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Abstract

A direct derivation is given of a theory for single crystal thin _lms\ starting from three!
dimensional nonlinear elasticity theory augmented by a term for interfacial energy[ The deri!
vation involves no a priori choice of asymptotic expansion or ansatz[ It yields a frame!indi}erent
Cosserat membrane theory with one Cosserat vector _eld[ The theory is applied to multi!well
energy functions appropriate to martensitic materials[ It is found that\ unlike in bulk materials\
which generally only support _nely twinned austenite:martensite interfaces as energy min!
imizing states\ the thin _lm theory predicts the existence of exact\ untwinned aus!
tenite:martensite interfaces[ These are used to construct some simple energy minimizing
deformations*{{tents|| and {{tunnels||*that could possibly be the basis of simple large!defor!
mation microactuators[ Explicit results are given for martensitic materials in the systems
NiMnGa\ NiTi\ NiTiCu\ and NiAl[ A certain alloy of precise composition Ni29[4Ti38[4Cu19[9 is
predicted to support a four!sided {{tent|| on an "990# _lm\ which furthermore is predicted to
collapse to the substrate upon heating[ A formal derivation is given of higher order theories\
which yields two additional Cosserat vectors and an explicit form of the bending energy[ The
derivation indicates an approach to plate!shell!thin _lm theories that is rather di}erent from
the ones usually followed[ Þ 0888 Elsevier Science Ltd[ All rights reserved[

Keywords] A[ Phase transformation^ Shape memory e}ect^ B[ Thin _lms^ Microactuator^ C[ Variational
calculus

0[ Introduction

In this paper we give a direct derivation of a theory of deformable thin _lms
beginning from three!dimensional nonlinear elasticity\ augmented with a classical
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term for interfacial energy\ and apply the theory to the behavior of thin _lms of
martensitic material[

Martensitic materials undergo a di}usionless phase transformation at a certain
temperature uc[ Typically\ a symmetric high temperature phase "austenite# experiences
a spontaneous distortion upon cooling through uc ^ the low temperature phase "mar!
tensite# consists of di}erent variants which are symmetry!related via symmetry oper!
ations of the austenite[ Crystals that undergo a reversible martensitic phase
transformation often exhibit the shape!memory e}ect[ Here\ an imposed deformation
at low temperature\ that rearranges the variants of martensite\ is recovered upon
heating as the crystal returns to the unique austenitic structure[

As discussed by Krulevitch et al[ "0884\ 0885#\ actuators which utilize the shape!
memory e}ect exhibit the largest work output per cycle per volume among a variety
of actuator systems\ including ordinary electromagnetic\ piezoelectric\ giant mag!
netostrictive\ liquidÐsolid phase change and muscle[ This fact\ together with the
enhanced rate of heat transfer in thin _lms\ makes shape!memory actuators attractive
for miniaturization[ Thin _lms of the shape!memory material NiTi and closely related
alloys have been made by magnetron sputtering by several groups "Grummon et al[\
0884 ^ Krulevitch et al[\ 0885 ^ Miyazaki et al[\ 0884 ^ Mathews\ 0885\ and references
therein#[ This method produces polycrystalline _lms of special texture\ dominated by
"009# in NiTi[ From studies of the shape!memory e}ect in polycrystals "Bhattacharya
and Kohn\ 0885#\ it is well!known that\ unless the martensite is of very low symmetry
or the polycrystal has special texture\ the deformations possible in a sample will be
highly restricted[ In fact\ Shu and Bhattacharya "0886# show theoretically that the
"009# texture in _lms of NiTi is somewhat unfavorable for having large recoverable
strains[

This raises the question of whether other methods yielding di}erent textures in thin
_lms would be interesting to pursue[ The ideal texture that eliminates altogether
{{_ghting between the grains|| is single crystalline[ Single crystal _lms can potentially
be produced by epitaxial growth on a lattice!matched single crystal substrate\ and
released by a subsequent back etch[ In fact\ by patterning the back of the substrate\
the _lm can be released on precisely de_ned regions[ This possibility partly motivated
the present study[ In Section 4 we suggest several designs for certain {{tents|| and
{{tunnels|| that take advantage of patterning single crystal _lms\ and our calculations
indicate that this line of research will be interesting to pursue[ Very recently\ Bensaoula
et al[ "0886# have grown single crystals of the martensitic material Ni1MnGa on
Ga"0−xInx#As by MBE[

Since it is essential for these applications to know exactly how the thin _lm theory
is related to the 2!D theory\ and also because we were unsure which of the wide array
of di}erent plate theories would be applicable in this case\ we adopted the viewpoint
explored in recent years by several authors "e[g[ Acerbi et al[\ 0880 ^ Anzellotti et al[\
0883 ^ LeDret and Raoult\ 0882\ 0884\ 0885 ^ Fonseca and Francfort\ 0887# in related
cases[ That is\ we begin by writing the total energy per unit thickness e"h# of a _lm of
thickness h and change variables so that the competing deformations are de_ned on
a _xed domain[ Our energy contains a contribution for interfacial energy\ which is
expected to possibly be important for very thin _lms[ Calling a minimizer of this
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energy y"h#\ we try to extract from the sequence y"h# various quantities that are necessary
and su.cient for the determination of the limiting energy limh:9 e"h#\ under a wide
class of boundary conditions and for a general form of the bulk energy density[ In
our case it turns out ðeqn "2[7#Ł that the limiting energy e9 is determined by two vector
_elds y and b de_ned on a plane sheet\ and has the form of a Cosserat membrane
theory with y being associated with deformations of a {{middle surface|| and the
Cosserat vector b with transverse shear and normal compression[ The energy e9 is
frame!indi}erent and inherits a certain energy!well structure from the original theory
which we exploit in the applications[ This method of derivation is associated with G!
convergence\ but we do not use any of the abstract techniques of G!convergence in
this paper[

An interesting feature of the thin _lm energy "with surface energy put equal to
zero# is that it admits a large family of exact energy minimizing austenite:martensite
interfaces "Section 4#[ This contrasts with results on austenite:martensite interfaces
in bulk "Ball and James\ 0876# which\ without restrictive conditions on lattice par!
ameters\ are necessarily _nely twinned[ These exact austenite:martensite interfaces
form the basis of the construction of the tents and tunnels[ Necessary and su.cient
conditions on the lattice parameters\ _lm normal and geometry for these to be possible
are given in Sections 4[2[ and 4[3[ Some martensitic materials that satisfy the various
conditions\ with their associated _lm orientations\ are given in Section 6[

If we begin with our e9\ put the interfacial energy terms equal to zero\ minimize out
the Cosserat vector b\ and then relax\ we get a membrane energy having the same
form as that of LeDret and Raoult[ Because we have included interfacial energy of
the van der Waals type\ our derivation of this thin _lm theory is in fact easier than
previous treatments\ but also applies to a wider class of bulk energies[ In addition we
are able to obtain formally the bending terms at higher order "Section 7#[

We also quote the results of a similar derivation in the case of a _lm and substrate
of comparable thickness "Section 3#[ The limiting energy in this case involves a
deformation y and two Cosserat vectors bf and bs[ By varying the thickness ratio of
the _lm and substrate\ the energy!well structure of the composite can be changed
considerably[ We propose this as a method of satisfying special conditions on lattice
parameters that\ for example\ allow a {{tent|| to be energy minimizing at low tempera!
ture[

The derivation of the bending energy and its associated variational principle begins
by considering the di}erence "e"h#ðy"h#Ł−e9ðy¹\ b¹Ł#:hn\ where "y¹\ b¹# minimize the thin _lm
energy[ The _rst nontrivial terms occur at n�1\ and represent bending and higher
order interfacial energy[ The theory that emerges is frame!indi}erent and has two
new Cosserat vectors "c\ d#[ By repeating the calculation using certain kinds of com!
petitors\ we also obtain a variational principle[ The derivation says that one should
do something quite di}erent from the usual procedure ] _rst minimize the membrane
energy e9 over pairs "y\ b# in an appropriate space\ use the result to evaluate the
coe.cients in the bending energy\ and then minimize the bending energy over the
additional Cosserat vectors "c\ d#[ In some sense such a procedure is implicitly used
when one adopts assumptions of inextensibility\ or rigidity of cross!sections\ in special
plate theories[ Our derivation of the bending theory is presented as a formal cal!
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culation to keep the length of this paper manageable\ but it appears that it can be
made rigorous by introducing "unfortunately rather strong# conditions of growth[

Some of our results were given without proof in Bhattacharya and James "0885#[
Basic notation ] a\b\ g\x0\x1\ [ [ [ \ are scalars ^ a\ b\ c\ [ [ [ \ and the term {{vector|| denote
members of R2 ^ A\B\C\ [ [ [ \ and the term {{matrix|| denote elements of M2×2\ that is\
2×2 matrices\ and a superimposed T is transpose ^ A�"a=b=c# denotes a matrix whose
_rst column is a\ second column is b and third column is c ^
SO"2# � "R $M2×2 ]RTR� I\ detR�¦0# and elements of SO"2# are called
rotations ^ 91y is the full matrix of second derivatives of y\ not just the Laplacean[

1[ Bulk theory of martensite

We assume that the behavior of the _lm is governed by a free energy of the
geometrically nonlinear theory of martensite "Ball and James\ 0881\ Section 1#\ aug!
mented by a standard form of the interfacial energy[ The use of geometrically non!
linear theory is essential for two reasons ] "0# we wish to treat shape!memory materials
like NiTi and CuZnAl where geometrically linear theories can make very substantial
errors "Bhattacharya\ 0882#\ and "1# we want to apply the resulting theory to _lms
that may deform by undergoing large rotations\ as for example in the tunnels described
in Section 4[ The interfacial energy is also essential for thin _lm problems ^ in particu!
lar\ we are interested in the e}ects of scale\ within the continuum framework[

The bulk free energy density shall be a smooth function 8 ]M2×2×"9\�# :"9\�#\
where 8"A\ u# represents the free energy per unit reference volume of the material as
a function of the deformation gradient A and temperature u[ The free energy function
is assumed to be frame!indi}erent ]

8"QA\ u# �8"A\ u# [Q $SO"2#\ A $M2×2\ u× 9\ "1[0#

and to satisfy the following conditions of material symmetry ]

8"AH\ u# �8"A\ u# [H $P\ A $M2×2\ u× 9\ "1[1#

where P is the point group of the austenite phase at the transformation temperature
uc[ Here\ uc can be taken to be the temperature at which the austenite and martensite
have the same free energy density[ The justi_cation of these conditions comes from
an underlying crystallographic model "Ball and James\ 0881#[ This involves embedding
a lattice model into the continuum model via the CauchyÐBorn rule\ and following
through the symmetry conditions that arise from the underlying lattice[ For our
purposes here\ we shall not need anything from the basic theory beyond "1[0# and
"1[1#[

We assume growth hypotheses

c0"=A=1−0# ¾8"A\ u# ¾ c1"=A=q−0# "1[2#

where 1³ q³ 5[ While "1[2# forbids the natural physical hypothesis 8"A\ u# :� as
detA: 9\ this would appear to be more of a technicality than a substantive objection[
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To model the presence of di}erent phases\ 8 shall be assigned energy wells[ We
assume that there are a _nite number of positive!de_nite symmetric matrices
U9\U0\ [ [ [ \Un such that

"i# For u× uc\ 8"=\ u# is minimized on

SO"2#U9[ "1[3#

"ii# For u¾ uc\ 8"=\ u# is minimized on

SO"2#U0 * SO"2#U1 * = = = SO"2#Un[ "1[4#

The matrices U0\ [ [ [ \Un are the distortion matrices\ representing the linear trans!
formations that take the undistorted austenite lattice at uc to the lattices associated
with the n variants of martensite[ The notation SO"2#U stands for the set of all
rotation matrices post!multiplied by U\ i[e[ SO"2#U� "A $M2×2 ]A�QU\QTQ

� I\ detQ�¦0#[ Though it is not re~ected by the notation\ all the matrices
U9\U0\ [ [ [ \Un are assumed to depend "weakly# on temperature\ representing ord!
inary thermal expansion of the austenite or of the individual variants of martensite\
and we have by assumption that U9 � I at u� uc[ We also assume that "1[3# and "1[4#
are consistent with the symmetries "1[0# and "1[1# in the sense that\

U9 �RU9R
T for all R $P\ "U0\ [ [ [ \Un# � "RU0R

T ]R $P#[ "1[5#

The forms of the matrices U9\U0\ [ [ [ \Un for various symmetry changes have been
worked out by Pitteri and Zanzotto "0885#[ To illustrate our results\ we shall focus
on four common cases having cubic austenite "all matrices in "1[6#Ð"1[00# below are
expressed in an orthonormal basis parallel to the cubic axes\ the cubic basis# ]

"A# Cubic to tetragonal transformations[ Here there are two lattice parameters h0 × 9
and h1 × 9\ h0 � h1\ and three variants of martensite with distortion matrices of
the form ]

2
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h0
3\ 2

h0
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h0
3\ 2

h0

h0

h1
3[ "1[6#

The measured values of these parameters for Ni53Al25 are h0 �9[8281\ h1 �0[0291
and for Ni1MnGa are h0 �9[8401\ h1 �0[029[

