulus and the normalized 
coupling modulus) as the material parameters to be 
determined from experiment. However, we retain 
c+ 9 c- rather than combining them in 
ET = E+ + c + 20. 

Assume that the bar is immersed in a heat bath 
of temperature e(t) and subject to an applied 
load F(t). As in Part I, equation (3.6), we let 
a(x, t) = F(t)/A(x) and define the total energy by, 

- a(x, t)c(x, t)} dx. (2.4) 

Note that we have implicitly assumed that the 
temperature is uniform in the bar and is equal to 
the temperature of the heat bath at each time. 
This is reasonable if the time required for the bar to 
attain thermal equilibrium is much smaller than the 
typical processes (relaxation) that we wish to study. 

Based on this energy we write down a model 
analogous to that of Part I, Section 4. There, we 
wrote down a model based on energy minimiza- 
tion, but then slightly modified it by adding an 
“inherent hysteresis” 6,. For simplicity, in this 
section we 

confine ourselves to the energy minimization and do 
not add inherent hysteresis. 

For a prescribed load F(t), temperature e(t) and 
initial distribution of shift p,,(x) and strain co(x), the 
functions u(x, t) and p(x, t) are determined by 

L 

(i) min 
i U(O*l) = 0 o -&){cp(ck t)*P(x, Q,~(t)) 

- a(x, t)~(x, t)} dx at each t, 

(3 $ (x7 4 = -P $ (4x, t),p(x, t), e(t)>, 

(iii) p(x, 0) = pa(x), E(X, 0) = co(x), 0 < x < L. 

(2.5) 

Here, as before, p > 0 is the mobility, and 
the minimization problem is interpreted as in 
Part I. 

We now specialize to the energy (2.2) and describe 
the solution procedure, which is analogous to that 
of Section 4 of Part I. We begin with (2.5) for a 
given t and p(x, t). In order to minimize the 
total energy, we choose a strain that minimizes 
the integrand at each x. Thus, for a given t 
and x, we choose 6(X, t) to minimize 
f(c) = q(c,p(x, t), e(t)) - u(x, t)~. Since, cp has a 
triple-well structure, the equation (drp/&) = 0 has 
three solutions: E = .c+ + o/a - D(p - l), 
c = c- + o/a - D@ + I) and E = a/a - Dp. By com- 
paring the values off on these three solutions we 
conclude that 

c- + q - D@(x, t) + 1) if {p(x, t), CT(X, t), O(t)} E w- 

c(x,t)= c+ + +$ - D@(x, t) - 1) if {p(x, ~),cT(x, @,8(t)} EW+ (2.6) 

9 - Dp(x, t) if {P(x, 0,4x, t), w)) E @, 

where 

W-= {p,a,O}: a< -yp and @-- 

w+= {p,a,ej: 02 -yp and (e-co)< -i B 1-p -6(6++D) 
[(A 11 

! {P,d}: (e-eo)a -i B i+p -(T(E- [( > - D) 
1 

w”= 

and (e-coo -:[B(;-p)--o(s-+D)] (2.7) 
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and y = 2BIcr is defined as in Part I (cf. equation 
(4.4)). 

For a fixed (T, the regions W-, W+ and @ are 
shown in Fig. I. The 8-p plane is divided into the 3 
regions by a horizontal “Y”. First look at the low 
temperatures. Here, we are either in W+ or %’ so 
according to (2.6), the strains are either close to C+ or 
t- and the material is either in the + variant or - 
variant of martensite. The exchange of stability takes 
place when p = -(l/r)a, i.e., when cs = -7~. In 
other words, at low temperatures, when the stress is 
above the Maxwell stress, the material is in the + 
variant of martensite and when the stress is below the 
Maxwell stress, the material is in the - variant of 
martensite. This is exactly as in Part I, Section 4; in 
particular, the Maxwell stress depends on the shift. 
At high temperature @, g, 0) is in the region w”, the 
strains are close to 0 and the material is in the 
austenite phase. The exchange of stability between 
the austenite and the two variants of martensite takes 
place along the two arms of the horizontal Y so that 
the transformation temperature depends both on the 
stress and the value of the shift. The slopes of these 
arms are given by *(A/B). The latent heat n(0) 
determines the change of transformation temperature 
due to both shift and stress, while the parameter B/i 
determines the effect of shift on transition tempera- 
ture at constant stress. Notice that depending on the 
value of the shift, the austenite loses its stability to 
one or the other variant of martensite. Finally, the 
horizontal Y moves up with decreasing o and down 
with increasing a; it also moves sideways and the 
direction of the motion depends on the sign of 
fJ(c+ + CC). 

