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Abstract 

Unlike the phases of ordinary fluids, solid phases are often found to occur in metastable equilibrium. At 
constant temperature, a stress-extension test on a bar made of a material which allows the co-existence of two 
phases will often produce a large hysterysis loop. It is then impossible, by static measurements alone, to 
determine the values of stress r* and temperature 0* at which the two phases have the same specific free 
energy. I show that by a measurement of the jump in temperature across a propagating phase boundary, 
(~-*, 0*) can be determined in several cases of interest. 

The analysis offers insight into the general behavior of propagating phase boundaries as well as the 
thermodynamics of solid phases. 

The discussion is centered around the so-called shape-memory alloys. 

1. Introduction 

Intui t ively,  an equi l ib r ium state is metas tab le  if af ter  having been d i s tu rbed  slightly, the 
dyna mic  mot ion  which takes place  re turns  to the equi l ibr ium state or  at  least  does  not  
s t ray  very far away  f rom it. This concept  has never been made  precise with any 
general i ty  in con t inuum mechanics .  E lementa ry  examples  show that  the class of  
me tas tab le  states is very sensit ive to the precise in te rpre ta t ion  given to the word  
"s l igh t ly . "  

One  theory  in which we can begin to explore  a def ini te  concept  of  metas tab i l i ty  is 
G i b b s ' s  s tabi l i ty  theory  [1]. To fix the ideas,  cons ider  an i so thermal  force-s t re tch 
re la t ion for a thermoelas t ic  ba r  like the one p ic tu red  in Fig. 1, which permi ts  the 
co-exis tence of  two phases.  The dashed  line cuts  off equal  areas  of the curve above  and 
below; it is cal led the Maxwell Line [2]. Suppose  a ba r  at t empera tu re  0 e with this 
force-s t re tch re la t ion is loaded  in a dead  load ing  device with an assigned load  %. The  
a p p r o p r i a t e  G i b b s  po ten t ia l  is 

G= f t ' ( ep (y ' (  X ) ,  Oe ) -ooy ' (  X ) ) d X  , (1.1) 

y ( X )  be ing  the de fo rma t ion  of  the bar ,  u = y ' ( X )  being the stretch, and  ~ (u ,  0) being 
the free energy:  o = ~u. I shall  say that  a s tate )7 is stable if it minimizes  I G relat ive to 

i Precise statements of these conditions are contained in [4]. The class of functions y(X) considered is the 
class of continuous, piecewise differentiable functions. 
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Figure I. A force-stretch relation at constant temperature. The Maxwell Line is dashed. 

all other states in the domain of G, metastable if it minimizes G relative to all other 
states y in the domain of G which satisfy 

ly ' (X)  -)7'(X)I < e, VX~ [0, L] ,  (1.2) 

for some sufficiently small e > 0. 
The significance of the Maxwell Line is the following: i f9  is stable, then f i ' (X)  must 

lie in the interval [a, a*] or the interval [B, fl*] for each X in [0, L]. Thus, if we were 
always to seek stable deformations, and we loaded the bar incrementally with an 
increasing sequence of dead loads, we would find that the bar would first "yield" at a 
load o 0 equal to ~'* shown in Fig. 1. In Gibbs's theory "yielding" occurs when one or 
more discontinuities of y ' (X),  or phase boundaries, appear in the bar, separating regions 
of large stretch u--f l*  from regions of small stretch u = a*. For o 0 > r* the bar is 
homogeneously deformed in the phase of large stretch (fl-phase). Upon unloading the 
bar returns to the phase of small stretch (a-phase) exactly at o o = ~'*, so no hysteresis is 
seen. Simple proofs of these statements are found in the paper by Ericksen [4]. 

A few materials behave much like this, those being among the so-called shape-mem- 
ory alloys. Figure 2a shows an example. 2 For these materials (at the appropriate 
temperatures) the Maxwell Line can be located instantly. The thermoelastic bar theory 
used here can be easily generalized to include a body force and a non-uniform 
cross-section, and for these materials many problems can be solved [3]. 

Most bars which permit the co-existence of two solid phases, including the shape- 
memory alloys at most temperatures, do not behave like the stable deformations. They 
yield at loads presumably greater than ~-*, and having yielded, they may continue to 

2 The experiments pictured in Fig. 2 are representative of those carried out in a hard loading device. Theory 
predicts the same stress-extension curves for stable deformations in the hard and dead loading devices. 
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Figure 2. Representative static stress-elongation curves for thin bars of the shape-memory alloy Cu-14.2AI- 
4.3Ni(w + %) in a hard loading device ([5] p. 68). 

support the two phases if the load is then decreased to zero. Two examples are shown 
in Figs. 2b and 2c. A number of polymers show similar behavior. I have adopted the 
definition of metastability given just before (1.2) in response to these observations. This 
definition of metastability implies that if )7 is metastable, then )7'(X) must have values 
on the intervals [a, e0) or (ill, fl] (see Fig. 1). Of course it must also be equilibrated: 3 

o(y'(X),Oe)=Oo, X ~  [0, L] .  (1.3) 

The definition 4 does not predict a definite yield point. However, experiments on 
shape-memory alloys also do not seem to give a reproducible value of the yield point 
(cf. [5], p. 424). 

3 The conditions stated are both necessary and sufficient for metastability [3]. 
4 It is easily seen from this definition of metastability that such classical statements as Gibbs's phase rule and 

the Clausius-Clapeyron equation fail for metastable states. Rodriguez and Brown ([5] p. 34) have also 
questioned the validity of the Clausius-Clapeyron equation for these transformations. 
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The theory is sensitive to the precise meaning given to the term metastability. If (1.2) 
is replaced by either of the following commonly used norms, 

m a x l y ( X ) - ~ ( X ) l < e ,  or 
[O,L] 

foLly ' (X)  - f ' ( X ) l " d X <  n >/1, (1.4) E, 

then behavior as is shown in Figs. 2b and 2c cannot be predicted by Gibbs 's  theory. 
If we accept that a bar often equilibrates in metastable states, then there is generally 

no way to determine the Maxwell Line from static stress-elongation curves. It is the 
purpose of this paper to show how the Maxwell Line can be determined. The 
calculations lead to a suggestion for an experimental program (Section 7) designed to 
determine the Maxwell Line. 