"B# Cubic to orthorhombic transformation as in the b0 : g?0 transformation in
CuAlNi[ Here there are three lattice parameters a× 9\ b× 9\ g× 9\ a� g\ and
six variants of martensite with distortion matrices of the form ]
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The measured values of these parameters for CuAlNi "03[1wt)AlÐ3[2wt)Ni#
are a�0[9508\ b�9[8067\ g�0[9129 and for Ni29[4Ti38[4Cu19[9 are a�0[9\
b�9[8468\ g�0[9472 to within 29[9990 "Moberly\ 0878#[

"C0# Cubic to monoclinic transformation as in the DO2:5M " formerly called 07R#
transformation in CuZnAl[ Here there are four lattice parameters a× 9\ b× 9\
g× 9\ d� 9\ ag−d1 × 9\ and twelve variants of martensite with distortion
matrices of the form ]

2
b 9 9

9 a d

9 d g 3\ 2
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−d a 9
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The measured values of these parameters for Cu57Zn04Al06 "Chakravorty and
Wayman\ 0866 ^ Hane\ 0886# are a�0[976\ b�9[8982\ g�0[909\ d�9[9149[
This corresponds to a monoclinic angle of 83[1>[

"C1# Cubic to monoclinic transformation as in NiTi[ Here\ there are four lattice
parameters a× 9\ b× 9\ d\ o� 9\ a1−d1 × 9\ ab−o1 × 9\
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The measured values of these parameters for Ni49Ti49 are a�0[9132\ b�9[8452\
d�9[947\ o�9[9316 "Knowles and Smith\ 0870#[

Now we turn to the description of the surface energy[ By far\ the most popular
method for modeling surface energy is to add a term of the form 91y =A91y to the
energy density\ where A is positiveÐde_nite and satis_es conditions of crystallographic
symmetry appropriate to the austenite[ Here 91y denotes the full 2×2×2 matrix of
the second derivatives\ not just the Laplacean[ There are indications "Barsch and
Krumhansl\ 0873\ 0877# that such a model\ when _tted carefully with measured
material constants\ predicts twin boundaries that are more di}use than the cor!
responding observed interfaces[ However\ this model has one property in its favor ] it
scales exactly like interfacial energy under uniform dilatations[ Since we mainly rely
on its scaling and smoothing properties\ we use the simple form k=91y=1 in our
subsequent calculations[

The thin _lm occupies a reference domain

Vh � 6x $R2 ] "x0\x1# $S\−
h
1
³x2 ³

h
17\ "1[00#

where S is\ for simplicity\ a bounded Lipschitz domain "i[e[\ corners allowed but no
cusps# with unit area[ Deformations of the _lm are described by functions y ]Vh :
R2[ In "1[00# the components xi are relative to an orthonormal basis "e0\ e1\ e2# "the
_lm basis#[ The relation between the _lm basis and the cubic basis describes the
orientation of the _lm[

The total free energy is assumed to have the _nal form

e"h# ðy ^ uŁ � gVh

"k=91y=1¦8"9y\ u## dx[ "1[01#

For a typical deformation y ]Vh :R2 satisfying our boundary conditions "see below#
the energy e"h# will scale like h as h: 9\ so we shall be interested in the limiting
behavior of the energy per unit reference thickness

"0:h#e"h# ðy ^ uŁ[ "1[02#

In the following arguments\ u shall be held _xed\ so we suppress it from the notation[

2[ Derivation of the thin _lm theory

Consider the energy "0:h#e"h# of "1[02#[ It is convenient to work on a _xed domain\
so we change variables "Fig[ 0# ]

z0 �x0\ z1 �x1\ z2 �
0
h
x2\ x $Vh[ "2[0#

To each deformation y½ ]Vh :R2 we associated a deformation y ]V0 :R2 via

y"z"x## � y½ "x#\ x $Vh[ "2[1#
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Fig[ 0[ Change of variables given in "2[0#[

We use the notation 9p for the gradient in the plane of the _lm\ e[g[

9py� y\0 & e0¦y\1 & e1[ "2[2#

Also\ it is useful to express the bulk free energy density 8"A# as a function of the
three columns of A ] with a slight abuse of notation we shall write 8"a0=a1=a2# for
8"a0 & e0¦a1 & e1¦a2 & e2#[

We now change variables in "0:h#e"h# using "2[0# and "2[1#[ This gives

e"h#
0 ðyŁ M

0
h
e"h# ðy½Ł � gV0

6k $=91
py=1¦

1

h1
=9py\2 =1¦

0

h3
=y\22 =1%

¦8 0y\0 =y\1 =
0
h
y\217dz[ "2[3#
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We picture a _lm that has been released from the substrate on part of its lower
boundary[ The released boundary is here identi_ed with S[ A thick substrate is
expected to highly constrain the part of the _lm that adheres to it\ so we model its
e}ect on the released _lm by a displacement boundary condition at the edge of the
_lm\ 1S×"−"h:1#\ h:1#[ For simplicity we impose the linear boundary condition
y½ "x# �Ax\ x $ 1S×ð−"h:1#\ h:1Ł[ For example\ if the adhering part of the _lm remains
in the austenite phase\ the simple boundary condition y½ "x# �x\ x $ 1S×"−"h:1#\ h:1#
would be appropriate[ In terms of the new variables\ the linear boundary condition
becomes\

y"z# �A"h#z\ z $ 1S×"−0
1
\ 0

1
#\ A"h# �"a0 =a1 =ha2#[ "2[4#

The derivation of the thin _lm theory below is not particularly sensitive to the use of
linear boundary conditions\ but their presence simpli_es the proof "see Remark 2[1#[
The main property of boundary conditions used in the derivation given below is that
they be consistent with the existence of a family of test functions that makes e"h#

0

bounded independent of h[
The existence of a minimizer y"h# $W1\1"V0\R2# of e"h#

0 for each _xed h× 9 is guaran!
teed by the direct method of the calculus of variations[ To see this\ note _rst that
e"h#

0 − 9[ Let y"h#
k $W1\1"V0\R2#\ y"h#

k "z# �A"h#z\ z $ 1S×"−0
1
\ 0

1
# be a minimizing

sequence[ Using the growth condition "1[2# on 8 and the positivity of k\ we have

ch − e"h#
0 ðy"h#

k Ł − gV0

8 0y"h#
k\0

=y"h#
k\1

=
0
h
y"h#

k\21dz

− c 0=y"h#
k\0

=1¦=y"h#
k\1

=1¦
0

h1
=y"h#

k\2 =1−01[ "2[5#

This gives >9y"h#
k >L1 ³ c?h[ Now using the Poincare� inequality in the form "Morrey\

0855\ Theorem 2[5[3#

gV0

=y"h#
k =1 dz¾ c0 $gV0

=9y"h#
k =1 dz¦g1S×"−"0:1#\0:1#

=y"h#
k =1 dz%\ "2[6#

and the boundary conditions\ we conclude that >y"h#
k >W1\1 ³ cýh[ Hence\ for a suitable

subsequence "not relabeled#\ y"h#
k K y"h# in W1\1"V0\R2# and "using Rellich|s Theorem#

y"h#
k : y"h# in W0\q"V0\R2#\ q³ 5[
Now using the convexity of the second gradient terms and the continuity of 8\

together with the bound "1[2#\ we _nd that e"h#
0 is weakly lower semicontinuous on

"y"h#
k #[ Thus\ y"h# is a minimizer[ It satis_es the boundary conditions by virtue of the

strong convergence y"h#
k : y"h# in W0\q[ Now we consider the behavior of the minimizers

y"h# as h: 9[

Theorem 2[0[ The family of minimizers y"h# $W1\1"V0\R2# has a subsequence "not
relabeled# such that



K[ Bhattacharya\ R[D[ James:Journal of the Mechanics and Physics of Solids 36 "0888# 420Ð465439

91
py

"h# :91
py¹

0
h
9py

"h#
\2 :9pb¹

0

h1
y"h#

\22 : 9

J

G

G

h

G

G

j

in L1"V0#\ "2[7#

where "y¹\ b¹# are independent of z2 and "y¹\ b¹# minimizes the limiting energy

e9 ðy\ bŁ � gS

"k"=91
py=1¦1=9pb=1#¦8"y\0 =y\1 =b## dz0 dz1 "2[8#

among "y\ b# $W1\1"S\R2#×W0\1"S\R2# satisfying the boundary conditions

y"z0\ z1# � a0z0¦a1z1

b"z0\ z1# � a2 7 "z0\ z1# $ 1S[ "2[09#

Proof[ Compare the energy of y"h# with that of y"z# �A"h#z[ This gives

e"h#
0 ðy"h#Ł ¾ =V0 =8"a0 =a1 =a2# "2[00#

so that

>91
py

"h#>L1 ¾ c\ B
0
h
9py

"h#
\2 BL1

¾ c\ B
0

h1
y"h#

\22 BL1

¾ c[ "2[01#

It also follows from "2[00# that\ on the left hand side of "2[5#\ we can choose ch

independent of h[ Hence\ using "2[00# and the Poincare� inequality in the form "2[6#\
we can add to the list "2[01# the conditions

>y"h#>L1 ¾ c\ >9y"h#>L1 ¾ c\ B
0
h
y"h#

\2 BL1

¾ c\ "2[02#

so that >y"h#>W1\1 ¾z5c and >"0:h#y"h#
\2 >W0\1 ¾ 1c[

Therefore\ there is a subsequence "not relabeled# such that

y"h#
K y¹ in W1\1\

0
h
y"h#

\2 K b¹ in W0\1[ "2[03#

From "2[01#1\2 and the fact that V0 is convex in the z2 direction it follows that 9y¹ and
b¹ are independent of z2[ By the trace theorem "Evans and Gariepy\ 0881\ Sect 3[2#
"y¹\ b¹# satisfy the boundary conditions "2[09#[ Write

91
py

"h# �91
py¹¦E"h#

p \ E"h#
p K 9 in L1\
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0
h

9y"h#
\2 �9b¹¦E"h#

2 \ E"h#
2 K 9 in L1[ "2[04#

For the next test function we would like to choose y¹ "z#¦hb¹ "z#z2\ but b¹ is not
smooth enough to do the subsequent second di}erentiation[ Thus\ we smooth b¹ by
introducing b¹ o $C� with b¹ o : b¹ in W0\1"V0\R2#\ b¹ o satisfying the boundary condition
"2[09#1 and b¹ o independent of z2[ Then we compare e"h#

0 ðy"h#Ł with e"h#
0 ðy"h#

o Ł where
y"h#

o M y¹¦hb¹ oz2\ using along the way the de_nitions in "2[04#[ This gives

gV0
6k $=91

py¹ =1¦191
py¹ = E"h#

p ¦=E"h#
p =1¦1"=9b¹ =1¦19b¹ = E"h#

2 ¦=E"h#
2 =1#

¦
0

h3
=y"h#

\22 =1%¦8 0y"h#
\0 =y"h#

\1 =
0
h
y"h#

\2 17dz

¾ gV0

"kð=91
py¹¦h91

pb¹ oz2 =1¦1=9b¹ o =1Ł

¦8"y¹ \0¦hb¹ o\0z2 =y¹ \1¦hb¹ o\1z2 =b¹ o## dz "2[05#

Fix o and take lim sup of "2[05# as h: 9[ Using the smoothness of b¹ o\ simplify the
right hand side[ Then cancel the _rst term on the left with its counterpart on the right\
and eliminate the second and _fth terms using "2[04#[ The eighth term on the left also
converges by virtue of "2[03# and the Rellich Theorem "this gives strong convergence
in Lq of 9py

"h# and "0:h#y"h#
\2 # and the bound "1[2#[ We get

lim sup
h:9 gV0

6k$=E"h#
p =1¦=E"h#

2 =1¦
0

h3
=y"h#

\22 =1%7dz¾ gV0

"1kð=9bo =1−=9b¹ =1Ł

¦8"y¹ \0 =y¹ \1 =b¹ o#−8"y¹ \0 =y¹ \1 =b¹## dz[ "2[06#

Now pass to the limit o: 9\ again using the bound "1[2#[ Thus\ the {{sup|| can be
dropped in "2[06# and we have improved the convergence in "2[03# and "2[04# to
strong[ This shows that the limiting energy of y"h# is given by "2[8# evaluated at "y¹\ b¹#[

To establish the minimum principle\ choose a test function y¼ "h#"z# � y¼ "z0\ z1#
¦hb¼ "z0\ z1#z2\ with "y¼\ b¼# $"C�"S\R2##1 satisfying the boundary conditions "2[09#[
Copy the argument "2[05 and 2[06#[ This gives the minimum principle for smooth
competitors\ and "2[8# follows by approximation[ �

Remark 2[1[ It is easily seen that Theorem 2[0 extends to boundary conditions of the
form

y"z# � y9"z0\ z1#¦ s
N

i�0

hi

i;
b"i# "z0\ z1#zi

2 "2[07#

with y9\ b0\ [ [ [ \ bN $W1\1"S\R2#[ For example\ "2[07# permits the assignment of an h!
independent curvature to vertical lines on the edge of the _lm[

