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Abstract. We study the behavior of a martensitic thin film with a hydrostatic pressure applied
underneath the film. The problem is formulated in 3-D for a single crystal film of thickhess

and a Cosserat membrane theory is derivedlbgonvergence techniques in the liniit — O.

The membrane theory is further simplified using a secbrmbnvergence argument based on hard
moduli. The resulting theory supports energy minimizing “tunnels”: structures having the shape of
part of a cylinder cut by a plane parallel to its axis, obtained by releasing the film from the substrate
along a strip with a certain orientation. As the temperature is raised (at fixed pressure) the energy
minimizing shape collapses gradually to the substrate, accompanied by a martensite-to-austenite
phase transformation. During this process the tunnel supports a microstructure consisting of fine
bands of austenite parallel to the axis of the tunnel, alternating with bands of a single variant of
martensite. Formulas for the associated volume—temperature—pressure relation are given: in these the
latent heat of transformation plays an important role.

1. Introduction

In recent years it has become possible to derive rigorously from 3-D nonlinear
elasticity special theories for thin structures, without adoptingaasatzfor the
deformation (As an incomplete selection of these derivations, we list Acerbi et
al. [1], Bhattacharya and James [11] and Le Dret and Raoult [20, 21]). If the starting
theory is general 3-D finite elasticity, then it can be stated that these derivations give
the definitive plate—shell-thin film theories. They therefore settle the long-standing
guestion of which, among the many such theories available in the literature, is the
appropriate theory for a thin body. There remains a lot to be done: currently, except
for one formal argument, the only results are for the membrane theory. Bending
theories evidently are obtained from a higher-orflezonvergence argument.

These developments also allow one to approach with a certain measure of con-
fidence the analysis of thin bodies of nonclassical materials, such as thin films
of martensitic materials (cf. [11, 25]), which undergo a diffusionless phase trans-
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formation and have free energies with energy wells. Martensitic films can change
shape when their temperature is changed, and some materials that undergo a re-
versible martensitic transformation display the shape memory effect. This effect
is: the specimen is deformed by loads at low temperature (causing rearrangements
of the different variants of martensite), the loads are removed but the specimen
remains deformed (because all the variants have the same free energy density), the
specimen is heated, causing a phase transformation from martensite to austenite,
and it returns to its original shape. It is then cooled through the transformation with
no macroscopic change of shape (because the martensite variants are able to form
microstructures with this property), and the cycle can begin again. By alternately
heating and loading a specimen, it can be used as an actuator. As discussed by
Krulevitch [19], the NiTi shape memory material is among the actuator materials
with the largest value of the work output per cycle per volume. Here, “volume”
refers to the volume of the actuator. The “per volume” part of this formula is one
reason that this material might perform well at small scales. Another reason is that
the slow response of bulk shape memory actuators, caused by the necessity to cool
them, is greatly improved by the rapid rate of heat transfer possible at small scales,
especially in a thin film heated and cooled on its faces.

There are two simple overall design principles for these actuators that are sharp-
ly delineated by th&-convergence arguments. First, the membrane theory emerges
at orderh (unlike bending, which emerges af). Therefore, to take advantage
of the large work outputper volumeof the shape—memory materials, one should
design the actuator to work in membrane mode. Second, the film should be released
from the substrate, assuming it is an ordinary elastic material, so that the highly
constraining effect of the substrate is eliminated.

There is another potentially attractive feature of the use of martensitic films for
microactuators in MEMS=t micro-electro-mechanical systems). The techniques
of microelectronics (e.g., molecular beam epitaxy) open up the possibility of mak-
ing single crystal films. These could avoid the “fighting between the grains” that
is associated with transformation in bulk polycrystals, which reduces the effective
transformation strain much below its maximum value in single crystals. Oriented
single crystal films could be released from the substrate on certain well-defined re-
gions and undergo a large deformation, large work output, relatively high frequency
shape memory effect. These ideas have motivated theoretical (Bhattacharya and
James [11]) and experimental (Dong et al. [15]) studies. From the former have
emerged some structures — “tents” and “tunnels” — that are energy minimizing
under zero stress and exhibit large deformations.

As explained above, to produce the shape memory effect, loads have to be
applied. Ideally, these are the actual loads that the actuator must do work against,
but, in any case, the so-called bias stresses must be applied to produce the change
of shape in the martensitic state in the first place. The idea explored in this paper
is that the loads are produced by a pressure on the film. This could be done in the
following way. The film could be released from the substrate on a well-defined
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region by back-etching the substrate (the judicious use of an etch-stop might be
relevant here). Then a pressure could be applied from either above (advantageous,
to prevent peeling of the film) or below. This scheme is suited to potential appli-
cations like pumps and valves in which the pressure is produced by the working
fluid. The key questions are: what structure? what volume—temperature—pressure
relation is predicted?

The membrane theory of a stiff, single phase material is the theory of isometric
mappings of a plane. The deformed shapes are developable surfaces. A spherical
bubble is not one, but a piece of a cylinder is. Moreover, according to the isoperi-
metric inequality, a circular cylinder holds the greatest volume for its area, among
prismatic shapes. Thus, it is natural to consider a film released on a strip, so that
under pressure, it bulges into a cylindrical shape. By raising the temperature, the
film is made to undergo the shape memory effect and the film collapses to a flat
shape. This is the situation studied in this paper. We speculate that a complex
system of such tunnels could be patterned onto a chip and, by selective heating,
bubbles of different fluids could be pumped around, mixed, reacted, etc.

The plan of this paper is as follows. We formulate the 3-D problem of a thin film
of martensitic material of certain shape, acted upon by a pressure underneath, in
Section 2. We include bulk and interfacial energies. The presence of the pressure
necessitates that we impose slightly stronger growth conditions than is usual to
prevent the film from blowing up. In Section 3 we rescale the presglire Ph,

P = const, and do thE-convergence argument, which is a modification of that of
Bhattacharya and James [11]. The energy that emerges is a honlinear membrane
theory with an additive contributiopV whereV is the volume enclosed between

the membrane and a suitable plane (Section 3). To further simplify this energy,
we do a second’-convergence argument in Section 4 based on the presence of
hard moduli, a situation that is expected to be relevant for martensitic materials
with large transformation strain. For the resultimgnstrained theorynicrostruc-

tures are replaced by Young measures having support on the energy wells, and the
macroscopic deformation gradient is recovered as the center of mass of the Young
measure. This theory is very easy to use and it supports tunnels with circular cross-
section. They are proved to be energy minimizing among cylindrical deformations
(Section 5) for suitable materials, and probably they are energy minimizing in gen-
eral under their own boundary conditions. The dependence of the volume enclosed
by the tunnel on pressure and temperature is found in Section 5 (Figures 5 and 6).
An unexpected behavior is observed: instead of the tunnel collapsing suddenly to
the flat shape as the temperature is raised, the collapse is more gradual (Figure 7),
and complete collapse within the constrained theory is only possible with infinitely
large temperature. During collapse, the tunnel exhibits a microstructure of axial
bands of austenite and one variant of martensite (Figure 8). These results need to
be explored for special materials, which we postpone to later work.

This research has been conducted in parallel with a related computational
study [9].
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2. The 3-dimensional problem

We assume that an origi® and an orthonormal basi$e;, e, €3}, have been
chosen in the 3-dimensional Euclidean space. We identify the poiwith the
vectorX — O, whose components will be indicated Ky, X», X3. In the reference
configuration, the film is assumed to occupy the cylindrical region

Q" = {(X1, X2, X3) € R%: (X1, Xp) € S, X3 € (0,h)}, (2.1)

where S is an open bounded subset®f with Lipschitz boundary, and is the
thickness of the film. A deformation of the film is a mappiygR” — R3. Re-
calling that the film is attached to a substrate except for the released region
model the presence of the substrate by imposing the linear boundary condition

y=ya(X):= AX, X €aSx(0,h), 2.2)

whereA is a constant X 3 matrix. The material of the film is supposed to be ho-
mogeneous and thermoelastic. At the temperaiuee(0, +00), the strain energy
of the film corresponding to the deformatigns given by

/Q B(Vy: A, (2.3)

whereg: M3<2 x (0, +00) +— [0, +00) is the strain energy density, ad®*3

is the set of all 3x 3 matrices. The functiog is assumed to be smooth in both
its arguments and to satisfy the following growth hypothesis: there exist positive
constants:, ¢, c¢3, ¢4, and 3< g < 6 such that

c1lFPP—c2 < p(F;0) < calFI7 — ey, (2.4)

for all matricesF in M3*2, and foré in (0, +00). Furthermoreg is assumed to be
frame indifferent, i. e., it is assumed to satisfy the condition

¢ (QF; 0) = ¢(F; 0), (2.5)
for all F e M®*3 andé e [0, +00), and for all proper rotations
Qe S0B) :={Qe M>3QQ" =1,deQ = 1}. (2.6)

