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Abstract-A variety of relaxation phenomena such as the stabilization of martensite, rubber-like 
behavior, evolving hysteresis loops and stabilization of interfaces have been observed in various 
shape-memory alloys, These effects adversely impact technological applications. Despite a great deal of 
experimental evidence, there is no consensus on the mechanism. However, there is universal agreement 
on certain fundamental aspects of these phenomena. Based on these areas of agreement, we propose a 
phenomenological, but predictive, model in this paper. This model is based on the framework of 
thermoelasticity augmented with an internal variable. In this part, we discuss the basic mechanical model 
and show that it reproduces the experimental observations remarkably well. In Part II of this paper, 
we extend this model to include thermal effects and use these models to propose new experiments in 
order to clarify longstanding issues. 0 1997 Acta Metallurgica Inc. 

1. INTRODUCTION 

Since olander [1] in 1932, various investigators 
have observed a “rubberlike behavior” in Au- 
47.5at.%Cd. This alloy undergoes a martensitic 
transformation from a cubic austenite to an 
orthorhombic martensite phase. When an aged 
specimen consisting of fine twins of two variants of 
martensite is stressed, it suffers large deformations 
due to the motion of the twin boundaries until the 
specimen is completely detwinned. If the loads are 
released immediately, the twins reappear and all the 
strain is recovered. On the other hand, if the loads 
are held for sufficient time before being released, 
the twins do not reappear and no strain is 
recovered. Over the years, this phenomenon has been 
studied extensively in this and other alloys (for 
example, Au_475at.%Cd [2-41, Au49.5at.%Cd [5], 
Au-29at.%Cu45at.%Zn [6], In-20.7at.%Tl [7], 
In(68)at. %Pb [8], Cu-14wt.%All4wt.%Ni [9] 
and Cu-12at.%Zn-18at.%Al [lo]). In particular, 
Lieberman, Schmerling and Karz [4] conducted 
an extensive series of mechanical tests on Au- 
47.5at.%Cd. The results of one of their most striking 
experiments is shown in Fig. 1. An aged bar 
consisting of fine twins of two variants of martensite 
is subjected to tension-compression cyclic loading. 
In the initial cycles, the bar displays “rubber-like 
behavior” both in tension and compression, and 
there are two hysteresis loops in the load-displace- 
ment curves as shown on the left. As cycling 
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continues, the two loops move closer to each other 
until they merge at about 30,000 cycles, after which 
there is only one hysteresis loop as shown on the 
right. More recently, there has been a great interest 
in the phenomenon of stabilization of martensite (see, 
for example, [1 1, 121 and the references therein). 
There is some evidence that the phenomenon of 
stabilization and that of rubber-like behavior is 
related [13]. Similarly, the phenomenon of “pseudo- 
twinning”, which may be related to the rubberlike 
behavior, has been observed in Fe-Be [ 141, Fe-Al [ 151 
and the ferroelastic material NdNb04 [16]. 

Despite this wealth of experimental results, 
several questions remain unanswered. In this paper, 
we present a simple phenomenological model to 
account for this relaxation phenomenon and its 
consequences on mechanical behavior. We show that 
this model provides very good agreement with the 
current experimental observations. In Part II [17] 
of this paper (henceforth referred to as Part II) 
we show that this model also provides a method to 
make predictions of behavior for new loading 
programs and heat treatments. By identifying the 
important material constants and showing how 
they affect behavior, our model provides a frame- 
work for discussions of the mechanism. The 
mathematical analysis of this model will be presented 
elsewhere [ 181. 

There appears to be no consensus regarding 
the exact mechanism that leads to the rubberlike 
behavior. Burkart and Read [7] proposed that this 
phenomenon was a result of the “stabilization of 
interfaces”. However this was discounted in view 
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Fig. 1. Evolution of the stress-strain hysteresis loop in Au47.5at%Cd according to Lieberman, 
Schmerling and Karz (Fig. 20 in [4]. Used with permission of the authors and Plenum Press.) 

of the fact that this behavior can be observed starting 
from completely detwinned specimens. Lieberman 
et al. [4] suggested a mechanism based on twinning 
shuffles for Au-Cd. Since Au-Cd is an ordered alloy, 
the underlying crystal lattice is a “multilattice” or a 
“lattice with a basis”. Therefore, twinning requires 
both shear and shuffle. Lieberman et al. suggest 
that the shear takes place immediately in response to 
the load whereas the shuffles relax according to some 
slower kinetics. The atoms do not have time to shuffle 
during the motion of the twin boundaries and 
thus, the free energy increases during this motion. 
This temporary increase of the free energy provides 
the driving force to move the twin boundaries back 
if the loads are released immediately. On the other 
hand, if the load is held fixed for some period of time, 
the atoms shuffle by a thermally activated process 
and the free energy decreases. Consequently, this 
deformed configuration becomes stable. They also 
presented some X-ray data in support of this 
mechanism. However, in a recent set of experiments, 
Ohba, Otsuka and Sasaki [19] did not observe 
expected changes in intensity in X-ray diffraction 
patterns of the same alloy, thereby disputing 
this proposed mechanism. Other ideas include a 
shuffle mechanism for ordered alloys (Zangwill and 
Bruinsma [20]), short-range ordering (Zangwill and 
Bruinsma [20] in disordered alloys and Marukawa 
and Tsuchiya [21] in ordered alloys), interaction of 
twinning dislocations with order faults (Birnbaum 
and Read [3]), short-range disorder created by the 
interaction of “isolated disordered pairs” (Ahlers, 
Barcelo and Rapcioli [22]), and vacancy-assisted 
diffusion (Nakajima, Aoki, Otsuka and Ohba [5]). 
Some of these mechanisms are directly disputed by 
the observations of Ohba et al. [19]. During recent 
months, the mechanism of short-range ordering 
seems to have emerged as a likely possibility 

for several alloys, but this is mainly based on the 
elimination of other possibilities rather than through 
direct evidence. Therefore, the exact mechanism of 
this rubberlike behavior remains a “long standing 
enigma” (Wayman [23]). However, as Christian [24] 
says in his review, it is widely agreed that “the free 
energy per unit volume in the region swept by the 
moving twin boundary is temporarily increased but 
may be decreased again by some thermally activated 
relaxation process”. 

