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Abstract. We study the behavior of a martensitic thin film with a hydrostatic pressure applied
underneath the film. The problem is formulated in 3-D for a single crystal film of thicknessh,
and a Cosserat membrane theory is derived by0-convergence techniques in the limith → 0.
The membrane theory is further simplified using a second0-convergence argument based on hard
moduli. The resulting theory supports energy minimizing “tunnels”: structures having the shape of
part of a cylinder cut by a plane parallel to its axis, obtained by releasing the film from the substrate
along a strip with a certain orientation. As the temperature is raised (at fixed pressure) the energy
minimizing shape collapses gradually to the substrate, accompanied by a martensite-to-austenite
phase transformation. During this process the tunnel supports a microstructure consisting of fine
bands of austenite parallel to the axis of the tunnel, alternating with bands of a single variant of
martensite. Formulas for the associated volume–temperature–pressure relation are given: in these the
latent heat of transformation plays an important role.

1. Introduction

In recent years it has become possible to derive rigorously from 3-D nonlinear
elasticity special theories for thin structures, without adopting anansatzfor the
deformation (As an incomplete selection of these derivations, we list Acerbi et
al. [1], Bhattacharya and James [11] and Le Dret and Raoult [20, 21]). If the starting
theory is general 3-D finite elasticity, then it can be stated that these derivations give
the definitive plate–shell–thin film theories. They therefore settle the long-standing
question of which, among the many such theories available in the literature, is the
appropriate theory for a thin body. There remains a lot to be done: currently, except
for one formal argument, the only results are for the membrane theory. Bending
theories evidently are obtained from a higher-order0-convergence argument.

These developments also allow one to approach with a certain measure of con-
fidence the analysis of thin bodies of nonclassical materials, such as thin films
of martensitic materials (cf. [11, 25]), which undergo a diffusionless phase trans-
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formation and have free energies with energy wells. Martensitic films can change
shape when their temperature is changed, and some materials that undergo a re-
versible martensitic transformation display the shape memory effect. This effect
is: the specimen is deformed by loads at low temperature (causing rearrangements
of the different variants of martensite), the loads are removed but the specimen
remains deformed (because all the variants have the same free energy density), the
specimen is heated, causing a phase transformation from martensite to austenite,
and it returns to its original shape. It is then cooled through the transformation with
no macroscopic change of shape (because the martensite variants are able to form
microstructures with this property), and the cycle can begin again. By alternately
heating and loading a specimen, it can be used as an actuator. As discussed by
Krulevitch [19], the NiTi shape memory material is among the actuator materials
with the largest value of the work output per cycle per volume. Here, “volume”
refers to the volume of the actuator. The “per volume” part of this formula is one
reason that this material might perform well at small scales. Another reason is that
the slow response of bulk shape memory actuators, caused by the necessity to cool
them, is greatly improved by the rapid rate of heat transfer possible at small scales,
especially in a thin film heated and cooled on its faces.

There are two simple overall design principles for these actuators that are sharp-
ly delineated by the0-convergence arguments. First, the membrane theory emerges
at orderh (unlike bending, which emerges ath3). Therefore, to take advantage
of the large work outputper volumeof the shape–memory materials, one should
design the actuator to work in membrane mode. Second, the film should be released
from the substrate, assuming it is an ordinary elastic material, so that the highly
constraining effect of the substrate is eliminated.

There is another potentially attractive feature of the use of martensitic films for
microactuators in MEMS (= micro-electro-mechanical systems). The techniques
of microelectronics (e.g., molecular beam epitaxy) open up the possibility of mak-
ing single crystal films. These could avoid the “fighting between the grains” that
is associated with transformation in bulk polycrystals, which reduces the effective
transformation strain much below its maximum value in single crystals. Oriented
single crystal films could be released from the substrate on certain well-defined re-
gions and undergo a large deformation, large work output, relatively high frequency
shape memory effect. These ideas have motivated theoretical (Bhattacharya and
James [11]) and experimental (Dong et al. [15]) studies. From the former have
emerged some structures – “tents” and “tunnels” – that are energy minimizing
under zero stress and exhibit large deformations.

As explained above, to produce the shape memory effect, loads have to be
applied. Ideally, these are the actual loads that the actuator must do work against,
but, in any case, the so-called bias stresses must be applied to produce the change
of shape in the martensitic state in the first place. The idea explored in this paper
is that the loads are produced by a pressure on the film. This could be done in the
following way. The film could be released from the substrate on a well-defined
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region by back-etching the substrate (the judicious use of an etch-stop might be
relevant here). Then a pressure could be applied from either above (advantageous,
to prevent peeling of the film) or below. This scheme is suited to potential appli-
cations like pumps and valves in which the pressure is produced by the working
fluid. The key questions are: what structure? what volume–temperature–pressure
relation is predicted?

The membrane theory of a stiff, single phase material is the theory of isometric
mappings of a plane. The deformed shapes are developable surfaces. A spherical
bubble is not one, but a piece of a cylinder is. Moreover, according to the isoperi-
metric inequality, a circular cylinder holds the greatest volume for its area, among
prismatic shapes. Thus, it is natural to consider a film released on a strip, so that
under pressure, it bulges into a cylindrical shape. By raising the temperature, the
film is made to undergo the shape memory effect and the film collapses to a flat
shape. This is the situation studied in this paper. We speculate that a complex
system of such tunnels could be patterned onto a chip and, by selective heating,
bubbles of different fluids could be pumped around, mixed, reacted, etc.

The plan of this paper is as follows. We formulate the 3-D problem of a thin film
of martensitic material of certain shape, acted upon by a pressure underneath, in
Section 2. We include bulk and interfacial energies. The presence of the pressure
necessitates that we impose slightly stronger growth conditions than is usual to
prevent the film from blowing up. In Section 3 we rescale the pressureph = Ph,
P = const, and do the0-convergence argument, which is a modification of that of
Bhattacharya and James [11]. The energy that emerges is a nonlinear membrane
theory with an additive contributionpV whereV is the volume enclosed between
the membrane and a suitable plane (Section 3). To further simplify this energy,
we do a second0-convergence argument in Section 4 based on the presence of
hard moduli, a situation that is expected to be relevant for martensitic materials
with large transformation strain. For the resultingconstrained theorymicrostruc-
tures are replaced by Young measures having support on the energy wells, and the
macroscopic deformation gradient is recovered as the center of mass of the Young
measure. This theory is very easy to use and it supports tunnels with circular cross-
section. They are proved to be energy minimizing among cylindrical deformations
(Section 5) for suitable materials, and probably they are energy minimizing in gen-
eral under their own boundary conditions. The dependence of the volume enclosed
by the tunnel on pressure and temperature is found in Section 5 (Figures 5 and 6).
An unexpected behavior is observed: instead of the tunnel collapsing suddenly to
the flat shape as the temperature is raised, the collapse is more gradual (Figure 7),
and complete collapse within the constrained theory is only possible with infinitely
large temperature. During collapse, the tunnel exhibits a microstructure of axial
bands of austenite and one variant of martensite (Figure 8). These results need to
be explored for special materials, which we postpone to later work.

This research has been conducted in parallel with a related computational
study [9].
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2. The 3-dimensional problem

We assume that an originO and an orthonormal basis,{e1,e2,e3}, have been
chosen in the 3-dimensional Euclidean space. We identify the pointX with the
vectorX−O,whose components will be indicated byX1, X2, X3. In the reference
configuration, the film is assumed to occupy the cylindrical region

�h := {(X1, X2, X3) ∈ R3: (X1, X2) ∈ S, X3 ∈ (0, h)
}
, (2.1)

whereS is an open bounded subset ofR2 with Lipschitz boundary, andh is the
thickness of the film. A deformation of the film is a mappingy:�h 7→ R3. Re-
calling that the film is attached to a substrate except for the released regionS, we
model the presence of the substrate by imposing the linear boundary condition

y = yA(X) := AX , X ∈ ∂S × (0, h), (2.2)

whereA is a constant 3× 3 matrix. The material of the film is supposed to be ho-
mogeneous and thermoelastic. At the temperatureθ ∈ (0,+∞), the strain energy
of the film corresponding to the deformationy is given by∫

�h
φ(∇y; θ)dX, (2.3)

whereφ:M3×3 × (0,+∞) 7→ [0,+∞) is the strain energy density, andM3×3

is the set of all 3× 3 matrices. The functionφ is assumed to be smooth in both
its arguments and to satisfy the following growth hypothesis: there exist positive
constantsc1, c2, c3, c4, and 3< q < 6 such that

c1 |F|3− c2 6 φ(F; θ) 6 c3 |F|q − c4, (2.4)

for all matricesF in M3×3, and forθ in (0,+∞). Furthermore,φ is assumed to be
frame indifferent, i. e., it is assumed to satisfy the condition

φ(QF; θ) = φ(F; θ), (2.5)

for all F ∈ M3×3 andθ ∈ [0,+∞), and for all proper rotations

Q ∈ SO(3) := {Q ∈ M3×3|QQT = I ,detQ = 1
}
. (2.6)

Stable deformations of the film, subject to a hydrostatic pressureph acting on its
lower surface, are assumed to correspond to the deformationsy ∈ W 2,2(�h;R3)

which minimize the total energy

Eh(y; θ) :=
∫
�h

(
φ(∇y; θ) + κ|∇2y|2)dX

− p
h

3

∫
S×{0}

y · (y,1 ∧ y,2)dX1 dX2, (2.7)
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in the class of deformations

H := {y ∈ W 2,2
(
�h;R3

)|y = AX , X ∈ ∂S × (0, h)}. (2.8)

In the expression (2.7) of the total energy, the notationy,i denotes the vector∇yei ,
for i = 1,2. The term|∇2y|2, which denotes the full 3× 3× 3 matrix of second
derivatives, not just the Laplacean, penalizes the formation of interfaces,κ being a
small positive constant; the norm here is

√
y,ij · y,ij . As discussed below, the term

V (y) := 1

3

∫
S×{0}

y · (y,1 ∧ y,2)dX1 dX2 (2.9)

represents the volume enclosed between the planeyA(S × {0}) and the deformed
lower surface of the film. Physically, the last term of (2.7) may be interpreted as
the energy of a gas under the film whose pressure can be assumed constant. This
situation is realized in practice by micromachining a hole in the substrate and by
pressurizing the film using a reservoir of gas whose volume is much larger than
typical changes of volume due to film deformation. We note that if the volume of
this reservoir is on the order of volume changes produced by the deformations of
the film, then the last term of (2.7) would have to be replaced by the general ex-
pression for the free energy of such a gas, accounting for its compressibility. In the
latter case our predictions concerning stability could be substantially changed [18].

