Molecular beam epitaxy growth of ferromagnetic single crystal (001) Ni2MnGa on (001) GaAs

J. W. Dong, L. C. Chen, C. J. Palmstrøm, R. D. James, and S. McKernan

Applied Physics

Letters

Citation: Appl. Phys. Lett. **75**, 1443 (1999); doi: 10.1063/1.125009 View online: http://dx.doi.org/10.1063/1.125009 View Table of Contents: http://apl.aip.org/resource/1/APPLAB/v75/i10 Published by the AIP Publishing LLC.

Additional information on Appl. Phys. Lett.

Journal Homepage: http://apl.aip.org/ Journal Information: http://apl.aip.org/about/about_the_journal Top downloads: http://apl.aip.org/features/most_downloaded Information for Authors: http://apl.aip.org/authors

ADVERTISEMENT

Molecular beam epitaxy growth of ferromagnetic single crystal (001) Ni_2MnGa on (001) GaAs

J. W. Dong,^{a)} L. C. Chen, and C. J. Palmstrøm

Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455

R. D. James

Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, Minnesota 55455

S. McKernan

Center for Interfacial Engineering, University of Minnesota, Minneapolis, Minnesota 55455

(Received 17 March 1999; accepted for publication 12 July 1999)

The ferromagnetic shape memory alloy Ni₂MnGa has been grown on GaAs by molecular beam epitaxy. *In situ* reflection high energy electron diffraction, *ex situ* x-ray diffraction, and transmission electron microscopy selective area electron diffraction indicate the single crystal growth of a pseudomorphic tetragonal phase of Ni₂MnGa on (001) GaAs. Both vibrating sample magnetometry and superconducting quantum interference device magnetometry measurements show that the Ni₂MnGa film is ferromagnetic with in-plane magnetization and has a Curie temperature of ~320 K. © *1999 American Institute of Physics*. [S0003-6951(99)00236-3]

Microactuators have been fabricated for microelectromechanical systems (MEMS) using polycrystalline shape memory thin films.¹ As single crystal thin films are expected to have superior properties over polycrystalline ones, the epitaxial growth of single crystal films is desired,² but yet to be achieved. Recently, significant effort has focused on the ferromagnetic shape memory alloy Ni₂MnGa.^{3–5} Bulk single crystals have shown exceptionally large magnetostriction (~4.3%).⁶ These properties make thin films of Ni₂MnGa promising candidates for MEMS applications. Although a number of metallic compounds have been epitaxially grown,⁷ the growth of Ni₂MnGa thin films, either polycrystalline or single crystal, has not been reported.

For stoichiometric Ni₂MnGa, the high temperature austenitic phase has the cubic Heusler $(L2_1)$ crystal structure (Fig. 1) with a lattice constant of a = 5.825 Å. Below the martensitic transformation temperature $(T_M \sim 202 \text{ K})$, the low temperature phase, martensite, is stable. It has a tetragonal crystal structure with a = 5.92 Å, c = 5.57 Å.⁸ The crystal structure of the cubic phase of Ni2MnGa can be considered as a NaCl crystal lattice of Mn and Ga with Ni occupying the tetrahedral interstitial sites. Alternatively, it may be considered as an ordered CsCl crystal structure with a simple cubic lattice of Ni atoms with every other body center site occupied by Mn and Ga, respectively. Transition metal-group-III compounds with CsCl structure and rareearth-group-V compounds with NaCl crystal structure have been grown epitaxially on III-V semiconductors.⁷ In particular, the successful epitaxial growth of NiGa (CsCl),9 MnGa (tetragonally distorted CsCl),¹⁰ and $Mn_{1-r}Ni_rGa^{11}$ on GaAs suggests that the chemically similar material Ni₂MnGa, with its 3% lattice mismatch to GaAs, may also be grown epitaxially on GaAs.

In the growth of metallic compounds on semiconductors, control of the first few atomic layers (template layer) is critical in controlling the growth orientation.^{7,12} An interlayer of a different material may also act as a template layer. The close similarity of the Ni₂MnGa to the NaCl and CsCl crystal structures suggests that metallic compounds with these crystal structures may act as good templates for the epitaxial growth of Ni₂MnGa on GaAs. Here we report on the use of a lattice matched $Sc_{0.3}Er_{0.7}As$ template layer with a NaCl crystal structure.

The 0.5 μ m thick GaAs buffer and 6-monolayers-thick Sc_{0.3}Er_{0.7}As template layers were grown on GaAs (001) in a modified VG V80H molecular beam epitaxy (MBE) system in a similar manner to that described by Palmstrøm *et al.*¹³ After the Sc_{0.3}Er_{0.7}As growth the sample was allowed to cool for ~10 h facing the liquid nitrogen cooled cryopanel with a chamber pressure $<5 \times 10^{-11}$ mbar. The arsenic capping was performed with the sample temperature at <-10 °C using an As₄ flux. After As capping, the sample was removed from the MBE system and immediately remounted on a Mo sample holder for a RIBER-1000 MBE system, which was used for the Ni₂MnGa growth. The As cap was removed by heating the sample to ~300 °C, the resulting reflection high

^{a)}Electronic mail: dongx007@tc.umn.edu

FIG. 1. Heusler $L2_1$ crystal structure of cubic Ni₂MnGa.