In this paper, we take this point of view of 
Christian and propose a phenomenological theory. 
We present the energy that forms the basis for our 
model in Section 3. Here, we confine ourselves to 
mechanical tests performed at constant temperature. 
We will return to the effects of changing temperature 
in Part II. We consider a bar whose free energy 
depends on the strain E and a variable p which we 
call the shift. The name shift is motivated by the three 
dimensional crystallographic derivation presented 
in Section 2. This derivation is an analytical 
expression of the ideas of Lieberman et al. [4]. 
While this crystallographic background gives one 
concrete interpretation of the shift, we emphasize that 
our model does not depend on this particular 
derivation. As outlined in the final paragraph in 
Section 2, a similar derivation could be given based 
on the mechanism of short-range ordering where we 
can interpret the shift as the short-range order 
parameter. Unfortunately, at this time there is not 
yet sufficiently detailed information available to do 
this. 

The main idea of the theory is that for energetic 
reasons, the material prefers two variants. One of 
the variants, the + variant, has a transformation 
strain t+ while the other variant, the - variant, has 
transformation strain t-. Furthermore, we assume 
that the free energy is such that the shift favors 
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2. CRYSTALLOGRAPHIC BACKGROUND the value + 1 in the + variant and - 1 in the - 
variant. Using this free energy, we propose a model 
of shift relaxation in Section 4. 

In the materials studied here, the relaxation of twin 
boundaries is much faster than shift relaxation. 
We take this point of view to the extreme in the 
model presented here and introduce kinetics only for 
the shifts: we assume that the twin boundaries move 
(at infinite speeds if necessary) when the driving force 
that they experience reaches a critical value, while 
the shift relaxes according to simple gradient-flow 
kinetics. A generalization of the model that includes 
both the kinetics of shift relaxation and of twin 
boundary motion is given elsewhere [25]. Section 5 
provides a parameter study of this model. We 
show that the results of this model agree with 
the experimental observations in a wide variety of 
loading programs in Section 6. For example, the 
simulations under cyclic loading show a transition 
from two hysteresis loops to one loop, in agreement 
with the observations shown in Fig. 1. (It is important 
to emphasize that our model does not contain any ad 
hoc criteria for this transition.) An important lesson 
of our investigations is that the simple statement 
of Christian [24], together with some easily measured 
material constants, is sufficient to predict many 
aspects of the behavior of these alloys. 

Even though there remains substantial contro- 
versy about the mechanism of the rubber-like 
behavior, and our models in the end are largely 
mechanism-independent, we believe it is useful to 
describe briefly one possible atomic route to our 
models. For this purpose we choose the mechanism 
that is the most concrete: that of Lieberman, 
Schmerling and Karz [4]. The derivation below could 
be adapted to other mechanisms, given sufficiently 
precise information about the associated atomic 
movements. 

In Part II, we extend this theory to include 
temperature changes and study the stabilization of 
martensite. Once again, the predictions of the 
models agree with experimental observations. We 
also propose new experiments to resolve some of the 
remaining open problems. 

We would like to emphasize here that our models 
are deterministic dynamical systems. Once we set 
initial data for the shift and strain, together with the 
applied loading as a function of time, the subsequent 
evolution of shift and strain is completely determined 
as a solution of our equations, including the motions 
of twin boundaries. From this solution we calculate 
the overall length of the bar at each time and then 
plot stress vs overall strain. In this way hysteresis 
loops and their evolution are obtained directly from 
solutions of these equations. In this paper there is no 
a priori modeling of the hysteresis, as is done for 
example with Preisach models, 

The shuffle mechanism concerns multilattices. 
These are not Bravais lattices, but can be viewed as 
a collection of interpenetrating Bravais lattices 
(see Fig. 2). They are described mathematically by 
a set of three linearly independent lattice Uectors 
{e,, ez, e:}, which describes one of the underlying 
Bravais lattices, together with a set of v vectors 
p,, , pV, called shifts (Ericksen [27], Pitteri [28, 
291) which describe the relative positions of the 
constituent Bravais lattices. A general point x of a 
multilattice is given by the formula x = v’e, + p., 
where v’, v’, v3 are integers and a is an integer in the 
set {l, , vi. We use the summation convention 
so that repeated indices denote summation (for 
example, v’e, = v’e, + v2e2 + v’e?). For our purposes 
we consider just two interpenetrating Bravais lattices 
(v = 2). It is known that two sets of lattice vectors 
and shifts {ei, po} and {t, qa} generate the same 
multilattice if 

e, = $4, 

p. = vie, + S,“q h, (2.1) 

where A{ is a 3 x 3 matrix of integers with 
determinant _t 1, v: are any integers and 

s,” = 

I 

(0 y) or ( tll (lj) ~af’hd,“~?a~sJao~ 

1 0 

( > 

if the two Bravais lattices have 
0 1 different atoms. 

(2.2) 

Finally, we would like to contrast our viewpoint 
with the mechanisms of relaxation treated in the 
classic text of Zener [26]. He discusses separately 
atomic relaxation and relaxation near twin bound- 
aries. Each of these mechanisms by itself leads 
to either Boltzmann integral models or rate-type 
models. Consequently, a sinusoidal applied stress 
results in a sinusoidal strain. In contrast, the 
model studied here consider simultaneously both 
moving twin boundaries and atomic relaxation. 
Their interaction is highly nonlinear and the 
resulting equations are quite different. In particular, 
a sinusoidal applied stress does not lead to anything 
like a sinusoidal strain. 

The conditions (2.1) and (2.2) are also necessary for 
{e,, pa} and {f,, qa> to generate congruent multi- 
lattices under certain mild conditions (Pitteri [29]; 

(4 (b) 

Fig. 2. (a) Bravais lattice; (b) multilattice with p, = 0, pz = p. 
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(4 (b) 

Fig. 3. Twinning in multilattices usually requires a shuffle: 
(a) multilattice after shear; (b) after shear and shuffle (white 

atoms along twin boundary not shown). 

Note that our notation is slightly different from 
Pitteri’s). 

We shall be primarily interested in inhomogeneous 
deformations of multilattices, especially twinning and 
shuffling. Consider a a-lattice _!Z’+ generated by lattice 
vectors and shifts {e,+ , p:, p:} restricted to a region 
{x:x.n > 0) above a plane and another 2-lattice Y- 
with {e; , q;, q;} restricted to the region (x:x.n < 0} 
below the plane. 