The volume functional (2.9) evaluated at a deformationy of the film gives a
reasonable expression for the volume of the regionVy enclosed between the plane
yA(S×{0}) and the deformed lower surface of the filmy(S×{0}). This can be seen
through the following heuristic calculation. Let|Vy| denote the three-dimensional
Lebesgue measure ofVy, and letZ = (Z1, Z2, Z3) be a point belonging toVy.We
have

|Vy| =
∫

Vy

dZ = 1

3

∫
Vy

divZ dZ. (2.10)

Using the divergence theorem, we get

|Vy| = 1

3

∫
y(S×{0})

Z · n(Z)da + 1

3

∫
yA(S×{0})

Z · n(Z)da, (2.11)

where, in each integral,n(Z) is the unit outward normal at the pointZ to the surface
on which the integral is defined. SinceZ · n(Z) = 0 at each pointZ of yA(S ×
{0}), the second integral is zero. Takingyo, the trace ofy on the surfaceS × {0},
as a parametric representation of the surfacey(S × {0}), equation (2.11) may be
rewritten as

|Vy| = 1

3

∫
S

yo · (yo
,1 ∧ yo

,2

)
dX1 dX2

= 1

3

∫
S×{0}

y · (y,1 ∧ y,2)dX1 dX2 = V (y). (2.12)
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Figure 1. Globally invertible (a) and not globally invertible (b) deformation of the film.

We note that the expression (2.9) for the volume under the film has some patholo-
gies related to global invertibility, illustrated in Figure 1 for the caseA = I .
In Figure 1(a), the volume under the film is expected to be reasonably modeled
by (2.9). However, in Figure 1(b) the formula (2.9) gives the volumeV1−V2,which
could not possibly be occupied by a fluid. Without Dirichlet boundary conditions
on y, we do not know how to impose global invertibility assumptions on the min-
imization ofEh, so we are not able to rule out situations as shown in Figure 1(b).
However, we do not expect such configurations to arise from energy minimization.

The volume functional (2.9) is defined for the deformationsy of H . This can be
seen as follows. By Sobolev’s embedding theorem [2, Theorem 5.4], each element
of W 2,2(�h;R3) has trace onS × {0} belonging toC0(S;R3)∩W 1,2(S;R3), with
S denoting the closure ofS. By the continuity of the trace, there exists a positive
constantC such that

|V (y)| 6 C
∫
S

∣∣yo
,1 ∧ yo

,2

∣∣dX1 dX2. (2.13)

The functional

L(yo) :=
∫
S

∣∣yo
,1 ∧ yo

,2

∣∣ dX1 dX2 (2.14)

gives the Lebesgue area of the surface parametrized byyo [12]. It is known that∫
S

∣∣yo
,1 ∧ yo

,2

∣∣ dX1 dX2 6
1

2

∫
S

(|yo
,1|2+ |yo

,2|2
)
dX1 dX2, (2.15)

and the inequality holds only whenyo satisfies the conditions|yo
,1| = |yo

,2|,
(yo

,1 · yo
,2) = 0 [16]. From (2.13), (2.15), and the regularity of the trace, it fol-

lows thatV (y) is defined inH . Moreover, the volume functional (2.9) is weakly
continuous, up to a subsequence, inW 2,2(�h;R3). Indeed, consider a sequenceyn
weakly converging toy in W 2,2(�h;R3), by Sobolev’s Theorem there exists a
subsequence, not relabeled, such that

yo
n ⇀ yo in W 1,q

(
S;R3

)
, (2.16)

for 3< q 6 4. This together with the weak continuity of minors [3], implies

(yo
n,1 ∧ yo

n,2) · ej ⇀ (yo
,1 ∧ yo

,2) · ej in Lq/2(S;R), (2.17)
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for j = 1,2,3. Furthermore, by the Rellich–Kondrachov Theorem [2, Theorem
6.2], there exists a further subsequence, not relabeled, such that

yo
n→ yo in C0(S;R3), (2.18)

which, together with (2.17), impliesV (yn)→ V (y).
The fundamental estimate for dealing with the volume functional is the fol-

lowing isoperimetric inequality, whose proof can be found in [24, 26]. With an
abuse of notation, with the same symbolV we shall denote the volume functional
defined for deformations ofH , as in (2.9), and the volume functional defined for
parametric surfaces inC0(S;R3) ∩W 1,2(S;R3).

PROPOSITION 2.1.Let f, g ∈ W 1,2(S;R3)∩C0(S;R3) be two parametrizations
of two 3-dimensional surfaces such thatf = g on ∂S. Then,∣∣V (f)− V (g)∣∣2 6 1

36π

∣∣L(f)+ L(g)∣∣3. (2.19)

For the proof of the existence of minimizers of the total energyEh, we shall
need the following lemmas, which are applications of the isoperimetric inequality.

LEMMA 2.2. Let t > 0 and letf ∈ W 1,3(S;R3) ∩ C0(S;R3) be such that

f = Ae1X1+ Ae2X2+ Ae3t, (X1, X2) ∈ ∂S, (2.20)

with A a given3× 3 matrix. Then, denoting by|S| the area ofS, we have

|V (f)| 6 |S|
1/2

12
√
π
‖∇f‖3

L3(S)
+ c, (2.21)

with

c =
√

2

6
√
π
|S|3/2|Ae1 ∧ Ae2|3/2+ t

3
|S||detA|.

Proof. By the triangle inequality, the isoperimetric inequality (2.19), Jensen’s
inequality [14, Theorem 2.2] and the inequality (2.15), we obtain∣∣V (f)∣∣ 6 ∣∣V (f)− V (g)∣∣+ ∣∣V (g)∣∣ 6 1

6
√
π

∣∣L(f)+ L(g)∣∣3/2+ ∣∣V (g)∣∣
6
√

2

6
√
π

(
L(f)3/2+ L(g)3/2)+ ∣∣V (g)∣∣

6 1

12
√
π
‖∇f‖3

L2(S)
+
√

2

6
√
π
L(g)3/2+ ∣∣V (g)∣∣. (2.22)

Hence, in view of the imbedding ofL3 intoL2 [2, Theorem 2.8], we have

|V (f)| 6 |S|
1/2

12
√
π
‖∇f‖3

L3(S)
+
√

2

6
√
π
L(g)3/2+ ∣∣V (g)∣∣. (2.23)



406 R.D. JAMES AND R. RIZZONI

We now choose

g= Ae1X1+ Ae2X2+ Ae3t. (2.24)

Simple calculations give (2.21). 2
We now extend the bound given in Lemma 2.2 to the interior of the film.

LEMMA 2.3. For anyy ∈ H we have

∣∣V (y)∣∣ 6 ( |S|1/2
12
√
πh
+ 1

3
√

3

)
‖∇y‖3

L3(�h)
+
√

2

6
√
π
|S|3/2|Ae1 ∧ Ae2|3/2

+ h
2
|S||detA|. (2.25)

Proof.Fix t in (0, h) and letyt be the trace ofy on the surfaceS × {t}. Thenyt

satisfies the hypothesis of Lemma 2.2 and thus it satisfies the inequality (2.21). In
Appendix A, we prove that

V (y) = V (yt)+ 2

3
t|S|detA −

∫
S×(0,t )

det∇y dX, (2.26)

which, in view of (2.21), gives

∣∣V (y)∣∣ 6 |S|1/2
12
√
π
‖∇yt‖3

L3(S)
+
√

2

6
√
π
|S|3/2|Ae1 ∧ Ae2|3/2

+ t|S||detA| +
∫
S×(0,t )

|det∇y|dX. (2.27)

Adding |y,3(X1, X2, t)|2 to the argument of the square root in the first term of the
right-hand side, and using the positivity of the integrand of the last term, we get

∣∣V (y)∣∣ 6 |S|1/2
12
√
π

∫
S×{t}

(
3∑
i=1

∣∣y,i(X1, X2, t)
∣∣2)3/2

dX1 dX2

+
√

2

6
√
π
|S|3/2|Ae1 ∧ Ae2|3/2+ t|S||detA|

+
∫
�h
|det∇y|dX. (2.28)

Integrating overt ∈ (0, h) and applying Fubini’s theorem, we find

h
∣∣V (y)∣∣ 6 |S|1/2

12
√
π
‖∇y‖3

L3(�h)
+
√

2

6
√
π
h|S|3/2|Ae1 ∧ Ae2|3/2

+ h
2

2
|S||detA| + h

∫
�h
|det∇y|dX. (2.29)
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We now divide byh and use the inequality

|det∇y| 6 1

3
√

3
|∇y|3, (2.30)

[23, Section 2.3], to obtain the result. 2
The following proposition establishes, for suitable values of the pressure and

for a fixed value of the thicknessh, the existence of minimizers of the total energy
functional in the class of deformationsH . In the argument, the temperatureθ shall
be held fixed, so we suppress it from the notation.

PROPOSITION 2.4.Assume thatinfy∈H Eh(y) <∞. If

ph 6 c1

/ |S|1/2
12
√
πh
+ 1

3
√

3
=: phcr , (2.31)

there exists at least a minimizer ofEh in H .