If it be admitted that bars often equilibrate in metastable states, then of what use is 
the Maxwell Line? One answer comes from the discussion above; if o 0 < ~'* then states 
of homogeneous deformation in the a-phase are stable. On this basis one can argue that 
r* is the ultimate safe load designers should use to prevent failure of this kind. For the 
shape-memory alloys this "failure" is desired, and the hysteresis which arises from 
yielding at loads other than ~,* is responsible for the shape-memory effect. 5 It is not 
possible to assess the usefulness of the shape-memory effect without a knowledge of 
~-* = ?*(0e). In particular, the calculation of efficiency of a shape-memory engine due 
to Wayman ([5], p. 3]) requires that the temperature at which ~-* vanishes be known. 

To this end I propose to study a fully general thermodynamic theory for a 
one-dimensional bar. I regard the specific heats of each of the phases alone as known, 
as well as the stress-elongation curves over an interval of temperatures. Only for free 
energies with special properties are these sufficient to determine the Maxwell Line. 
Additional information may come from a variety of sources, but I argue that by a 
measurement of the jump in temperature across a moderately fast moving phase 
boundary, the Maxwell Line can be determined for a variety of shape-memory alloys. 
This measurement also provides a check on the theory as a whole for an alloy whose 
Maxwell Line has been determined by other means. For smooth solutions of the 
thermodynamic equations which depend on the single variable X -  Vt, the jump in 
temperature is independent, in a precise sense (Section 3), of the dynamic theory used. 
The properties of these solutions serve to clarify some general features of the thermody- 
namics of finite deformation of solids. They provide examples of arbitrary slow 
motions for which the Clausius-Duhem inequality holds with strict inequality, as well 
as fast motions for which the usual form of the adiabatic approximation is not valid. 

The jump in temperature is generally quite large for moderately fast moving phase 
boundaries; this is shown by the interesting experiments of Rodriguez and Brown ([5] 
p. 36]) who observe a temperature rise of about 12°C at an overall rate of (relative) 
extension of 0.2/sec for CuA1Ni. 

5 The shape-memory effect is illustrated by Fig. 2. A bar is loaded at constant temperature according to the 
stress-elongation curve 2c. When the load is removed some part of the bar remains in the fl-phase. Upon 
heating at zero load the ~8-phase becomes unstable and the bar snaps back to its original shape. If a load is 
applied to the bar as it snaps back, the bar will lift the load and, for some alloys, the work done exceeds the 
work done originally to deform the bar. A heat engine can be built based upon this phenomenon. 
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I determine the Maxwell Line for a variety of materials in Sections 6a-6f.  These 
include alloys like the one pictured in Fig. 2 as well as some alloys for which the 
Maxwell Line is not known at any temperature. There remains a certain special class of 
materials (of which I know no examples in nature) for which I am not able to determine 
the Maxwell Line. 

2. Thermodynamic bar theory 

A bar is described by a single material co-ordinate 

X [0, L]. (2.1) 
L is the length of the undeformed bar. A solution of the equations of thermodynamic 
bar theory is a pair of functions 

y ( X , t ) ,  *l(X,t) X ~  [0, L] ,  t>~0. (2.2) 

The first gives the position occupied by the point X at the time t. The second gives the 
specific entropy at (X, t). The stretch and velocity are denoted by 

u =Yx, v =Yt" (2.3) 

The functions y and ~ are subject to the equations of balance of mass, momentum, and 
energy and the Clausius-Duhem inequality [6]: 

u p  = P 0 ,  

X T x f0 oa,10, 
foXpo(e+½v2)dXIr=foT(ov-q)dtlX+forfoXrdXdt,  

X T 
fo P°~dX'°>~ --JoeTlo qdtl°x (2.4) 

In (2.4) P0 = const, is the density (mass per unit length) of the undeformed bar, p is the 
density of the deformed bar, o is the axial force, e is the specific internal energy, q is the 
axial heatflux, r is the lateral heat absorption and 0 > 0 is the absolute temperature. If a 
solution (y, 7) of (2.4)2.3.4 is known, Eqn. (2.4)1 determines the density of the deformed 
bar, which is in no other way restricted. The condition of invertibility u = Yx > 0 shall 
be assumed. The lateral heat absorption r represents the heat flux directed into the side 
of the bar at a point X due to both radiation and conduction to the ambient; it is by no 
means unimportant in bar theory. Classically, it is given by the assumption r = 
cons t . ( 0 -  O0), 0 o being an effective ambient temperature. More generally, it depends 
upon both the constitution of the body and the conditions of the environment. 

The unknown functions y and ~ are related to the specific internal energy, axial 
force, temperature and axial heat flux by constitutive equations. For general motions of 
solid bars which may change phase, it is not yet clear what form these relations should 
take. In fluid mechanics the situation is better understood due to the works of van der 
Waals [7] and Korteweg [8], who assumed that the density varies smoothly across a 
phase boundary. The theories of these authors do not satisfy the principle of local 
action; in van der Waals' theory the pressure at a point in the fluid is a functional of 
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the density in a neighborhood of the point. Korteweg assumed that the pressure 
depends upon the density and its first and second gradients in a particular way. 
Chemical engineers [9] have measured the profile of a stationary phase boundary so as 
to determine the material functions in Korteweg's theory. I know of no such measure- 
ments in solids. The analogue of the Korteweg assumption for thermoelastic bars would 
be that the axial force depend upon the stretch and its first and second gradients. 
According to recent work by Slemrod [10], the one-dimensional dynamic theory which 
emerges from Korteweg's assumption yields uniqueness when it is desired, unlike the 
purely elastic theory [11]. Slemrod [10] has also shown that a purely mechanical theory 
with a small viscosity, e.g., o = ~(u, n) + #v,/~ = const. > 0, yields unreasonable predict- 
ions. 

Internal variables provide an alternative approach. For the shape-memory materials, 
an internal variable might represents the density of twins in the margensitic (fl-) phase. 
The statistical-mechanical theory of MOiler [12] gives a nice model of the martensitic 
phase in terms of snap-springs, from which an interpretation of an internal variable 
and the appropriate kinetics might arise. The problem of what constitutive relations are 
appropriate for general motions of solids which may change phase is plainly not trivial. 