The shuffle mechanism of Lieberman et al. [4] can 
then be formulated as follows. Imagine that _%- is 
not an arbitrary lattice, but that it is obtained up 
to a translation by an exact shear of the lattice g+, 
i.e., that there is a vector a such that 

(1 + a 0 a)e+ = e;, i = 1,2, 3, 

(I + a 0 n)(pZ - P:) = q; - q; (2.3) 

Here, a @I n is the matrix with components ainj. 
This is shown in Fig. 3. As can be seen from this 
figure, it is generally not true that dp+ is obtained 
from dp- by an exact rigid rotation and translation, 
so the structure shown in Fig. 3(a) does not represent 
a mechanical twin. However, it is possible for the 
Bravais sublattices generated by {e: } and {e;} to be 
twinned, as in the case of Fig. 3(a). This happens 
when there is a rotation matrix R and a 3 x 3 matrix 
of integers 1; with determinant k 1 such that 

e; = iiRe,+ . (2.4) 

Instead of placing the lattice 8- on {x:x.n < 0}, 
suppose we had placed the lattice p- with lattice 
vectors and shifts {e;, p;, p;) on this region, 
where 

p; = v:Re: + G,bRp,+ , (2.5) 

R is given by (2.4), VI, v* and v’ are any integers and 
St is an appropriate matrix from (2.2). Then by (2.1) 
the resulting structure would be a twin as shown in 
Fig. 3(b). Since the only difference between 8- and 
die- is the value of the shifts, it is possible to “relax” 
q; to p; and obtain a mechanical twin. The idea of 
Lieberman et al. [4] is that a rapid shear causes atoms 
to go to the positions _%‘+/U- described above, and 

this is followed by a slow relaxation of the shift 
(I; + P; . 

We now wish to extract a more general energetic 
interpretation of the above which will have wider 
application. Introduce now a fixed reference 2-lattice 
y” defined by lattice vectors and shifts {ep, pe} 
interpreted as the lattice of undistorted austenite. 
A typical situation encountered in martensitic 
transformations is to have the lattice vectors e,+ and 
e; given by the formulas, 

e: = RIU+eo I , 

e; =R*U-e!, i= 1,2,3, 

where R, and R2 are rotations and U+ 
symmetry-related Bain strains, that is, 

U+ = QU-Q’, 

(2.6) 
and U- are 

(2.7) 

where Q is a member of the point group of the 
austenite (see Bhattacharya [30] or Ball and James 
[31] for a derivation of these conditions). 

Given a 2-lattice occupying a large region W, 
the positions of all atoms are determined by the 
assignment of the lattice vectors e,, the shifts p. and 
9. It is plausible that, whatever atomic model is 
used, the free energy is completely determined by 
the positions of the atoms and 9. This statement 
may also be extended to finite temperatures by 
interpreting “position” as the time-averaged pos- 
itions of the atoms and then using statistical 
mechanics to calculate the temperature dependence 
of the free energy. Following this thinking, we assume 
the existence of a free energy function 

cp&, , P., 0 (2.8) 

where 0 is the temperature. This function will satisfy 
the following regardless of the (reasonable) atomic 
model: 

(1) 

(2) 

(3) 

Additivity over (large) volumes: 
cps(ei, py, 0) = cp(ei, pa, 0) volume (W), i.e. cp is 
the energy per unit volume; 
Frame-indifference: cp(ei, pa, 0) = @(eZ, PZ - PI, 0) 
= @(Re,, R(p, - pl), 13) for all rotations R and all 
(et, P., 0); 
Potential-well structure: 

&U+eP, P:, Q> = cpVeP, PY, 0) 

< cp(FeP, pa, e) for all (F, P., 0). (2.9) 

We wish to apply this energy in a continuum 
framework where the shift and deformation 
change inhomogeneously. For the continuum model 
we consider a reference domain R, interpreted as 
undistorted austenite, with material points x in R. 
Deformations are described by functions y:n -+ R”. 
To relate lattice to continuum deformation, we take 
the viewpoint of Born and Huang [ 19321, summarized 
by the so-called Born rule. This rule states that any 
function of lattice vectors g(eZ, . . .) is replaced, in 
the continuum framework, by g(Vy(x)ep, . . .). The 
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intuitive idea here is that the deformation of each of 
the Bravais sublattices is associated to the macro- 
scopic deformation gradient, while the displacements 
between these sublattices are free to adjust themselves 
to secure equilibrium of the lattice. 

The above represents an outline of one possible 
route from an atomic mechanism to a continuum 
theory. A more complete derivation would have to 
confront the statistical nature of the shuffle (i.e., 
the fact that at any one time during relaxation, 
there is a statistical distribution of shuffles on 
the lattice). The underlying principles of such a 
derivation are hopefully clear: identify variables that 
describe the atomic changes, separate these into 
one group that relates to macroscopic deformation 
and another group that relates to atomic re- 
arrangement that is independent of macroscopic 
deformation, identify how conditions of symmetry 
and frame-indifference act on these variables, pass 
to continuum level. In the discussion below we 
continue to use the terminology “shift”, but think of 
it more generally as representing any atomic 
rearrangement, not associated with macroscopic 
deformation, which affects the free energy of the 
lattice. 

3. ONE-DIMENSIONAL THEORY 

In this section we propose the energy that forms the 
basis for our theory. For definiteness, one may regard 
this as the specialization of the energy given in 
Section 2 to one-dimensional motions. We consider a 
bar of length L with material points x E [0, L]. A(x) 
denotes the area of the cross-section of the bar at the 
point x. The deformation is denoted by y(x, t). 
The value ~(x, t) gives the position of the particle x 
at time t. The displacement U(X, t) and the strain 
t(x, t) are given by 

u(x, t) = y(x, t) - x, t(x, t) = @&. (3.1) 

Without any loss of generality, we fix one end of 
the bar throughout this paper: ~(0, t) = 0. We let 
p(x, t) denote the value of the shift at particle x and 
time t. 

The crystallographic background given in Section 
2 suggests a free energy per unit reference volume 
of the form q(~,p, f3) where 0 is the temperature. 
In Part I we hold 0 fixed at a value below 
the austenite-martensite transformation temperature 
(M,), and suppress 0 from the notation. We return 
to the effects of the austenite-martensite transform- 
ation and temperature dependence in Part II, 
Section 2. The crystallographic background further 
suggests that cp should have preferred values of 
the strain corresponding to distinct values of the 
shift. Thus, we assume there are values C+ > t- such 
that 

cp(c’, 1) = cp(c-9 - 1) < cp(~,P) (3.2) 

holds for all (6,~) # (c+, 1) or (CC, - 1). The 
preferred strains (or the stress-free strains of the 
two variants of martensite) C+ and t- generally 
depend on temperature, but we neglect this 
dependence. Also, without loss of generality, we 
have normalized the preferred shifts to be + 1 and 
-1. 

We have done all of our particular calculations 
with a special cp, which is the minimum of two 
quadratic wells. This function is 

cp(t, p) = i min(a(c - c+)* 

+ 26(t - t+)(p - 1) + p(p - l)l, 

cX(E - EC)’ + 26(t - t-)(p + 1) + /Qp + l)‘>. 

(3.3) 

Here, min means that for each (6,~) we take the 
minimum of the two numbers in braces. cp depends 
implicitly on the temperature through the parameters 
CC, p, and 6. It turns out that it is convenient to group 
these parameters as follows. 