Proof. From the growth assumptions (2.4) and from the bound on the volume
(2.25), we obtain

Eh(y) > κ‖∇2y‖2
L2(�h)

+
(
c1 − ph

( |S|1/2
12
√
πh
+ 1

3
√

3

))
‖∇y‖3

L3(�h)

− c2|�h| −
√

2

6
√
π
|S|3/2|Ae1 ∧ Ae2|3/2− h2|S||detA|. (2.32)

In view of the assumption (2.31), the second term on the right-hand side is non-
negative and thus we can write

Eh(y) > κ‖∇2y‖2
L2(�h)

− c2|�h| −
√

2

6
√
π
|S|3/2|Ae1 ∧ Ae2|3/2

− h
2
|S||detA|. (2.33)

According to the generalized Poincaré inequality, [22, Theorem 3.6.4], there exist
two positive constantsC1 andC2 such that

‖y‖p
Lp(�h)

+ ‖∇y‖p
Lp(�h)

6 C1‖∇2y‖p
Lp(�h)

+ C2 (2.34)

for eachp in [1,∞) and for eachy in H . Combining (2.33) and (2.34) written for
p = 2, we obtain

Eh(y) > min

{
κ

2
; κ

2C1

}
‖y‖2

W2,2(�h)
− C2− c2

∣∣�h∣∣
−
√

2

6
√
π
|S|3/2|Ae1 ∧ Ae2|3/2− h2|S||detA|. (2.35)
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Let now yn be a minimizing sequence forEh. Because the infimum ofEh is
bounded by hypothesis, from the bound (2.35) it follows that the sequenceyn
is uniformly bounded inW 2,2(�h;R3). We can then extract a subsequence, not
relabeled, such that

yn ⇀ ȳ in W 2,2
(
�h;R3

)
. (2.36)

The limit ȳ belongs toH . Indeed, by the compact embedding ofW 2,2(�h;R3) into
C0(�̄h;R3), [2, Theorem 6.2], we can extract a further subsequence uniformly
converging toȳ in the closure of�h, �̄h. Therefore,ȳ satisfies the boundary
condition (2.2). Using the convexity of the second gradient term and the continuity
of φ, together with the bound (2.4), we also have

lim inf
n→∞

∫
�h

(
φ(∇yn)+ κ

∣∣∇2yn
∣∣2) dX >

∫
�h

(
φ(∇ȳ)+ κ∣∣∇2ȳ

∣∣2) dX, (2.37)

[14, Theorem 3.4]. From (2.37) and from the weak continuity of the volume func-
tional inW 2,2(�h;R3), it follows that the energy functionalEh is weakly lower
semicontinuous inH . Therefore,̄y is a minimizer. 2

If ph > phcr and the lower bound of the strain energy density (2.4) holds with
equality, then the infimum of the energy inW 2,2(�h;R3) is expected to be−∞,
corresponding to rupture of the film. We also note that, since the constant which
multiplies‖∇y‖L3 in the bound on the volume (2.25) is not optimal,phcr provides
only a lower bound for the pressure at rupture. The presence of the thicknessh and
of the area|S| of the film in the expression ofphcr introduces a scale effect. Indeed,
if we keep|S| fixed and leth increase, i.e., if we consider a thicker and thicker film,
then, as the physical intuition suggests,phcr increases and thus the film can sustain
larger and larger value of the pressure. On the other hand, if we keeph fixed and
increase|S|, i.e., if we consider a film of fixed thickness which becomes wider and
wider, thenphcr decreases and thus the film sustains smaller and smaller values of
the pressure.

Another interesting point is that, to get the lower bound on the energy (2.35) and
thus to guarantee the existence of a continuous minimizer, not only the condition on
the pressure is needed, but it also necessary that the exponent which appears in the
growth condition (2.4) be not less than three. This issue arises from the competition
between the loading potential, which, as it can be seen from (2.25), is dominated
by the cube of‖∇y‖L3(�h), and the strain energy. In this respect, an analogy can be
established with the phenomenon of cavitation [4].

3. Thin Film Theory

In the previous section, for each value of thicknessh, we proved the existence of
at least one minimizer, sayyh, of the total energy functionalEh in the class of
admissible deformationsH . We now consider the behavior of the minimizersyh
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ash → 0+. The approach which we follow was introduced by Bhattacharya and
James in [11] for a film whose total energy is given by (2.7) withph = 0. In the
following, we adopt the notation∇p for the gradient in the plane of the film:

∇pyh := yh,1⊗ e1+ yh,2⊗ e2, (3.1)

and the notationyh,1 |yh,2| yh,3 for yh,1 ⊗ e1 + yh,2 ⊗ e2 + yh,3 ⊗ e3. We begin by
considering an equivalent minimization problem set on a cylindrical domain of
fixed height. This can be obtained through the change of variables

Z1 = X1, Z2 = X2, Z3 = X3

h
, (3.2)

which maps the reference configuration of the film,�h, into the configuration

�1 :=
{
(Z1, Z2, Z3) ∈ R3: (Z1, Z2) ∈ S, Z3 ∈ (0,1)

}
. (3.3)

Then, ify ∈ H is an admissible deformation of the film, the rescaled deformation

y = y
(
X(Z)

) =: ỹ(Z), (3.4)

belongs to the set

H1 :=
{
ỹ ∈ W 2,2(�1;R3)|ỹ = (Ae1|Ae1|hAe3)Z, Z ∈ ∂S × (0,1)}. (3.5)

We accordingly rescale the total energy by setting

Eh1(ỹ) :=
1

h
Eh(ỹ) =

∫
�1

κ
(|∇2

pỹ|2+ 2

h2
|∇pỹ,3|2+ 1

h4
|ỹ,33|2

)
dZ

+
∫
�1

φ

(
ỹ,1|ỹ,2|1

h
ỹ,3

)
dZ − p

h

3h

∫
S×{0}

ỹ · (ỹ,1 ∧ ỹ,2)dZ1 dZ2.

(3.6)

The existence of minimizers ofEh1 in H1 follows from the existence of minimizers
of Eh in H (Proposition 2.4), and from the fact that ifyh is a minimizer ofEh in
H , thenỹh is a minimizer ofEh1 in H1. Note also that because

‖∇y‖3
L3(�h)

= h
∥∥∥∥(ỹ,1|ỹ,2|1h ỹ,3)

∥∥∥∥3

L3(�1)

, (3.7)

then, by (2.25) anỹy ∈ H1 satisfies the inequality∣∣V (ỹ)∣∣ 6 ( |S|1/2
12
√
π
+ h

3
√

3

)∥∥∥∥(ỹ,1|ỹ,2|1h ỹ,3)

∥∥∥∥3

L3(�h1)

+ D̃, (3.8)

with

D̃ :=
√

2

6
√
π
|S|3/2|Ae1 ∧ Ae2|3/2+ h2|S||detA|.
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For the asymptotic approach, it is also essential that the magnitude of the applied
pressure be scaled appropriately in the thickness. From (3.6) (see also (2.31)), it
turns out that the right order of magnitude isph = Ph, whereP is a constant
independent ofh.

THEOREM 3.1. Assume that

P <
12
√
πc1

|S|1/2 . (3.9)

Then, the family of minimizers̃yh ∈ H1 has a subsequence, not relabeled, such
that

∇2
pỹh→ ∇2ŷ,

1

h
∇pỹh,3→ ∇b̂,

1

h2
ỹh,33→ 0

 in L2, (3.10)

whereŷ ∈ W 2,2(S;R3) and b̂ ∈ W 1,2(S;R3) are vector fields independent ofZ3.

The couple(ŷ, b̂) minimizes the limit energy

E(y,b) :=
∫
S

{
κ
{|∇2y|2 + 2|∇b|2}+ φ(y,1|y,2|b)
− P

3
y · (y,1 ∧ y,2)

}
dZ1 dZ2, (3.11)

among all couples(y,b) ∈ W 2,2(S;R3) × W 1,2(S;R3) satisfying the boundary
conditions

y = Ae1Z1+ Ae2Z2,

b = Ae3

}
(Z1, Z2) ∈ ∂S. (3.12)

Proof. The lower bound in (2.4) and the inequality (3.8) give for the rescaled
energy the following lower bound :

Eh1
(
ỹh
)
> κ

{∥∥∇2
pỹh

∥∥2
L2(�1)

+ 2

∥∥∥∥1

h
∇pỹh,3

∥∥∥∥2

L2(�1)

+
∥∥∥∥ 1

h2
ỹh,33

∥∥∥∥2

L2(�1)

}
+
{
c1− P

( |S|1/2
12
√
π
+ h

3
√

3

)}∥∥∥∥(ỹ,1|ỹ,2|1
h

ỹ,3

)∥∥∥∥3

L3(�h1)

− D̃ + c2|�1|, (3.13)

from which, in view of the assumption (3.9), we get

Eh1
(
ỹh
)
> κ

{∥∥∥∥∇2
pỹh

∥∥∥∥2

L2(�1)

+ 2

∥∥∥∥1

h
∇pỹh,3

∥∥∥∥2

L2(�1)

+
∥∥∥∥ 1

h2
ỹh,33

∥∥∥∥2

L2(�1)

}
−D + c2|�1|, (3.14)
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for h sufficiently small, with

D =
√

2

6
√
π
|S|3/2|Ae1 ∧ Ae2|3/2.

Becauseỹh is a minimizer, we can test it against the affine deformationy =
(Ae1|Ae2|hAe3)Z of H1 to obtain the upper bound

Eh1(ỹ
h) 6 |�1|φ

(
Ae1|Ae2|Ae3

)
. (3.15)

Combining (3.14) with (3.15) and settingc := |�1|φ(Ae1|Ae2|Ae3)/κ + D, we
get ∥∥∇2

pỹh
∥∥2
L2(�1)

6 c, (3.16)

2

∥∥∥∥1

h
∇pỹh,3

∥∥∥∥2

L2(�1)

6 c, (3.17)∥∥∥∥ 1

h2
ỹh,33

∥∥∥∥2

L2(�1)

6 c. (3.18)

Because we assumeh 6 1, we also have

2
∥∥∇pỹh,3

∥∥2
L2(�1)

6 c, (3.19)∥∥ ỹh,33

∥∥2
L2(�1)

6 c. (3.20)

By (3.16), (3.19), and (3.20), we see that∥∥∇2ỹh
∥∥2
L2(�1)

6 c, (3.21)

and this bound, together with the Poincaré inequality (2.34) written forỹh and
p = 2, gives in turn∥∥ỹh

∥∥2
L2(�1)

+ ∥∥∇ỹh
∥∥2
L2(�1)

6 C1c + C2. (3.22)

Therefore, the family of minimizers̃yh is uniformly bounded inW 2,2, and thus it
contains a subsequence, not relabed, such that

ỹh ⇀ ŷ in W 2,2(�1;R3). (3.23)

In view of (3.17) and (3.18), we also have∥∥∥∥∇(1

h
ỹh,3

)∥∥∥∥2

L2(�1)

=
∥∥∥∥1

h
∇pỹh,3

∥∥∥∥2

L2(�1)

+
∥∥∥∥ 1

h2
ỹh,33

∥∥∥∥2

L2(�1)

6 3

2
c, (3.24)

which, together with the Poincaré inequality written in the form∫
�1

∣∣∣∣1h ỹh,3

∣∣∣∣2dZ 6 C1

{∫
�1

∣∣∣∣1h∇ỹh,3

∣∣∣∣2dZ +
∣∣∣∣∫
∂S×(0,1)

1

h
ỹh,3 da

∣∣∣∣2} (3.25)
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[13, Theorem 6.1-8], implies∥∥∥∥1

h
ỹh,3

∥∥∥∥2

L2(�1)

6 C1

[
3

2
c + |∂S|2|Ae3|2

]
, (3.26)

where|∂S| denotes the length of the boundary curve∂S of S. In view of (3.24)
and (3.26), we conclude that(1/h)ỹh,3 is uniformly bounded inW 1,2(�1;R3).