© 1999 American Institute of Physics

Downloaded 04 Sep 2013 to 134.84.75.108. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://apl.aip.org/about/rights_and_permissions

FIG. 2. RHEED patterns with the $\langle 110 \rangle$ azimuth during the epitaxial growth of Ni₂MnGa on (001) GaAs. (a) Sc_{0.3}Er_{0.7}As template layer after removal of As capping at 300 °C. (b) 2× reconstructed Ni₂MnGa surface after 5 monolayers of growth at 200 °C and annealing at 300 °C. (c) Ni₂MnGa surface during codeposition at 300 °C. (d) After growth of 300 Å Ni₂MnGa at 300 °C.

energy electron diffraction (RHEED) pattern [Fig. 2(a)] from the exposed $Sc_{0.3}Er_{0.7}As$ template layer indicates a smooth unreconstructed surface. The sample was held at 300 °C for 10 min to ensure complete removal of the As cap before being cooled to 200 °C. The initial Ni₂MnGa was grown by supplying five alternate monolayers of Ni and Mn+Ga, resulting in a Ni/Mn+Ga/Ni/Mn+Ga/Ni structure. The streaky RHEED pattern obtained from this initial layer, which sharpened slightly upon annealing at 300 °C [Fig. 2(b)], corresponds to a surface unit cell of half the size of the $Sc_{0.3}Er_{0.7}As$ with a 2× reconstruction. This would be consistent with a partially ordered CsCl structure with approximately half the lattice parameter of the cubic Ni₂MnGa L2₁ phase with a surface reconstruction of doubled unit cell periodicity. Alternatively, it could be due to a Ni terminated surface, which would also have only half the lattice parameter of the cubic Ni₂MnGa L2₁ phase. Subsequent codeposition of Ni, Mn, and Ga at 300 °C corresponding to a Ni₂MnGa growth rate $\sim 0.09 \ \mu$ m/h resulted in the RHEED pattern shown in Fig. 2(c). This pattern corresponds to an unreconstructed surface unit cell twice that of the one in Fig. 2(b). This is consistent with the growth of ordered Ni₂MnGa. Figure 2(d) shows the RHEED pattern after 300 Å of Ni₂MnGa growth. Kikuchi lines were clearly visible in the diffraction pattern, indicating a high quality epitaxial film. Postgrowth annealing at 300 °C for 10 min did not alter the RHEED pattern further.

Figure 3 shows a θ -2 θ x-ray diffraction scan of the Ni₂MnGa/GaAs structure. Strong (002) and (004) diffraction peaks from the Ni₂MnGa thin film in addition to the (002) and (004) GaAs substrate peaks are clearly evident. This verifies the (001) Ni₂MnGa/(001) GaAs epitaxial orientation. From these data, the out-of-plane lattice constant of Ni₂MnGa was found to be 6.12 Å. Figure 4 shows selective area electron diffraction pattern from a plan-view transmission electron microscopy (TEM) specimen, which included both GaAs and Ni₂MnGa. From these data, it is clear that the Ni₂MnGa is growing pseudomorphically on GaAs with an in-plane orientation of

FIG. 3. X-ray diffraction scan for the 300 Å thick Ni₂MnGa film on (001) GaAs using Cu $K\alpha$ radiation.

 $Ni_2MnGa(100)(010)||GaAs(100)(010)$. This is a surprising result as the critical thickness for a 3% mismatch system is expected to be substantially thinner than 300 Å. Combining the x-ray diffraction and TEM selective area electron diffraction data indicates that the Ni₂MnGa is growing with a tetragonal structure with a = b = 5.65 Å and c = 6.12 Å on the (001) GaAs substrate. Although this phase of Ni₂MnGa has not been reported previously, we speculate that it is closely related to the orthorhombic β_1'' phase induced by uniaxial compression found by Kokorin et al.¹⁴ They studied the structural transitions in bulk single crystal Ni₂MnGa as a result of $\langle 110 \rangle$ uniaxial compression and observed an orthorhombic, β_1'' , phase, with a = 6.12 Å, b = 5.78 Å, and c = 5.54 Å, at a uniaxial strain $\sim 1\%$ – 2%. If this material were to be compressed biaxially along $\langle 110 \rangle$ directions, as would be the case for growth on (001) GaAs, a tetragonal phase with b and c equal to their averaged value may form. The averaged value is 5.66 Å, which is nearly identical to that found for Ni₂MnGa grown on (001) GaAs.