(3.4) 

We call CI the elastic modulus, B the normalized shift 
modulus, cr the normalized twinning strain and D 
the normalized coupling constant. We will regard LX, B, 
D and tr as the material parameters to be obtained 
from experiment; from these we may readily obtain 
c(, /I, 6 and (c+ - EC) if necessary. We assume that 
CI > 0, B > 0 and tT > 0. We refer the interested 
reader to Bhattacharya, James and Swart [18] for the 
general assumptions on cp under which our theory 
holds. In particular we note that we could have used 
different moduli for the two variants, but for the 
loading programs we use, this has little effect on the 
hysteresis loops. 

Since cp represents the free energy per unit reference 
volume, the total free energy of the bar at time t is 
given by 

s 

L 
A(x)&+, t),P(x, t)) dx. (3.5) 

II 

Most of the experiments we wish to study were 
performed in a soft loading device (under 
load control). Here, we assign the function 
F(t) representing the force (or load) applied at the 
end of the bar. The total energy for the soft device 
is 

L 

s 
A(x)cp(&, t),p(x, t)) dx - Rt)u(L, t) 

0 

= 
s 

‘4x){ CP(~G t),P(x, 0) - 4x, tk(x, t,} dx 
0 

(3.6) 
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where 0(x, t) = F(t)/A(x) is the stress at time t at 
the position x. In (3.6), we have used the assumption 
U(0, t) = 0. 

4. A MODEL OF SHIFT RELAXATION 

We want to develop a theory in which the shift 
relaxes more slowly than the strain. We take this 
point of view to an extreme and assume that the 
strain adjusts instantaneously to minimize the elastic 
energy at fixed shift. Simultaneously, we assume 
that the shift evolves according to gradient-flow 
kinetics. 

For a prescribed load F(t) and initial distribution 
of shift pO(x), the functions u(x, t) and p(x, 1) are 
determined by 

L 

(i) min 
tie, 0 = 0 s &){cp(& 0,P(X, 0) o 

- a(x, t&(x, t)) dx at each t, 

(ii) ap at (x9 t) = -P $ (% t), P(X, t)), 

(iii) Ax, 0) = PO(X), 6(x, 0) = h(x), 

O,<x,<L. (4.1) 

Here, 0(x, t) = F(t)/A(x) is the stress (from (3.6)) 
and p > 0 is the mobility. The minimization problem 
(4.l)i is solved by inserting the current shift p(x, t) 
into the integrand of (4.1), and then minimizing the 
integral over all strains E(X, t) = au(x, t)/ax subject 
to the constraint ~(0, t) = 0. 

The gradient flow in the shift (4.l)i, models 
the relaxation mechanism at some mesoscopic 
length scale. Since we expect the relaxation to be 
thermally activated, it seems natural to expect that 
the mobility will depend implicitly on the temperature 
in the form p w exp( -Q/k@) for some activation 
energy Q. Since we are interested in experiments 
conducted at a constant temperature, we will not 
pursue this now, but regard p as a material 
parameter. 

We now specialize to the free energy given in 
(3.3), describe the solution procedure and then 
illustrate it with an example. We begin with (4.l)i at 
any given t and g(x, t). With t and p(x, t) given, 
this minimization problem, which has a double- 
well structure, is exactly the one that Ericksen 
[33] studied in his landmark paper on the equilibrium 
of bars. To minimize the total energy, we need to 
choose a strain that minimizes the integrand at each 
x. Thus, for fixed x and 1, we choose c(x, t) to 
minimize 

f(E) = rp(GP(X, t)) - 0, 06. (4.2) 

Since C+J has a double-well structure, the equation 
af@ = 0 has two solutions: 6 = E+ + C~/OZ - D(p - 1) 
and L = C- + a/cl - D@ + 1). By comparing the 

values of f on these two solutions, we conclude 
that ~_ + & t) - - D(p(x, t) f 1) 

a 

6(X, t) = 

i 

if 0(x, 0 < - yp(x, t), 

E+ + - 4x3 0 - D@(x, t) - 1) c( 

if 0(x, t) 2 - YP(X, t), 

where 

(4.3) 

(4.4) 

In typical physical cases, c <<c(. Then (4.3) implies 
that when the stress a(x, t) is relatively large 
(a(x, t) > - yp), the strain is near C+ and the 
material is in the + variant. Similarly, when the stress 
is sufficiently small, the strain is near E- and the 
material is in the - variant. The material transforms 
from one variant to another at a(x, t) = -yp(x, t). 
Following the traditional terminology, we call 
-yp the Maxwell stress. The source of most of the 
interesting behavior of the model, as well as 
the strong nonlinearity, is that the Maxwell stress 
depends on the shift. Speaking physically, the critical 
stress for twinning depends on the local atomic 
arrangement, as measured by the shift. 

We now turn to (4.1),. Differentiating the free 
energy (3.3) with respect to p and substituting for c 
using (4.3), we obtain 

r -m(p(x, t) + 1) + do(x, t) 

z (x, 1) = 

i 

for 4x, t) G - YP(~, t>, (4.5) 

-m(p(x, t) - 1) + da(x, t) 

1 for (T(x, t) 2 - YP(X, t), 

where the constants m and d are given by 

m  = @ = A@ - a”) 
a ’ 

d=-pD= *. (4.6) a 

We have to solve the ordinary differential equations 
(4.5) at each x subject to the initial condition 
p(x, 0) = PO(X), obtained from (4.l)iii. The fact that 
we may use either branch in (4.3) or (4.5) when 
a@, t) = -yp(x, t) does not cause any problems (see 
[18] for a complete explanation of this point). 