Stable deformations of the film, subject to a hydrostatic pressglir@cting on its
lower surface, are assumed to correspond to the deformatiendv22(Q"; R®)
which minimize the total energy

E'(y: 0) = /Q (9(Vy: 0) + kIVPyP?) O

h
_ 2 y-(Y1AY2 dX1dX,, (2.7)

3 Sx{0}
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in the class of deformations
H = {y e W22(Q"; R%)|y = AX, X €3S x (0, h)}. (2.8)

In the expression (2.7) of the total energy, the notayipenotes the vectorye;,
for i = 1, 2. The term|V2y|2, which denotes the full % 3 x 3 matrix of second
derivatives, not just the Laplacean, penalizes the formation of interfadesng a
small positive constant; the norm here j§;;~y;;. As discussed below, the term

1
V) =2

3f Y- (Y1AY2)dX1dXo (2.9)
$x{0)

represents the volume enclosed between the platg x {0}) and the deformed
lower surface of the film. Physically, the last term of (2.7) may be interpreted as
the energy of a gas under the film whose pressure can be assumed constant. This
situation is realized in practice by micromachining a hole in the substrate and by
pressurizing the film using a reservoir of gas whose volume is much larger than
typical changes of volume due to film deformation. We note that if the volume of
this reservoir is on the order of volume changes produced by the deformations of
the film, then the last term of (2.7) would have to be replaced by the general ex-
pression for the free energy of such a gas, accounting for its compressibility. In the
latter case our predictions concerning stability could be substantially changed [18].
The volume functional (2.9) evaluated at a deformatjoof the film gives a
reasonable expression for the volume of the regigrenclosed between the plane
y4(S x {0}) and the deformed lower surface of the fijfs x {0}). This can be seen
through the following heuristic calculation. Lg¥y| denote the three-dimensional
Lebesgue measure ®f, and letZ = (Z4, Z,, Z3) be a point belonging t&,. We
have

1
V= [ dz=2[ divzdz. (2.10)

Vy Vy

Using the divergence theorem, we get

1Vy| = %/ Z-n(Z)da + }/ Z -n(Z)da, (2.11)
y(Sx{0}) ya(Sx{0})

where, in each integrah(2) is the unit outward normal at the poiitto the surface

on which the integral is defined. Singe- n(Z) = 0 at each poinZ of y,(S x

{0}, the second integral is zero. Takigg, the trace ofy on the surfaceS x {0},

as a parametric representation of the surfac® x {0}), equation (2.11) may be

rewritten as

1
Vy| = é/yo'(yo,lf\yo,z) dX,;dX,
s

1
= §/ y-(Y1AY2)dX1dX, = V(y). (2.12)
$x(0}
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Figure 1. Globally invertible (a) and not globally invertible (b) deformation of the film.

We note that the expression (2.9) for the volume under the film has some patholo-

gies related to global invertibility, illustrated in Figure 1 for the c#se= |.

In Figure 1(a), the volume under the film is expected to be reasonably modeled

by (2.9). However, in Figure 1(b) the formula (2.9) gives the volume V5, which

could not possibly be occupied by a fluid. Without Dirichlet boundary conditions

ony, we do not know how to impose global invertibility assumptions on the min-

imization of E”, so we are not able to rule out situations as shown in Figure 1(b).

However, we do not expect such configurations to arise from energy minimization.
The volume functional (2.9) is defined for the deformatigrs #¢. This can be

seen as follows. By Sobolev’'s embedding theorem [2, Theorem 5.4], each element

of W22(Q"; R®) has trace oi$ x {0} belonging toC°(S; R%) N W2(S; R3), with

S denoting the closure of. By the continuity of the trace, there exists a positive

constantC such that

V)l < Cf|y°,1Ay°,2|dX1 dX,. (2.13)
S
The functional
L(Y°) := f|y°,1Ay°,2|dX1dXz (2.14)
S

gives the Lebesgue area of the surface parametrized [y2]. It is known that

1
/|y°,1/\y°’2| dx; dX, < > /(|y°,1|2 +1y° ,1?)dX1 dX>, (2.15)
N S

and the inequality holds only wheyf satisfies the conditiong/® ;| = [y°,,
(¥°1-Y°») = 0[16]. From (2.13), (2.15), and the regularity of the trace, it fol-
lows thatV (y) is defined in#. Moreover, the volume functional (2.9) is weakly
continuous, up to a subsequenceWR?(2"; R3). Indeed, consider a sequenge
weakly converging toy in W22(Q"; R%), by Sobolev’s Theorem there exists a
subsequence, not relabeled, such that

yo, = y° in Whi(S; R?), (2.16)
for 3 < g < 4. This together with the weak continuity of minors [3], implies

(yon,l A yon,Z) : e/ - (yo,l N yO,Z) : e/ In L11/2<S’ R)a (217)
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for j = 1, 2, 3. Furthermore, by the Rellich—-Kondrachov Theorem [2, Theorem
6.2], there exists a further subsequence, not relabeled, such that

y°, = ¥° inCo(S; R%), (2.18)

which, together with (2.17), implieB (y,) — V(y).

The fundamental estimate for dealing with the volume functional is the fol-
lowing isoperimetric inequality, whose proof can be found in [24, 26]. With an
abuse of notation, with the same symbbive shall denote the volume functional
defined for deformations aof¢, as in (2.9), and the volume functional defined for
parametric surfaces i@°(S; R3) N W2(S; R3).

PROPOSITION 2.1.Letf, g € W2(S; R®) N CO(S; R®) be two parametrizations
of two 3-dimensional surfaces such thiat gonaS. Then,

1
V) - Vgl < e [LO+ L@|’. (2.19)

For the proof of the existence of minimizers of the total enefidy we shall
need the following lemmas, which are applications of the isoperimetric inequality.

LEMMA 2.2. Letr > Oand letf ¢ W13(S; R%) N CO(S; R3) be such that

f=Ae X1+ AexXo + Aest, (Xq, Xo) €98, (2.20)

with A a given3 x 3 matrix. Then, denoting bj§| the area ofS, we have
| |12

V(I < 12\/—||Vf||L3(5) +c, (2.21)

with
V2 t
= ——|S]*?|Aey A Aey|¥2 + < |S||detA|.
06ﬁ|||1 2 +3||| |

Proof. By the triangle inequality, the isoperimetric inequality (2.19), Jensen’s
inequality [14, Theorem 2.2] and the inequality (2.15), we obtain

s ”
Vol < [V -vol+ Vel < g=lLh + Lo + Vo)
V2 3/2 3/2
< 6\/_(L(f) + L(©@%%) + |V(9)|
< R+ L@ 4 V). (2.22)

12ﬁ” ||L2(S) + Gﬁ

Hence, in view of the imbedding df® into L? [2, Theorem 2.8], we have

|S|1/2 ﬁ

VHI < N—IIVfllLs(S) N

——L@©@**+ |V (2.23)
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We now choose
g= Aei1 X1+ Aex X, + Aest. (224)

Simple calculations give (2.21). O

We now extend the bound given in Lemma 2.2 to the interior of the film.

LEMMA 2.3. For anyy € #¢ we have

vl < (B30 4 L Yoy, + Y2 15710, A A2
T2/ 3¢§ wen+ g T
+§|S||de1‘A|. (2.25)

Proof. Fix 7 in (0, #) and lety’ be the trace of on the surfaceS x {r}. Theny’
satisfies the hypothesis of Lemma 2.2 and thus it satisfies the inequality (2.21). In
Appendix A, we prove that

2
V(y) = V(Y')+ zt]S|detA — detvydX, (2.26)
3 Sx(0,1)

which, in view of (2.21), gives

| |12
vyl < 12\/_|Vy P25 + f|S|3/2|Ae1AAe2|3/2
+t|S||de1A|+/ |detvy| dX. (2.27)
Sx(0,1)

Adding |y 3(X1, X2, 1)|? to the argument of the square root in the first term of the
right-hand side, and using the positivity of the integrand of the last term, we get

3/2
Vy)| < IS Z\y (X1, Xo, 07 ] dX1dX;
12ﬁ Sx{t}

L2
67

+/ |detVy| dX. (2.28)
Qh

1S13/2|Ae; A Aey|¥/? + £|S||detA|

Integrating over e (0, &) and applying Fubini’s theorem, we find

NE& V2
z\r +5 fh|5|3/2|A91AA92|3/2
2

+%|S||de1A| +h [ |detvy|dX. (2.29)
Qh

hlV(y)| <
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We now divide byk and use the inequality

1
detvy| < ——=|VyJ?, 2.30
detvy| 3 ﬁl yl (2.30)
[23, Section 2.3], to obtain the result. O

The following proposition establishes, for suitable values of the pressure and
for a fixed value of the thickneds the existence of minimizers of the total energy
functional in the class of deformatiot¥. In the argument, the temperaturshall
be held fixed, so we suppress it from the notation.