We now turn to (2.5)i. Using (2.2) and (2.6) we 
obtain 

330 I , 
E . . 
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Fig. 2. The stabilization of martensite. The A, temperature 
of a bar held in the martensite state rises with holding time. 
The diamonds show the experimental results extracted from 
Murakami et al. [3], while the curve is the prediction, 

according to the model and parameters (2.15). 

We integrate (2.8) subject to the initial conditions 
(2.Q1 using a procedure similar to Part I, Section 4. 
To illustrate, let us fix x and suppress it from the 
notation. Suppose (pO, a(O), 0(O)} E g-. Therefore, 
we integrate (2.8) to obtain 

p(t) = p-(r) = - 1 + (Jo + I),-,(‘-0’ 

+ d 
s 

‘a(s)e~“~‘- 7, ds. 
0 

(2.9) 

We continue with this solution until the first time t, 
at which (p(t,), a(t,), O(t,)} hits the boundary of %. 
Suppose it hits the boundary between B- and %?+. At 
t = tl, we switch to the + branch, (2.8),,. Integrating 
(2.8),i with the initial condition p+(t,) = p(t,) = p,, we 
get 

p(t) = p’(t) = 1 + (p, - l)e-m(‘- ‘1) 

+ d (2.10) 

-mMx, t) + 1) + do@, t) if (p(x, t), 4x, t), e(t)} E W- 

g (x, t) = -mGo(x, t) - 1) + da@, t) if {p(x, t), 0(x, t), e(t)} E .c%+’ (2.8) 

-mp(x, t) + da(x, t) if {Ax, t), a(~, t), e(t)} E * 

where m = pB and d = -pD as in Part I, Section 4. We continue with this solution until the first time tz 
at which {p(h), a(h), O(h)} hits the boundary of a+. 
Suppose it hits the boundary between &?+ and @. At 
t = t2, we switch to the austenite branch, (2.8),,,. 
Integrating (2.8),,, with the initial condition 
p”(tz) = p(h) = ~2, we get 

p(t) =p”(t) =p2emm(‘+‘2) + d 
s 

‘o(s)e-““-y’ds. (2.11) 
12 

We continue with this solution until the first time t, 
at which {p(h), CT (h), Q(h)} hits the boundary of L%‘. 

Fig. 1. Regions of stability of the austenite and the “ + ” Depending on which boundary it hits, we continue 
and “ _ ” variants of martensite in the o-p plane. Note that the solution on the relevant branch and so on. We fol- 

Q(u) = eo - (1/21)[8 - fr(t+ + t-)]. low an analogous procedure if {p,,, a(O), 0(O)] is in 



4564 BHATTACHARYA et al.: SHAPE-MEMORY ALLOYS-II 

W- or R”. Repeating this procedure for each point x, 
we obtain p(x, t). Substituting this back in (2.6) we 
obtain 6(x, t) and then, by integration, the displace- 
ment u(x, t). 

We now apply this model to a few simple problems. 

in both parts of the bar. Since B, 1 > 0, the reverse 
transformation temperature increases with holding 
time in agreement with experimental observations. 
(See the paragraph following (2.7) for a discussion of 
the parameter (B/A).) Indeed, for the values 

Stabilization of thermal martensite 00 = 319.66 K, 

Consider a stress-free bar which has been aged in 
the austenite phase and quenched to a temperature 
where it completely transforms to the martensite. 
Suppose it is held at this temperature for a period of 
time t*. It has been observed in many common 
shape-memory alloys subjected to the above treat 
ment that the reverse transformation temperature A, 
increases with holding time t*. In particular, the 
diamonds in Fig. 2 are the experimental data 
extracted from Murakami et al. [3] in Au_49S%Cd 
alloy (note that the composition of this alloy is 
different from that studied earlier). This phenomenon 
is called the stabilization of martensite and has 
important technological implications. 