Therefore, there exists a sequence, not relabeled, such that

1

h
ỹh,3 ⇀ b̂ inW 1,2(�1;R3), (3.27)

and thus, up to a further subsequence,ỹh,3 converges to zero almost everywhere
in �1. Because�1 is convex in theZ3 direction, the limitŷ is independent ofZ3.

Note also that, by (3.23) and by Rellich’s Theorem, there exists a subsequence
of ỹh, not relabeled, uniformly converging tôy in the closure of�1. Therefore,ŷ
satisfies the boundary condition (3.12)1. From (3.18) we also get thatỹh,33 converges
to zero almost everywhere in�1, and again from the convexity of�1 in theZ3

direction, the limitb̂ turns out to be independent ofZ3. Finally, by the trace theorem
[17, 4.3],b̂ satisfies the boundary condition (3.12)2. We now write

∇2
pỹh = ∇2

pŷ+ ehp, ehp ⇀ 0 inL2, (3.28)

1

h
∇pỹh,3 = ∇b̂+ eh3, eh3 ⇀ 0 inL2. (3.29)

Let n 7→ b̂n ∈ C∞(S) be an approximating smooth sequence strongly converg-
ing to b̂ in W 1,2(�1;R3) such thatb̂n(Z1, Z2) = Ae3 for (Z1, Z2) ∈ ∂S and
b̂n,3(Z) = 0 for eachZ in �1. Becauseỹh is a minimizer ofEh1 , we can test
it against the deformatioñyhn := ŷ + hb̂nZ3, which, in virtue of the properties
enjoyed byb̂n, belongs to the setH1. Using (3.28) and (3.29), we get∫

�1

κ

{∣∣∇2
pŷ
∣∣2+ ∣∣ehp∣∣2+ 2∇2

pŷ · ehp + 2
(∣∣∇b̂

∣∣2+ ∣∣eh3∣∣2+ 2∇b̂ · eh3
)

+
∣∣∣∣ 1

h2
ỹh,33

∣∣∣∣2}+ φ(ỹh,1
∣∣ỹh,2∣∣1h ỹh,3

)
dZ

− P
3

∫
S×{0}

ỹh · (ỹh,1 ∧ ỹh,2
)
dZ1 dZ2

6
∫
�1

κ
{∣∣∇2

pŷ
∣∣2+ h2Z2

3

∣∣∇2
pb̂n

∣∣2+ 2h2Z2
3∇2

pŷ · ∇2b̂n + 2
∣∣∇b̂n

∣∣2}
+φ(ŷ,1+ hZ3b̂n,1|ŷ,2+ hZ3b̂n,2|b̂n

)
dZ

−P
3

∫
S

ŷ · (ŷ,1 ∧ ŷ,2
)

dZ1 dZ2. (3.30)
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After simplifying the first term on both sides, fixn and take the lim sup ash→ 0+.
Becausêbn is smooth, we can simplify the second and the third term on the right-
hand side. Moreover, in view of (3.28) and (3.29), the third and sixth term on
the left-hand side converge to zero. Using the upper bound in (2.4), the Lebesgue
theorem and the weak continuity of the volume functional inW 2,2, we reduce to

lim sup
h→0+

∫
�1

κ

{
|ehp|2+ 2|eh3|2+

∣∣∣∣ 1

h2
ỹh,33

∣∣∣∣2}dZ

6
∫
�1

2κ
{|∇b̂n|2− |∇b̂|2}dZ

+
∫
�1

(
φ
(
ŷ,1|ŷ,2|b̂n

)− φ(ŷ,1|ŷ,2|b̂))dZ. (3.31)

Let nown → ∞ and use again the upper bound in (2.4). Then the “sup” can be
dropped in (3.31) and we have improved the convergence in (3.28) and (3.29) to
strong. This also shows that the limit energy is given by (3.11) evaluated at(ŷ, b̂).

To establish the minimum principle, we choose the deformationŷh := ŷ(Z1,

Z2) + hb̂(Z1, Z2)Z3 as a test function, witĥy andb̂ ∈ C∞(S;R3) satisfying the
boundary conditions (3.12). Repeating the argument from (3.30) to (2.30) gives the
minimum principle for smooth competitors. The minimum principle for competi-
tors inW 2,2(S;R3)×W 1,2(S;R3) follows by approximation. 2

The limit energy (3.11) turns out to depend upon two independent vector fields,
ŷ andb̂, which describe the deformation of the middle surface of the filmS, and
the deformation in the direction perpendicular to the film, respectively. Therefore,
Theorem 3.1 provides a 2-dimensional Cosserat theory, withb̂ the Cosserat direc-
tor. The energy (3.11) is a membrane energy supplemented by an interfacial energy
term (the term multiplyingκ). The latter has a similar form as a bending energy,
but its physical origins are the same as the analogous term in the 3-dimensional en-
ergy (2.7). That is, it is intended to model energy associated with lattice curvature,
arising from lattice radii of curvature that are comparable to atomic spacing, which
occur in the present case when there are interfaces between variants or phases.
Thusκ should not be considered as a classical bending modulus.

Because of this interpretation,κ is expected to be much smaller than a typical
modulus that describes the growth ofφ away from its energy wells. It is therefore
known from many studies that the presence ofκ merely smooths interfaces, and
this could also be verified by an elementary0-convergence argument. Hence, in
the following section we drop the term multiplyingκ and study the pressurized
membrane energy alone.
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4. Martensitic Thin Films

Martensitic crystals display a diffusionless solid-to-solid phase transformation be-
tween a symmetric high temperature phase (austenite) and different symmetry-
related variants of a low temperature phase (martensite). For temperatures above
the transformation temperatureθcr , the austenite phase is the stable phase, while for
temperatures belowθcr , the martensite is stable. At the transformation temperature
θcr , both phases are stable. To model the change of phase, we follow Ball and
James [7, 8] in introducing a nonconvex strain energy densityφ with energy wells
at the matrices

A := SO(3), (4.1)

for the austenite phase, and

M := {F ∈ M3×3 | ∃R ∈ SO(3), ∃U ∈ {U1,U2, . . .Un}: F = RU
}
, (4.2)

for the martensite variants.SO(3) is the set of all proper rotations, andUi , i =
1,2, . . . , N, are distinct positive definite symmetric matrices representing the
transformation strains of the variants of martensite from the austenite, taken as
reference configuration; they can be determined by measurements of the lattice pa-
rameters of the material. For the austenite and the martensite phases, we introduce
nonconvex strain energy densitiesφa, φm,which are continuous non negative scalar
functions defined overM3×3 and such thatφa is minimized onA and the minimum
value is zero, whileφm is minimized onM and the minimum value is zero. The
energiesφa, φm, are also supposed to satisfy the following growth hypotheses:
there exist positive constantsca1, ca2, ca3, ca4, cm1, cm2, cm3, cm4 and 3< q < 6
such that

ca1|F|3− ca2 6 φa(F) 6 ca3|F|q − ca4, (4.3)

cm1|F|3− cm2 6 φm(F) 6 cm3|F|q − cm4, (4.4)

for eachF ∈ M3×3. These hypotheses are consistent with the growth assumptions
(2.4).

Introducing aχ ∈ C0(M3×3; [0,1]) such that

χ(F) = 0 ⇔ F ∈ A, (4.5)

χ(F) = 1 ⇔ F ∈M, (4.6)

we assume for the strain energy densityφ the simple form

φ(F; θ) = χ(F)(φm(F)+ lm(θ))+ (1− χ(F))(φa(F)+ la(θ)). (4.7)

The expression (4.7) is a simple but realistic way of modeling the exchange of
stability between austenite and martensite. The termslm(θ) andla(θ),which are re-
lated to the latent heat of transformation, are positive material constants depending
continuously upon the temperatureθ and such that

la(θ) > lm(θ) if θ < θcr ,
la(θ) < lm(θ) if θ > θcr ,
la(θcr ) = lm(θcr ).

 (4.8)
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In view of the definition (4.7) and of the assumptions (4.1), (4.2),(4.5), (4.6), and
(4.8), φ has a multi-well structure, the termslm(θ), la(θ) corresponding to the
heights of the martensite and of the austenite wells, respectively. In particular, if
θ < θcr , φ(·; θ) attains the absolute minimum at all matrices belonging to the set
of martensite wellsM. Indeed, becauseχ has values in[0,1] and becauseφa and
φm are positive, we have

inf
F∈M3×3

φ(F; θ) > min
{
la(θ); lm(θ)

}
. (4.9)

If θ < θcr , the right-hand side coincides withlm(θ), and sinceφ(F; θ) = lm(θ)

for all F ∈ M, thenφ is minimized atM. Analogously, it can be shown that if
θ > θcr , thenφ(·; θ) is minimized atA andφ(·; θcr ) is minimized atA ∪M.

Experiments indicate that, at equilibrium, the deformation gradient stays very
close to the wells, even though it could not be precisely at the minima, because
of the presence of the term−PV (y). For many martensitic materials with “hard
moduli”, this suggests that the equilibrium microstructures can be approximately
described by deformations whose gradients satisfy the constraint of lying on the
wells. The idea of this approach, called theconstrained theory of martensiteand
first proposed in [6], is to study the asymptotic behavior of the sequence of total
energy functionals

En(y,b) :=
∫
S

(
φn
(
y,1|y,2|b

)− P
3

y · (y,1 ∧ y,2)
)

dZ1 dZ2, (4.10)

asn→∞, with

φn(F; θ) := χ(F)
(
nφm(F)+ lm(θ)

)+ (1− χ(F))(nφa(F)+ la(θ)). (4.11)

The interfacial energy termκ{|∇2
py|2 + 2|∇pb|2} has been neglected in (4.10).