PROPOSITION 2.4.Assume thainfy, E"(y) < co. If
|S|1/2 1 N
T == Pers
12\/mh 33

there exists at least a minimizer Bf in #.
Proof. From the growth assumptions (2.4) and from the bound on the volume
(2.25), we obtain

p<a (2.31)

\ |S|1/2
EMNY) = «lI VY1120 + (cl—ph(lzﬁh *374 VY30
NG h
— | Q" — —=|S|%?AeL A Aey|¥? — —|S||detA|. 2.32
c2| Q" 6\/;I I¥?|Aey | 2| I | (2.32)

In view of the assumption (2.31), the second term on the right-hand side is non-
negative and thus we can write

V2
h 2,112 . o 3/2 3/2
E'Y) > IV an, — @'l = o= 2Aes A Ay
h
— 5 ISIidet]. (2.33)

According to the generalized Poincaré inequality, [22, Theorem 3.6.4], there exist
two positive constant§’; andC, such that

VI sy F VYIS iy < CLIVEYIY, iy + Co (2.34)

for eachp in [1, o0) and for eacly in #¢. Combining (2.33) and (2.34) written for
p = 2, we obtain

h H K. K 2 h
E (y) 2 min Ea 2_6,1 ”y”WZ,Z(Qh) - CZ —02|Q |
V2 h
— ﬁlSlwlAel A Aey|¥2 — E|S||o|erA|. (2.35)
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Let nowy, be a minimizing sequence faE”. Because the infimum of” is
bounded by hypothesis, from the bound (2.35) it follows that the sequgnce
is uniformly bounded inW?22(Q"; R%). We can then extract a subsequence, not
relabeled, such that

Yo — Y in W22(Q"; R3). (2.36)

The limity belongs to#. Indeed, by the compact embeddingf-2(Q"; R3) into
C%(Q"; R%), [2, Theorem 6.2], we can extract a further subsequence uniformly
converging toy in the closure of@", Q". Therefore,y satisfies the boundary
condition (2.2). Using the convexity of the second gradient term and the continuity
of ¢, together with the bound (2.4), we also have

limint [ (¢(Vy,) + | V2y,[?) dX > / (B(VY) + x|V dX, (2.37)
n—oQ Qh Qh

[14, Theorem 3.4]. From (2.37) and from the weak continuity of the volume func-
tional in W22(Q"; R?), it follows that the energy functionat” is weakly lower
semicontinuous i#¢. Thereforey is a minimizer. O

If p" > p" and the lower bound of the strain energy density (2.4) holds with
equality, then the infimum of the energy Wi%2(Q"; R®) is expected to be-oo,
corresponding to rupture of the film. We also note that, since the constant which
multiplies || Vy|| .3 in the bound on the volume (2.25) is not optimal, provides
only a lower bound for the pressure at rupture. The presence of the thicgkaesds
of the areds| of the film in the expression qf” introduces a scale effect. Indeed,
if we keep|S| fixed and let: increase, i.e., if we consider a thicker and thicker film,
then, as the physical intuition suggests, increases and thus the film can sustain
larger and larger value of the pressure. On the other hand, if we/kéiged and
increasds|, i.e., if we consider a film of fixed thickness which becomes wider and
wider, thenp” decreases and thus the film sustains smaller and smaller values of
the pressure.

Another interesting point is that, to get the lower bound on the energy (2.35) and
thus to guarantee the existence of a continuous minimizer, not only the condition on
the pressure is needed, but it also necessary that the exponent which appears in the
growth condition (2.4) be not less than three. This issue arises from the competition
between the loading potential, which, as it can be seen from (2.25), is dominated
by the cube of| Vy| . 3qr, and the strain energy. In this respect, an analogy can be
established with the phenomenon of cavitation [4].

3. Thin Film Theory

In the previous section, for each value of thickngssve proved the existence of
at least one minimizer, say', of the total energy functionak” in the class of
admissible deformationgf. We now consider the behavior of the minimizefs
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ash — 0". The approach which we follow was introduced by Bhattacharya and
James in [11] for a film whose total energy is given by (2.7) with= 0. In the
following, we adopt the notatioi,, for the gradient in the plane of the film:

vy =yiee +y,ee, 3.1)

and the notatiory”; |y",| y* for vy, ® e1 + Y, ® & + y*, ® ;. We begin by
considering an equivalent minimization problem set on a cylindrical domain of
fixed height. This can be obtained through the change of variables

Zl = Xla ZZ = X27 Z3 = - (32)

which maps the reference configuration of the fif4, into the configuration

Q1= {(Z1,Za, Z3) € R® (Z1,Z5) € S, Z3 € (0, 1)}. (3.3)
Then, ify € J¢ is an admissible deformation of the film, the rescaled deformation

y =Y(X(2)) =:¥(2), (3.4)
belongs to the set

Hi = | € W??(Qu; R%)|y = (Aer|Aer|hAe3)Z, Z € 3S x (0,1)}. (3.5)

We accordingly rescale the total energy by setting

- 1 N - 2 N 1 .
ELG) = L E"§) = f (Vo3P + 5 1Vp3 8l + 219 .59l%) dZ

Q1

o1 h o
+f </>(Y,1|Y,2|—y,3) az -2 Y- (Y1AY2)dZ,dZ;.
o h 3h Jsxio)

(3.6)

The existence of minimizers (ﬂ{‘ in #¢4 follows from the existence of minimizers
of E" in #¢ (Proposition 2.4), and from the fact thatyif is a minimizer ofE” in
#, theny" is a minimizer ofEf in #1. Note also that because

3

3 O
||Vy||L3(Qh) =h (Y,1|Y,2|ZY,3) ) (37)
L3(Q1)
then, by (2.25) any e #, satisfies the inequality
y IS|¥2 )“ I D ~
Vv < +—= - + D, 3.8
V@ (12\/5 373) | T 1V2l7Y sl (3.8)
with
~ V2 h
D = ——|S|¥?|Ae; A Aey|¥? 4 = :
6«/;ISI |Aer A Aey| +2|S||de1A|
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For the asymptotic approach, it is also essential that the magnitude of the applied
pressure be scaled appropriately in the thickness. From (3.6) (see also (2.31)), it
turns out that the right order of magnitudei$ = Ph, where P is a constant
independent of.

THEOREM 3.1. Assume that
12\/EC1

P < |S|1/2 .

(3.9)

Then, the family of minimizefg' e #; has a subsequence, not relabeled, such
that

vy — v,

1, ;
VY3 Vb L2 (3.10)

1.
ﬁy,hss —0

wherey € W22(S; R?) andb € W12(S; R3) are vector fields independent 2.
The couplgy, b) minimizes the limit energy

E(y.b) = /S ([ |22 + 21VbI2) + G (yly.2lb)

P
-3y 0 AY.2)}dZ1dZ;, (3.11)

among all couplesy, b) € W22(S; R®) x Wb?(S; R3) satisfying the boundary
conditions
y =AeiZ; +AeZ,,

b = Aes } (Z1,Z2) € 3S. (3.12)

Proof. The lower bound in (2.4) and the inequality (3.8) give for the rescaled
energy the following lower bound :
2
Lz(m)}

3

2

1 ~h
+ ﬁys?.
L2(21)

R
Y,1|Y,2|ZY,3

\ 7 \ 7/l 1 v
Ej (yh) > K{ ||V12,y’ ”iz(szl) + 2“ vayg

(B 5]

L3l
— D+ ol ], (3.13)
from which, in view of the assumption (3.9), we get
2 1 2 1 2
CUOE LA BN E2 7 NS -
L2(Q) L2(Q1) L2(Q1)

— D + co|€2], (3.14)
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for h sufficiently small, with

NZ)
D = ——|S|¥?|Ae; A Aey/2.
5 ﬁ' 7 “1Aey 2
Becausey” is a minimizer, we can test it against the affine deformatjor=
(Aei|Aes|hAes3)Z of F¢; to obtain the upper bound
E1(7") < [1l¢(AeilAe;|Aey). (3.15)

Combining (3.14) with (3.15) and setting:= |Q21|¢ (Ae|Aey|Aes)/k + D, we
get

250 |12
Hpr HLZ(Ql) S 6 (3.16)
1 2
2”va§/{3 < ¢, (3.17)
L2(Q1)
2
iyh <c (3.18)
hz ,33 2 ~
L4(€21)

Because we assunte< 1, we also have
2V, s 2ay < © (3.19)
| Vsall 2@ < e (3.20)
By (3.16), (3.19), and (3.20), we see that
Hvzyh HiZ(Ql) S ¢ (3.21)

and this bound, together with the Poincaré inequality (2.34) writtery/foand
p = 2, givesin turn

19122+ 19512y, < Crc 4 Ca (322

Therefore, the family of minimizerg” is uniformly bounded 22, and thus it
contains a subsequence, not relabed, such that

§' =9 in W?(Qq; R%). (3.23)
In view of (3.17) and (3.18), we also have
1 2 1 2 1., |7 3
v<_yh) = H_v " + “—yh < =c, (3.24)
H W3 ey I " gy 1827 2,y 2

which, together with the Poincaré inequality written in the form

1
o asx©1 ™

1., 2 12
ny's —Vyfl3 dz +

dz <€1{/
o, h

2} (3.25)
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[13, Theorem 6.1-8], implies

1~h 2
Y3

— 13
< cl[—c+ |aS|2|Ae3|2}, (3.26)
L2(Q1) 2

where|dS| denotes the length of the boundary cub& of S. In view of (3.24)
and (3.26), we conclude thafl/h)y"; is uniformly bounded inW*?(Q;; R3).
Therefore, there exists a sequence, not relabeled, such that

1., .
ny3—\b inWh2(Qq; R%), (3.27)

and thus, up to a further subsequenfzfg,converges to zero almost everywhere

in ;. Because?, is convex in theZs direction, the limity is independent of3.