B/A = 18.12 K, 

m = 0.009465 min-‘, (2.15) 

we obtain the curve shown in Fig. 2, in good 
agreement with experimental observations. 

Mechanical destabilization of the stabilized thermal 
martensite 

We now examine this problem with our model. We 
consider a bar with uniform cross-section A in the 
aged austenite so that the shift p = 0 at each point. 
Before we prescribe initial conditions and applied 
temperature, let us first examine the transformation 
temperature e,(O) for this aged bar when the applied 
stress is zero. Setting p = 0, u = 0, it is clear from 
either (2.7) or Fig. 1, that the austenite loses its 
stability ((0, O,(I) on w”) when the temperature 

B 
e=e,(o)=e,-~. (2.12) 

Consider an aged bar of the austenite phase. 
Suppose it is quenched to a temperature 0, < & - 
B/(U) where it completely transforms to a mixture of 
martensite variants. Suppose it is held at that 
temperature at zero load for time t*. As we have seen 
above, the martensite begins to stabilize as the shift 
evolves according to (2.13) to p+(t*) in 1, (the part 
of the bar that transforms to the + variant) and 
p-(t*) in I_. Furthermore, as we have seen in (2.14), 
the reverse transformation temperature rises to &(t*) 
indicating a stabilization of the martensite. 

Further, it loses its stability to both variants of 
martensite. In other words, when p = 0, c = 0 and 
0 < e,(O), both variants of martensite are stable. 
Thus, on quenching an aged bar, we expect a part I+ 
to transform to the + variant of martensite and the 
remaining part I_ to transform to the - variant. 

Therefore, we start with initial data PO(X) = 0, 
G,(X) = c+ + D for x E 1, and PO(X) = 0, 
t,,(x) = t- - D for x E I_ corresponding to an aged 
and quenched bar. The applied stress is zero and the 
applied temperature is constant at 8, (where 
8, < e,(O)). 

Now, for t > 0, we integrate (2.8)ii for x E I+ and 
(2.8) for x E l_ to obtain 

Suppose at time t = t*, we begin to apply a 
sinusoidal load F(t) = F0 sin(o(t - t*)) (with Fo 
chosen large enough to detwin the bar), while still 
maintaining the temperature constant at 8,. Since the 
temperature is constant below the transformation 
temperature, we involve only the two variants of 
martensite. In other words, for t > t*, this problem 
is exactly the one studied extensively in Part I, Section 
4. It is clear from Fig. 4 there that with increasing 
cycles of the applied load, the value of the shift in 
both parts 1, and l_ of the bar begins to approach 
zero and after a sufficiently large number of loading 
cycles, the shift is very close to zero in the entire bar, 
Therefore, after this loading, the (reverse) transform- 
ation temperature is going to be close to &(O) (the 
transformation temperature of aged austenite) which 
is smaller than &(t*). Thus, by applying a sinusoidal 
loading, we have been able to decrease the 
transformation temperature, i.e., we have been able 
to (mechanically) destabilize the (thermally) stabil- 
ized martensite. 

P(X? 0 = =;I. (2.13) 

Notice that since c = 0 and p+ > 0, 1, continues to 
remain in the + variant and similarly I_ continues to 
remain in the - variant. 

At time t = t*, the value of the shift has evolved to 
p+(t*) in 1, and p-(t*) in I-. Therefore, according to 
(2.7), the transformation temperature changes to 

0 = &(t*) = B,, - 5 + f (1 - eem”) (2.14) 