I shall make an assumption which is consistent with many formulations of the 
theories described above. Let there exist a twice differentiable equation of state for the 
specific internal energy, 

e ( u , n ) ,  (2.5) 

dependent upon the stretch and entropy. Let ~" and /z be fixed, finite constitutive 
parameters. The constitutive relations will be subject to 

Assumption 1. Given ~ > 0 there is a 6 > 0 such that if 

sup(lu - u01 + lUxl + lUxxl + tu,I + {n - 701 + Inxl + I ,1> < 8,  

t ~ [ to - "r, to ] 

then 

O( Xo Oe I ,t0)- (u0,n0) 

o(X0 ' to ) _ P0~u (Uo,Oe To) < ~, 

(2.6) 

le(X0, to) - e(Uo, no)l < ~, 

Iq(X0, to) I < ~, (2.7) 

where u o = u( X o, to) and To = n(  Xo, to). 6 
The assumption states that if the body has been held close to equilibrium in the sense 
of (2.6) on an interval of length 2 F centered at X o, for a duration of time ~', then the 
relations of classical thermostatics are approximately satisfied. The material constants # 
and ~- denote, respectively, the extent of the nonlocal action and the duration of the 

6 All derivatives involved are assumed to exist and be continuous. 
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memory .  The  Assumpt ion  1 could be easily generalized to include nonlocal  actions of  
infinite extent, as in the van der Waals  theory, and memories  of infinite duration, as in 
the theory of fading memory .  Ord inary  theories of viscosity and heat  conduct ion are 
included. 

As an example  of  a set of  consti tutive assumpt ions  which satisfies Assumpt ion  1, we 
m a y  choose relations mot iva ted  by the Kor teweg theory: 

O = e n ( u ,  r/), 

o = Ooeu(u , n)  + c (u ,  r/)UZx + d ( u ,  r / ) U x x + f ( u ,  r/) u,, 

e = e ( u , / / ) ,  

q = x(  u, r/ )O x. (2.8) 

Alternatively,  we might  choose constitive relations mot iva ted  in par t  by the theory of 
van der Waals,  and in par t  by the theory of fading memory :  

0 = en(u,  r/) + ®~,,~ [ u ( . ) ,  r / ( - ) ] ,  

o = poeu(u, 71) + Y~, . , [u( . ) ,  r/( . ) ] ,  

e = e ( u .  71). 

q =  x(  u, r/)O x. (2.9) 

Here,  O~,~ and E~,, are functionals defined over  pairs of  smooth  functions [u(.  ), 71(.)], 
which are themselves restricted to the domain  [ X - g ,  X + # ] x [ t - ~ ' ,  t]. So as to 
ensure consistency with Assumpt ion  1, we assume that  the functionals 

0 
OXO, . . .  0~. . .  Y.~,.~ (2.10) 

exist, are cont inuous in the norm (2.6), and vanish when u and ' r /  are constant  on 
[ X - I x ,  X + # l X  I t - ' r ,  t 1. 

Finally, Assumpt ion  1 is consistent with some theories having internal variables, for 
example  

o 
= 

q = ~(u ,  r/, ~ )0  x,  

(2.11) 

Here,  "-" satisfies condit ions which make  the internal variable " re l ax"  to one of its 
ext reme values & or /~,  in a t ime interval of  length ~', whenever  the hypothesis  (2.6) is 
fulfilled. I t  is reasonable  to lay down assumpt ions  on E which imply  that  ~ ~ f when 
(u0, r/0) ~ @,, and ~ ~ / ~  when (u 0, 710) ~ ®t~, the sets ®,~ and ®p being disjoint subsets 
of  the domain  of e associated with the two stable phases. 7 The  functions t~, # and 

7 It is not clear what we should assume about the behavior of ~ when ( u 0, ~1o) corresponds to values ( Uo, 0 o ) 
at which ¢,,. < 0. Thus, (2.11) may be consistent with Assumption 1 only on a subset of the domain of e. 
When we come to apply Assumption 1 in §3, we shall do so only at points where q~,, > 0. 
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must reduce to en, Ooe, and e if (Uo, */o) ~ ®~ and ~ = & or if (u 0, 70) ~ ®~ and ~ =/3. 8 
Assumptions on --- that insure the behavior just described are not difficult to 

formulate, but I shall omit them. Of the three theories mentioned I lean toward the 
third (cf. (2.11)) for the shape-memory alloys. In formulating these theories the guiding 
principle has been simplicity rather than generality of equipresence. 

We shall use the notation 

3e  
o e = p 0 ~  u , 

3e 
3,7 

and we shall 
respectively. 

O ~ O e ,  

0 = % ,  
q = 0 ,  

(2.12) 

call these quantities the equilibrium axial force and equilibrium temperature, 
From Assumption 1 we have 

at (Xo, to), (2.13) 

whenever u and ~ are constant on [Xo - #, Xo + #] x [to - /~,  to]. 
The specific heat atconstant stretch is defined by 

3e 

cu = 3,7 (2.14) 
32e 
3~/z 

I shall assume that Cu > 0 so en(., u) has an inverse; then we can solve (2.12)2 locally 9 
to obtain 

n=CT(u, Oe). (2.15) 

We may then express e in terms of 0e and u, 

&(u, 0~) -- e( u, ~(u,  0¢)), (2.16) 

and define the free energy by 

4( u, O~) = O( u, O~) - OeCT( U, Oe). (2.17) 

The equilibrium axial force may now be expressed in two equivalent ways, viz., 

3e 34 
o, = P0~u (u, ~(u,  0e) ) = O0~u (u, 0,). (2.18) 

The graph of o~ vs. u at fixed 0 e is shown in Fig. 1. Of course, for general time 
dependent or inhomogeneous solutions of the equations of thermodynamics, the 

s Actually a more general possibility is realized by (2.1 l). The functions ~( u, T/, ~i) and ~( u, 71,/t) could be 
defined on domains 6D,~ and ®p, respectively, which have a non-empty intersection. Then, " the"  internal 
energy would be double-valued (or multivalued if several internal variables were involved). Such behavior is 
reminiscent of the Dauphin~ twin in quartz, the phases of which appear to have different internal energies 
at the same strain and entropy. 

9 Later I shall lay down assumptions on the domain of e which insure that ev(., u) has a global inverse. 
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quantities with subscript e have no physical interpretation, except in the special, and 
probably inappropriate, case where o and 0 are given exactly by constitutive assump- 
tions of the form (2.12). 