Note also that, by (3.23) and by Rellich’'s Theorem, there exists a subsequence
of ¥, not relabeled, uniformly converging foin the closure of2;. Thereforey
satisfies the boundary condition (3.1245rom (3.18) we also get thﬁft33 converges

to zero almost everywhere f,, and again from the convexity @2, in the Z3
direction, the limith turns out to be independent 8§. Finally, by the trace theorem

[17, 4.3],6 satisfies the boundary condition (3.12)Ve now write

VYt =V +el, e —~0 inL? (3.28)

h
p
1 .
Ev,,yf's =Vb+el, ef—~0 inL? (3.29)

Letn > b, € C®(S) be an approximating smooth sequence strongly converg-
ing to b in W2(Q,; R3) such thatb,(Z1, Z,) = Ae; for (Z1, Z») € 3S and
6,1,3(2) = 0 for eachZ in ;. Becausey” is a minimizer ofE{‘, we can test

it against the deformatiof” := § + hb, Zs, which, in virtue of the properties
enjoyed byb,, belongs to the se¥;. Using (3.28) and (3.29), we get

/ K{|v§§/|2 +|eh|? +2v29 - o + 2(|VB|* + |4 |* + 2Vb - b)
Q1

| 1o | L
Vs } + ¢(yf'1|yf'z| EY,hs) dz

¥ - (¥4 A )dZy dZs
Sx{0}

< [ elivis
Q1
+¢(9.1+ hZ3b, 119 2 + hZ3b, |b,) dZ

P (. .
—§/y- (9.1 AY.2) dZ1dZ>. (3.30)
S

? 4 n222|v2b,|* + 212233y - v2b, + 2|VD, [’}
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After simplifying the first term on both sides, fixand take the lim sup d@as— 0.
Because, is smooth, we can simplify the second and the third term on the right-
hand side. Moreover, in view of (3.28) and (3.29), the third and sixth term on
the left-hand side converge to zero. Using the upper bound in (2.4), the Lebesgue
theorem and the weak continuity of the volume functionallif?, we reduce to

2
lim sup K{|e’;,|2+2|e§|2+ }dZ
Q1

h—0F

ﬁy,h33
< / 2c{|Vb,|? — |Vb[?} dz
Q1

+ /Q (6(9.119.21B,) — #(9.119.21B)) 0. (3.31)

Let nown — oo and use again the upper bound in (2.4). Then the “sup” can be
dropped in (3.31) and we have improved the convergence in (3.28) and (3.29) to
strong. This also shows that the limit energy is given by (3.11) evaluatgd L.

To establish the minimum principle, we choose the deformajion= y(Z,
Z,) + hb(Z1, Z»)Z3 as a test function, wit andb € C>(S; R®) satisfying the
boundary conditions (3.12). Repeating the argument from (3.30) to (2.30) gives the
minimum principle for smooth competitors. The minimum principle for competi-
tors inW22(S; R%) x Wt2(S; R3) follows by approximation. O

The limit energy (3.11) turns out to depend upon two independent vector fields,
y andB, which describe the deformation of the middle surface of the filnand
the deformation in the direction perpendicular to the film, respectively. Therefore,
Theorem 3.1 provides a 2-dimensional Cosserat theory, witte Cosserat direc-
tor. The energy (3.11) is a membrane energy supplemented by an interfacial energy
term (the term multiplyingc). The latter has a similar form as a bending energy,
but its physical origins are the same as the analogous term in the 3-dimensional en-
ergy (2.7). That s, it is intended to model energy associated with lattice curvature,
arising from lattice radii of curvature that are comparable to atomic spacing, which
occur in the present case when there are interfaces between variants or phases.
Thusk should not be considered as a classical bending modulus.

Because of this interpretation,is expected to be much smaller than a typical
modulus that describes the growthdgaway from its energy wells. It is therefore
known from many studies that the presencec aherely smooths interfaces, and
this could also be verified by an elementdfyconvergence argument. Hence, in
the following section we drop the term multiplyingand study the pressurized
membrane energy alone.



414 R.D. JAMES AND R. RIZZONI

4. Martensitic Thin Films

Martensitic crystals display a diffusionless solid-to-solid phase transformation be-
tween a symmetric high temperature phase (austenite) and different symmetry-
related variants of a low temperature phase (martensite). For temperatures above
the transformation temperatuig, the austenite phase is the stable phase, while for
temperatures belo#.,, the martensite is stable. At the transformation temperature
.., both phases are stable. To model the change of phase, we follow Ball and
James [7, 8] in introducing a honconvex strain energy degsitjth energy wells

at the matrices

A = SO0(3), 4.1)
for the austenite phase, and
M:={Fe M*3 IR € S0(3),3U € (U, Uy, ...U,:F=RU}, (4.2

for the martensite variants.0(3) is the set of all proper rotations, ahdl, i =
1,2 ..., N, are distinct positive definite symmetric matrices representing the
transformation strains of the variants of martensite from the austenite, taken as
reference configuration; they can be determined by measurements of the lattice pa-
rameters of the material. For the austenite and the martensite phases, we introduce
nonconvex strain energy densitigs ¢,,, which are continuous non negative scalar
functions defined oved/**3 and such thap, is minimized onA and the minimum
value is zero, whilep,, is minimized onM and the minimum value is zero. The
energiesy,, ¢,,, are also supposed to satisfy the following growth hypotheses:
there exist positive constantsy, c.2, cu3, Caas Cmi, Cm2, Cm3s Cma AN 3< g < 6
such that

ca1lFI® = ca2 < $a(F) < caalFI? = caa, (4.3)
¢In(F) < Cm3|F|q — Cm4, (44)

for eachF € M3*3. These hypotheses are consistent with the growth assumptions
(2.4).
Introducing ay € C°(M3*3; [0, 1]) such that

<
FI®— cpo <
le| | Cm2 X

x(F) =0 & Feuan, (4.5)

xF) =1 & FeuM, (4.6)
we assume for the strain energy densgitthe simple form

¢ (F;0) = x (F) (¢ (F) +1,(0)) + (1 = x (F))(¢u(F) +1,(0)). (4.7)

The expression (4.7) is a simple but realistic way of modeling the exchange of
stability between austenite and martensite. The téy®y andl, (0), which are re-

lated to the latent heat of transformation, are positive material constants depending
continuously upon the temperatutend such that

1,(0) > 1,,(0) if 6 <0,
1,6) < 1,(6) if 6 > 6, (4.8)
la (Gcr) = lm (ecr)-
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In view of the definition (4.7) and of the assumptions (4.1), (4.2),(4.5), (4.6), and
(4.8), » has a multi-well structure, the ternmis(0), 1,(6) corresponding to the
heights of the martensite and of the austenite wells, respectively. In particular, if
0 < 6., ¢(-;0) attains the absolute minimum at all matrices belonging to the set
of martensite wellsM. Indeed, becausg has values ifi0, 1] and because, and
¢,, are positive, we have
inf _¢(F; 0) > min{l,(6); 1.(0)}. (4.9)
FeM3<3

If & < 0., the right-hand side coincides wit) (0), and sincep(F; 8) = [,,(9)
for all F € M, then¢ is minimized atM. Analogously, it can be shown that if
0 > 6., theng(-; 0) is minimized atA andg (-; 0..) is minimized atA U M.