Let us discuss this prediction in the light of our 
one-dimensional hypothesis. First note that in a full 
three-dimensional theory, which is difficult to 
construct at this time because of the lack of 
knowledge of the precise mechanism, we would need 
to allow for vector-valued shifts. Then it is not clear 
that cycling between two variants of martensite 
would cause the shift to evolve to the preferred value 
of the austenite. However, symmetry considerations 
suggest that qualitative aspects of this prediction 
should still be true. If, as is the case in many 
martensitic transformations, the point group of the 
martensite is a subgroup of that of the austenite, then, 
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the preferred values of the shifts for the different 
variants of martensite are likely to be related by the 
action of this group. If the austenite has cubic 
symmetry, for example, this implies that the preferred 
values of the shifts for the different variants of 
martensite lie on the corners of a regular polyhedron 
centered at the origin, while the preferred shift for 
austenite is zero. Furthermore, cycling between two 
variants would cause the shift to evolve to an average 
value which would be closer to the center (preferred 
value of austenite) than the corners. Thus we expect 
that during cycling the shift will evolve toward the 
preferred value(s) for austenite and, consequently, the 
transformation temperature should decrease, though 
not possibly to the value for aged austenite. Hence, 
measurements of the three temperatures: e,(O), &(t*) 
and the transformation temperature just after 
extensive cycling of the martensite, will provide 
indirect information about the mechanism; if the two 
latter temperatures are nearly equal, it suggests that 
the ordering or shuffle that develops after long term 
cycling of the martensite is close to that of the aged 
austenite. 

Based on these considerations, we suggest this as 
an experiment to examine whether the mechanism 
responsible for the stabilization of martensite is the 
same one responsible for the rubber-like behavior. 

Stabilization qf stress-induced martensite 

Consider a bar with uniform cross-section A aged 
in the austenite state. Suppose we continue to hold 
this bar at a constant temperature above the 
transformation temperature and subject it to an 
applied stress g* large enough so that the bar fully 
transforms to the martensite. We hold this load for 
time t* and seek the state of the bar. In particular, 
we seek to know if the bar would revert to the 
austenite when unloaded; if so, we seek the value of 
applied stress at which the reverse transformation 
takes place. Finally, if the bar is unloaded at time t* 
and reverts to the austenite, we seek the temperature 
at which it would transform to the martensite on 
sudden cooling. 

Before we prescribe the initial data, let us examine 
the transformation stress for a bar aged in the 
austenite state. We take p = 0 and applied tempera- 
ture 0 > 0,(O) = B0 - (B/U) (cJ (2.12)). For these 
values, it follows from (2.7) that the austenite 
transforms to + and - variants at the stress 

a+(O) = &j{+S)i 
and 

00) = (cm ‘- D) -{Q-(8,-$-)}, (2.16) 

respectively. Since we have assumed that E+ > 0 > c- 
and lDI<<I~+l,lt~l, we have that CT+(O) > 0 > ~(0). 

In other words, if we apply a tensile stress larger that 
o+(O), the austenite transforms to the + variant while 
if we apply a compressive stress larger than lam(O 
the austenite transforms to the - variant. In 
particular, we note the interesting relationship 

o-(O)t+ z C(O)CC. (2.17) 

We note in passing that in this one-dimensional 
theory, there is no kinematic compatibility. In three 
dimensions, kinematic compatibility (written as the 
crystallographic theory of martensite, for example) 
would prevent the austenite from transforming to a 
single variant of martensite. So in reality we would 
expect the austenite to transform to a mixture of the 
two variants and then to a single variant. In any case, 
what (2.16) says is that it is possible to stress-induce 
the martensite and that the + and - variants are 
stable when we apply sufficiently large tensile and 
compressive stresses respectively. 

We now return to the problem of the bar aged in 
austenite. We apply a constant temperature 
(3 > &, - (B/21) and a constant applied stress 
g* > a+(O). We choose initial data p. = 0, 
co = t+ + a*/~ + D for each x in the bar correspond- 
ing to aged austenite freshly transformed to the + 
variant of martensite under the action of the applied 
stress. For time t > 0, p(x, t) evolves according to 
equation (2.Q (which corresponds to the + variant). 
Integrating it with the initial conditionp, = 0, we find 
that for each x in the bar, 

p(x, t) = p*(t) = 1 + (0 - 1)e +’ 

+ d 
s 

‘a(s)e-“(‘-‘) ds 
cl 

(1 - e-“‘). (2.18) 

At time t = t*, the shift has evolved to the value 
p*(t*) and consequently according to (2.7) the stress 
for reverse transformation is given by 

a+(f*) = ((+ + D) ~{H-(Bo-$)} 

(1 - em”“*). (2.19) 

Thus, we see that stress for reverse transformation 
o+(t*) changes exponentially with holding time. 
Further, the stress may increase or decrease 
depending on the value of (1 - Do*/@. In particular, 
if D < 0, the stress increases with holding time. 