FIG. 4. Plan-view TEM selective area electron diffraction pattern along [001] zone axis. The sample is 300 Å thick Ni₂MnGa/500 Å thick GaAs.

FIG. 5. Magnetic measurements for the 300 Å thick Ni_2MnGa film on (001) GaAs. (a) results from VSM measurements of in-plane magnetic moment vs magnetic field at room temperature. (b) results from SQUID measurements of the temperature dependence of in-plane magnetization.

Figure 5(a) shows the in-plane vibrating sample magnetometry (VSM) measurements for the 300 Å thick epitaxial Ni₂MnGa/GaAs sample at room temperature. The magnetic moment versus applied field curve shows a fairly square hysteresis loop with a squareness of 0.946 and a coercivity H_c of 10 Oe, both of which indicate ferromagnetic behavior. By normalizing to the film volume, the saturation magnetization was found to be $\sim 200 \text{ emu/cm}^3$. The out-of-plane loop shows a large demagnetization effect and the strong influence of GaAs substrate. From our preliminary results, no strong in-plane anisotropy is observed.

Figure 5(b) shows the temperature dependence of the magnetization of the epitaxial Ni₂MnGa film obtained with superconducting quantum interference device magnetometry (SQUID) with a constant 100 Oe field applied parallel to the sample surface. These data indicate that the Curie temperature T_c is ~320 K, which explains the low coercivity of the film at room temperature. The tetragonal structure of Ni₂MnGa in this sample may be the reason for the Curie temperature being lower than that reported for the bulk stoichiometric cubic Ni₂MnGa $L2_1$ phase (~376 K).⁸

In conclusion, the growth of tetragonal ferromagnetic single crystal Ni₂MnGa (a=b=5.65 Å, c=6.12 Å) on (001) GaAs has been demonstrated. The film was pseudo-morphic with the following epitaxial relationship: (001) $\langle 100 \rangle \langle 010 \rangle$ Ni₂MnGa||(001) $\langle 100 \rangle \langle 010 \rangle$ GaAs when grown on a Sc_{0.3}Er_{0.7}As template layer.

The authors would like to acknowledge the technical assistance of Q. Pan, A. H. Bensaoula, and A. Fartassi. This research was supported in part by AFOSR-MURI Contract No. F49620-98-1-0433, ONR Contract No. N/N00014-99-1-0233, and MRSEC Program of the National Science Foundation under Award No. DMR-9809364.

- ¹P. Krulevitch, A. P. Lee, P. B. Ramsey, J. C. Trevino, J. Hamilton, and M. A. Northrup, J. Microelectromech. Syst. **5**, 270 (1996).
- ²R. D. James and M. Wuttig, Philos. Mag. A **77**, 1273 (1998).
- ³S. J. Murry, M. Farinelli, C. Kantner, J. K. Huang, S. M. Allen, and R. C. O'handley, J. Appl. Phys. **83**, 7297 (1998).
- ⁴A. N. Vasil'ev, A. D. Bozhko, V. V. Khovailo, I. E. Dikshtein, V. G. Shavrov, V. D. Buchelnikov, M. Matsumoto, S. Suzuki, T. Takagi, and J. Tani, Phys. Rev. B **59**, 1113 (1999).
- ⁵R. C. O'Handley, J. Appl. Phys. 83, 3263 (1998).
- ⁶R. Tickle and R. D. James, J. Magn. Magn. Mater. 195, 627 (1999).
- ⁷C. J. Palmstrøm, Annu. Rev. Mater. Sci. **25**, 389 (1995).
- ⁸P. J. Webster, K. R. A. Ziebeck, S. L. Town, and M. S. Peak, Philos. Mag. **49**, 295 (1984).
- ⁹ A. Guivarc'h, R. Guérin, and M. Secoué, Electron. Lett. 23, 1004 (1987).
 ¹⁰ M. Tanaka, J. P. Harbison, J. DeBoeck, T. Sands, B. Philips, and T. L.
- Cheeks, Appl. Phys. Lett. **62**, 1565 (1993).
- ¹¹ M. Tanaka, J. P. Harbison, T. Sands, B. A. Philips, J. DeBoeck, T. L. Cheeks, L. T. Florez, and V. G. Keramidas, Mater. Res. Soc. Symp. Proc. **313**, 507 (1993).
- ¹²T. Sands, J. P. Harbison, C. J. Palmstrøm, R. Ramesh, and V. G. Keramidas, Mater. Res. Soc. Symp. Proc. **221**, 271 (1991).
- ¹³C. J. Palmstrøm, S. Mounier, T. G. Finstad, and P. F. Miceli, Appl. Phys. Lett. **56**, 382 (1990).
- ¹⁴ V. V. Kokorin, V. V. Martynov, and V. A. Chernenko, Scr. Metall. Mater. 26, 175 (1992).