Experiments indicate that, at equilibrium, the deformation gradient stays very
close to the wells, even though it could not be precisely at the minima, because
of the presence of the term PV (y). For many martensitic materials with “hard
moduli”, this suggests that the equilibrium microstructures can be approximately
described by deformations whose gradients satisfy the constraint of lying on the
wells. The idea of this approach, called ttenstrained theory of martensitand
first proposed in [6], is to study the asymptotic behavior of the sequence of total
energy functionals

P
E"(y,b) = / (¢ (y.2ly.2lb) — 3V 0an y.2)) dZ,dZ,, (4.10)
S
asn — oo, with

¢u(F; 0) := X (F) (1 (F) 4+ 1,(0)) + (1 = x (F)) (n¢a(F) + 1, (6)). (4.11)

The interfacial energy term{|V3y|® + 2|V,b[?} has been neglected in (4.10).
Indeed, if the film is large enough, the elastic energy is much larger than the
interfacial energy. In this respect, each element of the sequence (4.10) provides
a reasonable approximation of the expression (3.11) of the energy of a very thin
film with strain energy density, growing more and more steeply away from the
wells. Each element of the sequence (4.10) is assumed to be defined on the set of
functions

K= {(y.b) € WH(S; R%) x LI(S; RO)ly = AeiZ1 + Ay Z,,
b = Aes, (Z1, Z,) €3S}, (4.12)

whereq is the exponent which appears in (4.3), (4.4). This set turns out to be
the “natural” domain of the energy functionals in (4.10). Indeed, in view of the
upper bounds in (4.3), (4.4) and of the bound on the volume functional (2.21), each
couple(y, b) in X has energye” (y, b) finite. As shown by the following theorem,

the result of the constrained theory is a new simplified variational problem whose
solutions are searched among fine mixtures; these are mathematically described
by families of Young measures with supports contained in theAset M. We
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recall the essential property of the Young measure [5]. Cgi3*3; R) denote
the continuous functions ol 3*2 with compact support. Given a sequerieec
LY(S; M**3), we may find a family of probability measurés;),Z € S and a
subsequence ¢, not relabeled, such that, for amy € Co(M>*3; R),

v (F) = Y(F)dvz(F) in LY(S; R). (4.13)

M3x3

Young measures are useful tools for the analysis of the microstructure [7, 8]. The
family of measuregvz),Z € S characterizes the local limit distribution of the
valuesF" asn — oo. If the sequencé&” is thought of as representing a sequence
(y"1ly5/b") and if the measures; are supported on the set U 4, then thevz

turn out to describe the local proportions of phases and the microstructure of the
material.

THEOREM 4.1. Assume that there exists a const@htindependent ofi, such
that

H n < .
(y’|br)1£rx E"(y,b) < C < +o0, (4.14)

and a sequencg/”, b") in X such that
1
E"(y",b") < inf E"(y,b)+—. 4.15
(y",b") it E D)+ (4.15)
Then, there exists a subsequence, not relabeled, such that
y" — § in WH3(s; R?), (4.16)
b" — b inL%s;R®), (4.17)

and the family of Young measureSz),Z € S, generated by the sequence
(y"1ly’,|b") is such that the coupléz, §) is a minimizer of the limit energy

P
e(vz;y) = f{(lm(é)—la(é))f dvz<F)—§y~<y,1Ay,z)}d21de
S M
+1,(0)|S], (4.18)

among all couplegvz, y) such that(vz),Z € §, is a family of Young measures
with supports in the sei( U A andy € W3(S; R®) satisfies the constraint

Yall) = / Fe, dvz(F), a=12 (4.19)
MUA

at almost every < S, and the boundary condition

y=AeiZ, +AeZ,, ZedsSs. (4.20)
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REMARKS. We note that (4.14) places a restriction on the boundary conditions
in (4.12). This could be quantified, but we don't do it here. In the next section, we
give an example (the tunnel) in which (4.14) holds with the boundary conditions
(5.1). In Theorem 4.1, condition (4.15) is to allow for the possibility of nonattain-
ment of the minimum. Also, Young measure refers in this paper to Young measures
arising from a sequence that is boundedkin

Proof. In view of the hypotheses (4.14) and (4.15) and recallingshatl, we
have

E"(y',b") < C+1 (4.21)

Substituting toE™ its expression (4.10) with, given by (4.11) and dividing by,
we obtain

/s{x(y7lly7zlb”)¢m(V’AIYT'zIb") (1= x¥a]y2]b") @ (v4]y2[b")
1
DAY 0) + (1= X GV )] 0z 02

P C+1
——V(y") < :

(4.22)

Now we use the bound on the volume functional (2.21), writterr fer0, and the
lower bounds in (4.3) and (4.4) to get

/S{[lex(yﬂy Ib") + car(1~ X(y1|y2|b”))]|(y71|y72|b”)|3
—[emax (Y11Y5I0") + ca2(1 = x (Y1ly%Ib"))]
1
+—[x(yf'1|yf'zlb”)lm(0) +(1- x(yf’llyf’zlb"))law)]}dzl dz,

|S] i c+1
L 19y g + ] < .29
Using the inequality(y", [y’ |b")[® > |Vy"|*+ b"|* and recalling that & x <1
we also have

| PISF2N e L i
(mln{cal; le} - 12}’lﬁ> “ vy ||L3(S) + mln{cal; le}HVb “L?’(S)
+|S|(5 min{1,(6); 14(6)} — max{cz; caz}) LS (a2g
n n n

Therefore, fom sufficiently large, there exists a constahtindependent of, such
that

HVy HL3(S) + HVb" HL3(S) C. (4.25)
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By the weak compactness in Sobolev’s spaces, it then follows that

vy' — V¥ inL3(S;R?), (4.26)

b — b inL3(S;R3), (4.27)

up to a subsequence. In view of (4.26) and of the Poincaré inequality (2.34) written
fory® andp = 3, y" is uniformly bounded i *3(S; R?), and thus (4.16) holds up

to a subsequence. Besides, by Rellich’s theorem, there exists a further subsequence,
not relabeled, such that

y" = § inC°(S; R3). (4.28)

Therefore, the limif satisfies the boundary condition (4.20). From (4.26) and from
the bound on the volume (2.21), we also get

“v(y) 0 (4.29)
which, in view of (4.21) and of the positivity @f,,, ¢., x and 1— x, in turn implies
| a0 (") 02 2 — o (4.30)
[ @ Xl iy 02102, = (4.31)

Therefore, by the fundamental property of the Young measures (4.13), there ex-
ists another subsequence (9f;|y",|b"), generating a family of Young measures
(Vz),Z € S, such that

// X (F)¢n(F)diz(F)dZ1dZ, =0, (4.32)
S J M3x3
f / (1 — x (F))u(F)ddz (F) dZ,dZ, = 0. (4.33)
S J M3x3

These imply that the support f is contained in4a UM for almost every € S [8,
Lemma 3.3]. Using (4.30), (4.31), we now construct a further “rare” subsequence,
not relabeled, such that

c+1
n2

> /S (X (V4510 (V1Y 10)
+ (1 — X(y71|yflz|bn))¢a (y71|yflz|bn)} dz,dz,. (4.34)
This subsequence has the same Young meadiye,Z € S, but it is such that
n /S (X 0 ly5I0" ) (V5 10
+ (1= x (Y1ly%Ib"))¢a (Y1 lyIb") }dZ1 dZ, — 0. (4.35)
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Note that by (4.26), (4.28) and the weak continuity of minors [3], we have
/yn . (yfll AN yf’z)dzl de — /y . (S\/,l AN 9,2)d21 de, (436)
S N

and this, together with (4.30), (4.31) and the fact that the suppdii,0f Z € S

is contained inA U M, implies that the limit of E"(y", b") is given by (4.18)
evaluated aty, V7). To establish the minimum principle, we consider a family
of Young measuregv;), Z € S, supported ont U M, arising from a sequence
(741y",1b™), with (5, b") € X, such that (without loss of generality)

vyt —~vy inL3(9), (4.37)
b" — b inL39), (4.38)

n /S (X (Fa1551B" ) o (7 15751B)
+ (1= x(V419%Ib"))¢a (Y41Y7,10") }dZ1 dZ, — O. (4.39)

From (4.15) we find

E"(y'.b") = /S { X (Yaly210") [ (11 21D") + 1 (0)]
(1= x (vly2lo")) [na (V11 2ID") + 1a(©)]

P
- g)’" (YL A Y?z)}dzl dz,

N

1 - 1
inf E" b < E" —n’ b" -
it (. ) + -~ ", 0% + ~

_ / { 2 (T 17515 [ (T4 1T515") + 10 0)]
+(1- X()_’f'll)_’,"zlt_)"))[n(l)a (VﬁlelB") + la(9)]

_ _ _ 1
v (VLA YY) }le dz, + - (4.40)

w| ™~

Taking the limit as: — oo and using (4.35), (4.36), (4.37), (4.38) and the weak
continuity of minors, we obtain the minimum principle. O

According to Theorem 4.1, the behavior of the film is governed by the limit
energy (4.18), defined for couplés ; y), where(vz), Z € §, is a family of Young
measures supported ot U 4, andy is a vector field satisfying the boundary
conditions (4.20). The vector fiejand the measures are related through the
constraint (4.19). The vector field does not appear explicitly in the expression
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of the limit energy (4.18). However, because the family of Young measiiggs
Z € S, is generated by the sequen@g, |y’,|b"), we have

b= Fes db (F) (4.41)
AUM
at almost every e S. The energy (4.18) is much easier to study than the original
energy.