It is easy to integrate (4.5). We fix x and suppress 
it from the notation. Suppose o(O) < - ypo. Then 
(4.9, applies, at least for short time. Integrating (4.5), 
subject to p(0) =po, we get 

p(t) = p-(t) = - 1 f (PO + l)e-mr 

+ d 
s 

’ c(s)e-m(‘-S) ds. (4.7) 
0 

We continue with this solution until the first time 
t, at which o(t) = -yp(t). At t = t,, we switch to the 
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+ branch, (4.5)?. Integrating (4.92 with the initial 
condition p+(t,) = p(t,) = PI, we get 

p(t) =p+(t) = 1 + (PI - l)e-m(i-‘~’ 

+d 

i 
’ a(s)e-mli-~~ ds. (4.8) 

We continue with this solution until the next time 
when a(t) = -yp(t) and then switch back to the 
_ branch, (4.5),. We continue this procedure, 
alternating between the two equations in (4.5). 
Depending on the loading program, it may happen 
that after a certain time, o(t) never again becomes 
equal to - yp(t); in this case, we simply take the 
solution on the current branch for all future time. 
We follow an analogous procedure if a(O) > - ypo. 
We thus obtain p(t) at this fixed point X. We repeat 
this procedure at each particle x in [0, L] and obtain 
p(x, t). Plugging this back in (4.4), we obtain E(X, t). 
We now calculate u(x, t) from 

u(x, t) = 
s 

‘i 
t(z, t) dz; (4.9) 

0 

u(x, t) and p(x, t) are the solutions to (4.1). We 
obtain the overall strain i from 

u(L, t) 1 L 
r(t) = 7 = z 

s 
c(z, t) dz. (4.10) 

0 

Our hysteresis loops are parametric plots of the 
stress vs overall strain: i.e. 0(x, t) vs E, where x is 
chosen in some convenient way. For specimens of 
hourglass shape, we follow Lieberman et al. [4] and 
plot the stress at the center point x = L/2 vs the 
overall strain. 

We now illustrate the procedure for solving (4.1). 
We choose the problem of cyclic loading of an 
aged finely twinned specimen which was studied by 
Lieberman et al. [4] and whose observations are 
shown in Fig. 1. We choose a bar with uniform 
cross-section A(x) = 1. Therefore, in this bar 
cr(x,t) = F(t) at each x and t. Our initial condition is 
as follows. We divide the bar into two parts I, and 
I. of equal total length and set 

PO(X) = 
{ 

+l if XE~+, 
-1 if XE/_, 

co(x) = 1 t+ if XEI+, 
t- if x~l_. 

(4.11) 

This corresponds to stabilized + variant in 1, and - 
variant in I-. 

We choose the parameters, t( = 5000, B = 0.05, 
tr = 0.02, D = 0 and p = 2 for convenience of 
illustration (arbitrary consistent units; see Section 6 
for realistic parameters for Au_47S%Cd). In par- 
ticular, we have chosen a large p to speed up 
computations and also D = 0 to turn off the energetic 

Fig. 4. Evolution of p(x, t) vs t for x E I+ (bold) and for 
x E 1_ (dashed). 

coupling between strain and shift. We take F(t) = 
o(t) = 6.5 sin t. We calculate u(x, t) and p(x, t) 
according to the procedure outlined above. The 
computed solution p(x, t) corresponding to the initial 
conditions (4.11) is shown in Fig. 4, and the hysteresis 
loops (parametric plots of the stress vs overall strain: 
c(t) vs F(t)) are shown in Fig. 5. In Fig. 4, -~(t)/v 
is the sinusoidal curve, p(x, t) for x E 1, is the bold 
curve, and p(x, t) for x E 1_ is the dashed curve. 
Notice how p changes direction as it crosses -g(t)/?, 
i.e., as the load crosses the Maxwell load. Figure 5(a) 
plots a(t) vs t(t) for the first stress cycle. For small 
loads, both 1, and I- respond elastically. As the load 
increases beyond the Maxwell load, I_ transforms to 
the + variant and the strain in this region increases 
from close to c_ to close to t+. At this time 1, is 
already in the + variant and responds elastically. 
Consequently, there is a big increase in the overall 
strain at this load. As the load increases further, both 
regions behave elastically. At the same time, the shift 
p in the region I_ begins to evolve towards + 1. p does 
not evolve in 1, because it is already + 1 there. Now 
the load increases to its peak and then begins to 
decrease. Though p is evolving towards + 1 in l-, 
it does not get there in finite time; so I_ transforms 
back to the - variant at the Maxwell load and there 
is a decrease in the overall strain. But now, the 
Maxwell load is lower than before because p has 
changed from - 1 towards + 1 in the meantime. 
Therefore the large decrease in strain takes place at 
a lower value of the applied stress. This gives the 

(4 b) (4 

Fig. 5. Hysteresis loops, o(t) vs C = u(L, t)/L: (a) cycle 1; 
(b) cycle 4; and (c) cycle 12. The material parameters are 
x = 5000, B = 0.05, tr = 0.02, D = 0, p = 2 (and o,, = 0), 

while the loading is F(t) = cr(t) = 6.5 sin t. 
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upper-right hysteresis loop of Fig. 5(a). We obtain the 
lower-left hysteresis loop of Fig. 5(a) by looking at 
the negative part of the cycle. 

As the load is cycled, we see from Fig. 4 that the 
two values of the shift p (in I, and l-) converge with 
time and asymptotically approach one periodic path. 
Therefore, as we cycle through the hysteresis loops 
move closer and closer, as shown in Fig. 5(b), until 
they merge into one big loop, which then evolves 
toward the terminal loop shown in Fig. 5(c). For the 
chosen parameters, we reach the terminal loop in 
about 12 cycles. Comparing Fig. 5 with Fig. 1, we see 
good qualitative agreement. 

It turns out that when we use realistic mobility 
to simulate the experiments of Lieberman et al. [4], 
we find that the hysteresis loops are too thin, 
especially at very high frequencies. Therefore, we 
make a modification to the model above: rather than 
switching branches when the stress reaches the 
Maxwell stress, we switch when the difference 
between the applied and the Maxwell stress exceeds 
a given material constant rrXs. We assume that cXs 2 0 
and we call it the inherent hysteresis. In other 
words, we switch from the “ - ” to the “ + ” 
when a(x, t) = -yp(x, t) + oXs and we switch 
from the “ + ” to the “ - ” branch when 
a(x, t) = -yp(x, t) - ou. Therefore, rather than 
allowing the strain to minimize the total energy, we 
introduce some hysteresis in the motion of the twin 
boundaries through Q,. In Bhattacharya, James and 
Swart [25], we show that this modification may be 
interpreted as a (rather degenerate) special case of a 
model which has kinetics in both the shift and the 
twin boundary motion. 