From now on I shall assume explicitly that the graph of Oe = POO~/Su)(Oe, U) VS. U 
has the features shown in Fig. 1. The quantities a, a*, a l, ill, fl , ,  fl shown there will 
depend upon the equilibrium temperature. A precise statement of these features is 
contained in 

Assumption 2. There are four continuous functions 

, 4¢ )  < ,:,'(¢) < B ' (¢ )  < B(¢) ,  

such that 

~ , , > 0  for a(Oe)<U<ai(Oe) 

(~.. < 0 for at(0<) < u < ~'(0e).  

¢ ~  [0min, 0max] (2.19) 

or fl'(0~) < u ~< B(0~), 

(2.20) 

For a typical shape-memory alloy, such as Nitinol ([5] p. 292]) or the alloy pictured in 
Fig. 1, the functions al(Oe) and fll(Oe) satisfy 

a'(Oe)=fl'(Oe) for 0 e>/M, 

a'(Oe)<fl'(Oe) for 0 e < M  (2.21) 

for some temperature M (about 100°C for Nitinol). By analogy to the equilibrium of 
fluid phases we may call M the critical temperature. The domain of ~ for a typical 
shape-memory alloy is shown in Fig. 3. As explained in the Introduction, the hatched 
region cannot be determined by static experiments. 

Also shown in Fig. 3 are dashed lines which represent the functions a*(O~) and 
fl*(O~). These functions have the same interpretation as in Fig. 1; they give the values 

Oe 
Ornox 

M 

Omin 

/ 1 iII/ ~\\\\ 
+°<o 

,' ,, \ 
V////////A \ \ 

i 
u 

Figure 3. The domain of the equilibrium free energy 6(u, 0e). The dashed lines represent the curves a*(Oe) 
and B*(Oe) associated with the Maxwell Line (compare with Fig. 1). 
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of stretch at the ends of the Maxwell Line at temperature 0 e. Values of (u, 0 e) to the left 
of the hatched region in Fig. 3 are in the a-phase; those to the right are in the fl-phase. 
If al(Oe) = fll(Oe), as in Fig. 3 in the case 0e >I M, the phases will still be distinguished 
by (2.20) 1 for simplicity. 

The functions a(Oe), fl(Oe) and the constants 0mi ., 0ma x are established by the 
limiting conditions to which the constitutive theory the theorist has chosen is applica- 
ble. For example fl(Oe) might represent the force at which the bar breaks, or the force 
at which ordinary plastic deformation sets in. 

3. Steady propagation of a phase boundary 

If the functions appearing in (2.4) are smooth, then (2.4) is equivalent to the system 

U t -~- I)X~ 

po1)t = OX, 

P o e t  = O t ) X  - -  qx + r ,  

l q  r 
p071, >~-  ( - ~ ) x + ~ .  (3.1) 

I have left off (2.4)1 since it only serves to determine p. The analysis of (3.1) is made 
difficult by the presence of r, since r is the only term not differentiated. I shall assume 
that the environment of the bar is so adjusted that 

r = 0. (3.2) 

When r is given by the simple assumption r = c(0 - 00), c = const., 00 being an effective 
ambient temperature, r will vanish if 00 = 0 or c = 0. The former is met if we make the 
effective temperature of the environment coincide with the temperature of the bar at 
each (X, t); this is not easy to accomplish in practice when 0 is not constant. Otherwise 
we can cause c to vanish by placing the bar in an adiabatic environment, e.g., a 
vacuum. 

I seek a solution of (3.1) which corresponds to a single phase boundary propagating 
at constant velocity. If functions (u, v, 7) depending upon a single variable ~ = X -  Vt, 
V = const, are sought, then for a large class of constitutive relations, the equations (3.1) 
reduce to a system of ordinary differential equations. The equations (2.8) motivated by 
the Korteweg theory obviously have this property; (2.11) will also have this property if 
we assume t; = ~ ( X -  Vt). Even (2.9) in some special cases yields ordinary differential 
equations. The question of existence remains open. We should like to have a solution 
for which the stretch and entropy and their first derivatives tend to constant values as 
approaches + oo and - o o ,  so we can utilize Assumption 1. For the same reason we 
should also like to have the limiting values as ~" ---, + oo and - oo of the stretch u and 
temperature 0 approach values in the a-phase and fl-phase, respectively. 

There seems to be very little known about the existence of such solutions. An 
exception is the work of Slemrod [10] on the Korteweg theory. I shall simply assume 
existence in the following form: 
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Assumption 3. There is a solution o f  (3.1) dependent upon ~ = X - Vt, V =  const., with 

r = 0 :  

v--,3(t) / 
u=a(t) / 

= ~tS)~'"'" ~ C 2 (3.3) 

o:o(r)| 
q=O(t)) 

The fimiting values o f  u and ~1 satisfy the conditions 

U--'> U+- } 
~ + -  

u ~ , u ~ 0  as f - - * + • ,  and (3.4) 

T/t -~ 0 

u +, - ~  (u +, n ) s a-phase, 

~e 
( u - ,  7 - ) )  ~ B-phase. (3.5) 

Assumptions 2 and 3 imply that the equilibrium force, temperature and internal 
energy (cf. Eqn. (2.12)) satisfy certain jump conditions which I shall now derive. If we 
let prime denote the derivative with respect to ~" and we substitute (3.3) into (3.1), we 
get 

- V u '  = v ' ,  

- PoVV ' = o' ,  

- PoVe ' = ov '  - q' ,  

I shall use the notation [ f~  = i f - f - .  If we integrate (3.6) from f -- - m to ~" = + ~ ,  
we get (assuming existence of the limits), 

- V l u ]  = ~ v ] ,  

- p o V [ V ]  = ~ o L  

V 3 
- p o V [ e ]  = - V lou ]  + p o - ~ - [ u  21 - [q] ,  

1 
- OoV[T/] >i -[-~q]l. (3.7) 
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To arrive at the right hand side of (3.7)3, I have used the following argument: 

f  ov'd = -vf ou'd¢ 
= 

= - V [ o u ]  + poV3/~  uu'd~ 

V 3 
= - t z [ a u ]  + o 0 - ~ - [ u 2 ] .  (3 .8 )  

The term (3.8)4 simplifies if we introduce the notation 
1 + +  - 

( f ) = - ~ ( f  f ), (3.9) 

and notice that for any f and g, 

[ fg]  -- ( f ) [ g ]  + ( g ) [ f ] .  (3.10) 

By applying (3.10) to (3.8) and making use of (3.7)1.2, we derive that 

= - V ( o ) [ u ] .  (3.11) 

Hence, for the right hand side of (3.7) 3 we can substitute the simpler expression 
- V ( o ) [ u ]  - [ q ] .  