5. Tunnels

Thin film deformations involving gradients only from the martensite and the austen-
ite wells are studied in [10, 11]. A particularly interesting deformation, especially
in connection with the possible applications in the design of microactuators, is
the tunnel deformationsketched in Figure 2. To illustrate this deformation, we
consider a martensitic film released on the rectangular re§jien0, ;) x (0, ),

for which we adopt boundary conditions more general than (4.20). In particular,
we assume

{W&Zﬂ=%ﬁ+zﬁ for Z; € [0, 14], Z2 = 0, I,

V(Z1.Z2) & = 73 for Zy = 0.1y, Z € [0, L], ®-1)

These conditions model the situation of a rectangular film attached to the substrate
only along the edges parallel to the directionepf The edges parallel to the di-
rection of e, are restricted to move on planes perpendicular to the plane of the
film.

To ensure the existence of the tunnel deformation, it is necessary to make suit-
able assumptions on the set of the martensite wéll§11]. In particular, we
assume that the conditions

63 - Adj(U* - I)es =0, (5.2)
tru? —e;-U%3—2>0 (5.3)

hold for some symmetric matrid € M. These, in turn, are satisfied if and only if
there exist a rotatio® € SO (3) and a vectoe such that

QU-DHe=0, e-es=0, |g =1, (5.4)
n-U%=0, wheren = e A e, (5.5)
un| > 1, (5.6)

[11, Proposition 5.2]. Condition (5.4) says that an interface between the austenite
and a variant of martensite described bBycan be formed in the direction &
Equation (5.5) is a condition of vanishing shear, while the inequality (5.6) says that
the film is stretched in the direction perpendicular to the interface. If we orient the
film so that the two directions af and ofn coincide with the directions af;, and

of &, respectively, then the conditions from (5.4) to (5.6) become
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<> 2>

Figure 2. The flat and the tunnel configurations.

QUe; = ey, (5.7)
e - U%e, = 0. (5.8)
Uey| > 1. (5.9)

In the the constrained theory, the tunnel deformation is described by the sequence
(y", b™) with y* the sequence of cylindrical deformations

Y'(Z1, Z3) = Z1&1 + ii(Z2)& + 0V(Zr)€s, (5.10)
with
22 2
u(Zy) = |Ue)| / cos(a - l—t)dt, (5.11)
0 2
Zz 2“
0(Z7) = |Ugy| / sin<a — l—t)dt, (5.12)
0 2
and witha the solution in(0, 2) to the equation
sine = ——. (5.13)
|Ue,|

The sequence of Cosserat directbfsis given byR(Z,)RQUe;, R(Z,) andR
being the rotation matrices

2
R(Z,) = el®el+COS<a—E22>[ez®ez+e3®e3]
, 20
. S|n<a _ l—zz)[-e2 ® 6+ 66, (5.14)
2
— Ue; - &
R = e1®e1+Q|UT|[ez®ez+e3®e3]
Ue; - €3
—Qle[—ez®93+es®ez]- (5.15)

In the plange, e3), the couple(iz, v) describes the circular arch of lengghUe;|,
starting at the point0, 0), ending at(0, /), and lying in the positive half-plane.
The family of Young measures arising from the sequeiytgy”,|b") is simply a
Dirac mass centered Bt(Z,)RQU:

vz = R (z,Rqu- (5.16)
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Itis easy to see that the tunnel deformation is energy minimizing in the constrained
theory wherg < 6., and no pressure is applied under the film. In this case, the total
energy (4.18) reduces to

cvziy) = [ {(lm(e) 1) [ dUz(F)}dzl 0Zo+L,@)IS,  (617)
S M
to be minimized among the Young measurgsuch that
suppvzy C A if 6 > 6,,, (5.18)
suppvz C M if 0 < 6,,, (5.19)
suppvz C AU M if 6 =6,,, (5.20)

and whose center of mass satisfies the constraint (4.19) and the boundary condi-
tions (5.1). If6 < 6., then, in view of (5.19), the couplez; y) given by (5.16)

and (5.10) is minimizing. I# > 6,,, then, from (5.18), minimizers involve only the
austenite phase, and therefore the coyflez), with §, the Dirac mass centered

at the identityl and arising from a sequence of “flat” deformations, is minimizing.
The reversible, temperature activated change of stability between the tunnel and
the flat configurations, both sketched in Figure 2, makes it possible to employ the
film as an actuator [10, 11].

Let us turn to the cas® # 0. Now the total energy (4.18) is the sum of the
bulk energy (5.17) and the free energy of the ga3V (y), and thus minimizing
deformationg involve gradients from the wells which maximize the volumey).

In this respect, the tunnel deformation is a good candidate to be a minimizer. In the
next subsection, we prove that the tunnel deformation is a minimizer in certain
ranges of pressure and temperature. In the proof, we restrict ourselves to consider
only cylindrical deformations/, but we believe that our results also hold under
weaker hypotheses gn

5.1. CYLINDRICAL DEFORMATIONS

Let us consider deformatiofyz, y) of the constrained theory withy independent
of Z, and withy of the type (5.10). Again we assuni& containing a matrix with
positive strain so that

y :=max{|Fey| : Fe M} > 1 (5.21)
We assume the film made by a good “tunnel material”, so that the maximizer
of (5.21) satisfies (5.4) and (5.5). Using the constraint (4.19) and the kinematic
assumption (5.10), we find
M

v(Zy) = / Fes - esdvz, (F), (5.23)
M
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at almost every, € (0, I,). Besides, each deformation of the type (5.10) automat-
ically satisfies the boundary condition (5:1)vhile (5.1) gives

u(0) = v(0) =0, (5.24)

u(lz) = Iy, v(l2) =0. (5.25)
In view of (5.10), (5.24), and (5.25), the volume of the gas under the film has the
expression

I2
V(y) =/ U (Z2)v(Z2) dZ,, (5.26)
0

where the prime denotes the first derivative. Therefore, the energy (4.18) reduces
to

P
e(vz;y) = 11{(1;11(9) —1,(0)) oA + 1,(0)l> — P/ u'(Z2)v(Zy) de}
0
=: &\ u,v), (5.27)

where

1 (2

A= —/ / dvz,(F)dZ; € [0, 1] (5.28)
laJo Ju

indicates the average volume fraction of martensite along the directien ofs-

ing the constraints (5.22), (5.23), the triangle inequality, the definitions (5.21) and
(5.28), and recalling that, is a probability measure, we get

7 I2
V@ + 0)2dz, < f f Feydvy,
0 0 M

Ir i i
< / / |Fep| dvz, dZy < Ir(yA +1—1). (5.29)
o Ju

dz,

This inequality provides an upper bound on the length of the curve describing
the deformed configuration of the cross-section of the film. Ignoring other pos-
sible compatibility conditions between and (u, v) arising from the constraints
(5.22), (5.23), we minimize the energy (5.27) with; u, v) satisfying the con-
straint (5.29) and the boundary conditions (5.24), (5.25), thereby giving a lower
bound for€ (x; u, v). We begin by keeping fixed and by minimizing ovefu, v).