We now summarize our model. 
The behavior of a bar of length L, with 

cross-section A(x), with initial shift p,,(x) and strain 
c,(t), with one end held fixed (i.e., ~(0, t) = 0), 
and subjected to a force F(t) (co, must be consistent 
with F(0)) is determined as follows: 

1. The shift p(x, t) is given by a function 
continuous in time t consistent with 

c p-(t) 

i 

for 
ptx, t) = 

u(x, t) < -yp(x, t) + u,, 

p+(t) 

1 for 0(x, t) 2 - yp(x, t) - u,, 
(4.12) 

where 

P-(t) = - 1 + (p(X, to) + l)e-ti’-“) 

+ d 
s 

(a(s)e-m(f-JJ ds, 
10 

P+(t) = 1 + (p(X, to) - l)e-*‘-b) 

+ d 
I 

‘a(s)e-“+‘) ds; (4.13) 
10 

2. The strain E(X, t) is given by 

1 E- + * - D(p(x, t) + 1) 

i 

if 
E(X, t) = 

4x, t) < - Y&C, t) + u,, 

E+ + y - D(p(x, t) - 1) 

1 if utx, t) 2 -YP(X, t) - a,; 

(4.14) 

3. At time t, if -yp(x, t) - uxs < u(x, t) < 
-yp(x, t) - uXs, we choose the “ + ” or the 
‘1 - ” branch to be exactly the same as that at 
the immediate past instant t = t-, i.e., we stay 
on the same branch as long as possible; 

4. The overall strain in the bar E is given by the 
total displacement u(L, t) divided by the length 
of the bar L: 

u(L t) 1 L c(t) = L = I t(z, t) dz; (4.15) 

5. The material constants are 

?? a, the elastic modulus, 
??B, the normalized shift modulus, 
??D, the normalized coupling constant, 
??cT, the normalized twinning strain, 
??p, the mobility, 
??uXs, the inherent hysteresis; 

6. And other useful definitions are 

?? the stress u(x, t) = F(t)/A(x), 
??m = pB and l/m is the time constant for the 

shift, 
a d= -pD and 
??y=2B/cr. 

5. PARAMETER STUDY OF THE MODEL 

We now embark on a parameter study of our 
model. We start with a bar of unit length and 
cross-section, initial data as in (4.11) and material 
parameters shown just below (4.11). Again, we use 
arbitrary consistent units. 

Figures 6 and 7 show the effect of changing the 
normalized coupling constant D. We use the same 
constants as in Fig. 5, except for D. A positive D 
results in the self-intersecting hysteresis loops as 
shown in Fig. 6 (D = 0.003). We note here that 
the small triangular loops shown in Fig. 6 do not 
violate any principle of thermodynamics, even 
though these loops are traversed counterclockwise. 
This is because the shift is not periodic on these loops 
and, consequently, neither is the free energy (see [18] 
for details). A negative D results in a gap at zero 
stress in the first cycle as well as tails in both the first 
and terminal loops as shown in Fig. 7 (D = -0.003). 
Note that the experimental loops in Fig. 1 have these 
features. 
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(4 (b) 

Fig. 6. The effect of positive coupling D on the (a) initial 
and (b) terminal hysteresis loops, a(t) vs C(t). The material 
parameters and loading are the same as in Fig. 5, except 

D = 0.003. 

The effect of changing B is shown in Fig. 8; we use 
the same parameters as Fig. 7 except that B has been 
increased to 0.06. Note that the stress levels as well 
as the size of the loops have increased. Further, the 
rate of relaxation increases; it took only about 8 
cycles to reach the terminal loop. 

The mobility and the frequency of cyclic loading 
have a significant effect on the width of the hysteresis 
loop. In fact, when D = 0 and oXs = 0, it is possible 
to show that 

1 _ e-W2 
stress width of terminal loop = 2y 1 + e_mT,2, 

(5.1) 

where T is the period of loading. This simple 
formula captures the effect of frequency, p and B. 
(If D # 0, the width of the terminal loop depends 
on the amplitude of loading in addition to 
these parameters.) Notice that the width of the 
hysteresis loop increases with increasing mobility p or 
decreasing frequency l/T. As the mobility increases, 
the material relaxes faster and consequently, the 
difference in the stress for the + to - and - to + 
transformations is large. Similarly, if the frequency 
is low, the shift p has more time to evolve as the 
stress reaches its peak and turns back. Consequently 
the difference in the stresses for the + to - and - 
to + transformations is large. This is illustrated by 
the simulations presented in Section 6. The mobility 
and the frequency of cyclic loading also affect 
the number of cycles that one needs to reach the 
terminal loop. Fewer cycles are required to reach 

.$e .&JZ 

(a) (b) 
Fig. 7. The effect of negative coupling D on the (a) initial 
and (b) terminal hysteresis loops, u(t) vs Z(t). The material 
parameters are a = 5000, B = 0.05, cT = 0.02, D = -0.003, 
p = 2 and uXS = 0, while the loading is F(t) = a(f) = 6.5 sin t 

(same as in Fig. 5, except for D). 

(4 (b) 

Fig. 8. The effect of increasing the normalized shift modulus 
B on the (a) initial and (b) terminal hysteresis loops, u(t) 
vs C(t). The material parameters and loading are the same 

as in Fig. 7, except that B = 0.06. 

the terminal loop as p gets larger or the frequency 
gets smaller. 

Increasing tr stretches out the loops horizontally 
and also reduces stress levels of the loops. The 
elastic modulus GI mainly affects the slope of elastic 
branches, as expected. The width of the hysteresis 
loop increases with increasing 6,. We have omitted 
simulations of these trends for brevity. 

We now look at two applied loading programs 
which are periodic, but not purely sinusoidal. 
First we consider a(t) = 6.5 sin t + 0.5 for the same 
initial data and parameters as in Fig. 7. We find that 
the terminal loop is displaced downwards as shown 
in Fig. 9. By examining the solution, the reason for 
this odd behavior becomes clear; by displacing the 
stress upward, we give the shift more time to evolve 
toward + 1, thereby decreasing the stress levels 
during the transformation from one variant to 
another. 

Secondly, we consider the applied loading 

o(t) = S(sin t + 0.75 sin 2t) (5.2) 

with the same initial data and parameters as in 
Fig. 7. It turns out that for this loading, the initial 
hysteresis plot has two loops as before (Fig. 10(a)). 
As the load is cycled, they move closer. However, 
they never meet or merge; instead they attain 
the terminal loop shown in Fig. 10(b). One may 
understand this from Fig. 11: for the given load, 
it is possible for p in the two parts of the bar 
I+ and I_ to reach two very different terminal 
trajectories. 

Finally, we examine the model for a bar whose 
cross-section is not uniform, but which is similar to 
the hourglass specimens of Lieberman et al. [4]. 

0 

6 

& -0 1 0. 
T 

1 -61 
Fig. 9. The effect of off-set loading on the hysteresis 
loop, e(t) vs E(t). When the stress is biased up (u(t) = 
6.5 sin t + 0.5), the hysteresis loop is lowered. The material 

parameters are the same as in Fig. 7. 
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(4 (b) 

Fig. 10. Predicted hysteresis loops for an applied loading 
u(t) = S(sin t + 0.75 sin 2t) vs E(t): (a) first loop; (b) 

Fig. 12. Hysteresis loops, (r(L/2 t) vs E(t), for bar of 

terminal loop. The material parameters are the same as in 
non-uniform cross-section with ,4,.,&i, = 1.5: (a) first loop; 

Fig. 8. 
(b) terminal loop. The material parameters and loading are 

the same as in Fig. 7. 