Indeed, if the film is large enough, the elastic energy is much larger than the
interfacial energy. In this respect, each element of the sequence (4.10) provides
a reasonable approximation of the expression (3.11) of the energy of a very thin
film with strain energy densityφn growing more and more steeply away from the
wells. Each element of the sequence (4.10) is assumed to be defined on the set of
functions

K := {(y,b) ∈ W 1,q(S;R3)× Lq(S;R3)|y = Ae1Z1+ Ae2Z2,

b = Ae3, (Z1, Z2) ∈ ∂S
}
, (4.12)

whereq is the exponent which appears in (4.3), (4.4). This set turns out to be
the “natural” domain of the energy functionals in (4.10). Indeed, in view of the
upper bounds in (4.3), (4.4) and of the bound on the volume functional (2.21), each
couple(y,b) in K has energyEn(y,b) finite. As shown by the following theorem,
the result of the constrained theory is a new simplified variational problem whose
solutions are searched among fine mixtures; these are mathematically described
by families of Young measures with supports contained in the setA ∪ M. We
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recall the essential property of the Young measure [5]. LetC0(M
3×3;R) denote

the continuous functions onM3×3 with compact support. Given a sequenceFn ∈
L1(S;M3×3), we may find a family of probability measures(νZ),Z ∈ S and a
subsequence ofFn, not relabeled, such that, for anyψ ∈ C0(M

3×3;R),

ψ
(
Fn
) ∗
⇀

∫
M3×3

ψ(F)dνZ(F) in L∞(S;R). (4.13)

Young measures are useful tools for the analysis of the microstructure [7, 8]. The
family of measures(νZ),Z ∈ S characterizes the local limit distribution of the
valuesFn asn→ ∞. If the sequenceFn is thought of as representing a sequence
(yn,1|yn2|bn) and if the measuresνZ are supported on the setM ∪ A, then theνZ

turn out to describe the local proportions of phases and the microstructure of the
material.

THEOREM 4.1. Assume that there exists a constantC, independent ofn, such
that

inf
(y,b)∈K

En(y,b) 6 C < +∞, (4.14)

and a sequence(yn,bn) in K such that

En
(
yn,bn

)
6 inf

(y,b)∈K
En(y,b)+ 1

n
. (4.15)

Then, there exists a subsequence, not relabeled, such that

yn ⇀ ŷ in W 1,3(S;R3), (4.16)

bn ⇀ b̂ in L3(S;R3), (4.17)

and the family of Young measures,(ν̂Z),Z ∈ S, generated by the sequence
(yn,1|yn,2|bn) is such that the couple(ν̂Z, ŷ) is a minimizer of the limit energy

e(νZ; y) :=
∫
S

{(
lm(θ)− la(θ)

) ∫
M

dνZ(F)− P
3

y · (y,1 ∧ y,2)
}

dZ1 dZ2

+ la(θ)|S|, (4.18)

among all couples(νZ, y) such that(νZ),Z ∈ S, is a family of Young measures
with supports in the setM ∪A andy ∈ W 1,3(S;R3) satisfies the constraint

y,α(Z) =
∫

M∪A
Feα dνZ(F), α = 1,2, (4.19)

at almost everyZ ∈ S, and the boundary condition

y = Ae1Z1+ Ae2Z2, Z ∈ ∂S. (4.20)
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REMARKS. We note that (4.14) places a restriction on the boundary conditions
in (4.12). This could be quantified, but we don’t do it here. In the next section, we
give an example (the tunnel) in which (4.14) holds with the boundary conditions
(5.1). In Theorem 4.1, condition (4.15) is to allow for the possibility of nonattain-
ment of the minimum. Also, Young measure refers in this paper to Young measures
arising from a sequence that is bounded inK.

Proof. In view of the hypotheses (4.14) and (4.15) and recalling thatn > 1, we
have

En
(
yn,bn

)
6 C + 1. (4.21)

Substituting toEn its expression (4.10) withφn given by (4.11) and dividing byn,
we obtain∫

S

{
χ
(
yn,1|yn,2|bn

)
φm(yn,1

∣∣yn,2∣∣bn)+ (1− χ(yn,1∣∣yn,2∣∣bn))φa(yn,1∣∣yn,2∣∣bn)
+ 1

n

[
χ
(
yn,1
∣∣yn,2∣∣bn)lm(θ)+ (1− χ(yn,1∣∣yn,2∣∣bn))la(θ)]}dZ1 dZ2

−P
n
V
(
yn
)
6 C + 1

n
. (4.22)

Now we use the bound on the volume functional (2.21), written fort = 0, and the
lower bounds in (4.3) and (4.4) to get∫

S

{[
cm1χ

(
yn,1|yn,2|bn

)+ ca1
(
1− χ(yn,1|yn,2|bn))]∣∣(yn,1∣∣yn,2|bn)∣∣3

−[cm2χ
(
yn,1|yn,2|bn

)+ ca2
(
1− χ(yn,1|yn,2|bn))]

+1

n

[
χ
(
yn,1|yn,2|bn

)
lm(θ)+

(
1− χ(yn,1|yn,2|bn))la(θ)]}dZ1 dZ2

−P
n

[ |S|1/2
12
√
π

∥∥∇yn
∥∥3
L3(S)
+ c

]
6 C + 1

n
. (4.23)

Using the inequality|(yn,1|yn,2|bn)|3 > |∇yn|3+|bn|3 and recalling that 06 χ 6 1,
we also have(

min{ca1; cm1} − P |S|
1/2

12n
√
π

)∥∥∇yn
∥∥3
L3(S)
+min{ca1; cm1}

∥∥∇bn
∥∥3
L3(S)

+|S|
(

1

n
min

{
lm(θ); la(θ)

}−max
{
cm2; ca2

})− P
n
c 6 C + 1

n
. (4.24)

Therefore, forn sufficiently large, there exists a constantC, independent ofn, such
that ∥∥∇yn

∥∥3
L3(S)
+ ∥∥∇bn

∥∥3
L3(S)

6 C. (4.25)
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By the weak compactness in Sobolev’s spaces, it then follows that

∇yn ⇀ ∇ŷ in L3
(
S;R3

)
, (4.26)

bn ⇀ b̂ in L3
(
S;R3

)
, (4.27)

up to a subsequence. In view of (4.26) and of the Poincaré inequality (2.34) written
for yn andp = 3, yn is uniformly bounded inW 1,3(S;R3), and thus (4.16) holds up
to a subsequence. Besides, by Rellich’s theorem, there exists a further subsequence,
not relabeled, such that

yn→ ŷ in C0
(
S;R3

)
. (4.28)

Therefore, the limit̂y satisfies the boundary condition (4.20). From (4.26) and from
the bound on the volume (2.21), we also get

1

n
V
(
yn
)→ 0, (4.29)

which, in view of (4.21) and of the positivity ofφm, φa, χ and 1−χ, in turn implies∫
S

χ
(
yn,1|yn,2|bn

)
φm
(
yn,1|yn,2|bn

)
dZ1 dZ2→ 0, (4.30)∫

S

(
1− χ(yn,1|yn,2|bn)

)
φa
(
yn,1|yn,2|bn

)
dZ1 dZ2→ 0. (4.31)

Therefore, by the fundamental property of the Young measures (4.13), there ex-
ists another subsequence of(yn,1|yn,2|bn), generating a family of Young measures
(ν̂Z),Z ∈ S, such that∫

S

∫
M3×3

χ(F)φm(F)dν̂Z(F)dZ1 dZ2 = 0, (4.32)∫
S

∫
M3×3

(1− χ(F))φa(F)dν̂Z(F)dZ1 dZ2 = 0. (4.33)

These imply that the support ofν̂Z is contained inA∪M for almost everyZ ∈ S [8,
Lemma 3.3]. Using (4.30), (4.31), we now construct a further “rare” subsequence,
not relabeled, such that

C + 1

n2
>
∫
S

{
χ
(
yn,1|yn,2|bn

)
φm
(
yn,1|yn,2|bn

)
+ (1− χ(yn,1|yn,2|bn))φa(yn,1|yn,2|bn)}dZ1 dZ2. (4.34)

This subsequence has the same Young measure,(ν̂Z),Z ∈ S, but it is such that

n

∫
S

{
χ
(
yn,1|yn,2|bn

)
φm
(
yn,1|yn,2|bn

)
+ (1− χ(yn,1|yn,2|bn))φa(yn,1|yn,2|bn)}dZ1 dZ2→ 0. (4.35)
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Note that by (4.26), (4.28) and the weak continuity of minors [3], we have∫
S

yn · (yn,1 ∧ yn,2
)
dZ1 dZ2→

∫
S

ŷ · (ŷ,1 ∧ ŷ,2
)
dZ1 dZ2, (4.36)

and this, together with (4.30), (4.31) and the fact that the support of(ν̂Z),Z ∈ S
is contained inA ∪ M, implies that the limit ofEn(yn,bn) is given by (4.18)
evaluated at(ŷ, ν̂Z). To establish the minimum principle, we consider a family
of Young measures(νZ),Z ∈ S, supported onA ∪M, arising from a sequence
(ȳn,1|ȳn,2|b̄n), with (ȳn, b̄n) ∈ K, such that (without loss of generality)

∇ȳn ⇀ y in L3(S), (4.37)

b̄n ⇀ b in L3(S), (4.38)

n

∫
S

{
χ
(
ȳn,1|ȳn,2|b̄n

)
φm
(
ȳn,1|ȳn,2|b̄n

)
+ (1− χ(ȳn,1|ȳn,2|b̄n))φa(ȳn,1|ȳn,2|b̄n)}dZ1 dZ2→ 0. (4.39)

From (4.15) we find

En(yn,bn) =
∫
S

{
χ
(
yn,1|yn,2|bn

)[
nφm

(
yn,1|yn,2|bn

)+ lm(θ)]
+ (1− χ(yn,1|yn,2|bn))[nφa(yn,1|yn,2|bn)+ la(θ)]
− P

3
yn · (yn,1 ∧ yn,2)