Finally suppose the bar is unloaded at time t = t* 
and reverts to the austenite. We examine the 
transformation temperature if the bar is suddenly 
cooled at time t = t* + . Since the value of the shift 
is given by p*(t*), the transformation temperature 



4566 BHATTACHARYA et al.: SHAPE-MEMORY ALLOYS-II 

changes to 

e = B&t*) = 

& - $ + f (1 - Do*/B)(l - e-m’*). (2.20) 

Thus, depending on the sign of D and the magnitude 
of the applied load, the stress-induced martensite is 
either stabilized or destabilized. This is a key 
difference compared with the thermal martensite 
where the martensite is always stabilized (cJ (2.14)). 

0 0 cl 

3 3 

I44 

3. 

2 2 2 

1 1 I. 

0’ 0” .-.__I 0 0.01 B 0.01 r 0.01 z 

(4 (b) (4 

Fig. 4. Simulated hysteresis (stress vs overall strain) with 
loading (3. 2) with Fo/A = 3.1 and w = 7.5 x 10-2Hz and 
material parameters (3.3). (a) Initial loop, (b) loop after 100 

cycles (c) terminal loop after 1000 cycles. 
3. PROPOSALS FOR NEW EXPERIMENTS 

In this section, we propose some new experiments 
to (a) critically examine our theory and (b) to use our 
theory to explore the mechanism responsible for the 
relaxation. 

Mechanical tests 

Lieberman et al. [2] were interested in the behavior 
of the material under both tension and compression. 
Consequently, they were forced to use a severely 
nonuniform cross-section in order to prevent 
buckling. Further, they measured the diametral strain 
and converted it to actual strain. Unfortunately, this 
introduces various complications in extracting re- 
liable material parameters. Therefore, we propose 
using a specimen with uniform cross-section. The 
loading programs below are limited to tension; so 
buckling is not a concern. Further, we suggest that 
the actual extension be measured directly using a 
suitable extensometer. 

Consider a single crystal bar of austenite. Cool it 
carefully to transform it to the martensite using a 
single austenite-martensite interface to obtain a fairly 
uniform distribution of fine twins of two variants of 
martensite. Age the bar in this state and then subject 
it to the various experiments described below. It is 
important to start each experiment with an aged 
finely twinned bar. 
1. Load-hold-unload. We begin with a very simple 

experiment in order to determine the material 
parameters: ~1, B, D, cr, m = pB, ols. First measure 

OM 

%l 

the volume fractions of the two variants in the aged 
finely twinned bar. Apply a tensile load large enough 
so that one of the two variants (the one with initial 
volume fraction 2) completely disappears. Hold the 
load constant at this value for a time t* and then 
unload to zero. Repeat this experiment with different 
holding times, taking care to start with an aged bar 
on each occasion. 

We expect to obtain a hysteresis loop of the type 
shown schematically in Fig. 3. We expect CI, QY, EM 
to remain constant independent of holding time t*, 
while u, and cg are expected to change with holding 
time t*. The parameters may be obtained from the 
following formulas: 

6x3 = (b&f - cm II’ = I@, 

B = cr(bu - a,>/?, (3.1) 

cr, = c, + cze-@‘* for some constants cl and c2, 

Cc= (y+ZL)(l -e-@f*). 

The first three equations give ET, cr,, B respectively, 
the fourth gives m = -pB, and the fifth gives D. 
2. Tension cycle, Apply a load 

F(t) = FoIsin(27rwt)l (3.2) 

for F. > [(B/CT) + o,]A where A is the cross-sectional 
area of the bar (since we will plot only stress, we do 
not need the value of A). 

In the initial cycles, our model predicts a hysteresis 
loop like the one shown in Fig. 4(a). With cycling, the 
hysteresis loop begins to come down as in Fig. 4(b). 
After a sufficient number of cycles, the hysteresis loop 
completely disappears and the bar behaves almost 
like a linear elastic bar as shown in Fig. 4(c). These 
curves were simulated using the parameters 

CI = 3000 kg/mm2, 

B = 0.017 kg/mm’, 

D = -0.003 kg/mm2, (3.3) 
Fig. 3. A schematic hysteresis loop (stress vs overall strain) 

during the load-hold-unload test. ET = 0.02, 
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oxs = 0.2 kg/mm2, 

p = 0.8 mm2/(kg min), 

which are the same as those for equation (6.3) in Part 
I. Clearly, the experimental results must be compared 
with curves simulated using the parameters deter- 
mined by the load-hold-unload experiment and (3.1). 