We assume that the cross-section varies with position 
as follows. 

Thus, the bar is symmetric about its midpoint, 
which has the smallest cross-section A,,,. The ends 
have the largest A = A,,,. 

We choose the same material parameters and 
loading as in Fig. 7 with a ratio of cross-sections 
A,,,/A,i, = 1.5 (since we plot the stress, we need only 
the ratio of maximum to minimum cross-sections 
rather than their individual values). We take the 
initial conditions (4.11) and assume that 1, and 1_ 
come from equispaced fine twins so that the bar 
alternates between I, and I_ at a length scale much 
smaller than the length of the bar. Figure 12(a) 
and (b) show the first and the terminal loops. It is 
clear from Fig. 12(a) that, unlike a bar with uniform 
cross-section, the entire bar does not transform at 
the same time. Depending on the cross-section, the 
applied stress reaches the critical stress for transform- 
ing at different times and this gives rise to the 
“slanting of the hysteresis loops”. Comparing the 
first and terminal loop, notice that the effect of 
non-uniform cross-section is more pronounced in the 
first loop rather than in the final loop. We can 
understand this as follows. Roughly, the ratio of 
the loads at transformation will be equal to the ratio 
of the cross-sections. Since the transformation takes 
place at much higher values of the load in the first 

1 

t 
0 

-1 

Fig. 11. Evolution of p(x, t) vs t for x E 1, (bold) and for 
x E I_ (dashed) with the loading program given in Fig. 10. 

cycle, the effect of cross-section is much more visible 
there. 

Figure 13(a) and (b) show the first and the terminal 
loops when A,,,/&, = 2 and everything else is kept 
the same. In this case, the cross-section of some parts 
of the bar is so large that the stress never reaches the 
critical value for transforming. Thus, only part of 
the bar transforms and the total elongation is much 
smaller. 

6. COMPARISON OF THEORY AND 
EXPERIMENT 

In this section, we look at the mechanical tests 
conducted by Lieberman, Schmerling and Karz 
[4] at some length (also see Karz [34]). They 
performed their experiments on single crystal bars 
of Au47S%Cd. They transformed these bars 
from austenite to martensite by a single interface 
transformation to obtain one set of fine twins of two 
variants of martensite and aged it in this state. 

Experiment 1 

They subjected this aged, finely twinned bar to a 
tension-compression cyclic loading. They plotted 
the stress versus overall strain during the different 
cycles. Their results are shown in Fig. 1. In the initial 
cycles, the bar displays “rubber-like behavior” both 
in tension and compression, and there are two 
hysteresis loops in their stress-strain curves as shown 
on the left of Fig. 1. Let us term a hysteresis loop of 
this type a double-loop. As cycling continues, the two 
loops move closer to each other until they merge after 
a large number of cycles; beyond this there is only one 

I I -6 

(4 (b) 

Fig. 13. Hysteresis loops, o(t) vs E(t), for bar of non-uniform 
cross-section wtth A,,&,,, = 2: (a) first loop; (b) terminal 
loop. The material parameters and loading are the same as 

in Fig. 7. 
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hysteresis loop (single-loop) as shown on the right. 
Continued cycling does not change the hysteresis 
loop and they called this the “terminal loop”. 

Experiment 2 

Lieberman et al. [4] started with an aged finely 
twinned bar and subjected it to cyclic loads as 
described above. Once the bar had reached the 
terminal loop, they stopped the test at zero stress, 
held the bar in the unloaded state for a given period 
of time, and then restarted the cyclic loading. They 
repeated the whole experiment with different holding 
times, each time beginning with an aged, finely 
twinned specimen. Figure 14(a) shows their observed 
hysteresis loops during the first cycle after the 
delay, for the various delay periods. With increasing 
holding times, the first loop after delay resembles 
more and more the initial loop. Figure 14(b) shows 
the continued evolution of the hysteresis loop upon 
cyclic loading after a delay of 400 min. Notice that 
the terminal loop achieved by this method is the same 
as the original one. 

Experiment 3 

Lieberman et al. [4] repeated their Experiment 1 
at various loading frequencies and temperatures. 
They always obtained an initial double-loop which 
evolved to a terminal single-loop. Figure 15 shows 
their observed terminal hysteresis loop at different 
loading frequencies and temperatures. The width of 
the terminal hysteresis loop increases with decreasing 
frequency and increasing temperature. 

We now try to simulate these experiments with our 
model. Our first task is to find suitable material 
parameters. This is difficult to do systematically for 

Holding time (min) 

Fig. 14. The recovery of the initial loop after time delays 
(Experiment 2). An Au_47Sat.%Cd specimen cycled to the 
terminal loop was held under zero load for various holding 
times (1, 10, 100, 400 min), and then cyclic loading was 
resumed: (a) the subsequent first loop; (b) loops after further 
cycling. After Liebennan, Schmerling and Karz [2], Fig. 22 
(used with permission of the authors and Plenum Press). 

T OS Frequency 
2 kg/mm’ 7.5x10-* Hz 7.5~10-~Hz 7.5~10-~ Hz 

56°C 

22°C 

-26°C 

-126”( 

Fig. 15. The effect of frequency and temperature on the 
terminal loop (Experiment 3), according to Lieberman, 
Schmerling and Karz [2], Fig. 21 (used with permission of 

the authors and Plenum Press). 

the experiments of Lieberman et al. [4, 341 for several 
reasons. First, the experiments reproduced in Figs 14 
and 15 above and also Fig. 1 were conducted on 
different specimens (note for example the differing 
maximum stresses and strains), possibly at different 
temperatures. In our one-dimensional theory, the 
constants depend implicitly (and possibly sensitively) 
on orientation, and possibly also on the sample 
preparation technique. Further, the temperature has 
an important influence on the time constant. Second, 
the specimens of Lieberman et al. had an hour-glass 
shape to prevent buckling under compressive loads. 
For this reason, they measured the diametral strain 
and then converted it to axial strain using a theory 
based on three-dimensional transformation strain 
[32]. Our model is energetic; therefore it is extremely 
important to use an accurate measurement of the 
overall axial strain for comparison. For these reasons 
we were unable to follow any well-defined procedure 
and were forced to improvise. We give a systematic 
procedure for obtaining the parameters in Section 3 
of Part II. 