}
dZ1 dZ2

6 inf
(y,b)∈K

En(y,b)+ 1

n
6 En(ȳn, b̄n)+ 1

n

=
∫
S

{
χ
(
ȳn,1|ȳn,2|b̄n

)[
nφm

(
ȳn,1|ȳn,2|b̄n

)+ lm(θ)]
+ (1− χ(ȳn,1|ȳn,2|b̄n))[nφa(ȳn,1|ȳn,2|b̄n)+ la(θ)]
− P

3
ȳn · (ȳn,1 ∧ ȳn,2

)}
dZ1 dZ2+ 1

n
. (4.40)

Taking the limit asn → ∞ and using (4.35), (4.36), (4.37), (4.38) and the weak
continuity of minors, we obtain the minimum principle. 2

According to Theorem 4.1, the behavior of the film is governed by the limit
energy (4.18), defined for couples(νZ; y), where(νZ), Z ∈ S, is a family of Young
measures supported onM ∪ A, and y is a vector field satisfying the boundary
conditions (4.20). The vector fieldy and the measuresνZ are related through the
constraint (4.19). The vector field̂b does not appear explicitly in the expression
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of the limit energy (4.18). However, because the family of Young measures(ν̂Z),

Z ∈ S, is generated by the sequence(yn,1|yn,2|bn), we have

b̂ =
∫

A∪M
Fe3 dν̂Z(F) (4.41)

at almost everyZ ∈ S. The energy (4.18) is much easier to study than the original
energy.

5. Tunnels

Thin film deformations involving gradients only from the martensite and the austen-
ite wells are studied in [10, 11]. A particularly interesting deformation, especially
in connection with the possible applications in the design of microactuators, is
the tunnel deformation, sketched in Figure 2. To illustrate this deformation, we
consider a martensitic film released on the rectangular regionS = (0, l1)× (0, l2),
for which we adopt boundary conditions more general than (4.20). In particular,
we assume{

y(Z1, Z2) = Z1e1+ Z2e2 for Z1 ∈ [0, l1], Z2 = 0, l2,
y(Z1, Z2) · e1 = Z1 for Z1 = 0, l1, Z2 ∈ [0, l2]. (5.1)

These conditions model the situation of a rectangular film attached to the substrate
only along the edges parallel to the direction ofe1. The edges parallel to the di-
rection of e2 are restricted to move on planes perpendicular to the plane of the
film.

To ensure the existence of the tunnel deformation, it is necessary to make suit-
able assumptions on the set of the martensite wellsM [11]. In particular, we
assume that the conditions

e3 · Adj
(
U2− I

)
e3 = 0, (5.2)

trU2− e3 · U2e3 − 2> 0 (5.3)

hold for some symmetric matrixU ∈M. These, in turn, are satisfied if and only if
there exist a rotationQ ∈ SO(3) and a vectoresuch that

(QU− I)e= 0, e · e3 = 0, |e| = 1, (5.4)

n · U2e= 0, wheren = e∧ e3, (5.5)

|Un| > 1, (5.6)

[11, Proposition 5.2]. Condition (5.4) says that an interface between the austenite
and a variant of martensite described byU can be formed in the direction ofe.
Equation (5.5) is a condition of vanishing shear, while the inequality (5.6) says that
the film is stretched in the direction perpendicular to the interface. If we orient the
film so that the two directions ofe and ofn coincide with the directions ofe1 and
of e2, respectively, then the conditions from (5.4) to (5.6) become
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Figure 2. The flat and the tunnel configurations.

QUe1 = e1, (5.7)

e1 · U2e2 = 0. (5.8)

|Ue2| > 1. (5.9)

In the the constrained theory, the tunnel deformation is described by the sequence
(yn,bn) with yn the sequence of cylindrical deformations

yn(Z1, Z2) = Z1e1+ û(Z2)e2 + v̂(Z2)e3, (5.10)

with

û(Z2) := |Ue2|
∫ Z2

0
cos

(
α − 2α

l2
t

)
dt, (5.11)

v̂(Z2) := |Ue2|
∫ Z2

0
sin

(
α − 2α

l2
t

)
dt, (5.12)

and withα the solution in(0,2π) to the equation

sinα = α

|Ue2| . (5.13)

The sequence of Cosserat directorsbn is given byR(Z2)RQUe3,R(Z2) and R
being the rotation matrices

R(Z2) := e1⊗ e1+ cos

(
α − 2α

l2
Z2

)
[e2 ⊗ e2 + e3⊗ e3]

+ sin

(
α − 2α

l2
Z2

)
[−e2⊗ e3+ e3 ⊗ e2], (5.14)

R := e1⊗ e1+ QUe2 · e2

|Ue2| [e2⊗ e2+ e3⊗ e3]

− QUe2 · e3

|Ue2| [−e2 ⊗ e3+ e3⊗ e2]. (5.15)

In the plane(e2,e3), the couple(û, v̂) describes the circular arch of lengthl2|Ue2|,
starting at the point(0,0), ending at(0, l2), and lying in the positive half-plane.
The family of Young measures arising from the sequence(yn,1|yn,2|bn) is simply a
Dirac mass centered atR(Z2)RQU:

νZ = δR(Z2)R̄QU. (5.16)
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It is easy to see that the tunnel deformation is energy minimizing in the constrained
theory whenθ 6 θcr and no pressure is applied under the film. In this case, the total
energy (4.18) reduces to

e(νZ; y) =
∫
S

{(
lm(θ)− la(θ)

) ∫
M

dνZ(F)
}

dZ1 dZ2 + la(θ)|S|, (5.17)

to be minimized among the Young measuresνZ such that

suppνZ ⊂ A if θ > θcr , (5.18)

suppνZ ⊂M if θ < θcr , (5.19)

suppνZ ⊂ A ∪M if θ = θcr , (5.20)

and whose center of mass satisfies the constraint (4.19) and the boundary condi-
tions (5.1). Ifθ 6 θcr , then, in view of (5.19), the couple(νZ; y) given by (5.16)
and (5.10) is minimizing. Ifθ > θcr , then, from (5.18), minimizers involve only the
austenite phase, and therefore the couple(δI ,Z), with δI the Dirac mass centered
at the identityI and arising from a sequence of “flat” deformations, is minimizing.
The reversible, temperature activated change of stability between the tunnel and
the flat configurations, both sketched in Figure 2, makes it possible to employ the
film as an actuator [10, 11].

Let us turn to the caseP 6= 0. Now the total energy (4.18) is the sum of the
bulk energy (5.17) and the free energy of the gas−PV (y), and thus minimizing
deformationsy involve gradients from the wells which maximize the volumeV (y).
In this respect, the tunnel deformation is a good candidate to be a minimizer. In the
next subsection, we prove that the tunnel deformation is a minimizer in certain
ranges of pressure and temperature. In the proof, we restrict ourselves to consider
only cylindrical deformationsy, but we believe that our results also hold under
weaker hypotheses ony.

5.1. CYLINDRICAL DEFORMATIONS

Let us consider deformation(νZ, y) of the constrained theory withνZ independent
of Z1 and withy of the type (5.10). Again we assumeM containing a matrix with
positive strain so that

γ := max
{|Fe2| : F ∈M

}
> 1. (5.21)

We assume the film made by a good “tunnel material”, so that the maximizer
of (5.21) satisfies (5.4) and (5.5). Using the constraint (4.19) and the kinematic
assumption (5.10), we find

u(Z2) =
∫

M

Fe2 · e2 dνZ2(F), (5.22)

v(Z2) =
∫

M

Fe2 · e3 dνZ2(F), (5.23)
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at almost everyZ2 ∈ (0, l2). Besides, each deformation of the type (5.10) automat-
ically satisfies the boundary condition (5.1)2, while (5.1)1 gives

u(0) = v(0) = 0, (5.24)

u(l2) = l2, v(l2) = 0. (5.25)

In view of (5.10), (5.24), and (5.25), the volume of the gas under the film has the
expression

V (y) =
∫ l2

0
u′(Z2)v(Z2)dZ2, (5.26)

where the prime denotes the first derivative. Therefore, the energy (4.18) reduces
to

e(νZ; y) = l1

{(
lm(θ)− la(θ)

)
l2λ̄+ la(θ)l2− P

∫ l2

0
u′(Z2)v(Z2)dZ2

}
=: E(λ̄;u, v), (5.27)

where

λ̄ := 1

l2

∫ l2

0

∫
M

dνZ2(F)dZ2 ∈ [0,1] (5.28)

indicates the average volume fraction of martensite along the direction ofe2. Us-
ing the constraints (5.22), (5.23), the triangle inequality, the definitions (5.21) and
(5.28), and recalling thatνZ2 is a probability measure, we get∫ l2

0

√
(u′)2+ (v′)2 dZ2 6

∫ l2

0

∣∣∣∣∫
M

Fe2 dνZ2

∣∣∣∣dZ2

6
∫ l2

0

∫
M

|Fe2|dνZ2 dZ2 6 l2(γ λ̄+ 1− λ̄). (5.29)

This inequality provides an upper bound on the length of the curve describing
the deformed configuration of the cross-section of the film. Ignoring other pos-
sible compatibility conditions between̄λ and (u, v) arising from the constraints
(5.22), (5.23), we minimize the energy (5.27) with(λ̄;u, v) satisfying the con-
straint (5.29) and the boundary conditions (5.24), (5.25), thereby giving a lower
bound forE(λ̄;u, v). We begin by keepinḡλ fixed and by minimizing over(u, v).
This means that we seek the curve lying in the(e2,e3) plane, joining the origin with
the point(0, l2), having length not greater thanl2(γ λ̄+ 1− λ̄) and enclosing the
largest area. In Appendix 2, we prove that the circular arch of lengthl2(γ λ̄+1−λ̄),
parametrized by the couple(U, V ) with

U(Z2) := (γ λ̄+ 1− λ̄)
∫ Z2

0
cos

(
α − 2α

l2
t

)
dt, (5.30)

V (Z2) := (γ λ̄+ 1− λ̄)
∫ Z2

0
sin

(
α − 2α

l2
t

)
dt, (5.31)
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Figure 3. RadiusR of the cross-section of the tilm versusγ λ̄+ 1− λ̄.

andα the solution in(0,2π) to the equation

sinα = α

(γ λ̄+ 1− λ̄) , (5.32)

encloses the largest area, given by

∫ l2

0
U ′(Z2)V (Z2)dZ2

=


1

2
l2R(γ λ̄+ 1− λ̄)− l2

2

√
R2− l

2
2

4
, for 1< (γ λ̄+ 1− λ̄) 6 π

2
,

1

2
l2R(γ λ̄+ 1− λ̄)+ l2

2

√
R2− l

2
2

4
, for (γ λ̄+ 1− λ̄) > π

2
.