Theorem 2[0 gives as the limiting theory a Cosserat theory with a single Cosserat
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vector b ] S:R2[ The mapping y ] S:R2 describes the average deformation of the
_lm "e[g[ the {{middle surface||# and b describes the deformation of the cross!section
relative to the _lm[ The structure of the test functions used in the proof gives a
meaning to y and b[ That is\ the minimizer and the typical test functions have the
form\

y"h# "z# c y"z0\ z1#¦hb"z0\ z1#z2\ "2[08#

where the error is small in the sense of "2[7#[ Note that the error in the separate terms
of "2[08# is measured di}erently[ In terms of the original variables\

y½ "h# "x# c y"x0\x1#¦b"x0\x1#x2[ "2[19#

Hence\ b describes approximately the shear and expansion of the cross!section\ as
summarized by Fig[ 1[ Even though both y and b arise from the given sequence of
minimizers y"h#\ no compatibility restrictions arise from the argument ] in the _nal
minimization of "2[8# y and b are independent functions[

Though it looks like b might carry information about bending energy\ it does not
as we explain in Section 4[ The term 9pb appearing in the integrand of "2[8# is not a
bending term\ but is rather a contribution of interfacial energy[ The calculation shows
that\ for a su.ciently thin _lm\ the dominant energies are stretching and interfacial[
Bending energy is of higher order in h "Section 7#[ This fact does not seem to be well

Fig[ 1[ Interpretation of y and b[
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appreciated in the actuator literature\ which has focused on the use of cantilevers to
produce actuation[

The limiting theory has inherited the balance between stretching and interfacial
energy[ Based on bulk measurements\ it is expected that k will be very much smaller
than a typical elastic modulus that governs the growth of 8 away from an energy
well[ Therefore\ to form an idea of the nature of the minimizers of the limiting
problem\ it is useful to neglect interfacial energy by putting k�9 "Section 4#[ Then
it is easy to construct various one\ two or more phase minimizers of the simpli_ed
energy[ If these have few interfaces "i[e[\ jumps of the deformation gradient# then it
is expected that these will be rather low energy deformations[ In some cases\ suitably
smoothed versions of these are expected to be minimizers of the limiting problem[

Despite the presence of approximations\ the limiting theory is exactly frame!
indi}erent[ Therefore\ it is expected to give accurate predictions of the deformation
of the _lm even in cases when the _lm undergoes very large stretch and rotation[

3[ Results for a _lm bonded to a substrate

We now quote the result of a calculation analogous to Theorem 2[0 in the case that
the _lm is bonded to a substrate[ Here\ we shall assume that the _lm is _rmly bonded
to a substrate governed by a free energy density 8s"A# having same general growth
and invariance as 8"A\ u# but with perhaps a di}erent symmetry group and of course
a di}erent orientation ^ typically 8s"A# would be a more conventional energy having
a single energy well[ The result depends crucially on the thickness of the substrate[ If
the substrate is much thicker than the _lm\ say of order h0:1\ then the energy of the
_lm will disappear altogether from the _nal theory[ Alternatively\ if the substrate is
much thinner than the _lm\ say of order h1\ then the substrate energy will disappear
from the limiting theory[ This is well understood by practitioners[ Thus\ we make the
_lm and substrate have comparable thicknesses by assuming that the following
domains are assigned ]

For the film ] Vf
h �S×"9\ lh#\

For the substrate ] Vs
h �S×""l−0#h\ 9#\ l $"9\ 0#[ "3[0#

Thus\ the total thickness is h and the thickness ratio is l:"0−l# ^ see Fig[ 2[ The total
free energy is\

e"h#
fs ðyŁ � gVf

h

"kf =91y=1¦8f "9y\ u## dx¦gVs
h

"ks =91y=1¦8s "9y## dx "3[1#

and we use boundary conditions

y"x# � 6
a0x0¦a1x1¦af

2x2\ "x0\x1# $ 1S\ 9³x2 ³ lh\

a0x0¦a1x1¦as
2x2\ "x0\x1# $ 1S\ "l−0#h³x2 ³ 9\

"3[2#

so as to allow the _lm and substrate to shear and expand in di}erent ways above and
below the x2 �9 plane[ Kinematic compatibility ð=y=Ł �9 is imposed at x2 �9[ This
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Fig[ 2[ Interpretation for y\ bf and bs for a _lm and substrate[

theory does not assign surface energy at the _lm:substrate interface ^ in other words\
it allows 9y to jump freely across the surface x2 �9 as long as this does not violate
kinematic compatibility[ We make this choice for simplicity\ but we recognize that
for very thin _lms there may be a surface energy at the _lm:substrate interface which
depends nontrivially on deformation[ The existence and limiting theory are obtained
as above\ after _rst changing variables as in "2[0#[ For a _lm and substrate we get

91
py

"h# :91
py¹ in L1"S×"l−0\ l##\

0
h
9py

"h#
\2 :9pb¹

s in L1"S×"l−0\ 9##\

0
h
9py

"h#
\2 :9pb¹

f in L1"S×"9\ l##\

0

h1
y"h#

\22 : 9 in L1"S×"l−0\ l##\ "3[3#

where "y¹\ b¹ f\ b¹ s# are independent of z2 and minimize

gS

""lkf¦"0−l#ks# =91
py=1¦1"lkf =9pb

f =1¦"0−l#ks =9pb
s =1#¦l8f "y\0 =y\1 =bf#

¦"0−l#8s "y\0 =y\1 =bs## dz0 dz1 "3[4#
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in W1\1"S\R2#×"W0\1"S\R2##1\ subject to the boundary conditions

y"z0\ z1# � a0z0¦a1z1

bf "z0\ z1# � af
2

bs "z0\ z1# � as
2

9 "z0\ z1# $ 1S[ "3[5#

This theory is also exactly frame!indi}erent but involves two Cosserat vectors bf and
bs[ See Fig[ 2[

The limiting theory is interesting with regard to the design of _lms with unusual
transformation properties[ As above\ the relation between surface and bulk energy is
inherited by the thin _lm theory[ Let us discuss the implications of "3[5# by _rst
putting ks �kf �9[ The elastic energy is a convex combination of the elastic energies
of the _lm and the substrate[ Therefore\ as the thickness ratio l:"0−l# passes from
9Ð� there is a smooth change of the energy from the energy!well structure of the
substrate to that of the _lm[ For a given y in the appropriate space the Cosserat vector
_elds bf and bs are found by minimizing pointwise and separately the energy densities
8f"y\0=y\1==# and 8s"y\0=y\1==#[ After this preliminary minimization that determines the
approximate cross!sectional deformations\ we minimize the integral with respect to y

to get the shape of the approximate middle surface[ To form a qualitative picture of
what is expected\ it is interesting to plot the energy!well structure of a convex com!
bination of a double!well "representing schematically 8f# and a single!well energy
density "representing schematically 8s#[ This is shown in Fig[ 3[ First\ note that the

Fig[ 3[ Convex combination of a double and single well energy[ Increasing line thickness corresponds to
decreasing values of l[
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total free energy rises substantially\ on the order of the barrier height\ for intermediate
values of l[ In practice\ if there is a substantial barrier height\ the _lm might tend to
lose its epitaxial relation with the substrate during growth via mechanisms of surface
di}usion or dislocation formation ^ these mechanisms are not included in the present
model[ Second\ notice the second order {{phase transition|| at a certain value of l "i[e[\
dashed in Fig[ 3#[ This relates to Ericksen|s "0879# extension of Landau|s theory of
second order phase transitions to _rst order phase transformations[ The sensitive
dependence of the elastic energy on thickness ratio is similar to that observed in the
theory of compliant substrates "Freund and Nix\ 0885#[

By playing with di}erent materials as substrate and _lm\ a wide variety of interesting
behaviors are possible[ One possibility is to adjust l to be at a second order transition
point\ thereby designing a _lm to have certain speci_c soft moduli[ Notice from Fig[
4 that the locations of the energy well minima change signi_cantly with the thickness
ratio[ Thus\ another possibility is to design the energy wells of a multilayer _lm so as
to satisfy certain special conditions of compatibility\ e[g[\ the conditions "4[39# for
the formation of a {{tent||[

4[ Energy minimizing deformations

Consider a _lm occupying the reference domain SWR1[ According to Section 2\
the deformations of this _lm are described by two vector _elds\ y ] S:R2 and b ] S:
R2[ According to Theorem 2[0\ the behavior of the _lm is governed by the energy
"2[8#[ We are interested in studying some deformations that minimize the energy "2[8#[
However\ if the _lm is large enough\ the elastic energy is much larger than the
interfacial energy[ Therefore\ we can obtain a very reasonable approximation by
setting k�9[ We can then write the energy of the _lm to be

gS

8"y\0 =y\1 =b# dz0 dz1[ "4[0#

Deformations that minimize the energy "4[0# are exactly the deformations "y\ b# that
satisfy

"y\0 =y\1 =b# $SO"2#U9 k SO"2#U0 k = = = k SO"2#Un "4[1#

according to the structure of 8 described in Section 1[ Thus\ we study deformations
that involve the austenite and the di}erent variants of the martensite[ As before
"e0\ e1\ e2# is an orthonormal basis such that e0 and e1 lie in the plane of the _lm while
e2 is perpendicular to the _lm[

4[0[ Sin`le phase deformations

We begin with a deformation that involves only a single phase or variant so that

"y\0 =y\1 =b# $SO"2#U "4[2#
or
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"y\0 =y\1 =b# �Q"z0\ z1#U\

where U is the "constant# distortion matrix of the particular phase or variant while
Q ] S:SO"2# is a rotation!valued function[ We will now show that even this very
simple class of deformations is non!trivial[

Assume momentarily that U� I[ Then\ "4[2# becomes

"y\0 =y\1 =b# �Q[ "4[3#

The only di}erential constraints implied by "4[3# are

y\0 �Qe0 and y\1 �Qe1[

Since Q is a rotation\

y\i = y\j � dij\ i\j� 0\ 1[

Therefore\ the deformation y does not stretch the _lm ] y is an isometric mapping of
a subset of the plane into R2[ Physically\ y describes the class of {{paper!folding
deformations|| ] the deformations that a ~at sheet of paper can undergo[ Further\ for
any paper!folding deformation y\ the function b� y\0×y\1 is the solution of "4[3#[
This is interpreted as saying that the "vertical# relative position vector between points
on the top and the bottom of the _lm deforms so as to be approximately perpendicular
to the deformed middle surface[ If U� I then the deformations that satisfy "4[2# are
characterized by a uniform stretch of the _lm U followed by a paper!folding defor!
mation as shown in Fig[ 4[

We now report some results from di}erential geometry "see for example Kreyszig\
0857# that characterize smooth "y $C1"S## paper!folding deformations[ First\ the
image of y is a developable surface[ Second\ a developable surface is locally a plane\
a cylinder\ a cone or a tangent surface "a tangent surface is obtained by sweeping a
curve in the direction of its own tangent#[

In summary\ the deformations of a thin _lm that involve a single variant are not
trivial[ Instead\ they stretch the _lm uniformly through the distortion matrix U and
then deform it using a paper folding deformation into a developable surface "see Fig[
4#[ Thus\ the theory captures the ~oppiness of the thin _lms[

Let us contrast this with the behavior of bulk specimen which occupies V $R2[ A
deformation y½ ]V:R2 involving a single variant satis_es

9y½ �QU "4[4#

for some rotation!valued function Q ]V:SO"2#[ It follows "see for example James
and Kinderlehrer\ 0878# that Q�constant[ Thus\ the only deformation that a bulk
specimen can undergo using a single variant is trivial ] it involves a uniform stretch
followed by a rigid rotation[ Mathematically\ this di}erence can be seen by comparing
"4[2# and "4[4#[ In "4[2#\ the third column of the matrix on the left hand side is not a
gradient ^ in "4[4# it is[ This extra constraint forces the rotation to be a constant in
"4[4#[ Physically\ bending a bulk specimen requires a lot of energy[ In contrast\ the
bending energy of a thin _lm is negligible "lower order in thickness than stretching# ^
hence the _lm can curl up into developable surfaces[
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4[1[ Two phase deformations

We now consider deformations that consist of the austenite and a single variant of
martensite or of two variants of martensite[ In particular\ consider the deformation
shown in Fig[ 5 ] we divide the _lm into two disjoint open regions S0 and S1\
S�S0 k S1 k I and assume that

"y\0 =y\1 =b# �QU in S0

"y\0 =y\1 =b# �QV in S1 "4[5#

where V\ U are the positiveÐde_nite\ symmetric distortion matrices associated with
the two phases and Q is a rotation valued function[ We make the following classical
assumptions ]

"i# y is continuous with smooth limiting values on the smooth interface I ^
"ii# y\0\ y\1 and b may su}er jumps across I ^
"iii# y\ b are smooth in S0\ S1[

Condition "i# assures us that the deformation does not tear apart the _lm[ Note that
there is no such condition on b\ since it can jump without tearing the _lm; Condition
"ii# allows us to consider interfaces consistent with "4[5#[

The restriction that y be continuous while its derivatives su}er a jump imposes a
kinematic compatibility condition or the Hadamard jump condition[ This requires
that at any point "z0\ z1# $I\ there exists a vector a such that

ð=y\0 =Ł �n0a and ð=y\1 =Ł �n1a "4[6#

for some n0\ n1 $R[ Above\ the notation ð=`=Ł denotes jump in any quantity ` across
I[ Therefore\