So far we have derived conditions which will hold for any set of constitutive 
relations, as long as that set permits the existence of differentiable solutions as 
functions of X -  Vt. Assumption 3 contains additional restrictions summarized by (3.4) 
and (3.5). Consider two points (X~-, t) and (X  o ,  t). If X~- is sufficiently large, the 
values of u x, u t, Uxx, ~x  and ~t will be uniformly small on a neighborhood [X~- - 
/~, X~-+ ~] x [ t o -  r, to] according to the assumptions (3.4)3.4. Also the differences 
lu - u+l and IT - ~+1 will be uniformly small on the same neighborhood according to 
(3.4)1.2. Assumption 1 then implies that the values of 0, o, e and q at (X~-, t) are 
approximated by their equilibrium values: e~(u +, ~1+), Ooe,(u +, ~+), e(u +, ~+) and 0. 
As X~- tends to oe (with t held fixed) the approximation becomes exact. An analogous 
argument holds for X o . 

We have shown that in (3.7) the limits exist and all quantities can be replaced by 
their values at equilibrium. If we now make use of the remark following (3.11), we may 
write (3.7) in the form 

- V ( u  ÷ -  u - )  = v ÷ -  v - ,  

- V ( v  + -  v - )  = e . ( u ~ ,  *1 +)  - e . ( u - ,  ~1-), 

- V(e(u +, 71+)-e(u-, 71-)) = ½V[e.(u +, ~+) +e.(u-, q-)](u +- u-) 

- V(~+- ~-) >~ O. (3.12) 

The reader may recognize that these are the same conditions that would arise if we had 
assumed that the equilibrium constitutive relations (2.12) had held for time-dependent 
motions and that the phase boundary had propagated as an adiabatic shock. This 
coincidence is just that; it neither supports the idea that the equilibrium constitutive 
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relations are appropriate for general motions of phases nor the idealization that the 
slow moving phase boundaries are adiabatic shocks. The coincidence merely reflects the 
fact that a variety of theories may yield the same results for a special class of motions. 
It is this fact which makes such motions useful, and motivated the approach I have 
adopted. 

4. The jump in temperature across a propagating phase boundary 

The jump conditions (3.12) impose restrictions on the limiting values of the stretch, 
velocity and entropy far from the phase boundary under the Assumptions 1, 2 and 3. It 
is illuminating to study these conditions in detail. We assume here that the function 
e(u, 77) is known. 

A reasonable physical problem is set up if we fix the temperature and stretch, or 
equivalently the entropy and stretch, far ahead of the phase boundary. One can imagine 
an experiment in which a thin bar in a vacuum is fixed at one end, and a weight is hung 
at the other end. If the weight is of appropriate magnitude (and a tiny notch is made at 
the fixed end), the weight will fall and a phase boundary will be initiated at the fixed 
end and will propagate with nearly constant speed after some time has passed. Far 
ahead of the phase boundary the bar will be essentially statically deformed in the 
a-phase, the values of the stretch and entropy being determined by the magnitude of 
the load and the initial temperature of the bar. Far behind the phase boundary the 
velocity is zero, and the bar is essentially statically deformed in the fl-phase. The 
problem then is to predict the stretch and entropy far behind the phase boundary, and 
the velocity far ahead of the phase boundary. 

Alternatively, we might fix one end of the bar and cause the other end to move with 
constant velocity. Then the temperature and velocity would be given far ahead of the 
phase boundary, and the velocity far behind the phase boundary would be zero. The 
problem would be to find the stretch and entropy far behind the phase boundary, and 
the stretch far ahead of the phase boundary. 

We shall be interested in the extent to which these unknown quantities are de- 
termined by the jump conditions (3.12). 

In the former problem let constants u~- and 770 ~ be given and assume 

U + ~  + U 0 , 

~+-- ~- ,  

v - = 0 .  (4.1) 

Let 

%+ = 0oeu(u , 

O~ = en( u~ , *l~ ), (4.2) 

and assume 

(uff, 0o +) ~ a-phase. (4.3) 

It is natural to seek a solution of (3.12) with V = 0, and then to perturb away from this 
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solution to find solutions for V > 0. To avoid trivial perturbations we shall first cancel 
V from (3.12)3,4. Then, we shall have to solve, 

= 0, 

%+ - poe, ( uo ,  To ) = 0, 

E (ug, Uo; ng, To) = o, 

n~- - To ~< O, (4.4) 

in which 

%+ ( u + - u -  ). (4.5) E ( u + ' u - ; n + ' n - ) - - e ( u + ' n + ) - e ( u - ' n - ) -  O---o 

Equation (4.4)~ determines v~-. I shall assume that %+ is in the range of the function 
poe,( • , .) for some value of stretch and entropy in the B-phase. Since, by (2.19), 

e . .  = ~ . .  - e.~ 'O. ( 4 . 6 )  

and 

- 0 e  e,n~, = -en~(~, )2  = __~_(~,)2 < 0, (4.7) 

we have e,,(u, n) > 0 in the B-phase (or a-phase). Hence we can solve (4.4)2 locally to 
get 

uo = f ( n o ) ;  poe,(f(no), 71o) = o~-. (4.8) 

It remains to satisfy (4.4)3,4. If we put (4.8) into the left hand side of (4.4)3; we get 

E(no )= e(u~, n~ ) - e ( f ( n o  ), T o ) -  °°--~-+ ( u+ " f (no )). (4.9) 
Po 

To satisfy (4.4)3 we must choose To to make ~ ( n o )  vanish. Note that 
a + 

d ~ = _ e , f , _ e n + _ ~ o f ,  ' 
dno 

= - e ~ ( / ( n o ) , n o )  = -00- <0 ,  (4.10) 

so ~ is a strictly monotonically decreasing function of To. Assumingf  to be defined for 
the value n~- we may evaluate E at n~-. Then ,E may be interpreted according to an 
"area rule" in the graph of e(u, n) vs. u at fixed 7/. If the value of ~(~lff) is negative, 
then there is no solution of the jump conditions (4.4). To see this observe that since E is 
strictly decreasing, 