This means that we seek the curve lying in tbe e3) plane, joining the origin with

the point(0, I,), having length not greater thdg(yx» + 1 — 1) and enclosing the
largest area. In Appendix 2, we prove that the circular arch of lelagii +1— 1),
parametrized by the coupl@/, V) with

_ _ 22 20
U(Zy) = (yA+1-2) / cos(a — l—t) dr, (5.30)
0 2

_ _ (% 20
V(Zy) = (yA+1-— A)/ sin<a — l—t) dt, (5.31)
0 2
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R A
L
2p A
L
2 >
0 1 v % YA+1-A

Figure 3. RadiusR of the cross-section of the tilm versys. + 1 — A.

anda the solution in(0, 27) to the equation

sing = ——~ (5.32)
(yA+1-21)

encloses the largest area, given by

I2
/ U'(Z2)V(Zy) dZ,
0

1 - - b 13 . -

= (5.33)
1 - - b 12 - - om
LR(yA+1-2)+—=R2—2  for(yA+1-%)> .
22(y+ )+2 4 (YA + )>2

In the last equationR, which denotes the radius of the arch parametrized by
(U, V), satisfies the implicit relation

_ Ny !
sin((y)\ +1-— )é) = i, (5.34)
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N\

Figure 4. Two possible tunnel configurations.

plotted in Figure 3. The presence of the two expression in (5.33) refers to the two
cases shown in Figure 4. Substituting (5.33) into the expression of the total energy
(5.27), we get the lower bound

1112{ (1n (0) — 1,(O)) A + 1,(0) — %(VX +1— MR

P 122 - - T

B +E RZ—Z s f0r1<()/)\.+l—)\.)<5,
E\;u,v) > B P B (5.35)

1112{ (b ®) = la@)% +1a0) = 5 (v2+ 1= DR

P 12 _ - T
——JR2 -2 for(yA+1—2) > =.
4}, Y2+ ) > 5

Because the right-hand side turns out to depend only updhe bound can
be further improved by minimizing with respect 1o Let Amin € [0, 1] denote
the minimizer. Now we show that there exists a family of Young measures which
achieves the lower bound (5.35). This family arises from the sequen¢g’,|b")
with

Y'(Z1, Z2) = Z181 + u,(Z22)€ + v, (Z2)€s, (5.36)
Z3
u,(Zs) := / r.(t) co9B,t + a,) dt, (5.37)
0
Z2
vn(ZZ) = f rn(t) Sin(ﬂnt + an) dl, (538)
0

and withr,, the piecewise constant periodic function with perigth such that

14 forpl’—f <t<pl;2+?_»minl;2,
ra(t) = (5.39)
1 forp2+imn2 <t <(p+1k,
p being an integer between 0 and- 1. The sequence of Cosserat directbtss
defined by
b"(Z,) = R(Z,)RQUe; wherever,(Z,) = v, (5.40)
b"(Z,) = R(Z,)e3 wherever, (Z,) = 1. (5.41)
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Here,R(Z,) andR are the rotations (5.14), (5.13), a solution to the maximum
problem in (5.21), an@ a rotation such thapU satisfies the condition (5.7)—(5.9)
for building up a tunnel.

By constructionu, (0) = v,(0) = 0. In Appendix 3, we prove the existence of
ar, Br € [0, 2r] for which the boundary conditions (5.25) are also satisfied. We
also show that

o — «, (5.42)
20

-, (5.43)
I

up to a subsequence, withas in (5.32). Using (5.42), (5.43), the weak conver-
gence ofr, andb” to their averages [14, Theorem 1.5], and the definitions (5.14),
(5.15), we find

(Y'1ly%1b") = ZminR(Z2RQU + (1 — Amin)R(Z2) in L™ (5.44)

To compute the Young measure generated(yly’,|b"), we note that for any
functiony € Co(M>*3; R)

¥ (Y41y'5Ib") = Zmin¥ (R(ZRQU) + (1 — Ami)¥ (R(Z2))  in L™ (5.45)

[23, Corollary 3.3]. Thus, in view of (4.13), the family of Young measures arising
from (y"|y",|b") is given by

1A)Zz - )_\min(SR(zz)ﬁQU + (1 - )_»min)(SR(Zz)- (5-46)
Because
M

the family of Young measuresachieves the lower bound in (5.35).
Let us now turn to evaluatingmin. We differentiate the right-hand side of (5.35)
with respect to. and use (5.34) to get

de(r: U,V
% = L[, (0) — 1,(0)) — P(y — DR], (5.48)

which vanishes at the unique solution
R— (ln(0) — 1,(0))
P(y-1

While there is a unique stationary poiRt the corresponding value df_may not
be unique (i.e., see Figure 3 with > 7/2). The minimizing values of are the
following:

(5.49)
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e Casel.

(lm(e) - la(G)) —. Pla
L(y — 1)

with B the solution in(0, 7 /(2y)) to the equation

y<m/2, and P <28

sin(yB) = B. (5.50)
There is a unique Minimizé,, given by

Ao = 201 (0) — 1a(0)) arcsir{ LP(y —1) ] B .
LP(y —1)? 20n(0) — L)1 -1

Case 2y < 7/2, andP > P;. The unique global minimizer ismin = 1.
Case 3.

(5.51)

Un® ~1u®) _
Ly — 1)

with & € (0, 1) the solution to the equation

gavcsin + VI8 =L - [y 4 VT 7] (5.52)
where g8 is now the solution in(z/(2y); 1) to (5.50). The unique global
minimizer is again given by (5.51).

e Case 4y > n/2, andP = P,. There are two global minimizer, one at
given by (5.51) and one at,i, = 1.

e Case5y > /2, andP > P,. The unique global minimizer smi, = 1.

y>mn/2, and P <2t

In Case 3, there is also a relative minimum.at 1 if

%9%%¥§D<P<&, (5.53)

while in Case 5 there is a relative minimumiagiven by (5.51) if

P, <P < 2—(1'"(0) — l“(e)). (5.54)
L(y -1

To give a physical interpretation of these results, in all cases we fix the tempera-
tured above the transformation temperature and the materia {(séixed), and we
increase the pressure starting from an appropriate value. In Case 1, a fine mixture
of austenite and martensite is globally stable. The volume fraction of martensite
Amin iNCreases a® increases starting from zero. Correspondingly, the length of the
cross-section, which has the form of a circular arch, increases and the film encloses
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\%
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llz ’Y 1
152 L _1
#lp gt
o L L 1(8) - 1.(8)

2 2B P (y-1)

Figure 5. Volume V enclosed by the film versus the ratig, (9) — I,(9))/(P(y — 1)) in the
casey € (1, 7/2].

more and more volume. From (5.33), (5.49), and (5.51), we find that this volume
is given by

_ @[4(%}1(9) —1.(6))%) arcsir( (Pla(y = 1) )

4 Pl2(y — 1)2 2(1n(0) — 1,(6))
41, (9) = 1.(0))?)
_\/ PG 12 - 1], (5.55)

which corresponds to the curve plotted in Figure 5. Poe P; (see Case 2), we
havermin = 1 and thus the austenite has completely transformed. At this point the
length of the cross-section reaches its maximum valueand the film encloses
the volume

112 [y 1 ]

y=lkly 1T (5.56)
41 B

with 8 defined as in Case 1. If the pressure is further increased fiotie length

of the cross-section and the volume enclosed remain constant.

In Case 3, as the pressure increases, a mixture of austenite and martensite with
increasing volume fraction (5.51) is globally stable. The volume enclosed by the
film is still given by the relation (5.55) plotted now in Figure 6. FBras in
(5.53), the martensite becomes a metastable configuration aRd=atP,, (see
Case 4), both the martensite and the mixture are globally stabf.idffurther
increased (Case 5), then the mixture becomes metastable while the martensite be-
comes globally stable. The presence of metastable states introduces the possibility
of a hysteresis loop in Figure 6.
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) N

\

6 L L L L0 - 1,(®)
2 %5, P (y-1)
Figure 6. Volume V enclosed by the film versus the ratig, (9) — I,(9))/(P(y — 1)) in the
casey € (7/2, +00). Dashed curve corresponds to relative minimizers.

0
A A+M
N
0., M

»
>

v

P
ve (1,n/2) P Y € (W/2, +o0)

Figure 7. Pressure—temperature phase diagram for the material of the film. The cases drawn
correspond to linear relation's, (9), 1,(6). The sector enclosed by dashed lines contains
metastable states. Note that some martensite is present even at high temperatures.

If we assumé,, (9) and/,(0) to depend linearly upon the temperature, we can
summarize these results in the pressure-temperature phase diagram depicted in
Figure 7, in which the two cases < /2, andy > 7/2 are drawn separately.

For values of the pressure and of the temperature lying in the regions marked with
M, the tunnel deformation witly given by (5.10), (5.30), (5.31) withpyi, = 1,
andb = R(Z,)RQUe; is globally stable. At each point of the film, the material
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Figure 8. Microstructure of the film at equilibrium.

is in the variant of martensitd. For values of pressure and temperature lying in
the regions marked witld + M, the macroscopic deformation of the film is now
given by the tunnel deformation (5.10), (5.30), (5.31) evaluated -at A, and

by b = (AminR(Z2)RQU + (1 — Amin))R(Z2))es; correspondingly, the material

is a fine mixture of austenite and of the variant of martengite'he family of

Young measures (5.46) describes the microstructure of the material. Recalling the
construction of the sequence generating the measures (5.46), the microstructure
is found to consist of martensitic regions alternated with austenitic region, both
regions having the shape of thin strips parallel to the axis of the tunnel, as depicted
in Figure 8.
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Appendix A
We now give a proof of the identity (2.26).