ð="y\0 =y\1 =b# =Ł �n0a& e0¦n1a& e1¦ð=b=Ł & e2\

� a& n¦c& e2\

where n� n0e0¦n1e1 and c� ð=b=Ł[ Reversing the argument\ we conclude that a defor!
mation "y\ b# is consistent with the conditions "i#\ "ii#\ "iii# if and only if

ð="y\0 =y\1 =b# =Ł � a& n¦c& e2 "4[7#

for some vectors a\ c and n that satisfy n = e2 �9[ Furthermore\ n is the normal to the
interface "in the plane of the _lm#[

We now return to the two!phase deformation "4[5#[ Substituting this into "4[7# we
_nd that at any point "z0\ z1# on I\

Q0U−Q1V� a& n¦c& e2 "4[8#

for some vectors a\ n and c where Q0 and Q1 are the limiting values of the rotation Q

on the interface I[ Pre!multiplying this equation by QT
1\ denoting Q9 �QT

1Q0 and
rede_ning the vectors a and c we can rewrite "4[8# as
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Fig[ 4[ Single phase deformation[

Fig[ 6[ Tunnel[

Fig[ 7[ Tent[
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Fig[ 5[

Q9U−V� a& n¦c& e2[ "4[09#

Equivalently\

"Q9U−V#e� 9\ e = e2 � 9 "4[00#

for some vector e� 9[ In what follows we assume without loss of generality that
=n= �0 and =e= �0[

Let us now turn the question around ] given two phases or variants\ can we form
an interface between them< Clearly\ this is possible if we satisfy "4[00# for some
rotation Q9 and some vector e ] construct a planar interface between them with normal
n and set Q�Q9 in S0 and Q� I in S1[

Notice the "4[00# is an invariant line condition ] the two deformation gradients Q9U

and V deform a line in the direction of e in the e0Ðe1 plane identically[ Thus\ we can
form an interface between two variants if and only if we can _nd an invariant line[
The following result allows us to determine when we can satisfy "4[00# for some given
matrices U\ V and normal e2[

Proposition 4[0[ Given matrices V�VT × 9\ U�UT × 9 and a vector e2\ there exist
Q9 $SO"2# and a vector e with =e= �0 that satisfy "4[00# if and only if

V−0e2 ="adjA#V−0e2 ¾ 9\ "4[01#

where A�V−0U1V−0−I[ To _nd the solutions\ let e0 be any vector on the plane of
the _lm "i[e[\ e0 = e2 �9#[ Set

u�
Ve0

=Ve0 =
\ w�

V−0e2

=V−0e2 =
and v�w×u\ "4[02#

so that "u\ v\w# form an orthonormal basis[ Then\ all solutions of "4[00# are given by

e� zV−0"au¦bv#\ "4[03#

where z� 9 is chosen to make =e= �0 while a\b are solutions of the quadratic equa!
tions

a1¦b1 � 0\ a1u =Au¦1abu =Av¦b1v = Av� 9[ "4[04#

Further\ to classify the solutions e given by "4[03#\ let
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M� 0
u =Au u =Av

u =Av v = Av1[ "4[05#

"4[01# is equivalent to detM¾ 9 so that the following cases are exhaustive[

Case 0[ M�9

Any unit vector e in the plane of the _lm is a solution[

Case 1[ M� 9\ detM�9

There is a unique solution up to change in sign\ e:−e[

Case 2[ detM³ 9

There are exactly two solutions up to change in sign\ e:−e[

Finally\ for each e given above\ Q9 belongs to the one!parameter family of rotations
that satisfy

Q9Ue�Ve[

Proposition 4[0 has a simple interpretation[ Without loss of generality\ we can
change the reference con_guration so that V� I ^ then the deformed side of the _lm
can be viewed as having been stretched by amounts "0¦m0# and "0¦m1# in two
perpendicular directions\ and there exists an invariant line if and only if

m0m1 ¾ 9[ "4[06#

The matrix M in "4[05# describes the relative stretch of the deformed _lm in the
following sense ] its eigenvectors are the principal axes of the stretch in the _lm and
its eigenvalues are l0 �"0¦m0#1−0\ l1 �"0¦m1#1−0[ Hence\ the condition detM¾ 9
is equivalent to "4[06#[ If m0 �m1 �9\ then the _lm is undeformed and any line is an
invariant line "Case 0# ^ if m0 �9 or m1 �9\ but not both\ then there is one and only
one invariant line along the unstretched principal axis of strain "Case 1# if "4[06#
holds with m0 � 9 and m1 � 9 then there are two distinct invariant lines "Case 2#[ The
last sentence of Proposition 4[0 says simply that the deformed side of the _lm admits
an arbitrary superposed rotation with axis on the invariant line[ In Section 6 the
terminology in!plane principal stretches refers to the values of "0¦m0# and "0¦m1#[

Proof of Proposition 4[0[ Notice that "4[00# is equivalent to =Ue=1 � =Ve=1\ e = e2 �9
since Q9 is a rotation[ Set f�"Ve:=Ve=# so that "4[00# is equivalent to

=UV−0f=1 � =f=1\ f = V−0e2 � 9\ =f= � 0 ^

or in the notation introduced in "4[01# and "4[02#\

f = Af� 9\ f = w� 9\ =f= � 0[ "4[07#

Set f� au¦bv so that f = w�9 is automatic[ Then\ "4[07#0\2 reduces to the quadratic
eqns "4[04#[ We can _nd a solution "a\b# to these if and only if "u =Au#
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"v = Av#−"u =Av#1 ¾ 9 or equivalently if detM¾ 9[ However notice that the matrix A

in the "u\ v\w# basis is given by

2
u =Au u =Av u =Aw

u =Av v = Av v = Aw

u =Aw v =Aw w =Aw
3 "4[08#

so that the {{w−w|| component of adjA is equal to detM[ Therefore\ we conclude
that "4[04# has a solution "a\b# if and only if

w ="adjA#w¾ 9

which is exactly "4[01# since w�"V−0e2:=V−0e2=#[ From a solution "a\b# or "4[04# we
obtain a solution e to "4[00# from "4[03#[

The classi_cation is also easy[ If M�9\ then any a\ b satisfying a1¦b1 �0 solves
"4[04# and hence any unit vector e satis_es "4[00#[ If M� 9\ but detM�9 ^ then one
of the two eigenvalues of M is equal to zero while the other is nonzero ^ hence "4[04#
has only one solution "up to sign# and "4[03# gives a unique direction[ Finally\ if
detM³ 9\ M has two distinct eigenvalues and "4[03# gives two distinct directions[

Finally\ the rotation Q9[ We already know that the e in "4[03# satis_es =Ue= � =Ve=[
Therefore\ we can _nd a rotation Q9 such that Q9Ue�Ve[ For any rotation R? with
axis Ve\ R?Q9Ue�Ve so that R?Q9 is also a solution[ We can also obtain an alternative
characterization of this one!parameter family as Q9Rý where Rý is any rotation about
Ue[

Let us now contrast the situation in thin _lms with that in a bulk specimen[ Here\
two variants with distortion matrices U\ V can form an interface if and only if they
satisfy

Q9U−V� a& n "4[19#

for some rotation Q9\ and vectors a and n "see for example Ball and James\ 0876#[
This is an invariant plane condition in contrast with the thin _lm which requires only
an invariant line condition "4[09#[ The limiting thin _lm theory allows for interfaces
which may be incompatible in the thickness direction[ We understand this as follows ]
in su.ciently thin _lms\ it is possible to overcome an incompatibility in the thickness
direction with an elastic deformation whose energy is small compared to the interfacial
and membrane energies[ We will explore this idea further with bounds and explicit
constructions in Section 5[

Thus\ the condition to form an interface in bulk is much more restrictive than in
thin _lms[ In particular\ if it is possible to form an interface in the bulk\ it continues
to be possible to form an interface in the _lm[ Further\ the interface in the _lm is the
trace of the bulk interface in the plane of the _lm[ In contrast\ there are interfaces in
the _lm that are not possible in the bulk[

To understand this further\ let us recall from Ball and James "0876# that for a given
pair of matrices U\ V\ we can solve "4[19# if and only if the eigenvalues "l0\ l1\ l2# of
V−0U1V−0 satisfy the condition
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l0 ¾ l1 � 0¾ l2[ "4[10#

In contrast\ "4[09# is satis_ed for some _lm orientation if and only if\

l0 ¾ 0¾ l2[ "4[11#

Notice that the stringent requirement that the middle eigenvalue be equal to one is
not required in the _lm[

4[2[ Tunnels

Figure 6 shows a pair of con_gurations that could be the basis of a microactuator[
A _lm is deposited on the substrate in the austenite state[ Assume that the _lm is
unstressed as deposited[ A strip is released as shown[ At high temperatures\ the _lm
is in the austenite and is undeformed as shown on the left[ On cooling\ the _lm
transforms to the martensite and bulges up\ under perhaps a small back pressure\ as
shown on the right[

This deformation is possible if and only if the following conditions hold for some
rotation Q and vector e ]

0[ "QU−I#e� 9\ e = e2 � 9\ =e= � 0

1[ n =U1e� 9\ where n� e2×e\

2[ =Un= × 0[ "4[12#

The _rst condition is the compatibility condition that must be satis_ed in order to
form the two interfaces along the edges[ Recall from Section 4[1 that for a given
direction e\ Q can belong to a one parameter family of rotations[ Therefore\ the
rotation continuously changes within this family as we go from one edge to another
giving us a tunnel!shaped deformation[ In the proposed deformation\ two parts of
the _lm are attached to the substrate[ This implies that the _lm should su}er no shear
in the strip when it transforms to martensite[ The second condition of "4[12# is exactly
a condition of no shear[ The _nal condition says that the central part of the _lm is
stretched in a direction perpendicular to the interface ] this ensures that the _lm will
bulge into a tunnel on deformation[ We have the following result[

Proposition 4[1[ Given a matrix U�UT × 9 and a vector e2\ there exist Q $SO"2#
and a vector e that satisfy "4[12# if and only if

e2 = adjAe2 � 9 and trU1−e2 = U1e2−1× 9 "4[13#

where A�U1−I[

Proof[ Recall the notation of Proposition 4[0[ Since V� I\ f� e and w� e2\ we have
that n�−bu¦av so that "4[12#0\1 are equivalent to

a1¦b1 � 0 ^ "a\b#M 6
a

b7� 9 ^ "−b\ a#M 6
a

b7� 9[ "4[14#
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This is possible if and only if 9 is an eigenvalue of M "with eigenvector "a\b##\ or
equivalently detM�9[ Therefore\ "4[12#0\1 are equivalent to "4[13#0[

We now turn to "4[13#1[ Since "e\ n\ e2# is an orthonormal basis\

trU1 � e =U1e¦n =U1n¦e2 = U1e2[ "4[15#

However\ if "4[12#0 holds then\ =Ue= �0 or e =U1e�0 so that

=Un=1 � n =U1n� trU1−e2 = U1e2−0 "4[16#

and "4[12#2 is equivalent to "4[13#1[ �

4[3[ Tents

Figure 7 shows another possible design of a microactuator[ A _lm is deposited on
the substrate in the austenite state[ Assume that the _lm is unstressed as deposited[ A
polygonal region is released[ At high temperatures\ the _lm is in the austenite and is
undeformed as shown on the left[ On cooling\ the _lm transforms to the martensite
and bulges up "under perhaps a small back pressure# like a tent as shown on the right[

Figure 8 shows a schematic of this deformation[ This _gure shows a four!sided
tent ^ but it will be clear that the results generalize to n!sided tents[ We look for a
deformation y\ b such that y is continuous while the matrix "y\0=y\1=b# takes the values
shown in Fig[ 8[

Fig[ 8[ Tent[
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Consider the vectors g0\ g1\ [ [ [ \ gn and n0\ n1\ [ [ [ \ nn as shown in Fig[ 8[ They satisfy

0[ gi � cos uie0¦sin uie1 for u0\ u1\ [ [ [ \ un that satisfy 9³ ui−ui¦0 ³p[

1[ ni = e2 � 9\ ni �Rp:1 0
gi¦0−gi

=gi¦0−gi =1 "4[17#

where Rp:1 is a counter!clockwise rotation by p:1 about e2[ These conditions say that
gi are numbered consecutively as we go clockwise around 9\ that the angle between gi

and gi¦0 is acute "and hence encloses a positive area#\ and the ni are outward normals
as shown[

Lemma 4[2[ Let "gi#\ "ni# be consistent with "4[17#[ A continuous deformation y ]R1 :
R2 has gradient "Ge0\Ge1# where G $ "I\A0\ [ [ [ \An# as shown in Fig[ 8 if and only if
there exist vectors a\ c0\ c1\ [ [ [ \ cn and numbers a0\ a1\ [ [ [ \ an such that

Ai � I¦ci & e2¦aia& ni i� 0\ 1\ [ [ [ \ n\ "4[18#

where "ai# satisfy the equations

"ai¦0ni¦0−aini# = gi¦0 � 9 i� 0\ 1\ [ [ [ \ n[ "4[29#

"here we use the convention an¦0 � a0\ nn¦0 � n0\ gn¦0 � g0[# Further\ for given "ni#
and "gi# consistent with "4[17#\ there is a solution "ai# which is unique up to scaling ]
ai : dai\ d $R[