~ ( n o )  0 and " + + (4.11) = $(no)<0 n0 > T o ,  

which contradicts (4.4)4. Thus, still assuming f to be defined at n~-, we must have 

~;(n~-) >/O. (4.12) 

Then, we simply determine the unique value of To which makes ~, vanish, still assuming 
that ~ is defined on a large enough domain. This value will satisfy the entropy 
inequality (4.4)4. 
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It is quite possible that the jump conditions do not have any solution for V = 0 or 
even V near zero for a phase boundary connecting a given state in the a-phase to any 
state in the/3-phase. From the analysis above one can see several roads to non-ex- 
istence: f not having a sufficiently large domain, E(7~-) being negative. One can invent 
reasonable constitutive relations, reasonable in the sense that all the restrictions of 
thermodynamics (cf. Section 2) are satisfied, and still fail to have a solution of the jump 
conditions at V = 0. Without explicit forms of the equilibrium constitutive relations, no 
more can be said. 

In the ordinary theory of the propagation of weak adiabatic shock waves, (3.1 1)3 is 
used to show that the jump in entropy is of third order in the jump of the stretch. On 
these grounds its jump across shocks is neglected altogether in linear thermoelasticity. 
Here, since u + -  u-  is large no such result follows: the jump in entropy or temperature 
can be substantial. For example, when V = 0, we have from (4.10) 

-7~- = ~0. E(7~),  (4.13) 7o 

where 00" is some temperature between the values 

en( f (7~) ,7~)  and e~ ( f (7o ) , 70 ) .  (4.14) 

Here one can construct reasonable examples, reasonable in the sense used above but 
not necessarily corresponding to any particular shape-memory alloy, in which E(7~) 
has any positive value. It seems that a purely mechanical theory of rapidly propagating 
phase boundaries, unlike the purely mechanical theory of weak shocks, would rest upon 
unsure foundations. 

Suppose a solution (u o , 70, v~ = O) of the jump conditions (4.4) exists for V= O, 
given the values u~, 7~ , v -=  0 consistent with (4.2) and (4.3). Assume that (Uo, 70) is 
in the fl-phase and that the entropy inequality is satisfied with strict inequality. I wish 
to explore the existence of solutions of the jump conditions (3.12) for V > 0. To do so, I 
must solve the equations 

V(uJ -u-)+v+=0, 
Vv + + e , (u~,  7 ~ ) - e , ( u - ,  7 - )=O,  

e(u~,  7~) - e ( u - ,  7 - ) - ½ ( e u ( u ~ ,  ~ )  + eu(u-, 7 - ) ) ( u  + -  u - )  = 0, 

7~- - ~/-~< 0. (4.15) 

This system is satisfied with V= 0 at the ground state u = u o, 7 - =  70, v += 0, by 
assumption. The Jacobian of (4.15)1,2,3 with respect to (u , 7 , v +) evaluated at V = 0 
and the ground state is simply 

Ooeu,(Uo,7o)>O. (4.16) 

Hence, by the implicit function theorem, there is a one-parameter family of twice 
differentiable solutions of (4.15): 

u - ( V ) ,  7 - ( V ) ,  v+(V),  (4.17) 

and if V is sufficiently small the entropy inequality (4.15)4 is satisfied. Therefore, near 
V = 0 the jump conditions do not uniquely determine the state ( u-, 71 -) behind the phase 
boundary, given the stretch and temperature ahead of the phase boundary. In fact (4.1 7) 
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shows that there is a one-parameter family of such solutions. A similar conclusion 
would be reached if we had given the velocity and temperature ahead of the phase 

• boundary, with one mild additional assumption. 
Thus, while the data suggest a well-posed problem, the jump conditions are not 

sufficient to determine a unique solution to it. This conclusion by itself indicates that 
the adiabatic thermoelastic theory is not adequate to describe a propagating phase 
boundary, since in that theory the relations (4.15) are both necessary and sufficient. 

We remark that to order V 2 the functions in (4.17) are given by the formulae 

l (2Oo+e~-~(u-~ Uo) ) (u  o . . . .  u - =  Ooe----~. ~ - + - u o ) V  2 + 

- ( , , ~  - Uo)~  v ~ + . . . .  
71= Oo 

v += (u~ - u o ) V +  0 + . . . .  (4.18) 

To linear approximation the quantities u-  and 71- are unaffected by the velocity of the 
phase boundary. At low temperatures, however, the second order effect upon these 
quantities is substantial. 

5. The heat evolved during the passage of a phase boundary 

This section comprises a critique of some informal ideas associated with the thermody- 
namics of large deformation of solids in light of the present analysis. The reader only 
interested in the determination of the Maxwell Line should skip to the next section. 

It is sometimes alleged that the heat evolved during the passage of a phase boundary 
is related to the area between the line connecting (u ÷, o ÷) to (u- ,  o-) and the Maxwell 
Line in the graph of 4,(u, 8) vs. u. The solutions I have been studying in the preceding 
two sections offer no insight into this allegation, since I have assumed that the bar is 
infinite and that r = 0. Thus, no heat is transmitted to the ambient. 

It seems that the only way to study this claim is to consider isothermal solutions of 
the equations and allow heat absorption. Thus I shall assume 0 = const, and r = 0. I 
shall suppose that the equations still admit solutions as functions of X -  Vt with the 
properties outlined in Assumption 2, and I shall assume q -  0, consistent with the 
constitutive relations of Section 2. If we then integrate the analogue of (3.6) with 
respect to X from - o¢ to + o¢, we get 

- Viul = ~ v l ,  

- p o V [ v ]  = ~ o l ,  

- p o V i d  = - v ( o ) [ u l  + R ,  . 