(5.33)

In the last equation,R, which denotes the radius of the arch parametrized by
(U, V ), satisfies the implicit relation

sin

((
γ λ̄+ 1− λ̄) l2

2R

)
= l2

2R
, (5.34)
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Figure 4. Two possible tunnel configurations.

plotted in Figure 3. The presence of the two expression in (5.33) refers to the two
cases shown in Figure 4. Substituting (5.33) into the expression of the total energy
(5.27), we get the lower bound

E(λ̄;u, v) >



l1l2

{(
lm(θ)− la(θ)

)
λ̄+ la(θ)− P2 (γ λ̄+ 1− λ̄)R

+P
2

√
R2− l

2
2

4

}
, for 1< (γ λ̄+ 1− λ̄) 6 π

2
,

l1l2

{(
lm(θ)− la(θ)

)
λ̄+ la(θ)− P2 (γ λ̄+ 1− λ̄)R

−P
2

√
R2− l

2
2

4

}
, for (γ λ̄+ 1− λ̄) > π

2
.

(5.35)

Because the right-hand side turns out to depend only uponλ̄, the bound can
be further improved by minimizing with respect toλ̄. Let λ̄min ∈ [0,1] denote
the minimizer. Now we show that there exists a family of Young measures which
achieves the lower bound (5.35). This family arises from the sequence(yn,1|yn,2|bn)
with

yn(Z1, Z2) = Z1e1+ un(Z2)e2+ vn(Z2)e3, (5.36)

un(Z2) :=
∫ Z2

0
rn(t) cos(βnt + αn)dt, (5.37)

vn(Z2) :=
∫ Z2

0
rn(t) sin(βnt + αn)dt, (5.38)

and withrn the piecewise constant periodic function with periodl2/n such that

rn(t) :=
 γ for p l2

n
6 t 6 p l2

n
+ λ̄min

l2
n
,

1 for p l2
n
+ λ̄min

l2
n
< t 6 (p + 1) l2

n
,

(5.39)

p being an integer between 0 andn − 1. The sequence of Cosserat directorsbn is
defined by

bn(Z2) = R(Z2)RQUe3 whereverrn(Z2) = γ, (5.40)

bn(Z2) = R(Z2)e3 whereverrn(Z2) = 1. (5.41)
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Here,R(Z2) andR are the rotations (5.14), (5.15),U a solution to the maximum
problem in (5.21), andQ a rotation such thatQU satisfies the condition (5.7)–(5.9)
for building up a tunnel.

By construction,un(0) = vn(0) = 0. In Appendix 3, we prove the existence of
α∗n, β∗n ∈ [0,2π ] for which the boundary conditions (5.25) are also satisfied. We
also show that

α∗n → α, (5.42)

β∗n →−
2α

l2
, (5.43)

up to a subsequence, withα as in (5.32). Using (5.42), (5.43), the weak conver-
gence ofrn andbn to their averages [14, Theorem 1.5], and the definitions (5.14),
(5.15), we find(

yn,1|yn,2|bn
) ∗
⇀ λ̄minR(Z2)RQU+ (1− λ̄min

)
R(Z2) in L∞. (5.44)

To compute the Young measure generated by(yn,1|yn,2|bn), we note that for any
functionψ ∈ C0(M

3×3;R)
ψ
(
yn,1|yn,2|bn

) ∗
⇀ λ̄minψ(R(Z2)RQU)+ (1− λ̄min)ψ

(
R(Z2)

)
in L∞ (5.45)

[23, Corollary 3.3]. Thus, in view of (4.13), the family of Young measures arising
from (yn,1|yn,2|bn) is given by

ν̂Z2 = λ̄minδR(Z2)RQU + (1− λ̄min)δR(Z2). (5.46)

Because∣∣∣∣∫
M

Fe2 dν̂Z2

∣∣∣∣ = λ̄minγ + 1− λ̄min, (5.47)

the family of Young measureŝν achieves the lower bound in (5.35).
Let us now turn to evaluatinḡλmin.We differentiate the right-hand side of (5.35)

with respect tōλ and use (5.34) to get

dE(λ̄;U,V )
dλ̄

= l1l2
[
(lm(θ)− la(θ))− P(γ − 1)R

]
, (5.48)

which vanishes at the unique solution

R = (lm(θ)− la(θ))
P (γ − 1)

. (5.49)

While there is a unique stationary pointR, the corresponding value ofλ̄ may not
be unique (i.e., see Figure 3 withγ > π/2). The minimizing values of̄λ are the
following:
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• Case 1.

γ 6 π/2, and P < 2β
(lm(θ)− la(θ))
l2(γ − 1)

=: P1,

with β the solution in(0, π/(2γ )) to the equation

sin(γβ) = β. (5.50)

There is a unique minimizer̄λmin given by

λ̄min = 2(lm(θ)− la(θ))
l2P(γ − 1)2

arcsin

[
l2P(γ − 1)

2(lm(θ)− la(θ)
]
− 1

(γ − 1)
. (5.51)

• Case 2.γ 6 π/2, andP > P1. The unique global minimizer is̄λmin = 1.
• Case 3.

γ > π/2, and P < 2ξ
(lm(θ)− la(θ))
l2(γ − 1)

=: P2,

with ξ ∈ (0,1) the solution to the equation

1

ξ2
arcsinξ + 1

ξ

√
1− ξ2 = 2γ

ξ
− 1

β

[
γ +

√
1 − β2

]
, (5.52)

whereβ is now the solution in(π/(2γ );1) to (5.50). The unique global
minimizer is again given by (5.51).

• Case 4.γ > π/2, andP = P2. There are two global minimizer, one atλ̄
given by (5.51) and one atλ̄min = 1.

• Case 5.γ > π/2, andP > P2. The unique global minimizer is̄λmin = 1.

In Case 3, there is also a relative minimum atλ̄ = 1 if

2β
(lm(θ)− la(θ))
l2(γ − 1)

< P < P2, (5.53)

while in Case 5 there is a relative minimum atλ̄ given by (5.51) if

P2 < P < 2
(lm(θ)− la(θ))
l2(γ − 1)

. (5.54)

To give a physical interpretation of these results, in all cases we fix the tempera-
tureθ above the transformation temperature and the material (soγ is fixed), and we
increase the pressure starting from an appropriate value. In Case 1, a fine mixture
of austenite and martensite is globally stable. The volume fraction of martensite
λ̄min increases asP increases starting from zero. Correspondingly, the length of the
cross-section, which has the form of a circular arch, increases and the film encloses
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Figure 5. VolumeV enclosed by the film versus the ratio(lm(θ)− la(θ))/(P (γ − 1)) in the
caseγ ∈ (1, π/2].

more and more volume. From (5.33), (5.49), and (5.51), we find that this volume
is given by

V = l1l
2
2

4

[
4(lm(θ)− la(θ))2)
P l22(γ − 1)2

arcsin

(
(P l2(γ − 1))

2(lm(θ)− la(θ))
)

−
√

4(lm(θ)− la(θ))2)
P l22(γ − 1)2

− 1

]
, (5.55)

which corresponds to the curve plotted in Figure 5. ForP = P1 (see Case 2), we
haveλ̄min = 1 and thus the austenite has completely transformed. At this point the
length of the cross-section reaches its maximum valuel2γ and the film encloses
the volume

V = l1l
2
2

4

[
γ

β
− 1

β

√
1− β2

]
, (5.56)

with β defined as in Case 1. If the pressure is further increased fromP1, the length
of the cross-section and the volume enclosed remain constant.

In Case 3, as the pressure increases, a mixture of austenite and martensite with
increasing volume fraction (5.51) is globally stable. The volume enclosed by the
film is still given by the relation (5.55) plotted now in Figure 6. ForP as in
(5.53), the martensite becomes a metastable configuration and atP = P2, (see
Case 4), both the martensite and the mixture are globally stable. IfP is further
increased (Case 5), then the mixture becomes metastable while the martensite be-
comes globally stable. The presence of metastable states introduces the possibility
of a hysteresis loop in Figure 6.
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Figure 6. VolumeV enclosed by the film versus the ratio(lm(θ)− la(θ))/(P (γ − 1)) in the
caseγ ∈ (π/2,+∞). Dashed curve corresponds to relative minimizers.

Figure 7. Pressure–temperature phase diagram for the material of the film. The cases drawn
correspond to linear relationslm(θ), la(θ). The sector enclosed by dashed lines contains
metastable states. Note that some martensite is present even at high temperatures.

If we assumelm(θ) andla(θ) to depend linearly upon the temperature, we can
summarize these results in the pressure-temperature phase diagram depicted in
Figure 7, in which the two casesγ 6 π/2, andγ > π/2 are drawn separately.
For values of the pressure and of the temperature lying in the regions marked with
M, the tunnel deformation withy given by (5.10), (5.30), (5.31) with̄λmin = 1,
andb = R(Z2)RQUe3 is globally stable. At each point of the film, the material
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Figure 8. Microstructure of the film at equilibrium.

is in the variant of martensiteU. For values of pressure and temperature lying in
the regions marked withA +M, the macroscopic deformation of the film is now
given by the tunnel deformation (5.10), (5.30), (5.31) evaluated atλ̄ = λ̄min, and
by b = (λ̄minR(Z2)RQU + (1 − λ̄min))R(Z2))e3; correspondingly, the material
is a fine mixture of austenite and of the variant of martensiteU. The family of
Young measures (5.46) describes the microstructure of the material. Recalling the
construction of the sequence generating the measures (5.46), the microstructure
is found to consist of martensitic regions alternated with austenitic region, both
regions having the shape of thin strips parallel to the axis of the tunnel, as depicted
in Figure 8.
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Appendix A

We now give a proof of the identity (2.26).