Proof[ For the deformation shown in Fig[ 8\ we have two sets of compatibility
conditions ] one set for the boundary of the polygon and another for the internal
boundaries between the triangles ]

Ai−I� ci & e2¦ai & ni

"Ai¦0−Ai#gi¦0 � 9 7 i� 0\ 1\ [ [ [ \ n\ "4[20#

for some vectors ci and ai "Here\ we use the notation An¦0 �A0#[ Notice that we have
used two di}erent but equivalent forms of the compatibility conditions ðcf "4[09#\
"4[00#Ł[ Substituting "4[20#0 into "4[20#1\ we obtain

ai¦0"ni¦0 = gi¦0# � ai"ni = gi¦0# i� 0\ 1\ [ [ [ \ n "4[21#

from which we conclude ðwith "4[17#Ł that

ai � aia i� 0\ 1\ [ [ [ \ n "4[22#

for some vector a and for a0\ a1\ [ [ [ \ an $R[ Substituting "4[22# in "4[21#1 gives "4[29#[
Conversely\ "4[18# and "4[29# are su.cient for "4[20#[

Notice that the eqns "4[29# are cyclic ^ hence their sum is zero[ Also\ "4[17# imply
that none of the coe.cients of ai vanish[ Therefore\ "4[29# has a unique solution up
to scaling[ �

Generally\ the conditions "4[18# and "4[29# are highly restrictive[ But if e2 is an n!
fold symmetry axis "n× 1# for the austenite ] Re2 � e2\ Rn � I for some R $P\ they
become considerably less restrictive[ For such _lms\ it may be possible to form a
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symmetric n!sided tent[ We now examine the conditions that we need to satisfy in
order to do so[ Let U0 �UT

0 × 9 and de_ne\

"U0\U1\ [ [ [ \Un# � "RkU0"Rk#T ] k� 9\ [ [ [ \ n−0#[ "4[23#

Note that some of the matrices U0 U1\ [ [ [ \Un may be repeated[ Assume that U0 is
compatible with I\ so that there are vectors a\ n0\ c0 and a rotation Q0 such that

Q0U0 � I¦c0 & e2¦a& n0\ n0 = e2 � 9\ =n0 = � 0[ "4[24#

Set A0 �Q0U0[ Notice that it satis_es "4[18#i�0 with a0 �0[ The goal is to satisfy the
remaining equations in "4[18# and "4[29# by symmetry[ From "4[23# and "4[24#\

QkUk � I¦ck & e2¦ak & nk\ nk = e2 � 9\ =nk = � 0 "4[25#

where Qk¦0 �RkQ0"Rk#T\ Uk¦0 �RkU0"Rk#T\ ck¦0 �Rkc0\ nk¦0 �Rkn0\ ak¦0 �Rka\
k�0\ [ [ [ \ n−0[ Setting Ak �QkUk\ we see that "4[18#i�1\[[[\n are satis_ed if and only
if Ra� a or equivalently

a� ae2 "4[26#

in which case we can choose a1\ [ [ [ \ an �0[ Now consider "4[29#i�0 ] "n1−n0# = g1 �9[
Notice that this is satis_ed by choosing g1 � g"n1¦n0#\ g× 9[ Further\ de_ning
g0 �Rn−0g1\ gk¦0 �Rk−0g1\ we _nd that all of the equations in "4[29# are satis_ed[
Finally\ "4[17#0 holds with ui � u9−"1p:n#i for suitable u9 and so does "4[17#1[

In summary\ "4[18# and "4[29# are satis_ed if "4[24# and "4[26# hold and e2 is an n!
fold symmetry axis "n× 1# of austenite[ Recall from Proposition 4[0 that there is
nonuniqueness of the rotation Q0 in "4[24#[ Let "4[24# hold and let e� n0×e2[ From
Proposition 4[0\ given e2\ n0\ then all solutions of "4[24# are characterized by

Q0 :Q?Q0\ c0 �"Q0U0−I#e2 :"Q?Q0U0−I#e2

a�"Q0U0−I#n0 :"Q?Q0U0−I#n0 "4[27#

where the rotation Q? satis_es Q?e� e[ We can use the freedom in "4[27# to try and
satisfy "4[26# which reduces to

Q?Q0U0n0−n0 � ae2[ "4[28#

The following result tells us when we can satisfy this equation[

Lemma 4[3[ Assume that "4[24# and "4[26# hold and let e� n0×e2[ There exists a $R

and rotation Q?\ Q?e� e satisfying "4[28# if and only if

n0 = U1
0e� 9 and =U0n0 = − 0[ "4[39#

Proof[ Suppose "4[28# holds[ Then\ taking the dot product with e and using Q?e� e

and "Q0U0−I#e�9 we obtain "4[39#0[ The condition "4[39#1 follows easily by a
simple application of the Pythagorean theorem ] =U0n0=1 � =n0¦ae2=1 �0¦=ae2=1 − 0[
Conversely\ assume "4[39# and let a�z=U0n0 =1−0[ De_ne

Q?� e& e¦0
n02ae2

z0¦a11& 0
Q0U0n0

=U0n0 = 1¦0e×0
n02ae2

z0¦a111& 0e×
Q0U0n0

=U0n0 = 1[
"4[30#
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Since z0¦a1 � =U0n0 =\ it follows from "4[39# that Q? is a rotation and satis_es
"4[28#[ �

Remark 4[4[ For a nontrivial tent\ i[e[ one that actually rises\ a× 9[ The reason for
the two 2 signs in "4[30# is that the tent can go either up or down[

Thus we can form an n!sided tent if we satisfy the eqns "4[24# and "4[39# and e2 is
an n!fold axis of symmetry for the austenite[ However\ notice that "4[24# and "4[39#
are exactly the conditions required for forming a tunnel "4[12#\ so Proposition 4[1
applies[ Therefore\ we conclude that we can form a symmetric n!sided tent if e2 is an
axis of n!fold symmetry of the austenite and U0 and e2 satisfy eqns "4[13#[

5[ Transition layers

The calculations of Section 4 give minimum energy states for the thin _lm theory
in the case k�9[ These consist of two "or more# variants of martensite\ or austenite
plus martensite\ meeting at certain interfaces on the _lm[ It is expected that some of
these solutions will be close to smooth energy minimizing deformations in both the
thin _lm theory based on "2[8# with k× 9\ and also in the original theory based on
"1[01# ^ the sharp interfaces are replaced with transition layers in these theories[ From
the form of "2[8# it is clear that any smooth deformation which is close to one of these
two!phase deformations contributes positive energy to the thin _lm theory[ Hence\ it
is expected that\ with respect to the original theory "1[01#\ the corresponding transition
layers will have energy O"h#[

In the original theory for bulk material it is well!known that transition layers
between compatible deformation gradients have energy that scales as their cross!
sectional area[ In a thin _lm it is therefore expected that a transition layer between
two deformation gradients which are compatible in bulk will have energy of O"h#[
But the k�9 thin _lm theory has compatible interfaces that have no bulk counterpart[
These are compatible along a line in the _lm but not along a plane\ so they necessarily
generate elastic energy in the original theory[ To understand the structure and energy
of both types of interface\ it is of interest to go back to the original theory and examine
the energy of the corresponding transition layers[ A complete study of these layers
would need to be done numerically\ but some light is shed on the issue by examining
upper and lower bounds for the energy of a transition layer between two regions
having constant deformation gradients[

In this section we work in the original coordinates "x0\x1\x2#[ We consider a _lm
Vh of thickness h and width L\ bisected by a transition layer of width s"h# as shown in
Fig[ 09[ The dependence of s"h# on h is to be determined by energy minimization[ Let
A and B be two 2×2 matrices that minimize the elastic energy density ]
8"G# −8"A# �8"B# �9 for all G $M2×2[ Assign y"x# �Ax on "x = n³ 9# K Vh and
y"x# �Bx¦c0 on "x = n× s"h## K Vh[ Assume that A and B satisfy conditions of
compatibility that permit a thin _lm interface in the sense of Section 4\ i[e[\

A−B� a& n¦c& e2\ n = e2 � 9\ =n= � 0[ "5[0#
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Fig[ 09[ Notation for transition layers[

The distinction between conditions of compatibility for bulk vs thin _lm concerns
whether a is parallel to c or not[ If a > c then A and B di}er by a rank!one matrix and
there is a continuous "but not smooth# interpolation of the deformation which makes
the elastic energy identically zero ] this is accomplished by extending the deformations
y"x# �Ax and y"x# �Bx¦c0 into the transition layer up to a suitable inclined plane
in the layer\ and using a suitable choice of c0[ If a >: c\ and the only zeros of 8 are at
A and B\ then every interpolation of the layer "in\ say\ W0\q# has positive elastic energy[

We begin with a naive interpolation based on weighted convex combination ]

y"x# � l"x = n#Ax¦"0−l"x = n##"Bx¦c0#[ "5[1#

Here\ l"s# is a smooth transition function\

l"s# � 6
0\ s¾ 9\

9\ s− s"h#\
"5[2#

satisfying the inequalities

=l?= ¾ 1:s"h#\

=lý= ¾ 3:s"h#1[ "5[3#

The gradient and second gradient of "5[1# are

9y"x# � l?ða"n = x#¦c"e2 = x#−c0Ł & n

¦lA¦"0−l#B\

91y"x# � ðlý"x = n#¦1l?Ła& n& n

¦lý"e2 = x#c& n& n

−lýc0 & n& n

¦l?c&"n& e2¦e2 & n#[ "5[4#
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Hence using "5[3# we have the bound on the interfacial energy\

gVh

k=91y=1 dx¾ c0Lk 0
h

s"h#
¦0

h

s"h#1
1

¦0
h

s"h#1
2

1 "5[5#

and the elastic energy bound\

gVh

8"9y# dx¾ c1 gVh

"0¦=9y=q# dx\

¾ gVh

c1¦c2 0
h

s"h#1
q

dx\ "5[6#

where we have used the convexity of =G=q\ q× 0[ Using "5[5# and "5[6# and the
suggestive constant E× 9 to indicate {{elastic modulus||\ we get the following bound
on the total energy\

e"h#
0 ðy"h#Ł ¾ c3kL 0

h

s"h#1¦c4EL"s"h#h#[ "5[7#

We optimize the right hand side of "5[7# over s"h# to get the following upper bound on
the energy of the transition layer

Lhzc3c4kE[ "5[8#

As expected based on the derivation of the limiting theory\ transition layers have
energy at most of order h\ and the constants also enter as anticipated[

To con_rm that transition layers typically have energy no less than order h\ it is
useful to have a lower bound[ For this purpose let us adopt a particular energy!well
structure appropriate to the cubic!to!tetragonal transformation at the transformation
temperature ]

8− 9\

� 9 on K�SO"2#U0 k SO"2#U1 k SO"2#U2 kSO"2#I[ "5[09#

For de_niteness consider an austenite:martensite interface with A� I and B�U0

and the _lm normal e2 coincident with the third vector of the cubic basis[ Then the
condition e2 = adj"U1

0−I#e2 ¾ 9 becomes "h1
0−0#"h1

1−0# ¾ 9 and is satis_ed\ e[g[\ if
9³ h0 ³ 0³ h1\ which we assume[ According to the results of Section 4\ there are
two possible solutions for two phase deformations in the limiting theory ^ we choose
one with in!plane normal n[ Without loss of generality\ we assume that
0³ =U0n= ³ =U1n= and we let "e0 � n\ e1\ e2# be an orthonormal basis[ If we consider
the energy!well structure "5[09#\ we have that

A $Kc =Ae0 = � =An= $K0 � "h0\ 0\ =U0n=\ =U1n=#[ "5[00#
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Therefore\ it is reasonable to assume that 8"a0\ a1\ a2# is minorized by a smooth
nonnegative function of =a0= that vanishes exactly on K0 ]

8"a0\ a1\ a2# −"c"=a0 =##1 − 9\ "a0\ a1\ a2# $ "R2#2 ^ c"d# � 9c d $K0[

"5[01#

Assume without loss of generality that y ]Vh :R2 is smooth and bound the energy
below using a variant of the trick of Modica and Mortola "0866# ]

gVh

"k=91y=1¦8"y\0 =y\1 =y\2## dx\

− gVh

"k=y\00 =1¦c"=y\0 =#1# dx\

− 1zk gVh

c"=y\0 =#
y\0

=y\0 =
= y\00 dx[ "5[02#

Here\ we have used the simple inequalities =a=1¦=b=1 − 1=a= =b= and =a= − a = e for
=e= �0\ with e� y\0:=y\0=[ Here\ readers uncomfortable with the transition between
"5[02#1 and "5[02#2 can smooth slightly the function =z= and replace e� y\0:=y\0= by the
gradient of the smoothed version[ Now let C be the antiderivative of c[ The right
hand side of "5[02# can be therefore further bounded below by\

1zk gVh

d
dx0

ðC"=y\00 =#Ł dx� 1zkLhs"h# ðC"=U0n=#−C"0#Ł[ "5[03#

Choosing s"h# × 9 independent of h as in the derivation of "5[8#\ we get a similar bound
as in "5[8#[

We therefore reach the following conclusions[ Generally transition layers between
austenite and martensite or between di}erent variants of martensite have energy of
order h[ The derivation of the lower bound would not have been changed in any
essential way if A and B were to di}er by a rank!one matrix\ although the constants
in front of h could possibly be quite di}erent in the two cases[ This indi}erence can
be attributed to the dominating e}ect of interfacial energy at small scales[