1 
- ooV~nl > /~n ,  (5.1) 

where 

R =  f~_**r( X ,  t )d X.  (5.2) 
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HereR is the rate of absorption of heat by the bar. From Assumption 1 and (5.1)3 we 
derive 

R = p o V ( e ( u + , ~ + ) - e ( u - , ~ - ) - ~ ( e , ( u + , ~ J + ) + e u ( u - , ~ - ) ) ( u + - u - ) ) .  (5.3) 

If we substitute (2.17) into (5.3) and recall that O += O-= 0 = const., by assumption, 
then (5.3) becomes 

R=poV{O(u+,O)-O(u- ,O) -½(~ , (u+,O)+eO, (u- ,O) ) (u+-u- ) } .  (5.4) 

Neither (5.3) nor (5.4) have any simple interpretation in terms of areas as alleged. Each of 
these equations is an exact consequence of the assumptions. Note that generally 
0 u = q,u- 

Suppose now that we eliminate R from (5.1)3 and (5.1)4. Then we get 

V(4 , (u+ ,O) -4 , (u - ,O) -~ (4o (u+ ,O)+~u(u - ,O) ) (u+-u - ) )  >O. (5.5) 

Equation (5.5) Says nothing about R, but it does restrict the sign of the velocity 
accordingAto whether the line which connects (u +, ~,(u +, O)) to (u- ,  ~ , (u - ,  0)) in the 
graph of q,(u, 0) vs. u lies above more or less area than the function q~(u, 0). 

It is also sometimes alleged that for arbitrarily slow motions the Clausius-Duhem 
inequality holds with near equality. Granted the assumptions made in this Section, this 
claim also appears to have no basis. If we put equality in (5.1)4 and eliminate R 
between (5.1)3 and (5.1)4 then we get (5.5) with equality. Cancell V from (5.5) and let 
V-~ 0. We reach the conclusion that u + and u-  must be the stretches at the ends of the 
Maxwell Line. But the experiments mentioned in the Introduction, which appear to be 
conducted under isothermal, slow conditions, do not support this conclusion. Thus, the 
hypothesis of quasistatic equilibrium (V * 0 but = in (5.1) 4 ) is invalid. 

6. Determination of the Maxwell Line 

From ordinary static experiments the equilibrium force vs. stretch relation, 

O'e = po ~-~ (U, 0e), (6.1) 

can be determined outside the hatched region of Fig. 3. The experimenter may not be 
able to determine its value right up to the boundary of the hatched region, but certainly 
he or she will be able to determine it on some region ®e which includes the area outside 
the dotted hump in Fig. 3, since this area contains the stable states. 

From calorimetric measurements the experimenter can also determine the specific 
heat at constant stretch, 

ee)=-ee (u, C u = Be- ~ ( U, 8e ), (6.2) 

on °~ e. To derive (6.2) from (2.14), we differentiate (2.12)2 with respect to 8 e, having 
substituted for ~ from (2.15), and then compare the result with (2.14) and the second 
derivative of (2.17) with respect to Be. Sometimes it is easier to measure the specific heat 
at constant axial force, but this quantity can be related to C, by a classical argument. 
That argument uses the fact that g,,u =* 0, which is true on ®e- 
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®e may be a disconnected domain, though I~ig. 3 pictures a connected one. This fact 
will imply that the Maxwell Line cannot generally be determined from the functions 
(6.1) and (6.2). To see this, we write @e = ~a u ~B, @~ N @# = @, @a c a-phase, @a c/3- 
phase. I assume that (0~=const.)N@ a and (0~=const . )n®a are each connected 
intervals. Then, we can integrate (6.1) on @a to obtain 

f"  0~, + 
~(u,  g )  : J ,  po-~u [S, O~)ds + g~(O~), (6.3) 

g,(0e) being, so far, an arbitrary function. We now differentiate (6.3) with respect to 9 e 
twice and use (6.2). We get 10 

a 2 
fl:PO~:( s, O~)ds + 

c. 
- E .  (6.4) 

We obtain the following result. On @a ~' is determined up to an arbitrary linear function 
of #e: 

~( u, 0~) = f~( u, 0~) + c'=Oe + c], (6.5) 

I and z being arbitrary constants. f~ being a known function defined on @a and c a c a 
Similarly, on @# we have 

@( u, Be) = f/~( u, 0~) + clflOe d~ C~, (6.6) 

fp being a known function defined on ®p and c~ and c~ being arbitrary constants. The 
results (6.5) and (6.6) are equivalent to (6.1) and (6.2), so (6.1) and (6.2) have been 
completely exploited. 

I claim that the Maxwell Line cannot be determined from (6.5) and (6.6). This can 
be easily seen by drawing a graph of @ vs. u at fixed 0 e. Analytically, the Maxwell Line 
is determined by the functions a*(O~) and/3*(Oe) (CL Fig. 1). In turn these functions are 
uniquely determined by the "equal-area rule", viz: 

~(/3*(Oe),Oe)--$(a*(Oe),Oe) ='r*(Oe) ( / 3 * ( O e )  --  a * ( O e ) ) ,  
Po 

T * ( 0 e )  = P 0 ~ u ( / 3 * ( 0 e ) ,  0e)  = P 0 ~ u ( a * ( 0 e ) ,  0e)  ; (6.7) 

a*(8,) ~ a-phase, 

/3"(8~) ~/3-phase. 

By inserting (6.5) and (6.6) into (6.7), we see that at any fixed 0, we can adjust the 
2 c~, cJ so that any two equilibrated stretches in the appropriate phases constants c t, ca, 

lie at the ends of the Maxwell Line. We see also that only the differences 

1 and C 1 ~ C~ --  C a , 

_ 2 (6.8) C 2 C~ - -  C a 

need be found in order that the Maxwell Line be determined. 

I°This shows that we only need to determine Cu(u, 0e) at one fixed stretch. See for example Kestin [13] (p. 
550). 
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Depending upon the domain of e(u, ~), we consider several alternatives. Here 
stands for the closure of a set 6). 

a. U~ A ~l~ contains two points ( u l, 01) and (u 2, 02) at distinct temperatures: 02 ~ 01 

This case clearly includes the domain pictured in Fig. 3; any two temperatures between 
M and 8 . . . .  with appropriate stretches, will do. At the two points (u 1, 01) and (u 2, 0~) 
the free energy has the same value. Thus, from (6.5) and (6.6) 

ctOle + C 2 = A f 

c'O f + c 2 = Af 2, (6.9) 

where 

A:'=:tu'. i = l , 2  (6.10) 

But if 01 ~: 0f we can solve (6.9) uniquely for c I and c 2. Then (6.7) determines the 
Maxwell Line at all temperatures between 0m~ n and 0ma x. 