LEMMA A.1. Lety ∈ H and t > 0. Then

1

3

∫
S×{t}

y · (y,1 ∧ y,2)dX1 dX2− 1

3

∫
S×{0}

y · (y,1 ∧ y,2)dX1 dX2

+2

3
t|S|detA =

∫
S×(0,t )

det∇y dX. (A.1)

Proof. Let yn ∈ C∞(�h;R3) be a smooth sequence approximatingy in H .

Denoting withεijk the Ricci tensor, we have∫
S×(0,t )

det∇yn dX =
∫
S×(0,t )

1

6
εijkεpqry

n
i,pynj,qy

n
k,r dX. (A.2)
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By integrating by parts and applying the divergence theorem, we obtain∫
S×(0,t )

det∇yn dX = −
∫
S×(0,t )

1

6
εijkεpqr

(
yni,pynj,q

)
,r

ynk dX

+
∫
∂(S×(0,t ))

1

6
εijkεpqry

n
i,py

n
j,qy

n
kNr da, (A.3)

whereN = N1e1 + N2e2 + N3e3 is the outward unit normal to∂(S × (0, t)). The
first term on the right hand side of (A.3) is zero because it is the inner product of
symmetric and antisymmetric tensors. Hence,∫

S×(0,t )
det∇yn dX =

∫
∂(S×(0,t ))

1

3

(
Adj∇yn

)
yn · N da,

= −
∫
S×{0}

1

3

(
Adj∇yn

)
yn · e3 dX1 dX2

+
∫
S×{t}

1

3

(
Adj∇yn

)
yn · e3 dX1 dX2

+
∫
∂S×{0,t}

1

3

(
Adj∇yn

)
yn · N da. (A.4)

Let X(s) be a parametrization of the boundary ofS, with X(0) = X(1). Then,
(X(s),X3) is a parametrization of the surface∂S × {0, t}, which is assumed to
orient the surface∂S × {0, t} so that the vector

X,s ∧ e3

|X,s ∧ e3| (A.5)

is the outward pointing unit normal. Using the identities

(AdjA)T(b ∧ c) = Ab ∧ Ac,

(AdjA)A = (detA)I ,

and the boundary conditions (2.2), we obtain∫
∂S×{0,t}

(
Adj∇yn(X)

)
yn(X) · N(X)da

=
∫ t

0

∫ 1

0

(
Adj∇yn(X(s),X3)

)
yn(X(s),X3) · (X(s),s ∧ e3)ds dX3

=
∫ t

0

∫ 1

0
yn
(
X(s),X3

) · (Adj∇yn(X(s),X3)
)T
(X(s),s ∧ e3)ds dX3

=
∫ t

0

∫ 1

0
yn
(
X(s),X3

) · (∇yn(X(s),X3)X(s),s ∧ ∇yn
(
X(s),X3

)
e3
)

ds dX3

=
∫ t

0

∫ 1

0
A
(
X(s),X3

) · (AX (s),s ∧ Ae3
)

ds dX3
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=
∫ t

0

∫ 1

0
A
(
X(s),X3

) · (AdjA)T
(
X(s),s ∧ e3

)
ds dX3

=
∫ t

0

∫ 1

0
(AdjA)A

(
X(s),X3

) · (X(s),s ∧ e3
)

ds dX3

= detA
∫ t

0

∫ 1

0
(X(s),X3) ·

(
X(s),s ∧ e3

)
ds dX3. (A.6)

By the divergence theorem,∫ 1

0

(
X(s),X3

) · (X(s),s ∧ e3
)

ds =
∫
S

divX dX = 2|S|, (A.7)

which, substituted into (A.6), gives∫
∂S×{0,t}

(
Adj∇yn

)
yn · N da = 2t|S|detA. (A.8)

This, together with (A.4) and the identity(Adj∇y)y·e3 = y·(y,1∧y,2), gives (A.1)
for the approximating sequenceyn. Letting n → ∞, by the continuity inW 2,2 of
the volume functional and of the last term in (A.1), we obtain (A.1) fory. 2

Appendix B

We prove a convenient 2-dimensional version of the isoperimetric inequality.

LEMMA B.2. Let γ > 1 and λ̄ ∈ [0,1] be given. Then, for any couple(u, v) ∈
(W 1,3(0, l2))2 satisfying the boundary conditions (5.24), (5.25) and the con-
straint (5.29),

∫ l2

0
u′(Z2)v(Z2)dZ2 6



1

2
l2R(γ λ̄+ 1− λ̄)− l2

2

√
R2− l

2
2

4
,

for 1< γ λ̄+ 1− λ̄ 6 π

2
,

1

2
l2R(γ λ̄+ 1− λ̄)+ l2

2

√
R2− l

2
2

4
,

for γ λ̄+ 1− λ̄ > π

2
.

(B.1)

Proof. We recall that for any two planar curves parametrized by the couples
(u, v) and (φ,ψ) in (W 1,3(0, l2))2 satisfying the same boundary conditions, the
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following 2-dimensional version of the isoperimetric inequality (2.19) holds:∣∣∣∣∫ l2

0

(
u′(Z2)v(Z2)− φ′(Z2)ψ(Z2)

)
dZ2

∣∣∣∣
6 1

4π

[∫ l2

0

(√
(u′)2(Z2)+ (v′)2(Z2)+

√
(φ′)2(Z2)+ (ψ ′)2(Z2)

)
dZ2

]2

(B.2)

[24], from which, using the triangle inequality, we have∫ l2

0
u′(Z2)v(Z2)dZ2

6
∫ l2

0
φ′(Z2)ψ(Z2)dZ2 + 1

4π

[∫ l2

0

(√
(u′)2(Z2)+ (v′)2(Z2)

+
√
(φ′)2(Z2)+ (ψ ′)2(Z2)

)
dZ2

]2

. (B.3)

Let now us choose

φ(Z2) = π − α
sinα

∫ Z2

0
cos

[
2

l2
(π − α)s − (π − α)

]
ds, (B.4)

ψ(Z2) = π − α
sinα

∫ Z2

0
sin

[
2

l2
(π − α)s − (π − α)

]
ds, (B.5)

with α the solution in(0,2π) to the equation (5.32). The couple(φ,ψ) is a para-
metric representation of a circular arch joining the origin with the point(0, l2),
lying in the negative halfplane, and having length∫ l2

0

√
(φ′)2(Z2)+ (ψ ′)2(Z2)dZ2 = 2πR − l2(γ λ̄+ 1− λ̄), (B.6)

with the radius of the archR satisfying (5.34). The (algebraic) area enclosed by
(φ,ψ) is given by∫ l2

0
φ′(Z2)ψ(Z2)dZ2

=


1

2
l2R(γ λ̄+ 1− λ̄)− πR2− l2

2

√
R2− l

2
2

4
, if γ ∈

(
1,
π

2

]
,

1

2
l2R(γ λ̄+ 1− λ̄)− πR2+ l2

2

√
R2− l

2
2

4
, if γ ∈

(
π

2
,+∞

)
.

(B.7)

Substituting (B.6) and (B.7) into the isoperimetric inequality (B.3) gives (B.1).2
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A straightforward calculation shows that the upper value in (B.1) is achieved by
the circular arch parametrized by the couple(U, V ) with U andV given by (5.30),
(5.31).

Appendix C

LEMMA C.3. Letγ > 1 and λ̄ ∈ [0,1] be given. Then, the system of equations{ ∫ l2
0 rn(t) cos(βnt + αn)dt = l2,∫ l2
0 rn(t) sin(βnt + αn)dt = 0,

(C.1)

with rn defined as in (5.39), admits at least a solution(α∗n, β∗n) for each integern.
Moreover,

α∗n → α, (C.2)

β∗n →−
2α

l2
, (C.3)

up to a subsequence, withα the solution in(0,2π) to (5.32).
Proof.We change variables to reduce the system (C.1) to the form{ ∫ 1

0 qn(t) cos(βnl2s + αn)ds = 1,∫ 1
0 qn(t) sin(βnl2s + αn)ds = 0,

(C.4)

with qn(s) := rn(l2s). The system (C.4) is equivalent to
cosαn

∫ 1

0
qn(s) cos(βnl2s)ds − sinαn

∫ 1

0
qn(s) sin(Ans)ds = 1,

cosαn

∫ 1

0
qn(s) sin(βnl2s)ds + sinαn

∫ 1

0
qn(s) cos(βnl2s)ds = 0.

(C.5)

Take the square, sum and use the trigonometric identity sin2 αn + cos2 αn = 1 to
get

1=
[∫ 1

0
qn(s) cos(βnl2s)ds

]2

+
[∫ 1

0
qn(s) sin(βnl2s)ds

]2

=: f n(βn). (C.6)

Note thatf n(0) = 0. Besides, because

lim
n→∞ f

n(2π) = 0, (C.7)

there exists an integer, sayn0, such that for eachn > n0

f n(2π) <
1

2
. (C.8)
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Therefore, using the continuity off n, we conclude that there exists aβ∗n ∈ [0,2π ]
which solves (C.6). Besides, in view of (C.6), we may defineα∗n in [0,2π ] such
that

cosα∗n =
∫ 1

0
qn(s) cos(βnl2s)ds. (C.9)

From (C.6) and (C.9), we find[∫ 1

0
qn(s) sin(βnl2s)ds

]2

= sin2 α∗n. (C.10)

Since there are two solutions of (C.10), without loss of generality we choose[∫ 1

0
qn(s) sin(βnl2s)ds

]
= − sinα∗n. (C.11)

On using (C.10), (C.11), and (C.6), the equations in (C.5) are identically satisfied
for α∗n, β∗n. Besides, becauseα∗n, β∗n ∈ [0,2π ], we have

α∗n → α, (C.12)

β∗n → β, (C.13)

up to a subsequence. The limit problem associated with (C.1)
(γ λ̄+ 1− λ̄)

∫ l2

0
cos(βt + α)dt = l2,

(γ λ̄+ 1− λ̄)
∫ l2

0
sin(βt + α)dt = 0,

(C.14)

is equivalent to
β = −2α

l2
,

sinα = α

(λ̄γ + 1− λ̄) .
(C.15)

This system admits a unique solution in(0,2π), since (γ λ̄ + 1 − λ̄) > 1 by
hypothesis. 2
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