6[ Applications to special materials

The formulas obtained in Section 4 can be evaluated for the distortion matrices
"1[5#Ð"1[09# corresponding to various martensitic transformations[ In this section we
organize these results and point out applications that appear to be the most interesting
from a practical viewpoint[ Throughout this section we adhere to the notation and
assumptions on lattice parameters given in "1[5#Ð"1[09#[

The results in this paper are appropriate to single crystal _lms[ The preferred
method for growing such _lms is epitaxial\ e[g[\ molecular beam epitaxy[ In the cases
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studied here with cubic austenite\ this method is likely to lead to _lms with low index
normals such as in the families "099#\ "009# or "000#\ so we concentrate on those
here[ Even sputtered _lms often exhibit a strong texture with an excess of grains
having a normal from one of these families[

First\ we consider straight!line interfaces between austenite and a single variant of
martensite[ By crystal symmetry we can choose without loss of generality only the
_rst distortion matrix in each of "1[5#Ð"1[09#\ and this is done in all the calculations
below[ We _rst evaluate and simplify the condition "4[01# with V� I and U� ðthe
_rst matrix in each of "1[5#Ð"1[09#Ł\ to check the existence of austenite:martensite
interfaces in _lms with various orientations[ The results are shown in the Appendix[
In general\ these conditions are seen to be rather mild[

For example\ we consider Ni49Ti49 _lms of various orientation with distortion
matrices of the form "1[09#[ Table 0 gives results for exact interfaces between austenite
and variant 0 of martensite for _lms with orientation in the families "099#\ "009# and

Table 0
Exact interfaces between austenite and variant 0 of martensite for _lms of various orientation in Ni49Ti49

Austenite:
Film martensite In!plane principal
normal interface< Interface lines ðsolutions e of "4[00#Ł stretches

099 yes "9\ −9[8528\ 9[1553# or "9[8247\ 0[9362#
"9\ 9[2730\ 9[8122#

909 yes "−9[8528\ 9\ 9[1553# or "9[8247\ 0[9362#
"9[2730\ 9\ 9[8122#

990 yes "−9[8617\ 9[1206\ 9# or "0[9739\ 9[8552#
"9[1206\ −9[8617\ 9#

009 no "9[8471\ 9[8552#
0!09 yes "9[0781\ 9[0781\ 9[8525# or "0[0955\ 9[8219#

"9[5979\ 9[5979\ −9[4094#
090 yes "−9[2228\ 9[7704\ 9[2228# or "9[8353\ 0[9175#

"9[4907\ 9[6935\ −9[4907#
09!0 yes "9[0240\ −9[8705\ 9[0240# or "0[0994\ 9[8463#

"9[5739\ −9[1427\ 9[5739#
900 yes "9[7704\ −9[2228\ 9[2228# or "9[8353\ 0[9175#

"9[6935\ 9[4907\ −9[4907#
90!0 yes "−9[8705\ 9[0240\ 9[0240# or "0[0994\ 9[8463#

"−9[1427\ 9[5739\ 9[5739#
000 no "9[8311\ 9[8552#
!000 yes "9[2494\ 9[7028\ −9[3523# or "0[0990\ 9[8313#

"9[4841\ −9[0753\ 9[6705#
0!00 yes "9[7028\ 9[2494\ −9[3523# or "0[0990\ 9[8313#

"−9[0753\ 9[4841\ 9[6705#
00!0 yes "−9[2127\ 9[7009\ 9[3761# or "0[9471\ 9[8552#

"9[7009\ −9[2127\ 9[3761#

Interface lines are lines on the _lm at which austenite and martensite meet[ The in!plane principal stretches
refer to the martensite[ See the Appendix for a remark about crystallographic equivalence[
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"000#[ The in!plane principal stretches have been computed using the procedure
described after "4[06#[ In only two of the thirteen cases is there no such interface[
Notice that in some cases with "009# _lms\ the martensite undergoes over 09) strain
while remaining exactly compatible with austenite in the thin _lm sense[

Another interesting case is alloys of NiÐMnÐGa near the Heusler composition
Ni1MnGa[ This alloy undergoes a cubic!to!tetragonal martensitic transformation as
described in "1[5#[ This alloy is interesting because it belongs to the emerging class
ferromagnetic shape!memory alloys "see James and Wuttig\ 0885\ 0886 ^ Tickle et al[\
0886#[ In this alloy both the austenite and martensite are ferromagnetic ] this leads to
the possibility of rearranging martensite variants by applying a magnetic _eld[ In thin
_lms this gives the added ~exibility of inducing the formation of a tunnel or tent by
applying a _eld\ as discussed by DeSimone et al[ "0886#[ Recently\ Bensaoula et al[
"0886# have grown single crystal _lms of Ni1MnGa on Ga"0−x#InxAs by MBE[ The
possible interfaces in this alloy up to crystallographic symmetry are listed in Table 1[

Finally\ we consider austenite:martensite interfaces Ni53Al25[ This alloy is interesting
because of its premartensitic behavior and its high transformation temperature[ It has
been studied intensively by Schryvers\ Tanner and collaborators "0889\ 0880\ 0884#[
As a polycrystalline bulk material\ it is unlikely to exhibit a reversible shape!memory
e}ect "Bhattacharya and Kohn\ 0885#\ but this is overcome in single crystal _lms[ It
undergoes a cubic tetragonal transformation\ "1[6#}[ The results are given in Table 2[

Now we turn to a discussion of tents and tunnels\ governed by "4[12#\ Proposition
4[1 and Lemmas 4[2 and 4[3[ We _rst note that U0 for NiTi has an eigenvalue nearly
equal to one[ This fact can be exploited to design an alloy of NiTiCu with low
hysteresis\ by arranging the concentration of Cu to make an eigenvalue of U0 equal
to one "see Ball et al[ "0884# for the connection between hysteresis and this condition#[
In addition\ the presence of more than 09 at[) Cu collapses the symmetry to orthor!

Table 1
Exact interfaces between austenite and variant 0 of martensite for _lms of various orientation in Ni1MnGa

Austenite:
Film martensite In!plane principal
normal interface< Interface lines ðsolutions e of "4[00#Ł stretches

099 no "9[8401\ 9[8401#
909 yes "9[4947\ 9\ 9[7515# or "0[029\ 9[8401#

"9[4947\ 9\ −9[7515#
009 yes "9[4947\ −9[4947\ −9[5876# or "9[8401\ 0[933#

"9[4947\ −9[4947\ 9[5876#
900 yes "9[4947\ −9[509\ 9[509# or "0[029\ 9[8401#

"9[4947\ 9[509\ −9[509#
000 yes "9[4947\ 9[2910\ −9[797# or "0[9626\ 9[8401#

"9[4947\ −9[797\ 9[2910#

Interface lines are lines on the _lm at which austenite and martensite meet[ The in!plane principal stretches
refer to the "thermal# martensite[ The cases in the "099#\ "009# and "000# families not shown can be
obtained by crystallographic equivalence as described in the Appendix[
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Table 2
Exact interfaces between austenite and variant 0 of martensite for _lms of various orientation in Ni53Al25

Austenite:
Film martensite In!plane principal
normal interface< Interface lines ðsolutions e of "4[00#Ł stretches

099 no "9[8281\ 9[8281#
909 yes "9[4351\ 9\ 9[7266# or "0[0291\ 9[8281#

"9[4351\ 9\ −9[7266#
009 yes "9[4351\ −9[4351\ −9[5240# or "9[8281\ 0[9280#

"9[4351\ −9[4351\ 9[5240#
900 yes "9[4351\ −9[4812\ 9[4812# or "0[0291\ 9[8281#

"9[4351\ 9[4812\ −9[4812#
000 yes "9[4351\ 9[1414\ −9[6876# or "0[9692\ 9[8281#

"9[4351\ −9[6876\ 9[1414#

See the footnote of Table 1[

hombic "i[e[ o�9#[ It can be seen from "4[13# that in the case that U0 has an eigenvalue
equal to one the conditions for tunnel and tent formation become easier to satisfy[
We have constructed Table 3 using the lattice parameters for Ni29[4Ti38[4Cu19[9\ "1[7#}[
The conditions "4[12# are equivalent to the existence of an austenite:martensite inter!
face with corresponding in!plane principal stretches of the form "0\ 0¦m# for m× 9[
It is seen from Table 3 that this alloy supports a tunnel or a four!fold tent on a "990#
_lm[ Another interesting case in CuÐZnÐAl and related alloys has been found by
Hane "0886#[

7[ Higher order theories

We showed in Section 2 that the behavior of very thin _lms is governed by the
{{limiting energy|| e9 given in "2[8#[ This energy contains interfacial and membrane
terms[ For thicker _lms\ we expect other terms to become important[ In this section
we examine the corrections to "2[8# at higher orders in the thickness[ We will show
that the _rst correction to e9 is second order in thickness h and consists of additional
interfacial energy and a bending energy[

Recall the energies e"h#
0 and e9 de_ned in "2[3# and "2[8#\ respectively[ Throughout

this section\ let y"h# ]V0 :R2 minimize e"h#
0 amongst all deformations y½ ]V0 :R2 that

satisfy the boundary condition

y½ "z0\ z1\ z2# � y9"z0\ z1#¦hb0"z0\ z1#z2 z $ 1S×"−0
1
\ 0

1
# "7[0#

and let y¹ ] S:R2\ b¹ ] S:R2 minimize e9 amongst all functions y\ b ] S:R2 that satisfy
the boundary conditions

y"z0\ z1# � y9"z0\ z1#\ b"z0\ z1# � b0"z0\ z1# "z0\ z1# $ 1S "7[1#
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Table 3
Exact interfaces between austenite and variant 0 of martensite for _lms of various orientation in
Ni29[4Ti38[4Cu19[9

Austenite:
Film martensite In!plane principal
normal interface< Interface lines ðsolutions e of "4[00#Ł stretches

099 yes "9\ −9[6596\ −9[538# "9[8468\ 0[92#
"9\ −9[6596\ 9[538#

909 yes "−9[6596\ 9\ −9[538# "9[8468\ 0[92#
"−9[6596\ 9\ 9[538#

990 yes "9[6960\ 9[6960\ 9# "9[6960\ 9[6960\ 9# "0\ 0[947#
009 yes "−9[3401\ 9[3401\ −9[6588# "0[947\ 9[8468#

"−9[3401\ 9[3401\ 9[6588#
0!09 yes "9[6960\ 9[6160\ 9# "9[6960\ 9[6160\ 9# "0\ 9[8468#
090 yes "9[6908\ −9[0197\ −9[6908# "0[928\ 9[8733#

"9[2747\ 9[727\ −9[2747#
09!0 yes "−9[6908\ 9[0197\ −9[6908# "0[928\ 9[8733#

"−9[2747\ −9[727\ −9[2747#
900 yes "−9[0197\ 9[6918\ −9[6908# "0[928\ 9[8733#

"9[727\ 9[2747\ −9[2747#
90!0 yes "9[0197\ −9[6908\ −9[6908# "0[928\ 9[8733#

"−9[727\ −9[2747\ −9[2747#
000 yes "9[6233\ −9[94708\ −9[5651# "0[947\ 9[8610#

"−9[94708\ 9[6233\ −9[5641#
!000 yes "9[6960\ 9[6960\ 9# "9[6960\ 9[6960\ 9# "0\ 9[8814#
0!00 yes "−9[6960\ −9[6960\ 9# "0\ 9[8814#

"−9[6960\ −9[6960\ 9#
00!0 yes "−9[6233\ 9[4708\ −9[5651# "0[947\ 9[8610#

"9[94708\ −9[6233\ −9[5651#

See the footnote of Table 1 and the text[

for given smooth y9\ b0 ] S:R2[ We assume that y"h# converges to "y¹\ b¹# as described
by "2[7#[

We assume that the functions y"h#\ y¹\ b¹ are su.ciently smooth throughout this
section and we invoke growth conditions on 8 and its derivatives as needed[ We also
assume a strong second variation condition below[ To this extent the calculations
presented below are formal and therefore are called {{results||[ We discuss these
assumptions at the end[

Our _rst result shows that the _rst order correction to e9 is zero[

Result 7[0[ limh:9 "0:h#"e"h#
0 ðy"h#Ł−e9 ðy¹\ b¹Ł# � 9

Proof[ We will _rst show that

lim inf
h:9

0
h
"e"h#

0 ðy"h#Ł−e9 ðy¹\ b¹Ł# − 9[ "7[2#

Given any z2 $"−0
1
\ 0

1
#\ de_ne y¼ ] S:R2\ b¼ ] S:R2 by
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y¼ "z0\ z1# � y"h# "z0\ z1\ z2#−hz2b0\ b¼ "z0\ z1# �
0
h
y"h#