NO use was made of the results found for propagating phase boundaries, and those 
results provide no additional information. However, once c 2 has been determined, all 
functions on the left hand side of (3.12) are known, so the results for propagating phase 
boundaries can be compared with experiment at a variety of temperatures. This would 
provide a test of the whole theory for a broad class of constitutive relations. 

b. The Maxwell Line is known at two distinct temperatures 02 --x 01 

Figure 2 shows an example of an alloy for whch the Maxwell Line is known at high 
temperatures but not at low ones. If we know the Maxwell Line at two distinct 
temperatures, then (6.7) tells us that 

C'0e' + C2= a : ,  + . . (o ; ) ) ,  
Po 

i =  1, 2, (6.11) 

from which c I and c 2 can be determined. Then, (6.7) determines the Maxwell Line at all 
other temperatures. The results of this calculation can be compared with the results for 
Subsection a if 6~ e meets those conditions, and the results for propagating phase 
boundaries. 

e. ~ ~ ~1~ contains one point (if, 0e) 

This case is like Fig. 3, except with M = 0ma X. From the practical point of view, even if 
M < 6ma x but M is very close t o  0max, this idealization is probably appropriate. Such is 
the case with the alloy Nitinol. Now we shall have 

clg (6.12) 

Suppose we also measure the jump in stretch and temperature across a single propagat- 
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ing phase boundary, and the Assumptions 1, 2, and 3 are fulfilled. Then we shall also 
have satisfied the relation (3.12)3. In terms of ~ this relation becomes 

+, 0 +) 0 - ) +  +, 0 + ) 0-)  

- ½ ( ~ , ( u + , O + ) + ~ , ( u - , O - ) ) ( u + - u - ) = O .  (6.13) 

If we now substitute (6.5) and (6.6) for ,~ in (6.13), we get in obvious notation 

f ~ + - f ~ - c 2 - O + f ~ ,  + + O - f ~ - ½ ( f ~  + + f~.) = 0. (6.14) 

From (6.14) we get c 2 and then from (6.12) we get c I. Note that c I does not enter (6.14). 
Again (6.14) at various temperatures and stretches provides a test of the whole theory. 

d. The Maxwell Line is known at a single temperature O~ 

This case bears the sarah relationship to c as b does to a. Knowledge of the Maxwell 
Line at one temperature and the results for propagating phase boundaries yield the 
Maxwell Line at all temperatures in [Stain, 0max]. 

e. We adopt the Nernst postulate and Omi . = 0 

Rarely if ever are equilibium quantities for shape-memory materials determined down 
to absolute zero. Some physicists even argue that 8 2 = 0 is "unat tainable",  that all 
equilibium functions can only be determined for 0 2 > const, for some const. > 0. What 
happens between O e - -0  and 8 e = const, is then unknown, so any statement which 
involves the limit of constitutive functions as 8e---, 0 is meaningless. As the study of 
phase transitions has shown, large effects can be felt Over small temperature ranges. For 
these reasons I doubt the usefulness of the Nernst posulate. 

Nevertheless, if we adopt it we may write 

~j(u, O)--O, (6.15) 

and conclude that 

c I = Afo[o= o. (6.16) 

Then c 2 may be determined from (6.13) and (6.14) as before. Note that C 2 cannot be 
determined from any statement about ~ or its derivatives. 

f. ~ ( ~ p = ~  and 8mi. > 0 

If the phases are completely disconnected, the Maxwell Line is not known at any 
temperature and we disregard the Nernst postulate, I have no way to determine the 
Maxwell Line. Of course c 2 may be determined from (6.13) and (6.14), granted the 
Assumptions, but c 1 is still unknown. Once c 2 has been determined from one experi- 
ment, however, all functions in the jump conditions (3.12) are known, so a test of the 
jump conditions over a range of temperatures can be carried out. 
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7. An experimental program suggested 

We may summarize the results by suggesting an experimental program. A one dimen- 
sional bar theory, like the one used here, can only yield reasonable predictions for 
slender bars of uniform cross section. The word slender means that the maximum 
diameter of the cross section is small compared to the length of the bar. We assume 
that the specific heat at constant stretch (or the specific heat at constant axial force) 
and the stress-elongation curves at various temperatures have been measured by 
conventional means. Then, according to the discussion of Section 6, the free energy in 
each of the phases by itself can be determined (cf. (6.5) and (6.6)) up to an arbitrary 
linear function of temperature. Depending upon the domain of the free energy, we are 
left with several alternatives for the determination of the Maxwell Line summarized in 
6a through 61. 

In each case the constant c 2 of (6.8) 2 can be determined by a single experiment, 
granted the Assumptions 1, 2 and 3. This experiment consists of a measurement of the 
temperature and stretch on each side of a travelling phase boundary for a bar isolated 
from its environment. The values obtained (u ÷, u- ,  8 ÷, 8-) are placed into (6.14), 
which is simply a restatement of the jump condition (3.12)3; from (6.14) we calculate 
¢2. 

Ideally, the experiment is carried out in a vacuum chamber where inside walls are 
coated with reflective material. The bar should be sufficiently long so that the 
temperature away from the phase boundary is sensibly constant. One end of the bar 
should be fixed and the other end should be pulled at a constant rate, or loaded by a 
weight which moves at constant velocity. It is perhaps easiest if the phase boundary is 
initiated at one end of the bar. By slightly thinning the cross section at one place, the 
experimenter can cause the phase boundary to start there. The temperature might 
conveniently be measured by the method of infared stroboscopy [14], so as not to 
encumber the specimen. 

To provide a good test of the whole theory the measurement should be repeated at a 
variety of temperatures between the extremes 8mi n and 8ma x, and with the phase 
boundary propagating at various speeds. Each of these measurements should give rise 
to the same value of c 2 as calculated from (6.14). 

If not, then one or more of the Assumptions 1, 2 or 3 is not fulfilled. Assumption 2 
is easy to assess; one simply observes the domain of the free energy ~. If Assumption 1 
is at fault, then most theories proposed for the coexistence of phases of which I am 
aware are in doubt. Assumption 3 is less sure. Even if we arrange boundary data to be 
consistent with (3.4) and (3.5), it is not certain that the theory which best describes the 
phase boundary has a unique solution (as a function of X -  Vt) corresponding to this 
data. In principle, one would like to measure the variation of the stretch, velocity, axial 
force, etc. across the phase boundary to completely assess Assumption 3. 
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