LEMMAA.1l. Lety e # andr > 0. Then

1 1
—/ Y'(Y,lAY,z)dxldxz——/ y-(Y1AY2 dX1dX>
3 Sx{t} 3 Sx{0}

2
+—1|S| detA =/ detvydX. (A1)
3 Sx(0,1)

Proof. Lety" € C>®(Q";R®) be a smooth sequence approximatingn #.
Denoting withe; . the Ricci tensor, we have

1
| dewyrax= [ Geneny i v, ox. (A2)
Sx(0,1) §x(0,1)



PRESSURIZED SHAPE MEMORY THIN FILMS 431

By integrating by parts and applying the divergence theorem, we obtain

1
/ dery" dX = — / éei.jkepqr (yﬁpr;,q),ryZ dXx
$x(0,1) §x(0,1)

1 n n n
+ —€ijk€pqrYi p Y} 4 Vi Ny da, (A.3)
3(Sx(0,1)) 6

whereN = Nie; + Noe, + Nies is the outward unit normal ta(S x (0, 7)). The
first term on the right hand side of (A.3) is zero because it is the inner product of
symmetric and antisymmetric tensors. Hence,

1
/ detvy" dX = / =(Adjvy")y" - Nda,
Sx(0,1) 3(Sx(0,1)
1 .
= —/ = (Adjvy")y" - e3dX; dX>
Sx {0} 3
1 .
+ / = (Adjvy")y" - e3dX; dX>
Sx{t} 3
1 .
+ / ~(Adjvy")y" - Nda. (A.4)
95 x{0,r} 3

Let X(s) be a parametrization of the boundary &f with X(0) = X(1). Then,
(X(s), X3) is a parametrization of the surfaée x {0, ¢}, which is assumed to
orient the surfacéd S x {0, ¢} so that the vector

Xs A€

A5
IX,s A €3l (A-5)

is the outward pointing unit normal. Using the identities

(AdjA)T(b A ©) = Ab A Ac,
(AdjA)A = (detd)l,

and the boundary conditions (2.2), we obtain
/ (AdjVy" (X))y" (X) - N(X) da
35x{0,1}
t 1
= /0 /0 (Adijn(X(S), X3))yn(X(S), X3) . (X(s),s A e3) ds dX3
t 1
= / / Y (X(s), X3) - (AdjVy" (X(s), Xs))T(X(s),s A €3) ds dX3
0 JO
t 1
= /C; /C; yn(x(s), XS) . (Vyn(x(s), X3)X(s),s A Vyn(x(s), Xg)es) ds dXS

t 1
= / / A(X(s), X3) - (AX(s) s A Aeg) ds dX3
0 Jo
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t pl
= f f A(X(s), X3) - (AdiA)T(X(s) s A €3) ds dX3
o Jo
t pl
= f f (AdiA)A(X(s), X3) - (X(5),5 A €3) ds dX3
o Jo

t 1
= de1A/ / (X(s), X3) - (X(5),5 A €3) ds dX3. (A.6)
0 JO
By the divergence theorem,

1
/ (X(s), X3) - (X(s),s A €3)ds = /divx dX = 2|9], (A7)
0 N
which, substituted into (A.6), gives
/ (Adjvy")y" - Nda = 2r|S|detA. (A.8)
95x{0,}

This, together with (A.4) and the identitAdjVy)y-es = y-(Y.1AY.2), gives (A.1)
for the approximating sequengé. Lettingn — oo, by the continuity inW?2?2 of
the volume functional and of the last term in (A.1), we obtain (A.1)yfor O

Appendix B

We prove a convenient 2-dimensional version of the isoperimetric inequality.

LEMMAB.2. Lety > 1andx € [0, 1] be given. Then, for any couple, v) €
(W13(0, 1,))? satisfying the boundary conditions (5.24), (5.25) and the con-

straint (5.29),
1 . - D 12
“LRYA+1—1)— 2 |R2— 2,
Sl (yr+ ) > 1

Iy for1<yi+1—i<%,

f l/t/(Zz)v(Zz) de < 9 (Bl)
0 1 I 12
“LR(yA+1—-2)+ = |R2— 2,
o2 (YA + ) + > 7

_ _ bi4
foryk+l—k>§.

Proof. We recall that for any two planar curves parametrized by the couples
(u,v) and (¢, ¥) in (W3(0, 1,))? satisfying the same boundary conditions, the
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following 2-dimensional version of the isoperimetric inequality (2.19) holds:

I2
/O (W (Z2)v(Z2) — ¢ (222 () dZ,

2

1 [h
< _|:/o (\/(w)Z(Zz) + (v/)Z(Zz) + \/(¢/)2(ZZ) + (wl)Z(ZZ) )dZ2:|

A
(B.2)
[24], from which, using the triangle inequality, we have
I2
/0 u'(Z2)v(Z2) dZ;
Ir 1 I
< ¢ (Z2) ¥ (Z2) dZ, + 4—[/ (\/(u’)z(zz) + (v)2(Z2)
0 T LJo
2
+/ (@) Z2) + W) (Z2) ) de] . (B.3)
Let now us choose
Zy=""% [ cod 2 d B.4
¢(Zr) = Sho /0 COS[E(n—a)s—(n—a)] s, (B.4)
z —”_"‘/Zzsin[E }d (B.5)
V(Z2) = sina Jy lz(n—a)s—(ﬂ—a) s, :

with « the solution in(0, 2r) to the equation (5.32). The couple, ¥) is a para-
metric representation of a circular arch joining the origin with the pdint,),
lying in the negative halfplane, and having length

173 _ —
i V(@) Z2) + (W)2(Z2) dZy = 27R — Ip(y A + 1 — 1), (B.6)

with the radius of the arclR satisfying (5.34). The (algebraic) area enclosed by
(¢, ¥) is given by
I2

A ¢ (Z2) Y (Z2) dZ;

1 - - l 12
ElzR(y)\-l—l—)\)—nRz—Ez RZ—ZZ, if y e (1, %],
(B.7)

T

1 , , I» 12 )
“LRYA+1—X) —7mR?+ = [R2— 2, f - )
52 (yr+ )—Tm +2 1 ye(2,+oo>

Substituting (B.6) and (B.7) into the isoperimetric inequality (B.3) gives (Br1).



434 R.D. JAMES AND R. RIZZONI

A straightforward calculation shows that the upper value in (B.1) is achieved by
the circular arch parametrized by the cou@lg V) with U andV given by (5.30),
(5.31).

Appendix C
LEMMA C.3. Lety > 1andx € [0, 1] be given. Then, the system of equations

"2 (1) COSIBut + ) Ot = Iy,

Jo ra(6) SIN(Byt + ) dt = 0, (€D

with r, defined as in (5.39), admits at least a soluti@f, 8) for each integet:.
Moreover,
af — a, (C.2)

B, &> —— (C.3)

up to a subsequence, withthe solution in(0, 2r) to (5.32)
Proof. We change variables to reduce the system (C.1) to the form

Jo () COSBulas + ) ds = 1,
1 . (C.49)
Jo @ (@) SiN(Bylas + a,) ds = 0,
with g, (s) := r,(lzs). The system (C.4) is equivalent to
1 1
COSw, g, (s) cOSB,los) ds — sinan/ gn(s)Sin(A,s)ds = 1,
9 0 (C.5)
CoSu, g, (s) sin(B,lps) ds + sina, / gn () COSB,los) ds = 0.
0 0

Take the square, sum and use the trigonometric identifegin- cofa, = 1 to
get

2

1= [ /0 1qn<s) CoS(Byl2s) ds]2 + [ /O 1qn<s) Sin(Bnl2s) ds] =: f"(Bn).  (C.6)
Note thatf/”(0) = 0. Besides, because

nILmoo f'2r) =0, (C.7)
there exists an integer, say, such that for each > ng

f"2r) < % (C.8)
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Therefore, using the continuity gf*, we conclude that there exist$ € [0, 2]
which solves (C.6). Besides, in view of (C.6), we may defitjen [0, 2] such
that

1
coswo; = / g, (s) COSB,l2s) ds. (C.9
0

From (C.6) and (C.9), we find

2

1 -
/ Gn(5) SiN(Bulos) ds | = sinfa’. (C.10)

Since there are two solutions of (C.10), without loss of generality we choose

1 i,
/ gn(s) SIN(B,l2s) ds | = —sina;. (C.11)

On using (C.10), (C.11), and (C.6), the equations in (C.5) are identically satisfied
for «, B;. Besides, becausg, 8 € [0, 27], we have

o — a, (C.12)
By — B, (C.13)

up to a subsequence. The limit problem associated with (C.1)

(yA+1-— A)/ co9ft + a) dr = Iy,
Otz (C.14)
(yr+1-— X)/ sin(Bt + a)dr = 0,
0
is equivalent to
20
p= -
: 2 g (C.15)
sina =
Ay +1-2)
This system admits a unique solution (@, 27), since(yA +1 — 1) > 1 by
hypothesis. O
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