\2 "z0\ z1\ z2#[ "7[3#

Notice that y¼\ b¼ satisfy the boundary conditions "7[1#[ Therefore\

e9 ðy¼\ b¼Ł−e9 ðy¹\ b¹Ł − 9 "7[4#

for each z2 $"−0
1
\ 0

1
#[ Integrating "7[4# with respect to z2 and dividing by h\ we obtain

0
h 0g

0:1

−"0:1#

e9 ðy¼\ b¼Ł dz2−e9 ðy¹\ b¹Ł dz21− 9[ "7[5#

Add 0:h4>y"h#
\22>1

L1 to both sides\ substitute for y¼\ b¼ and expand the _rst term to obtain

0
h
"e"h#

0 ðy"h#Ł−e9 ðy¹\ b¹Ł#¦T "h#¦O"h# −
0

h4
>y"h#

\22>1
L1 − 9\ "7[6#

where

T "h# �−gV0
61k"91

py
"h## ="91

pb0#¦0
18

1F b"y"h#
\0 =y"h#

\1 ="0:h#y"h#
\2 #1 ="b0\0 =b0\1 =9#7 z2 dz[

"7[7#

However\

lim
h:9

T "h# �−gV0
61k"91

py¹# ="91
pb0#¦0

18

1F b"y¹ \0 =y¹ \1 =b¹#1 ="b0\0 =b0\1 =9#7 z2 dz

� gS g
0:1

−"0:1#

f"z0\ z1#z2 dz2 dz0 dz1 � 9[ "7[8#

We obtain "7[2# by taking the {{lim inf|| of "7[6# and using "7[8#[
Therefore\ the desired result follows if we can show that

lim sup
h:9

0
h
"e"h# ðy"h#Ł−e9 ðy¹\ b¹Ł# ¾ 9[ "7[09#

De_ne y¼ "h# ]V0 :R2 by

y¼ "h# "z0\ z1\ z2# � y¹ "z0\ z1#¦hz2b¹ "z0\ z1#[ "7[00#

Notice that it satis_es the boundary condition "7[0#[ Therefore\

0
h
"e"h#

0 ðy"h#Ł−e9 ðy¹\ b¹Ł# ¾
0
h

"e"h#
0 ðy¼ "h#Ł−e9 ðy¹\ b¹Ł# "7[01#

since y"h# is a minimizer of e"h#
0 [ However\ it is possible to show that

0
h g

0:1

−"0:1#

e9 ðy¹¦hz2"b¹−b0#\ b¹Ł dz2 �
0
h
e"h#

0 ðy¼ "h#Ł¦T "h#¦O"h# "7[02#
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for some T"h# which satis_es limh:9 T"h# �9\ by expanding the left!hand!side and using
an argument similar to "7[8#[ Substitute "7[02# in "7[01# and note that
Ð0:1
−"0:1# e

9 ðy¹\ b¹Ł dz2 �e9 ðy¹\ b¹Ł[ Therefore\

lim sup
h:9

0
h
"e"h#

0 ðy"h#Ł−e9 ðy¹\ b¹Ł# ¾ lim sup
h:9 g

0:1

−"0:1# 6
0
h
"e9 ðy¹¦hz2"b¹−b0#\ b¹Ł

−e9 ðy¹\ b¹Ł#7dz2[ "7[03#

Since y¹\ b¹ is a minimizer\

lim
h:9

0
h
"e9 ðy¹¦hf\ b¹¦hgŁ−e9 ðy¹\ b¹Ł# � 9 "7[04#

for any smooth f\ g that vanish on the boundary 1S[ For any z2\ set f� z2"b¹−b0#\
g� 9 in "7[04#[ Then we can use it to conclude that the limit exists on the right hand
side of "7[03# and that we can switch the limit and the integral to obtain the desired
inequality "7[09#[

We now turn to the second order correction[ It is useful to introduce the notation

P "h#
1 �

0

h1
"e"h#

0 ðy"h#Ł−e9 ðy¹\ b¹Ł#[ "7[05#

Result 7[1[ Suppose the minimizers "y¹\ b¹# of e9 satisfy the strong second variation
condition ] there exists o× 9 such that

0

h1
"e9 ðy¹¦hf\ b¹¦hgŁ−e9 ðy¹\ b¹Ł# − o gS

"=91
p f=1¦1=9pg=1# dz0 dz1 "7[06#

for any smooth f\ g that vanish on the boundary 1S and for every su.ciently small
h× 9[ Then\

0
h
91

p "y"h#−y¹−hz2b¹# :91
pc¹

0
h
9p 0

0
h
y"h#

\2 −b¹1:9pd¹

0

h2
y"h#

\22 : 9

J

G

G

G

f

F

G

G

G

j

in L1"V0#\ "7[07#

where "c¹\ d¹# are independent of z2 and "c¹\ d¹# minimize the energy

bðc\ dŁ � gV0

"k"=91
p "c¦b¹z2# =1¦1=9pd=1#¦Q"c\0¦b¹ \0z2 =c\1¦b¹ \1z2 =d## dz\

"7[08#

among "c\ d# $W1\1
9 "S\R2#×W0\1

9 "S\R2#[ Here Q denotes the quadratic form
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Q"F# �
0
1
F = 0

118

1F1 b"y¹ \0 =y¹ \1 =b¹#1F[ "7[19#

Further\

lim
h:9

P "h#
1 �bðc¹\ d¹Ł[ "7[10#

Proof[ This proof uses an argument very similar to that of Proposition 2[0 to calculate
the limit of P "h#

1 [ In order to do so\ we need to bound P "h#
1 from above and below[

Our _rst task is to _nd an upper bound for P "h#
1 which is independent of h[ De_ne

y¼ "h# ]V0 :R2 by

y¼ "h# "z0\ z1\ z2# � y¹ "z0\ z1#¦hz2b¹ "z0\ z1#[ "7[11#

Notice that this function satis_es the boundary condition "7[0#[ Since y"h# is a minimizer
of e"h#

0 \ and Ð0:1
−"0:1# e

9 ðy¹\ b¹Ł dz2 �e9 ðy¹\ b¹Ł\

P "h#
1 ¾

0

h1 0e"h#
0 ðy¼ "h#Ł−g

0:1

−"0:1#

e9 ðy¹\ b¹Ł dz21[ "7[12#

Expanding e"h#ðy¼ "h#Ł and cancelling some terms\ this inequality reduces to

P "h#
1 ¾

0

h1 gV0

"k"191
py¹ =91

p "hz2b¹#¦=91
p "hz2b¹ #=1#

¦8"y¹ \0¦hz2b¹ \0 =y¹ \1¦hz2b¹ \1 =b¹#−8"y¹ \0 =y¹ \1 =b¹## dz[ "7[13#

Since "y¹\ b¹# is a minimizer\ it satis_es the _rst variation condition "7[04#\ or equi!
valently ]

gS 61k"91
py¹ =91

p f¦19pb¹ =9pg#¦0
18

1F b"y¹ \0 =y¹ \1 =b¹#1 ="f\0 =f\1 =g#7dz0 dz1 � 9 "7[14#

for any smooth f\ g that vanish on the boundary 1S[ For any given z2\ set
f� hz2"b¹−b0#\ g�9 in the _rst variation condition "7[14#\ integrate "7[14# over z2

from −0
1
to 0

1
and subtract from "7[13# ]

P "h#
1 ¾

0

h1 gV0
6k"=91

p "hz2b¹# =1¦191
py¹ =91

p "hz2b0##

¦8"y¹ \0¦hz2b¹ \0 =y¹ \1¦hz2b¹ \1 =b¹#−8"y¹ \0 =y¹ \1 =b¹#−0
18

1F1 ="hz2b¹ \0 =hz2b¹ \1 =9#

¦hz2 0
18

1F1 ="b0\0 =b0\1 =9#7dz

�
0

h1 gV0

"kh1z1
2 =91

pb¹ =1¦h1z1
2Q"b¹ \0 =b¹ \1 =9#¦O"h2## dz
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¦
0
h gV0

61k"91
py¹# ="91

pb0#¦0
18

1F1 ="b0\0 =b0\1 =9#7 z2 dz

� gV0

"kz1
2 =91

pb¹ =1¦z1
2Q"b¹ \0 =b¹ \1 =9## dz¦gV0

f"z0\ z1#z2 dz¦O"h#

� gV0

"kz1
2 =91

pb¹ =1¦z1
2Q"b¹ \0 =b¹ \1 =9## dz¦O"h#[ "7[15#

Above\ "18:1F# is always evaluated at "y¹ \0=y¹ \1=b¹#[ We have used the Taylor expansion
of 8 and the de_nition "7[19# to obtain the _rst equality[ Notice that the integral in
the _nal line is independent of h[ Therefore\ we can conclude that there exists a
constant C independent of h such that

P "h#
1 ¾C "7[16#

for h small enough[
We now use the strong second variation condition "7[06# to _nd a lower bound for

P "h#
1 [ Set

c"h# �
0
h
"y"h#−y¹−hz2b¹#\ d"h# �

0
h 0

0
h
y"h#

\2 −b¹1[ "7[17#

For any z2\ set f� c"h# and g� d"h# in "7[06# and integrate over z2 from −0
1
to 0

1
]

0

h1 6g
0:1

−"0:1#

e9 $y"h#−hz2b¹\
0
h
y"h#

\2 %dz2−e9 ðy¹\ b¹Ł7− o gV0

"=91
pc

"h# =1¦1=9pd
"h# =1# dz[

"7[18#

By expansion\

g
0:1

−"0:1#

e9 $y"h#−hz2b¹\
0
h
y"h#

\2 %dz2 �e"h#
0 ðy"h#Ł−

0

h3
>y"h#

\22>1
L1−T "h#

0 ¦T "h#
1 ¦O"h2#\

"7[29#

where

T "h#
0 �h gV0

61k"91
py

"h## ="91
pb¹#¦0

18

1F1 ="b¹ \0 =b¹ \1 =9#7 z2 dz\

T "h#
1 �h1 gV0

6k=9pb¹ =1¦"b¹ \0 =b¹ \1 =9# = 0
118

1F11"b¹ \0 =b¹ \1 =9#7 z1
2 dz[ "7[20#

Above\ both "18:1F# and "11:1F 1# are evaluated at "y"h#
\0 =y"h#

\1 ="0:h#y"h#
\2 #[ Substituting

"7[29# in "7[18#\ we can conclude that
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P "h#
1 −

0

h1
T "h#

0 ¦
0

h1
T "h#

1 ¦O"h# − o? 0>91
pc

"h#>1
L1¦>9pd

"h#>1
L1¦B

0

h2
y"h#

\22 B
1

L11[
"7[21#

We now estimate the terms on the left hand side[ First notice from "7[20# that
limh:9"0:h1#T "h#

1 is _nite so that there exists c× 9 such that

0

h1
T "h#

1 ³ c "7[22#

for all h small enough[ We now turn to T "h#
0 in "7[20#[ Note that y"h# � y¹¦hc"h#¦hz2b¹

and "0:h#y"h#
\2 �hd"h#¦b¹[ Use the Taylor expansion of "18:1F# and some rearrange!

ment to conclude that

0

h1
T "h#

0 �
0
hgV0

61k"91
py¹# ="91

pb¹#¦0
18

1F b"y¹ \0 =y¹ \1 =b¹#1 ="b¹ \0 =b¹ \1 =9#7z2 dz

¦gV0

1k"91
pc

"h## ="91
pb¹#z2 dz

¦
0
1gV0

"c"h#
\0 =c"h#

\1 =d"h## = 0
118

1F1 bGl
1"b¹ \0 =b¹ \1 =9#z2 dz

¦gV0
61k=91

pb¹ =1¦
0
1
"b¹ \0 =b¹ \1 =9# = 0

118

1F1 bGl
1"b¹ \0 =b¹ \1 =9#7z1

2 dz\ "7[23#

where Gl � l"h# "y"h#
\0 =y"h#

\1 ="0:h#y"h#
\2 #¦"0−l"h##"y¹ \0 =y¹ \1 =b¹# for some l"h# $"9\ 0#[ Notice that

the _rst integral above is zero since the integrand is of the form f"z0\ z1#z2\ and the
fourth has a _nite limit as h: 9[ Using Ho�lder|s inequality on the second and the
third integral we can conclude that there exists c× 9 independent of h such that

b
0

h1
T "h#

0 b¾ c"0¦>91
pc

"h#>L1¦>9pc
"h#>L1¦>d"h#>L1# "7[24#

for any h small enough[ We now need the following Poincare� inequality which can be
proved using methods described for example in Nec³as "0872#[ Given u9 ]V0 :R2 there
exist constants\ c½0\ c½1 such that

gV0

"=u=1¦=9u=1# dz¾ c½0 gV0

=91u=1 dz¦c½1

for every u $W1\1"V0\R2# with u=1S×"−"0:1#\0:1# � u9[ "7[25#

Using "7[25# and "2[6# in "7[24#\ we can conclude that there exists c× 9 independent
of h such that



K[ Bhattacharya\ R[D[ James:Journal of the Mechanics and Physics of Solids 36 "0888# 420Ð465469

b
0

h1
T "h#

0 b¾ c"0¦>91
pc

"h#>L1¦>9pd
"h#>L1# "7[26#

for any h small enough[
Substitute "7[16#\ "7[22# and "7[26# in "7[21# ] for any h small enough\

C?"0¦>91
pc

"h#>L1¦>9pd
"h#>L1# − >91

pc
"h#>1

L1¦>9pd
"h#>1

L1¦B
0

h2
y"h#

\22 B
1

L1

\ "7[27#

where C?× 9 is independent of h[ Notice that we have _rst powers on the left and
squares on the right[ Therefore\ we conclude that