Once the bar is in the terminal loop, stop the 
loading at zero load and hold for time t*. Then 
resume the loading (3.2). Our models predict that the 
stress-strain curves will remain similar to the 
collapsed terminal loop shown in Fig. 4(c); if the 
parameter D is negative (as suggested by the 
experiments of Lieberman et al.), the stress-strain 
curve will shift slightly to the left. In any case, our 
model predicts that under the tensile loading (3.2) 
there will not be any recovery like that observed by 
Lieberman et al. [2] (see Fig. 1 of Part I). 

Repeat the experiment of tensile cycling of an aged 
finely twinned bar at different temperatures as well as 
different frequencies and amplitudes of loading. Our 
model predicts that the hysteresis loops will 
qualitatively look similar to those shown in Fig. 4. 
The width of the initial hysteresis loop is predicted to 
increase with increasing temperature, decreasing 
frequency and increasing amplitude (this last 
prediction will be true if the material parameter 
D < 0, but will be reversed if D > 0). 

3. Unusual tension cycle. Apply a load 

completely disappear; instead it attains the terminal 
loop as shown in Fig. 5(c). Further cycling does not 
cause any changes. Note that these figures were 
generated using parameters (3.3). Clearly, the 
experimental results must be compared with curves 
simulated using the parameters determined by the 
load-hold-unload experiment and (3.1). 

Once the bar is in the terminal loop, stop the 
loading at zero load and hold for time t*. Then 
resume the loading (3.3). Our models predict that 
with increasing holding time t*, the hysteresis loop 
gradually recovers, in contrast with the previous 
experiment; with sufficiently long holding time it 
completely goes back to the initial loop. 

4. Effect of orientation. Repeat Experiment 1, 
load-hold-unload for specimens with different 
orientation and determine how the parameters 
depend on orientation. It is likely that different 
mechanisms of relaxation will predict different 
orientation dependence of the parameters. This 
information may prove crucial for testing different 
mechanisms, and would provide useful guidelines 
for the development of 3D shift relaxation 
models. 

Thermal and combined thermal-mechanical tests 

An important question is whether the mechanisms 
responsible for the rubber-like behavior and stabiliz- 
ation of martensite are the same. In Section 2, we 
presented a theory assuming that they were the same. 

F0 sin(2nwt) if n < t < w 

if [ 

for some F. > [(B/cr) + o,,]A where A is the 
cross-sectional area of the bar. This loading cycle 
consists of a tension cycle of duration l/30 followed 
by a hold at zero load for a duration of 2130. 

In the initial cycles, our model predicts a hysteresis 
loop like the one shown in Fig. 5(a). With cycling, the 
hysteresis loop begins to come down as in Fig. 5(b). 
However, unlike Fig. 4, the hysteresis loop does not 

0.01 e 0.01 p 0.01 z 

(4 (b) (6 

Fig. 5. Simulated hysteresis loops (stress vs overall strain) 
with loading (3.4) with Fo/A = 3.1 and w = 7.5 x 1O-2 Hz 
and material parameters (3.3). (a) Initial loop, (b) loop after 

200 cycles and (c) terminal loop after 1000 cycles. 

Based on this theory we proposed and predicted the 
results of three sets of experiments; we collect them 
here. 