Motivated by the hour-glass shape of the bar, 
we assume that the cross-section of the bar is of the 
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(4 (b) 

Fig. 16. Simulation results of Experiment 1: (a) initial 
hysteresis loop; (b) terminal hysteresis loop (after about 
30 000 cycles). The simulation uses the parameters in (6.1) 

and loading (6.2). 

form shown in equation (5.3) with the smallest value 
A,,, at the center and the largest value A,,, at the 
ends. We take the ratio A,,,/A,i, = 1.5. 

We assume that the initial distribution of the shifts 
is as earlier: half the bar starts at the + phase 
with p. = + 1 while the other half starts at the - 
phase with p0 = - 1. This corresponds to aged finely 
twinned bar with equal proportion of the two twin 
variants. 

We use the following material 
simulate Experiment 1. 

CI = 4000 kg/mm2, 

B = 0.044 kg/mm2, 

D = -0.5 kg/mm2, 

tT = 0.025, 

oXs = 0.8 kg/mm2, 

p = 0.8 mm2/(kg min) 

parameters to 

(6.1) 

These parameters were chosen simply to give a 
good match with the experiment. We assume that 
the loading is 

472, t) = F(t)/&, 

= 6.5 sin(27c60 x 7.5t) kg/mm2, (6.2) 

where t is time in minutes and the frequency of 
loading is 7.5 Hz. Our results are shown in Fig. 16. 
Compare this with the experimental observations 
in Fig. 1. Note that our model clearly captures the 
transition from a double to a single loop. It 
also captures various details: the constancy of the 
stress-width of the hysteresis loop during cycling, 
the gap in strain at zero stress, the tails in the initial 
and terminal loops. The loops of Lieberman et al. 
are somewhat more rounded, slope upward a bit 
more and have slightly larger tails. This is to be 
expected due to the following real world experimental 
issues: hour-glass specimens, diametral strain 
measurements, the effect of grips and the difficulties 
of achieving pure load control. We propose new 
experiments in Part II (Section 3) to address some of 
these issues. 

We note here that we have been able to dispel one 
possible reason for the shapes of the hysteresis 

loops-the kinetics of twin boundary motion. 
We augmented our model to include the kinetics of 
twin boundary motion in the form of a kinetic 
relation which relates the velocity of a twin boundary 
to the driving traction acting on it. The rounded 
shape of the experimentally observed hysteresis loops 
in Fig. 2 can then be easily reproduced at any given 
frequency with a proper choice of a kinetic relation. 
However, the model was unable to reproduce the 
frequency dependence satisfactorily. We either had 
to choose a rather degenerate kinetic relation which 
gave flat loops; or we obtained the wrong qualitative 
dependence when compared over a large, but 
experimentally relevant, range of frequencies. We 
shall present the details of this elsewhere [25]. 

For Experiments 2 and 3 conducted by Lieberman 
et al., which were done on a different specimen than 
Experiment 1, we choose the parameters, 

tl = 3000 kg/mm2, 

B = 0.017 kg/mm2, 

D = -0.003 kg/mm2, 

tr = 0.02, 

oXs = 0.2 kg/mm2, 

p = 0.8 mm2/(kg min). (6.3) 

We take the loading to be 

G/2, t) = F(t)IA,,, 

= 3.1 sin(2x60wt) kg/mm2, (6.4) 

where o is the frequency in Hertz. 

(4 

(b) 

Fig. 17. Results of the simulation of Experiment 2, in which 
a specimen is cycled for a long time, then held at zero stress 
for the indicated period, then cycled again. (a) The first 
hysteresis loop after holding for (0, 1, 10, 100, 400) min. (b) 
The time-evolution of the hysteresis loops after holding 
for 400 min; shown after (0, 10, 100, 1000) cycles. Both 
these simulations use the parameters in (6.3) and the 
loading (6.4) with frequency 0.083 Hz; the units of stress 

are kg/mm2. 
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The results of our simulation of Experiment 2 are 
shown in Fig. 17. Figure 17(a) shows the simulated 
hysteresis loops of the first loading cycle after delay. 
Figure 17(b) shows the subsequent evolution of the 
hysteresis loop. Compare these with Fig. 14 to see 
good qualitative and quantitative agreement. 

Figure 18 shows results of our simulation of 
Experiment 3. We start with the initial condition 
corresponding to the aged finely twinned bar 
and subject it to the cyclic load (6.4) at different 
frequencies o. Of all our material parameters, the 
mobility ~1 is expected to increase sensitively with 
temperature (as described in the paragraph following 
equation (4.1), it is obtained from a thermally 
activated process). The experiments of Lieberman 
et al. [4, 321 give a few data points of a relation 
p = p(e), but not enough to reliably evaluate a 
thermal activation energy Q. Therefore, we repeat 
our simulations with different values of p correspond- 
ing to different temperatures. The corresponding 
terminal loops are shown in Fig. 18. Compare with 
Fig. 15, once again to find good agreement. 

Finally, notice that in Fig. 15, some of the 
hysteresis loops are offset “downwards” i.e., towards 
negative stresses. Notice further, that in each of these, 

I 

0=2 Frequency 

7.5~10-~ Hz 7.5~10‘~ Hz 7.5~10.~ Hz 
I 
E = 0.02 

Mobility 

p=t3 

p = 0.8 

i=1 
P 
+ 

-: 

t 

+ 

+ 

Fig. 18. Results of the simulation of Experiment 3. The 
terminal loops obtained using the parameters (6.3) and 
loading (6.4) at different frequencies and values of the 
mobility p; the units of stress are kg/mm2. The columns 
correspond to frequencies 7.5 x lo-* Hz, 7.5 x lo-’ Hz and 
7.5 x 10m4 Hz from left to right, while the rows correspond 

to p = 8, 0.8 and 0.08 from the top to the bottom. 

the magnitude of the maximum stress is less than 
that of the minimum stress. In other words, the 
load that they applied was not purely sinusoidal, 
but slightly offset probably due to a drift in their 
controller over all these cycles. Recall from the 
parameter study in Section 5 (specifically Fig. 9 
there), that when we apply a loading which is offset 
in the positive stress direction in our model, 
the simulated hysteresis loop moves downwards in 
agreement with the experimental observations. 

In summary, our model is able to capture the 
qualitative details of the wide range and variety of 
mechanical tests conducted by Lieberman et al. [4]. 
Unfortunately, a detailed quantitative comparison 
was not possible given the nature of the experimental 
data. However, wherever such a comparison was 
possible, we found reasonable agreement. 

7. CONCLUSION 

In this paper, we have proposed a phenomenolog- 
ical model of the relaxation and the consequent 
behavior that is observed in some shape-memory 
alloys at constant temperature. We have compared 
the predictions of this model with experimental 
results. In Part II, we extend the model to include the 
effects of temperature and the austenite-martensite 
transformation. We also propose new experiments to 
clarify some outstanding issues. 
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