>91
pc

"h#>1
L1 ¾Cý\ >9pd

"h#>1
L1 ¾Cý\ B

0

h2
y"h#

\22 B
1

L1

¾Cý\ "7[28#

where Cý× 9 is independent of h[ We can add the following to the list[

>91c"h#>1
L1 ¾C
\ >9d"h#>1

L1 ¾C
\ >c"h#>1
L1¦>9c"h#>1

L1 ¾C
\ >d"h#>1
L1 ¾C


"7[39#

for some C
 independent of h[ The _rst two "7[39#0\1 follow by combining the three
equations in "7[28#[ The third "7[39#2 is a consequence of "7[39#0 and the Poincare�
inequality "7[25#[ Finally\ "7[39#3 follows from "7[39#0 and the Poincare� inequality
"2[6#[

Therefore\ there is a subsequence "not relabeled# such that

c"h# �
0
h
"y"h#−y¹−hz2b¹#K c¹ in W1\1\

d"h# �
0
h 0

0
h
y"h#

\2 −b¹1K d¹ in W0\1[ "7[30#

Using "7[28# and the fact that V0 is convex in the z2!direction\ it follows that c¹\ d¹ are
independent of z2[ It is also clear that c¹\ d¹ satisfy zero boundary conditions on 1S[
Write

0
h
91

p "y"h#−y¹−hz2b¹# �91
pc¹¦E"h#

p \ E"h#
p K 9 in L1\

0
h
9 0

0
h
y"h#

\2 −b¹1�9d¹¦E"h#
2 \ E"h#

2 K 9 in L1[ "7[31#

We will now show that the convergence in "7[30# or\ equivalently\ "7[31# is strong
and we can pass to the limit in the energy[ Set

y¼ "h# �"y¹¦hc¹#¦"hb¹¦h1d¹#z2\ "7[32#
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and notice that it satis_es the boundary conditions "7[0#[ Now\ since y"h# is a minimizer
of e"h#

0 \

0

h1 0e"h#
0 ðy"h#Ł−g

0:1

−"0:1#

e9 ðy¹\ b¹Ł dz21¾
0

h1 0e"h#
0 ðy¼ "h#Ł−g

0:1

−"0:1#

e9 ðy¹\ b¹Ł dz21[ "7[33#

Now\ expand both sides\ use the _rst variation condition "7[14#\ use the Taylor
expansion of 8 to obtain

gV0

k $=E"h#
p =1¦=E"h#

2 =1¦
0

h5
=y"h#

\22 =1%dz¾
0

h1 gV0
6Q"h"c¹¦z2b¹#\0 =h"c¹¦z2b¹#\1 =hd¹#

−Q 0"y"h#−y¹#\0 ="y"h#−y¹#\1 = 0
0
h
y"h#

\2 −b¹11¦O"h2#7dz[ "7[34#

Recall "7[30# and notice that the right!hand!side goes to zero as h: 9[ Therefore\ the
convergence in "7[30# and "7[31# have been improved to strong[ This establishes
the result "7[10#[ We can obtain the minimum principle by using a test function
y¼ "h# �"y¹¦hc#¦"hb¹¦h1d#z2 in "7[33# for any "c\ d# $W1\1"S\R2#×W0\1"S\R2# that
vanish on 1S and then by letting h: 9[

Result 7[1 introduces two additional vector _elds c ]S:R2\ d ] S:R2[ The form of
the test function gives meaning to these vectors ]

y"h# "z# c"y"z0\ z1#¦hc"z0\ z1##¦h"b"z0\ z1#¦hd"z0\ z1##z2\ "7[35#

where the error is small in the sense of "2[7# and "7[07#[ Alternately\ in terms of the
original variables

y½ "h# "x# c"y"x0\x1#¦hc"z0\ z1##¦"b"x0\x1#¦hd"x0\x1##x2[ "7[36#

Therefore\ c is the O"h# correction to y\ the deformation of the middle surface of the
_lm\ while d is the O"h# correction to the Cosserat vector b[

Further\ Result 7[1 tells us that

e"h#
0 ðy"h#Ł c e9 ðy\ bŁ¦h1bðc\ dŁ "7[37#

or in terms of the original energy

e"h# ðy½ "h#Ł c he9 ðy\ bŁ¦h2bðc\ dŁ[ "7[38#

Thus\ the correction to e9 is two orders higher and is given by b in "7[08#[ The energy
b consists of some interfacial terms and the bending energy[ Notice that the bending
energy depends implicitly on the minimizers "y¹\ b¹# of e9[ According to our results\ one
should not minimize the sum e9¦h1b with respect to "y\ b\ c\ d#[ Instead\ one should
carry out a two!step minimization ] _rst minimize e9 with respect to "y\ b# to obtain
the minimizers "y¹\ b¹#[ Then\ holding "y¹\ b¹# _xed minimize b with respect to "c\ d#[

Finally\ we remark on the additional assumptions in this section[ First\ we believe
that we do not need all the smoothness conditions ] since y"h# as well as "y¹\ b¹# are
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minimizers\ they possess additional regularity[ Second\ it appears that the strong
second variation condition is essential[

The predictions of this theory are a little nonstandard\ though evidently appropriate
for many thin _lm problems[ That is\ given the form of the minimizer "7[35#\ the use
of the higher order theory can at most give a small perturbation to the membrane
solution[ Consider\ for example\ a typical problem of a horizontal beam or strip\
built!in at one end and loaded by a vertical force hf at the other end[ The membrane
solution is expected to cause the beam to hang nearly straight down\ the sharp corner
at the root of the beam smoothed slightly by the small interfacial energy[ The higher
order theory can at most perturb this slightly[ This looks little like the classical picture
of a bent beam[ To get a more typical picture\ one might consider forces of the form
h2f[ In this case the membrane solution is expected to ignore the force altogether\ and
therefore\ because of the positive!de_nite gradient terms\ yield a straight horizontal
beam as the unique minimizer[ Again\ this can at most be perturbed slightly by the
bending terms\ again deviating from the classical picture "at least for moderate forces#[
This feature of our theory can be attributed to the dominating e}ect of gradient!type
surface energy at small scales[

To obtain a more classical macroscopic picture\ it seems that one should also let
k: 9 along with h[ We conjecture that there is some regime of the type "k\ h# : 9 for
which one obtains exactly our forms of the membrane and bending energies e9 and b\
and the sequential minimization property\ but with k�9[ In the beam problem
discussed above with the force h2f\ this would lead to a minimization of the bending
energy among all the zero energy deformations of the k�9 membrane theory\ i[e[\
the {{~oppy modes|| discussed in Section 4[ This seems reasonable physically\ for
macroscopic problems[ The veri_cation of this conjecture certainly would involve
deep analytical issues\ if approached by our methods\ as the existence of ~oppy modes
are expected to nullify any kind of strong second variation condition\ upon which
our argument is essentially based[

Acknowledgements

We are grateful to Irene Fonseca for her useful suggestions concerning the treatment
of boundary conditions in Section 7[ This work was supported by AFOSR "K[B[ ]
F38519!84!0!9098 and R[D[J[ ] F38519!86!0!9076#\ ONR:DARPA "R[D[J[ ]
N:N99903!81!J!3923 and N99903!84!0!0034# and NSF "K[B[ ] CMS!8346462 and
R[D[J[ ] DMS!8494966#[

Appendix ] conditions on lattice parameters for austenite:martensite interfaces in

thin _lms

The following evaluation refers to the third paragraph of Section 6\ in which we
discuss conditions on lattice parameters that permit an exact austenite:martensite
interface in the thin _lm theory with k�9[ These conditions are embodied in "4[01#
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evaluated for the distortion matrices "1[5#Ð"1[09# and various _lm normals[ Because
each set of distortion matrices in "1[5#Ð"1[09# is invariant under conjugation by the
cubic group\ it is only necessary to evaluate "4[01# for the _rst distortion matrix in
each case\ as long as we use all crystallographically equivalent _lm normals "under
the cubic group#[ In summary\ the following is obtained by evaluating and simplifying
"4[01# with V� I ðU�the _rst matrix in each of "1[5#Ð"1[09#Ł and e2 taking on values
in the families "099#\ "009# and "000#[ In each case there are two interfaces with
strict inequality\ which degenerate to one or an in_nity of interfaces "any line in the
plane# with equality ^ see Proposition 4[0[

A[ Cubic to tetragonal transformations as in "1[5#[ There exist austenite:martensite
interfaces if the following conditions are satis_ed ]

For "099# _lms ] h0 �0\
For "909# or "990# _lms ] "h1

0−0#"h1
1−0# ¾ 9\

For "009#\ "0!09#\ "090#\ "09!0# _lms ] "h1
0−0#"h1

0¦h1
1−1# ¾ 9\

For "900#\ "90!0# _lms ] "h1
0−0#"h1

1−0# ¾ 9\
For all "000# _lms ] "h1

0−0#"1h1
1¦h1

0−2# ¾ 9[

B[ Cubic to orthorhombic transformations as in "1[6#[ There exist aus!
tenite:martensite interfaces if the following conditions are satis_ed ]

For "099# or "909# _lms ] "b1−0#"a1¦g1−1# ¾ 9\
For "990# _lms ] "a1−0#"g1−0# ¾ 9\
For "009# _lms ] "b1−0#"g1−0# ¾ 9\
For "0!09# _lms ] "b1−0#"a1−0# ¾ 9\
For "090#\ "09!0#\ "900#\ "90!0# _lms ] "b1−0#"a1¦g1−1#¦1"g1−0#"a1−0# ¾ 9\
For "000# or "00!0# _lms ] "a1¦1b1−2#"g1−0# ¾ 9\
For "!000# or "0!00# _lms ] "g1¦1b1−2#"a1−0# ¾ 9[

C0[ Cubic to monoclinic transformations as in "1[8#[ There exist austenite:martensite
interfaces if the following conditions are satis_ed ]

For "099# _lms ] 0−1d1¦d3−1ad1g−g1¦a1"g1−0# ¾ 9\
For "909# _lms ] "b1−0#"d1¦g1−0# ¾ 9\
For "990# _lms ] "b1−0#"d1¦a1−0# ¾ 9\
For "009# or "0!09# _lms ] 1−2d1¦d3−1ad1g−1g1¦a1"g1−0#

¦b1"d1¦g1−0# ¾ 9\
For "090# or "09!0# _lms ] 1−2d1¦d3¦b1"d1−0#−1ad1g−g1

¦a1"g1¦b1−1# ¾ 9\
For "900# _lms ] "b1−0#"a1−1ad¦1d1−1dg¦g1−1# ¾ 9\
For "90!0# _lms ] "b1−0#"a1¦1ad¦1d1¦1dg¦g1−1# ¾ 9\
For "000# or "!000# _lms ] 2−3d1¦d3¦1dg−1g1−1ad"b1¦dg−0#

¦a1"b1¦g1−1#¦b1"1d1−1dg¦g1−1# ¾ 9\
For "0!00# or "00!0# _lms ] 2−3d1¦d3−1dg−1g1−1ad"−b1¦dg¦0#

¦a1"b1¦g1−1#¦b1"1d1¦1dg¦g1−1# ¾ 9\
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C1[ Cubic to monoclinic transformations as in "1[09#[ There exist austenite:martensite
interfaces if the following conditions are satis_ed ]

For "099# or "909# _lms ] b1"d1−0#−1bdo1−1a"b¦d#o1

¦a1"b1¦o1−0#¦"o1−0#"d1¦1o1−0# ¾ 9\
For "990# _lms ] "d1¦a1−1ad−0#"d1¦a1¦1o1¦1ad−0# ¾ 9\
For "009# _lms ] "d1¦a1−1ad−0#"b1¦1o1−0# ¾ 9\
For "0!09# _lms ] 0¦a1"b1−0#−d1¦b1"d1−0#−3o1−3bdo1

¦3o3¦1a""b1−0#d−1bo1# ¾ 9\
For "090# or "900# _lms ] 1¦a3−2d1¦d3¦b1"d1−0#−1a2o¦1do−1d2o

−4o1¦2d1o1¦1o3¦1ao"0¦1bd¦d1−bo

−2do#−1bo"d1¦do−0#¦a1"b1−1d1−1bo

¦1do¦2o1−2# ¾ 9\
For "09!0# or "90!0# _lms ] 1¦a3−2d1¦d3¦b1"d1−0#¦1a2o−1do¦1d2o

−4o1¦2d1o1¦1o3−1ao"0¦1bd¦d1¦bo

¦2do#−1bo"−d1¦do¦0#¦a1"b1−1d1¦1bo

−1do¦2o1−2# ¾ 9\
For "000# _lms ] "d1¦a1−1ad−0#"a1¦1b1¦d1¦1a"d−1o#

−3bo−3do¦5o1−2# ¾ 9\
For "!000# or "0!00# _lms ] 2¦a3−3d1¦d3¦1b1"d1−0#−09o1−7bdo1

¦1d1o1¦7o3¦1a1"b1−d1¦o1−1#
¦3a"−1bo1¦d"b1−o1−0## ¾ 9\

For "00!0# _lms ] "d1¦a1−1ad−0#"a1¦1b1¦d1¦1a"d¦1o#
¦3bo¦3do¦5o1−2# ¾ 9[
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