5. Stabilization of thermal martensite. Consider a 
single crystal bar of austenite. Cool it until it 
completely transforms to martensite. Hold it in the 
martensite for time t*. Heat it and measure the 
temperature at which it transforms to the austenite 
(either A, or A, will do as long as it is used 
consistently). Repeat the experiment with different 
holding times. We expect that the transformation 
temperature will increase with t* according to the 
relation (2.14). From the data, we can easily obtain 
B/A and m. From an independent measurement 
of latent heat 1 we can obtain the parameters 
B and p = m/B. Compare these values with the 
values obtained from the mechanical tests (3.1). 
If they are similar, then the mechanisms responsible 
for the rubber-like behavior and stabilization of 
martensite are likely to be the same. On the other 
hand, if they are not similar, it is a strong evidence 
that the mechanisms are different. 
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6. Mechanical destabilization of the stabilized 
thermal martensite. Consider a single crystal bar of 
austenite. Cool it until it completely transforms to 
martensite. Hold it in an unloaded state in the 
martensite for time t*. At time t = t*, subject the bar 
to a sinusoidal tension-compression loading cycle 
similar to those considered by Lieberman et al. [2] 
and considered in length in Sections 4, 5 and 6 of Part 
I. Notice that this experiment may require care to 
prevent buckling. Initially the hysteresis response will 
be a double loop; with cycling it will evolve to the 
terminal single loop. Once the specimen attains the 
terminal loop, stop the loading and heat until it 
transforms to the austenite and measure the 
transformation temperature. Our one-dimensional 
model predicts that the transformation temperature 
will be independent of the holding time t*; however, 
as we noted in Section 2, this prediction may depend 
crucially on the exact three-dimensional nature of the 
mechanism and the underlying material symmetry. 
Therefore, this experiment may provide critical 
information about the nature of the exact mechan- 
ism. 

7. Stabilization of stress-induced martensite. Con- 
sider a single crystal bar of austenite. Apply a tensile 
load until it fully transforms to the martensite. Hold 
the load for a time t* and then unload. Measure the 
value of the load at which it transforms back to the 
austenite. Our model predicts that this will depend on 
the holding time according to (2.19); therefore we can 
estimate the coupling parameter D and contrast it 
with that obtained from the purely mechanical tests. 

4. CONCLUSION AND DISCUSSION 

A wide variety of relaxation phenomena like the 
stabilization of martensite and rubber-like behavior 
are known to occur in common shape-memory alloys. 
These phenomena adversely affect applications. 
There is a great wealth of experimental data; yet there 
is no agreement on the exact mechanism. However, 
there is a broad consensus that “the free energy per 
unit volume in the region swept by the moving twin 
boundary is temporarily increased but may be 
decreased again by some thermally activated relax- 
ation process” (Christian [4]). 

We have proposed a phenomenological, but 
predictive, model of the behavior of these materials 
based on this point of view. The basic model was 
presented in Part I and extended to include 
temperature in Section 2 of this part. The model is 
one-dimensional and is based on an energy which 
depends on strain and an internal variable which we 
call shift. Section 2 of Part I presents one concrete 
interpretation of the shift based on the mechanism 
proposed by Lieberman et al. [2]. However, it is 
possible to obtain similar interpretations for other 
mechanisms, such as short-range order. The principal 

assumption of the model is that the material has a few 
energetically preferred states, with each preferred 
state characterized by a preferred strain and shift. 
Second, the relaxation of the shift is assumed to be 
much slower than the attainment of elastic equi- 
librium, so that kinetics is dominated by the shift 
relaxation. Third, the shift evolves by gradient-flow 
kinetics on this multi-welled energy. We write down 
equations based on these ideas and solve them given 
the initial state, applied load and temperature history. 
All the parameters in our model are easily 
determinable and held fixed during the simulations. 
Further, our model does not incorporate any ad hoc 
criterion to obtain the hysteresis or its evolution. 
They all follow from the basic equations. 

In Section 6 of Part I, we show that the results of 
our simulations compare favorably with the exper- 
imental observations of Lieberman et al. [2]. Our 
model is able to capture all the qualitative features of 
the wide range of experiments. Further, we also 
found quantitative agreement wherever such a 
comparison was possible; unfortunately, given the 
nature of the available experimental data, detailed 
quantitative investigation of the model was not 
possible. In Section 2, we simulated some experiments 
on the stabilization of martensite to find good 
qualitative and quantitative agreement. 

We can therefore conclude that the simple 
statement of Christian, together with some easily 
measured material constants, is sufficient to predict 
many aspects of the behavior of these alloys. 

In Section 3 of this part, we have proposed new 
experiments for two purposes. The first is to provide 
definitive quantitative tests for this model. The 
second and more important purpose is to use this 
model to further investigate the mechanisms respon- 
sible for these relaxation mechanism. 
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